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Álvaro Lozano-Robledo

University of Connecticut

May 2014

iii



ACKNOWLEDGMENTS

My most sincere appreciation and gratitude goes to both Keith Conrad and Álvaro
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Chapter 1

Introduction

The law of quadratic reciprocity provides conditions that tell whether an integer is a

quadratic residue modulo primes. However, it does not treat 2 in the same manner as

other primes. There is a supplementary law for 2 which details the conditions needed

for it to be a quadratic residue.

In this thesis, we will recall a completion of the rational numbers Q, called the p-

adic numbers Qp. After exploring Qp, we will consider the Hilbert symbol, a particular

pairing on Q×p ×Q×p . The Hilbert symbol satisfies the Hilbert reciprocity law, which we

will show is equivalent to the law of quadratic reciprocity. However, unlike quadratic

reciprocity, the Hilbert reciprocity law puts all primes on an equal footing, including

2.

For a Gaussian integer prime π, we will also discuss the π-adic completion of Q(i),

denoted Q(i)π. Then we will examine the Hilbert symbol on Q(i)×π and show that the

Hilbert reciprocity law on Q(i) is equivalent to quadratic reciprocity in the Gaussian

integers.
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Chapter 2

The p-adic numbers

2.1 Useful Definitions and Properties

In this thesis, we will assume prior knowledge of the p-adic numbers Qp. However, in

this section we will recall several important definitions and properties regarding Qp

that will be used frequently in this thesis.

Definition 2.1.1. Let p ∈ Z be prime. Define the p-adic valuation on Z to be the

function vp : Z − {0} −→ R such that for each n ∈ Z − {0}, vp(n) is the unique

positive integer satisfying n = pvp(n)n′ where p - n′. Furthermore, we extend vp so

that for x = a
b
∈ Q× with a, b ∈ Z − {0}, we have vp(x) = vp(a) − vp(b). Lastly, we

set vp(0) =∞.

2
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Definition 2.1.2. Let x ∈ Q. We define the p-adic absolute value of x by

|x|p :=


1

pvp(x)
, if x 6= 0,

0, if x = 0.

The field Qp is defined as the completion of Q with respect to the p-adic absolute

value, and we have the following theorem about the form of each element in Qp.

Theorem 2.1.3. Let x ∈ Q×p . Then x can be written uniquely in the form

x = b−n0p
−n0 + · · ·+ b0 + b1p+ b2p

2 + · · ·+ bnp
n + · · · =

∑
n≥−n0

bnp
n

with 0 ≤ bn ≤ p− 1 and −n0 = vp(x).

Proof. For a proof, see [3, p. 68, Corollary 3.3.11].

Definition 2.1.4. The ring of p-adic integers is Zp = {x ∈ Qp : |x|p ≤ 1}. In

particular, the units of Zp are Z×p = {x ∈ Qp : |x|p = 1}.

Theorem 2.1.5. Let n ∈ Z such that n ≥ 1. Then the inclusion Z ↪→ Zp induces a

ring isomorphism Z/pnZ→ Zp/p
nZp.

Proof. See [3, p. 63, Corollary 3.3.6].

Theorem 2.1.6 (Hensel’s Lemma). Let f(x) = a0+a1x+· · ·+anxn be a polynomial

in Zp[x]. Suppose that there exists a p-adic integer α0 ∈ Zp such that

f(α0) ≡ 0 mod pZp

and

f ′(α0) 6≡ 0 mod pZp.
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Then there exists a unique p-adic integer α ∈ Zp such that α ≡ α0 mod pZp and

f(α) = 0.

Proof. See [3, p. 70, Theorem 3.4.1].

Corollary 2.1.7. Let p be an odd prime and let u ∈ Z×p . Then u = � in Z×p if and

only if u ≡ � mod p.

Proof. Let u ∈ Z×p (in particular, u 6≡ 0 mod p). First, if u = � in Z×p , then obviously

u ≡ � mod p. On the other hand, let u ≡ � mod p. Then there exists some a ∈

(Z/pZ)× such that a2 ≡ u mod p. Now consider the polynomial f(x) = x2 − u. We

have that f(a) ≡ a2 − u ≡ 0 mod p and f ′(a) = 2a 6≡ 0 mod p. Thus, by Hensel’s

lemma there exists α ∈ Zp such that f(α) = 0. So α2 = u, meaning u = � in Zp and

|α|2p = |u|p = 1, so α ∈ Z×p . Thus, u = � in Z×p .

Lemma 2.1.8. Let p be an odd prime and let a, b, c ∈ Z×p . Then there exist x, y ∈

Z/pZ such that ax2 + by2 ≡ c mod p.

Proof. Rewrite the congruence as ax2 ≡ c − by2 mod p. Since there are p+1
2

squares

in Z/pZ (including 0 mod p here), ax2 mod p has p+1
2

values as x varies mod p, and

likewise c − by2 mod p has p+1
2

values as y varies mod p. Since p+1
2

+ p+1
2

= p + 1 >

p = |Z/pZ|, by the pigeonhole principle

{
ax2 mod p : x ∈ Z/pZ

}
∩
{
c− by2 mod p : y ∈ Z/pZ

}
6= ∅.

So there exist x0, y0 ∈ Z/pZ such that ax20 ≡ c− by20 mod p.

Corollary 2.1.9. Let p be an odd prime and let a, b, c ∈ Z×p . Then the equation

ax2 + by2 = c has a solution with x, y ∈ Zp.
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Proof. By Lemma 2.1.8 there are x0, y0 ∈ Zp such that ax20 + by20 ≡ c mod p and

either x0 6≡ 0 mod p or y0 6≡ 0 mod p. The congruence is symmetric in the roles of

x0 and y0, so without loss of generality, let x0 6≡ 0 mod p. Then
c−by20
a

is congruent

mod p to a nonzero square x20, so by Hensel’s lemma there exists x ∈ Zp such that

x2 =
c−by20
a

and x ≡ x0 mod p. Now let y = y0. Then (x, y) is a solution to the

equation ax2 + by2 = c.



Chapter 3

The Hilbert Symbol

3.1 Definition and Basic Properties

The completions of Q are Q2,Q3,Q5, ..., and R. To describe these with a uniform

notation, let v be a place, either a prime or the symbol ∞, and define Q∞ = R.

Definition 3.1.1. For any a, b ∈ Q×v , the Hilbert symbol of a and b relative to Qv is

defined as

(a, b)v :=


1, if ax2 + by2 = z2 has a solution in (x, y, z) ∈ Q3

v − {(0, 0, 0)},

−1, otherwise.

For a, b, c ∈ Q×v , we will often refer to ax2 + by2 = cz2 having a solution when we

mean having a solution besides (0, 0, 0).

Remark 3.1.2. Since we can multiply the equation ax2 + by2 = z2 by any nonzero

square without changing the existence of a solution, if v is a finite place and there is a

6
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solution to ax2 + by2 = z2 with x, y, z ∈ Qp, then there is a solution with x, y, z ∈ Zp

and x, y, or z in Z×p .

Example 3.1.3. We will evaluate (2, 3)3. This means that we are trying to find out

whether there is a solution to 2x2+3y2 = z2 with x, y, z ∈ Q3 besides (0, 0, 0). If such

a solution does exist, we know that one exists with x, y, z ∈ Z3 where at least one of

them is a unit. With this knowledge, we can now reduce 2x2 + 3y2 = z2 mod 3 and

obtain 2x2 ≡ z2 mod 3. Here, if x ≡ 0 mod 3 then we would have that z ≡ 0 mod 3.

Then 3|x and 3|z, so 32|x2 and 32|z2. This means that 32|(z2 − 2x2). So 32|3y2,

meaning 3|y2, which implies that 3|y. Now we have that x, y, and z are not units,

which is a contradiction as we had at least one of them being a unit. Thus it must

be that x 6≡ 0 mod 3. Then with 2x2 ≡ z2 mod 3 we can divide both sides by x2 and

get that 2 ≡ � mod 3, which is a contradiction. Therefore, there is no solution to

2x2 + 3y2 = z2 in Q3 besides (0, 0, 0) and (2, 3)3 = −1.

Example 3.1.4. We will evaluate (2, 2)v for any v. Since 1, 2 ∈ Qv for all v, we can

use (x, y, z) = (1, 1, 2) as our solution to 2x2 + 2y2 = z2. Thus for any v we have that

(2, 2)v = 1.

Now that we have defined the Hilbert symbol on Qp, we can examine its basic

properties.

Theorem 3.1.5. For a, b, c ∈ Q×v ,

(i) (a, b)v = (b, a)v and (a, c2)v = 1,

(ii) (a,−a)v = (a, 1− a)v = 1,

(iii) (a, b)v = (ac2, b)v = (a, bc2)v.
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Proof. Properties (i) and (iii) follow from the definition of the Hilbert symbol, and

(ii) follows from using x = y = 1 and z = 0 or z = 1 respectively in the equations

ax2 − ay2 = z2 and ax2 + (1− a)y2 = z2.

Definition 3.1.6. For b ∈ Q×v , let Nb,v = {x2 − by2 6= 0 : x, y ∈ Qv}.

Theorem 3.1.7. For all b ∈ Q×v , Nb,v is a subgroup of Q×v and (Q×v )2 ⊂ Nb,v ⊂ Q×v .

Proof. First notice that if y = 0 then x2 − by2 = x2, so (Q×v )2 ⊂ Nb,v. Any element

of Nb,v is an element of Q×v , so Nb,v ⊂ Q×v .

Now we will show that Nb,v is a subgroup of Q×v . Using x = 1 and y = 0, we have

x2 − by2 = 1, so Nb,v contains the identity element of Q×v .

Next, let x, y, z, w ∈ Qv such that x2 − by2 and z2 − bw2 are nonzero. Then

(x2 − by2)(z2 − bw2) is nonzero and

(x2 − by2)(z2 − bw2) = (x+ y
√
b)(x− y

√
b)(z + w

√
b)(z − w

√
b)

= (xz + byw + (xw + yz)
√
b)(xz + byw − (xw + yz)

√
b)

= (xz + byw)2 − b(xw + yz)2,

so (x2− by2)(z2− bw2) ∈ Nb,v. Thus, Nb,v is closed under multiplication. Lastly, Nb,v

contains multiplicative inverses since

1

x2 − by2
=

x2 − by2

(x2 − by2)2
=

(
x

x2 − by2

)2

− b
(

y

x2 − by2

)2

.

Theorem 3.1.8. Let b ∈ Q×v . If b ∈ (Q×v )2, then Nb,v = Q×v .
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Proof. Since b ∈ (Q×v )2, set b = β2. Then for x, y ∈ Qv, x
2− by2 = x2− (βy)2 = (x+

βy)(x−βy). With the invertible change of variables t = x+βy and u = x−βy (here

x = t+u
2

and y = t−u
2β

), we see that {x2−by2 6= 0 : x, y ∈ Qv} = {tu : t, u ∈ Q×v } = Q×v .

Remark 3.1.9. Later on we will see that if b /∈ (Q×v )2, then Nb,v 6= Q×v . This will

follow from Theorems 3.3.2, 3.3.3, and 3.3.4.

Theorem 3.1.10. For a, b ∈ Q×v , (a, b)v = 1 if and only if a ∈ Nb,v.

Proof. For the direction (⇒), suppose (a, b)v = 1. Then there exist x, y, z ∈ Qv

such that ax2 + by2 = z2 with (x, y, z) 6= (0, 0, 0). If x 6= 0, then we can rewrite

ax2 + by2 = z2 as a = z2−by2
x2

. This gives a = (z′)2 − b(y′)2 for some y′, z′ ∈ Qv and

we’re done. On the other hand, if x = 0 then y 6= 0 and z 6= 0, and b = (z/y)2, which

means that b = � in Q×v . By Theorem 3.1.8, we have {x2−by2 6= 0|x, y ∈ Qv} = Q×v .

Since a ∈ Q×v , we’re done.

For the direction (⇐), suppose a ∈ Nb,v, so there exist x, y ∈ Qv such that

a = x2 − by2. Then, a · 12 + by2 = x2, so (a, b)v = 1.

3.2 Square Classes

A square class in Q×v is a coset in Q×v /(Q
×
v )2. In this section, we will find a complete

set of square class representatives for Q×v . These will be instrumental in proving the

bimultiplicativity of the Hilbert symbol.

Theorem 3.2.1. Let p be an odd prime and let r ∈ Z×p such that r 6≡ � mod p. A

set of square class representatives for Q×p is {1, r, p, rp}.
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Proof. Since Q×p = pZ × Z×p and (Q×p )2 = p2Z × (Z×p )2, we have

Q×p /(Q
×
p )2 =

pZ × Z×p
p2Z × (Z×p )2

∼=
pZ

p2Z
×

Z×p
(Z×p )2

.

Since pZ/p2Z depends only on the parity of the power of p, it is represented by {1, p}.

Also, by Corollary 2.1.7, if α ∈ Z×p then α ≡ � mod p if and only if α ∈ (Z×p )2.

With this, since any two nonsquare units in Z/pZ have a square ratio, Z×p /(Z
×
p )2 is

represented by {1, r} where r is a nonquadratic residue in Z/pZ. Thus, Q×p /(Q
×
p )2 is

represented by {1, p} × {1, r} = {1, r, p, rp}.

In order to find the square class representatives for p = 2, we will need a more

general form of Hensel’s lemma.

Theorem 3.2.2. Let f(x) = a0 + a1x+ · · ·+ anx
n be a polynomial in Zp[x]. Suppose

that there exists a p-adic integer α0 ∈ Zp such that

|f(α0)|p < |f ′(α0)|2p

Then there exists a unique p-adic integer α ∈ Zp such that f(α) = 0 and |α − α0| <

|f ′(α0)|.

Proof. See [2, pp. 1-3, Theorem 1.4].

Example 3.2.3. Consider the polynomial f(x) = x2− u where u ∈ Z×2 . We want to

use 1 as an approximate root of f(x) in Z2. Then we want f(x) to satisfy |f(1)|2 <

|f ′(1)|22. So we need |u− 1|2 < |2|22 = |4|2. This is equivalent to u ≡ 1 mod 8Z2. Thus

Hensel’s lemma says that if u ≡ 1 mod 8Z2, then u is a square in Z2 and thus in Q2.

Theorem 3.2.4. Let u ∈ Z×2 . Then u is a square in Z×2 if and only if u ≡ 1 mod 8Z2.
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Proof. For the direction (⇒), we look at the possible units mod 8, {1, 3, 5, 7}, and

square them: 12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 mod 8. This means that any square unit r in Z2

is congruent to 1 mod 8. For the reverse direction, use the previous example and note

that if r = α2 in Z2 with α ∈ Q2 then necessarily α ∈ Z×2 since |α|22 = |r|2 = 1.

Theorem 3.2.5. A complete set of square class representatives for Q×2 is {±1,±2,±5,±10}.

Proof. We have that

Q×2 /(Q
×
2 )2 =

2Z × Z×2
22Z × (Z×2 )2

∼=
2Z

22Z
× Z×2

(Z×2 )2
.

As in Theorem 3.2.1, 2Z/22Z is represented by {1, 2}. Also, for u ∈ Z×2 we have that

2 - u. So by Theorem 2.1.3, u can be written in form u = 1+b12+b22
2+· · ·+bn2n+· · · ,

where each bi ∈ {0, 1}. Therefore, either u ≡ 1 mod 4 or u ≡ 3 ≡ −1 mod 4.

As a result, Z×2 = {±1} × (1 + 4Z2). Then (Z×2 )2 = 1 + 8Z2, and 1 + 4Z2 =

(1 + 8Z2) ∪ 5(1 + 8Z2), so Z×2 /(Z
×
2 )2 is represented by {±1} × {1, 5} = {±1,±5}.

Thus Q×2 /(Q
×
2 )2 is represented by {1, 2} × {±1,±5} = {±1,±2,±5,±10}.

3.3 Bimultiplicativity of the Hilbert Symbol

A key property of the Hilbert symbol is that it is bimultiplicative. This property will

be extremely useful for deriving a formula for the Hilbert symbol and proving the

equivalence between the Hilbert reciprocity law and quadratic reciprocity.

Definition 3.3.1. Let p be an odd prime and let d be a nonsquare in Q×p . Then let

Ld = Qp(
√
d). For α ∈ Ld such that α = x+y

√
d with x, y ∈ Qp, define N : Ld → Qp

by N(α) = x2 − dy2.
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Theorem 3.3.2. Let p be an odd prime and let d be a nonsquare in Q×p . If Ld =

Qp(
√
d), then N(L×d )/(Q×p )2 = {x2 − dy2 6= 0 : x, y ∈ Qp}/(Q×p )2 is a subgroup of

Q×p /(Q
×
p )2 with index 2.

Proof. Since (Q×p )2 ⊂ N(L×d ) ⊂ Q×p , to show the group N(L×d )/(Q×p )2 has index 2 in

Q×p /(Q
×
p )2 ∼= Z/2Z× Z/2Z it suffices to show that N(L×d ) is neither Q×p nor (Q×p )2.

It suffices by Theorem 3.2.1 to let d = r, p, and rp where r ∈ Zp and r 6≡ � mod p,

so we will break this proof into cases.

Case 1) Let d = r. We will show that only two square class representatives

in Q×p /(Q
×
p )2 are elements of N(L×r ). We will first show that p is not a norm by

examining the homogenized equation x2 − ry2 = pz2. If there is a solution other

than (0, 0, 0) to this equation where x, y, z ∈ Qp, then there is a solution where all

are in Zp and at least one is in Z×p . Further, reducing this equation mod p gives

x2 − ry2 ≡ 0 mod p, which tells us x and y are either both units or both divisible

by p. However, if they are both divisible by p then z must also be divisible by p.

Then x, y, z /∈ Z×p and we have a contradiction. This implies that y 6≡ 0 mod p, which

in turn implies r ≡ � mod p, a contradiction. Thus, p is not a norm from Lr. So

N(L×r )/(Q×p )2 cannot have order 4. Now we will show that r is a norm. The equation

x2 − ry2 = r has a solution with x, y ∈ Zp by Corollary 2.1.9, so r is a norm. Since 1

is clearly a norm, we have N(L×r )/(Q×p )2 = {1, r} and has order 2.

Case 2) Let d = λp where λ = 1 or λ = r. To show r /∈ N(L×λp), consider the

homogenized equation x2 − λpy2 = rz2. If this equation has a solution in Qp other

than (0, 0, 0), it will have one where x, y, z ∈ Zp and at least one is a unit. Therefore

we can reduce mod p and get x2 ≡ rz2 mod p. So just as we saw in the previous
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case, it must be that x and z are units, for otherwise p would divide x, y, and z and

we would not have a unit in our solution. Since z2 6≡ 0 mod p, we can divide both

sides of the congruence by it and get that r ≡ � mod p, a contradiction. Thus, r

is not a norm. Next we consider the homogenized equation x2 − λpy2 = pz2. This

equation has a solution in Qp (other than (0, 0, 0)) if and only if px2 − λy2 = z2 has

a solution in Qp. If there is a solution in Qp then there must be one with x, y, z ∈ Zp

with at least one being a unit, so we can reduce the second equation mod p and get

−λy2 ≡ z2 mod p. Also, we can note that if y is divisible by p then z is divisible

by p, which would make x divisible by p and then x, y, z /∈ Z×p . This would be a

contradiction, so it must be that y 6≡ 0 mod p. This means that −λ ≡ � mod p.

Now, if λ = 1 we will have a contradiction unless (−1
p

) = 1, and if (−1
p

) = 1 then

(x, y, z) = (0,
√
−1, 1) is a solution to px2 − y2 = z2. Thus for d = p, p is a norm if

and only if (−1
p

) = 1. On the other hand, if λ = r we will have a contradiction unless

(−1
p

) = −1, and if (−1
p

) = −1 then −r = � in Zp and (x, y, z) = (0,
√
−r, r) is a

solution to px2−ry2 = z2. Therefore for d = rp, p is a norm if and only if (−1
p

) = −1.

Lastly, we will consider the homogenized equation x2−λpy2 = rpz2. This equation

has a solution in Qp if and only if px2− λy2 = rz2 has a solution in Qp. And if there

is a solution in Qp then there must be one with x, y, z ∈ Zp with at least one being a

unit, so we can reduce the second equation mod p and get −λy2 ≡ rz2 mod p. Using

a similar argument to the one in the above paragraph, we can show that it must be

that y 6≡ 0 mod p. With this, if λ = 1 we have that −y2 ≡ rz2 mod p which implies

−r ≡ � mod p. This is a contradiction unless (−1
p

) = −1, and if (−1
p

) = −1 then

(x, y, z) = (0,
√
−r, 1) is a solution to px2−y2 = rz2. So for d = p, rp is a norm if and

only if (−1
p

) = −1. Instead, if λ = r, then we are left with −ry2 ≡ rz2 mod p which

implies that −1 ≡ � mod p. This is a contradiction unless (−1
p

) = 1, and if (−1
p

) = 1
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then (x, y, z) = (0,
√
−1, 1) is a solution to px2 − ry2 = rz2. Thus for d = rp, rp is a

norm if and only if (−1
p

) = 1.

Overall, this gives us that

N(L×p )/(Q×p )2 =


{1, p}, if (−1

p
) = 1,

{1, rp}, if (−1
p

) = −1,

and

N(L×rp)/(Q
×
p )2 =


{1, p}, if (−1

p
) = −1,

{1, rp}, if (−1
p

) = 1.

For each value of λ, N(L×λp)/(Q
×
p )2 has order 2. So for each nonsquare d in Q×p ,

N(L×d )/(Q×p )2 is a subgroup of Q×p /(Q
×
p )2 with index 2.

Theorem 3.3.3. Let p = 2 and let d be a nonsquare in Q×2 . If Ld = Q2(
√
d), then

N(L×d )/(Q×2 )2 is a subgroup of Q×2 /(Q
×
2 )2 with index 2.

Proof. The field Ld depends on the square class of d, so we can let d run through

square classes. Since Q×2 /(Q
×
2 )2 has order 8 and all its elements square to 1, to show

a subgroup has index 2 we show it is a proper subgroup with at least two elements

besides 1. Since d would have to run through eight square classes for the entire proof,

to save room we will only prove it for one unit square class and one nonunit square

class. The rest of the cases are proven with similar arguments.

Let d = −1. First consider the equation x2 + y2 = −1. If there is a solution

with x, y ∈ Q2 then we consider separately y ∈ Z2 and y /∈ Z2. If y ∈ Z2 then

x2 = −1 − y2 ∈ Z2, so x ∈ Z2. But x2, y2 ≡ 0 or 1 mod 4, so x2 + y2 6≡ −1 mod 4,

which is a contradiction, implying y /∈ Z2. Then we can write y in the form v
2m

where

v ∈ Z×2 and m ≥ 1. Then x2 = −1 − y2 = −22m−v2
22m

. Since v is a unit, −22m − v2
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is a unit and we can write x in the form u
2m

where u ∈ Z×2 . With this, we have

x2 + y2 = u2+v2

22m
= u2+v2

4m
= −1. Then u2 + v2 = −4m and reducing mod 4 gives us

that u2 + v2 ≡ 0 mod 4. However, u2 ≡ v2 ≡ 1 mod 4 as u and v are 2-adic units.

So, u2 + v2 ≡ 2 mod 4, a contradiction. Thus, x2 + y2 = −1 has no solution in Q2

and therefore −1 is not a norm. On the other hand, 2, 5 ∈ N(L×−1) since 2 = 12 + 12

and 5 = 12 + 22. Thus, 2{0,1} × 5{0,1} = {1, 2, 5, 10} gives us four norms that are also

different square class representatives.

Let d = 2. We will show that 5 is not a norm by examining the homogenized

equation x2 − 2y2 = 5z2. If there is solution in Q2 other than (0, 0, 0), then there

will be one where x, y, z ∈ Z2 and at least one of x, y, or z is a unit. Additionally,

if 2|x then 2|(x2 − 2y2), so 2|z. Thus 4|x2 and 4|z2, which implies that 2|y2 and 2|y.

With this x, y, z /∈ Z×2 and we have a contradiction. Thus x ∈ Z×2 , so also z ∈ Z×2 and

1 − 2y2 ≡ 5 · 1 mod 8. Then y2 ≡ 2 mod 4, a contradiction. So 5 is not a norm. In

contrast, −1, 2 ∈ N(L×2 ) since −1 = 12−2 ·12 and 2 = 22−2 ·12. Thus, N(L×2 )/(Q×2 )2

has order 4 containing (−1){0,1} × 2{0,1} = {1,−1, 2,−2}.

Theorem 3.3.4. A complete set of square class representatives for R× is {−1, 1}.

Moreover, if L−1 = R(
√
−1) = C, then N(L×−1)/(R

×)2 is a subgroup of R×/(R×)2

with index 2.

Proof. Since all positive reals are squares and all negative reals are non-squares, the

set {−1, 1} is clearly a complete set of square class representatives for R×. Also

N(L×−1)/(R
×)2 = {x2 + y2 6= 0 : x, y ∈ R}/(R×)2 = {1}, as a nonzero sum of two

real squares is always positive. And since {1} is a subgroup of {−1, 1} with index 2,
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we are done.

Lemma 3.3.5. Let G be a finite group and let H be a subgroup of G with index 2. If

g, g′ ∈ G such that g, g′ /∈ H, then gg′ ∈ H.

Proof. Since g ∈ G−H, G = H t gH. Now if gg′ /∈ H then gg′ ∈ gH, implying that

g′ ∈ H, a contradiction. Thus, gg′ ∈ H.

We now have all the information we need to prove the bimultiplicativity of the

Hilbert symbol.

Theorem 3.3.6. The Hilbert symbol is bimultiplicative. That is, for all a, a′, b, b′ ∈

Q×v , we have (aa′, b)v = (a, b)v(a
′, b)v and (a, bb′)v = (a, b)v(a, b

′)v.

Proof. By the symmetry of the Hilbert symbol in Theorem 3.1.5(i), it suffices to prove

(aa′, b)v = (a, b)v(a
′, b)v. We will split this into three cases.

Case 1: (a, b)v = (a′, b)v = 1. By Theorem 3.1.10, a, a′ ∈ Nb,v. Since Nb,v is closed

under multiplication, aa′ ∈ Nb,v as well. Thus (aa′, b)v = 1 by Theorem 3.1.10.

Case 2: (a, b)v 6= (a′, b)v. Without loss of generality (a, b)v = 1 and (a′, b)v = −1.

To show (aa′, b)v = −1, suppose by way of contradiction that (aa′, b)v = 1. Then by

Theorem 3.1.10, a and aa′ ∈ Nb,v, so aaa′ = a2a′ ∈ Nb,v. This implies by Theorem

3.1.5(iii) that (a′, b)v = (a2a′, b)v = 1, which contradicts our initial hypothesis. Thus,

(aa′, b)v = −1.

Case 3: (a, b)v = (a′, b)v = −1. Then a, a′ 6∈ Nb,v. We want to show (aa′, b)v = 1.

Since Nb,v/(Q
×
v )2 is a subgroup of Q×v /(Q

×
v )2 with index 2, Nb,v is a subgroup of

Q×v with index 2. Then since a, a′ 6∈ Nb,v, by Lemma 3.3.5 we have aa′ ∈ Nb,v, so

(aa′, b)v = 1.
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3.4 Formula for the Hilbert Symbol

Using the bimultiplicativity of the Hilbert symbol, we will derive a formula for it.

Some texts use a different approach and find a formula for the Hilbert symbol before

showing its bimultiplicativity. Then the formula is proven to be bimultiplicative,

implying that the Hilbert symbol is bimultiplicative. See [4, pp. 19-22] for an example

of this alternate approach.

Lemma 3.4.1. If p is an odd prime and a ∈ Z×p , then (a, p)p = (a
p
).

Proof. First we will show that (a
p
) = 1 implies (a, p)p = 1. Suppose (a

p
) = 1. Then

a ≡ � mod p, and by Corollary 2.1.7, a = � in Z×p . Then (a, p)p = 1 by Theorem

3.1.5(i). To show (a, p)p = 1 implies (a
p
) = 1, suppose (a, p)p = 1. Then there exists

x, y, z ∈ Zp with at least one in Z×p such that ax2+py2 = z2. If p|x then p|(ax2+py2) =

z2. With this, p2|(z2 − ax2) = py2 which implies that p|y, a contradiction since one

of x, y, or z is a unit. So it must be that x 6≡ 0 mod p. Now reducing ax2 + py2 = z2

mod p gives ax2 ≡ z2 mod p. This implies that a ≡ � mod p, so (a
p
) = 1.

Lemma 3.4.2. If p is an odd prime, then (p, p)p = (−1
p

).

Proof. First we will show that (−1
p

) = 1 implies (p, p)p = 1. Suppose (−1
p

) = 1. Then

−1 ≡ � mod p, and by Corollary 2.1.7, −1 = � in Z×p . Then (x, y, z) = (1,
√
−1, 0) is

a solution to the equation px2 + py2 = z2 and (p, p)p = 1. To show (p, p)p = 1 implies

(−1
p

) = 1, suppose (p, p)p = 1. Then there is a solution to px2 + py2 = z2 in Qp. This

implies that x2 + y2 = pz2 has a solution in Qp. And if it has a solution in Qp then it

has a solution with x, y, z ∈ Zp where at least one of them is a unit. Also if p|x then

p|y, so we have that p2|(x2 + y2) = pz2. Thus p|z, making it so that x, y, z /∈ Z×p , a
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contradiction. So it must be that x 6≡ 0 mod p. Now if we reduce x2 + y2 = pz2 mod

p we get that x2 +y2 ≡ 0 mod p, which implies that −1 ≡ � mod p and (−1
p

) = 1.

Lemma 3.4.3. If u,w ∈ Z×2 , then (u,w)2 = (−1)
u−1
2

w−1
2 .

Proof. Note that this statement is equivalent to (u,w)2 = 1 if and only if u ≡ 1 mod 4

or w ≡ 1 mod 4. We will prove this statement by dividing it into three cases.

Case 1: Let u ≡ 1 mod 4 and w ≡ 1 mod 4.

(i) Let u ≡ 1 mod 8 or w ≡ 1 mod 8. Then we have that u = � in Z×2 or w = �

in Z×2 , and (u,w)2 = 1 by Theorem 3.1.5(i).

(ii) Let u ≡ 5 mod 8 and w ≡ 5 mod 8. We will consider ux2 + wy2 = z2. If we let

x = 1 and y = 2, then ux2 + wy2 ≡ 5x2 + 5y2 ≡ 5 · 1 + 5 · 4 ≡ 25 ≡ 1 mod 8.

So by Theorem 3.2.4, we have proven the existence of a solution z when x = 1

and y = 2. Thus (u,w)2 = 1.

Case 2: Let u ≡ 1 mod 4 and w ≡ 3 mod 4.

(i) Let u ≡ 1 mod 8. Then u = � in Z2 and (u,w)2 = 1 by Theorem 3.1.5(i).

(ii) Let u ≡ 5 mod 8 and w ≡ 3 mod 8. We will consider ux2 + wy2 = z2. If we let

x = 1 and y = 2, then ux2 + wy2 ≡ 5x2 + 3y2 ≡ 5 · 1 + 3 · 4 ≡ 17 ≡ 1 mod 8.

So we have proven the existence of a solution z when x = 1 and y = 2. Thus

(u,w)2 = 1.

(iii) Let u ≡ 5 mod 8 and w ≡ 7 mod 8. We will consider ux2 + wy2 = z2. Again

letting x = 1 and y = 2, we get that ux2 + wy2 ≡ 5x2 + 7y2 ≡ 5 · 1 + 7 · 4 ≡

33 ≡ 1 mod 8 and (u,w)2 = 1 as before.

Case 3: Let u ≡ 3 mod 4 and w ≡ 3 mod 4.
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(i) Let u ≡ 3 mod 8 and w ≡ 3 mod 8. We will consider ux2 + wy2 = z2. If a

solution exists in Q2 we can find one in Z2 that includes a unit, so we can

reduce this equation mod 8 and get 3x2 +3y2 ≡ z2 mod 8. Here we can see that

if 2|x and 2|y then 2|z and none of them will be a unit. But we have that one

of them is a unit. So let x and y either be both units, or let one be a unit and

the other be a nonunit. Since the equation is symmetric with respect to x and

y, we can narrow it down to half of these cases. We let x and y run through a

set of possible values mod 8 in the table below.

x2, y2 3x2 + 3y2 mod 8

1, 1 3 + 3 ≡ 6

1, 0 3 + 0 ≡ 3

1, 4 3 + 12 ≡ 7

Since 3x2 +3y2 is not congruent to any squares mod 8, we have a contradiction.

So (u,w)2 = −1.

(ii) Let u ≡ 3 mod 8 and w ≡ 7 mod 8. We will consider ux2 + wy2 = z2. If a

solution exists in Q2 we can find one in Z2 that includes a unit, so we can

reduce this equation mod 8 and get 3x2 + 7y2 ≡ z2 mod 8, or equivalently

3x2 ≡ z2 + y2 mod 8. Here we can see that if 2|z and 2|y then 2|x and none

of them will be a unit. But one of them is a unit. So let z and y either be

both units, or let one be a unit and the other be a nonunit. Since the equation

is symmetric with respect to z and y, we can narrow it down to half of these

cases. Let z and y run through a set of values mod 8 in the table below.
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z2, y2 1
3
(z2 + y2) mod 8

1, 1 2
3
≡ 6

1, 0 1
3
≡ 3

1, 4 5
3
≡ 7

Since 1
3
(z2+y2) is not congruent to any squares mod 8, we have a contradiction.

So (u,w)2 = −1.

(iii) Let u ≡ 7 mod 8 and w ≡ 7 mod 8. We will consider ux2 + wy2 = z2. If a

solution exists in Q2 we can find one in Z2 that includes a unit, so we can

reduce this equation mod 8 and get 7x2 + 7y2 ≡ z2 mod 8. If 2|x and 2|y then

2|z and none of them will be a unit. But one of them is a unit. So let x and y

either be both units, or let one be a unit and the other be a nonunit. Since the

equation is symmetric with respect to x and y, we can narrow it down to half

of these cases. We let x and y run through a set of possible values mod 8 in the

table below.

x2, y2 7x2 + 7y2 mod 8

1, 1 7 + 7 ≡ 6

1, 0 7 + 0 ≡ 7

1, 4 7 + 28 ≡ 3

Since 7x2 +7y2 is not congruent to any squares mod 8, we have a contradiction.

So (u,w)2 = −1.
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From these three cases we have that (u,w)2 = 1 if and only if u ≡ 1 mod 4 or

w ≡ 1 mod 4. Thus, (u,w)2 = (−1)
u−1
2

w−1
2 .

Lemma 3.4.4. Let u ∈ Z×2 . Then (u, 2)2 = (−1)
u2−1

8 .

Proof. Note that this statement is equivalent to (u, 2)2 = 1 if and only if u ≡ 1 mod 8

or u ≡ 7 mod 8. We will prove this statement by examining two cases.

Case 1: Let u ≡ 1 mod 8 or u ≡ 7 mod 8.

(i) Let u ≡ 1 mod 8. Then u = � in Zp and (u, 2)2 = 1 by Theorem 3.1.5(i).

(ii) Let u ≡ 7 mod 8. We will consider ux2 + 2y2 = z2. If we let x = 1 and y = 1,

then ux2 +wy2 ≡ 7x2 + 2y2 ≡ 7 · 1 + 2 · 1 ≡ 1 mod 8, implying that we can find

a z. We have proven the existence of a solution, meaning (u, 2)2 = 1.

Case 2: Let u ≡ 3 mod 8 or u ≡ 5 mod 8.

(i) Let u ≡ 3 mod 8. We will consider ux2 + 2y2 = z2. If a solution exists in Q2 we

can find one in Z2 that includes a unit, so we can reduce this equation mod 8

and get 3x2 +2y2 ≡ z2 mod 8. From here, if 2|x then 2|3x2 +2y2 = z2, implying

2|z. Then we have that 22|x2 and 22|z2, so 22|z2 − 3x2 = 2y2, implying 2|y.

This is a contradiction as at least one of x, y, z is a unit. So it must be that

x is a unit and x2 ≡ 1 mod 8. We now let x2 and y2 run through all possible

combinations in the table below.

x2, y2 3x2 + 2y2 mod 8

1, 1 3 + 2 ≡ 5

1, 0 3 + 0 ≡ 3

1, 4 3 + 8 ≡ 3
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Since 3x2 +2y2 is not congruent to any squares mod 8, we have a contradiction.

So (u, 2)2 = −1.

(ii) Let u ≡ 5 mod 8. We will consider ux2 + 2y2 = z2. If a solution exists in Q2 we

can find one in Z2 that includes a unit, so we can reduce this equation mod 8

and get 5x2 +2y2 ≡ z2 mod 8. From here, if 2|x then 2|5x2 +2y2 = z2, implying

2|z. Then we have that 22|x2 and 22|z2, so 22|z2 − 5x2 = 2y2, implying 2|y.

This is a contradiction as at least one of x, y, z is a unit. So it must be that

x is a unit and x2 ≡ 1 mod 8. We now let x2 and y2 run through all possible

combinations in the table below.

x2, y2 5x2 + 2y2 mod 8

1, 1 5 + 2 ≡ 7

1, 0 5 + 0 ≡ 5

1, 4 5 + 8 ≡ 5

Since 5x2 +2y2 is not congruent to any squares mod 8, we have a contradiction.

So (u, 2)2 = −1.

Therefore, from these three cases we have that (u, 2)2 = 1 if and only if u ≡

1 mod 8 or u ≡ −1 mod 8. Thus, (u, 2)2 = (−1)
u2−1

8 .

Theorem 3.4.5. Let a, b ∈ Q×v . If v = p is prime, write a = pmu and b = pnw for

some m,n ∈ Z and u,w ∈ Z×p . A formula for (a, b)v is given as follows.
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1) When v =∞,

(a, b)∞ =


+1, if a > 0 or b > 0,

−1, otherwise.

2) When v = p > 2,

(a, b)p =

(
−1

p

)mn(
u

p

)n(
w

p

)m
.

3) When v = p = 2,

(a, b)2 = (−1)
u−1
2

w−1
2

+mw2−1
8

+nu
2−1
8 .

Proof.

1) If a, b < 0 in R and ax2 + by2 = z2 with x, y, z ∈ R, then ax2 + by2 = 0 and

z2 = 0 since ax2 + by2 ≤ 0 and z2 ≥ 0. Since ax2 ≤ 0 and by2 ≤ 0, we have ax2 = 0

and by2 = 0. Thus x = 0, y = 0, and z = 0, so (a, b)∞ = −1. On the other hand, if

a > 0 or b > 0, without loss of generality suppose a > 0. Then (x, y, z) = (1, 0,
√
a)

is a solution to ax2 + by2 = z2 and thus (a, b)∞ = 1.

2) Using Theorem 3.3.6, we can write (a, b)p = (p, p)mnp (u, p)np (w, p)mp (u,w)p. Now,

(p, p)p = (−1
p

) by Lemma 3.4.2. Also, (u, p)p = (u
p
) and (w, p)p = (w

p
) by Lemma 3.4.1.

Lastly, (u,w)p = 1 by Corollary 2.1.9. Putting these all together we have

(a, b)p = (p, p)mnp (u, p)np (w, p)mp (u,w)p =

(
−1

p

)mn(
u

p

)n(
w

p

)m
.

3) Using Theorem 3.3.6, we can write (a, b)2 = (2, 2)mn2 (u, 2)n2 (w, 2)m2 (u,w)2. First,

(2, 2)2 = 1 as (1, 1, 2) is a solution to 2x2 + 2y2 = z2. Next, (u, 2)2 = (−1)
u2−1

8 and

(w, 2)2 = (−1)
w2−1

8 by Lemma 3.4.4. Lastly, (u,w)2 = (−1)
u−1
2

w−1
2 by Lemma 3.4.3.
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So overall we have

(a, b)2 = (−1)
u−1
2

w−1
2

+mw2−1
8

+nu
2−1
8 .

3.5 Hilbert Reciprocity Law on Q

Now that we have established a formula for the Hilbert symbol and shown its bimul-

tiplicativity, we will connect it to quadratic reciprocity.

Theorem 3.5.1. (Quadratic Reciprocity on Z.) Let p, q ∈ Z+ be distinct odd primes.

Then we have the following:

(i) (Main Law)

(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

(ii) (First Supplementary Law)

(
−1

p

)
= (−1)

p−1
2 .

(iii) (Second Supplementary Law)

(
2

p

)
= (−1)

p2−1
8 .

Theorem 3.5.2. The following are equivalent:

(i) The quadratic reciprocity law.

(ii) Hilbert reciprocity: for all a, b ∈ Q× we have (a, b)v = 1 for all but finitely many

v and ∏
v

(a, b)v = 1.

Remark 3.5.3. The bimultiplicativity of the Hilbert symbol will be very useful when

proving this theorem. To see why, consider
∏

v(6,−10)v. Since (6,−10)v = (2 ·3,−1 ·
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2 ·5)v = (2,−1)v(2, 2)v(2, 5)v(3,−1)v(3, 2)v(3, 5)v, we can check that
∏

v(6,−10)v = 1

by checking that
∏

v(2,−1)v = 1,
∏

v(2, 2)v = 1,
∏

v(2, 5)v = 1,
∏

v(3,−1)v = 1,∏
v(3, 2)v = 1, and

∏
v(3, 5)v = 1. So we can reduce the problem down to just

checking the symbols when the inputs are primes or −1.

Proof of Theorem 3.5.2.. Since a and b can be decomposed into a product of primes

and −1, the Hilbert symbol can be split apart using its bimultiplicativity until the

only numbers in the symbols are either primes or −1. As a result, we only need to

check
∏

v(a, b)v = 1 when a and b are primes or −1. Let p and q be distinct odd

primes in each case.

Case 1:
∏

v(−1,−1)v = 1

By Corollary 2.1.9, (−1,−1)v = 1 if v is any odd prime. So we only have to check

the product for v = 2 and v = ∞. We will do this by using Theorem 3.4.5. We

get that (−1,−1)∞ = −1 and (−1,−1)2 = (−1)
−1−1

2
−1−1

2 = −1. Thus we have that∏
v(−1,−1)v = 1.

Case 2:
∏

v(−1, 2)v = 1

We have (1,−2)v = 1 for all v since −x2 + 2y2 = z2 has the solution (x, y, z) =

(1, 1, 1).

Case 3:
∏

v(−1, p)v = 1

By Corollary 2.1.9, it suffices to compute (−1, p)v for v = 2, v = p, and v = ∞.

Theorem 3.4.5 yields (−1, p)∞ = 1, (−1, p)p = (−1
p

), and (−1, p)2 = (−1)
−1−1

2
p−1
2 =

(−1)
−(p−1)

2 = (−1)
p−1
2 . Thus

∏
v(−1, p)v = 1 if and only if (−1

p
) = (−1)

p−1
2 , the first

supplementary for quadratic reciprocity.

Case 4:
∏

v(2, 2)v = 1

We have (2, 2)v = 1 for all v since 2x2 + 2y2 = z2 has the solution (x, y, z) =
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(1, 1, 2).

Case 5:
∏

v(2, p)v = 1

By Corollary 2.1.9, it suffices to compute (2, p)v for v = 2, v = p, and v = ∞.

We use Theorem 3.4.5 and see that (2, p)∞ = 1, (2, p)p = (2
p
), and (2, p)2 = (−1)

p2−1
8 .

Thus
∏

v(2, 2)v = 1 if and only if (2
p
) = (−1)

p2−1
8 , the second supplementary law of

quadratic reciprocity.

Case 6:
∏

v(p, p)v = 1

By Corollary 2.1.9, it suffices to compute (p, p)v for v = 2, v = p, and v =

∞. Using Theorem 3.4.5, we get that (p, p)∞ = 1, (p, p)p = (−1
p

), and (p, p)2 =

(−1)
p−1
2

p−1
2 = (−1)

p−1
2 . Thus,

∏
v(p, p)v = 1 if and only if (−1

p
) = (−1)

p−1
2 , the first

supplementary law of quadratic reciprocity.

Case 7:
∏

v(p, q)v = 1

By Corollary 2.1.9, it suffices to compute (p, q)v for v = 2, v = p, v = q, and

v = ∞. Using Theorem 3.4.5, we have that (p, q)∞ = 1, (p, q)p = ( q
p
), (p, q)q = (p

q
),

and (p, q)2 = (−1)
p−1
2

q−1
2 . Thus

∏
v(p, q)v = 1 if and only if (p

q
)( q
p
)(−1)

p−1
2

q−1
2 = 1,

which is equivalent to (p
q
)( q
p
) = (−1)

p−1
2

q−1
2 , the main law of quadratic reciprocity.

So by checking these seven cases we see that if Hilbert reciprocity holds, then

quadratic reciprocity holds. In particular, we showed that Cases 3, 5, 6, and 7 are

equivalent to the law of quadratic reciprocity (main law and supplementary laws).

However, we will also prove the reverse direction for completeness.

For the other direction, assume that quadratic reciprocity holds. Then (p
q
)( q
p
) =

(−1)
p−1
2

q−1
2 , so (p

q
)( q
p
)(−1)

p−1
2

q−1
2 = 1. Then by Lemmas 3.4.1 and 3.4.3, we have

(p, q)p(p, q)q(p, q)2 = 1. Also, by Corollary 2.1.9, we have that (p, q)v = 1 for all

v except v = 2, v = p, v = q, and v = ∞. Using Theorem 3.4.5, we have that

(p, q)∞ = 1. Thus,
∏

v(p, q)v = 1 for all v.
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Further, quadratic reciprocity gives us that (−1
p

) = (−1)
p−1
2 . Then by Lemmas

3.4.1 and 3.4.3 we have that (−1, p)p(−1, p)2 = 1. Additionally, using Theorem 3.4.5

yields (−1, p)∞ = 1. So just as above, applying Corollary 2.1.9 to what we have gives∏
v(−1, p)v = 1. An almost identical argument tells us that

∏
v(p, p)v = 1 as well.

Finally, quadratic reciprocity also states that (2
p
) = (−1)

p2−1
8 . With this, Lemmas

3.4.1 and 3.4.4 tell us that (2, p)p(2, p)2 = 1. Using Theorem 3.4.5, we have (2, p)∞ =

1. So once again, using Corollary 2.1.9 here gives us
∏

v(2, p)v = 1.

Altogether, using what we showed above and what we showed in Cases 1, 2, and

4, we have shown that quadratic reciprocity implies Hilbert reciprocity. So overall we

now have that Hilbert reciprocity is equivalent to quadratic reciprocity.



Chapter 4

The Hilbert Symbol on Q(i)π

4.1 Primes in Z[i] and completions of Q(i)

Here we will define the notion of primality in Z[i]. These primes will used to construct

completions of Q(i), just as primes in Z were used to construct completions of Q.

Definition 4.1.1. The norm of a Gaussian integer α = a+ bi is denoted by N(α) =

a2 + b2.

Definition 4.1.2. A Gaussian integer π = a+ bi with a, b ∈ Z is a Gaussian integer

prime if π is not 0 or a unit or the product of two nonunits. Further, we define

α ∈ Z[i] to be odd if N(α) is an odd number.

Theorem 4.1.3. Up to multiplication by units, the primes in Z[i] are:

(i) 1 + i,

(ii) π ∈ Z[i] such that ππ̄ = p where p is a prime integer such that p ≡ 1 mod 4,

28
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(iii) p ∈ Z+ such that p is prime and p ≡ 3 mod 4.

Proof. See [1, p. 33, Theorem 9.9].

Remark 4.1.4. Any primes in Z+ that are congruent to 1 mod 4 are not prime in

Z[i]. For example, 5 = (1 + 2i)(1 − 2i) is not prime. Also, 2 is not prime in Z[i] as

2 = (1 + i)(1− i).

Definition 4.1.5. Let π ∈ Z[i] be a Gaussian integer prime. Define the π-adic

valuation on Z[i] to be the function vπ : Z[i] − {0} −→ R such that for each α ∈

Z[i] − {0}, vπ(α) is the unique positive integer satisfying α = πvπ(α)α′ where π - α′.

Furthermore, we extend vπ so that for α = β
γ
∈ Q(i)× with β,γ ∈ Z[i]−{0}, we have

vπ(α) = vπ(β)− vπ(γ). Lastly, we set vπ(0) =∞.

Remark 4.1.6. The uniqueness of the exponent vπ(α) relies on unique factorization

in Z[i].

Definition 4.1.7. Let π be a Gaussian integer prime and let α ∈ Q(i). We define

the π-adic absolute value on Q(i) as follows:

|α|π :=


( 1
N(π)

)vπ(α), if α 6= 0,

0, if α = 0.

Example 4.1.8. Consider the Gaussian integer prime 1 + 2i. We will calculate

|25|1+2i. Since 25 = 52 = (1 + 2i)2(1− 2i)2 and 1 + 2i - 1− 2i as 1−2i
1+2i

= −3−4i
5

/∈ Z[i],

we have that v1+2i(25) = 2 and |25|1+2i = 1
52

= 1
25

.

Example 4.1.9. Now we will calculate | − 30 + 40i|1+2i. Since −30+40i
(1+2i)3

= 2− 4i and

2−4i
1+2i

= −6−8i
5

/∈ Z[i], we have that v1+2i(−30+40i) = 3. So, |−30+40i|1+2i = 1
53

= 1
125

.
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Example 4.1.10. Consider the Gaussian integer prime 3. It has norm 9, so |6+3i|3 =

|3(2 + i)|3 = (1
9
)1 = 1

9
. In particular, for α ∈ Q, its 3-adic size in Q(i) is the square

of its 3-adic size in Q: |α|3,Q(i) = |α|23,Q.

Just as Qp is a completion of Q with respect to the absolute value | · |p with p

prime, we can construct Q(i)π, a completion of Q(i) with respect to the absolute

value | · |π for a prime Gaussian integer π. We will define the Hilbert symbol on Q(i)π

in the exact same way that we defined it on Qp, and it will have all of the same basic

properties of the Hilbert symbol on Qp stated in Theorem 3.1.5. In addition, we will

state a version of Hensel’s lemma specific to Q(i)π.

Theorem 4.1.11. Let α ∈ Q(i)×π where π is a Gaussian integer prime. Then α can

be written uniquely in the form

α = b−n0π
−n0 + · · ·+ b0 + b1π + b2π

2 + · · ·+ bnπ
n + · · · =

∑
n≥−n0

bnπ
n

with each bi lying in a set of representatives for Z[i]/πZ[i] (including 0 as the repre-

sentative of 0), and −n0 = vπ(x).

Definition 4.1.12. The ring of π-adic integers is Z[i]π = {α ∈ Q(i)π : |α|π ≤ 1}. In

particular, the units of Z[i]π are Z[i]×π = {α ∈ Q(i)π : |α|π = 1}.

Theorem 4.1.13. Let π be a Gaussian integer prime. For n ∈ Z such that n ≥ 1,

the natural ring homomorphism Z[i] ↪→ Z[i]π induces a ring isomorphism

Z[i]/πnZ[i]→ Z[i]π/π
nZ[i]π.

Theorem 4.1.14. Let α ∈ Z[i] such that α 6= 0. Then #(Z[i]/αZ[i]) = N(α).

Proof. See [1, pp. 21-22, Theorem 7.14].
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Remark 4.1.15. For any odd prime Gaussian integer π, we have that Z[i]/πZ[i] is

a finite field of odd order.

Theorem 4.1.16 (Hensel’s Lemma). Let f(x) = a0 + a1x+ · · ·+ anx
n be a poly-

nomial whose coefficients are in Z[i]π. Suppose that there exists a π-adic integer

α0 ∈ Z[i]π such that

f(α0) ≡ 0 mod π

and

f ′(α0) 6≡ 0 mod π,

where f ′(x) is the derivative of f(x). Then there exists a unique π-adic integer α ∈

Z[i]π such that α ≡ α0 mod π and f(α) = 0.

Corollary 4.1.17. Let π be an odd Gaussian integer prime and let u ∈ Z[i]×π . Then

u = � in Z[i]π if and only if u ≡ � mod π.

Proof. Since Z[i]π/πZ[i]π is a finite field of odd order, the proof is exactly like that

of Corollary 2.1.7.

Lemma 4.1.18. Let π be an odd Gaussian integer prime. Further, let a, b, c ∈ Z[i]×π .

Then there exist x, y ∈ Z[i]π/πZ[i]π such that ax2 + by2 ≡ c mod π.

Proof. Once again, since Z[i]π/πZ[i]π is a finite field of odd order, the proof is just

like proof of Lemma 2.1.8.

Corollary 4.1.19. Let π be an odd Gaussian integer prime and let a, b, c ∈ Z[i]×π .

Then the equation ax2 + by2 = c has a solution with x, y ∈ Z[i]π.

Proof. We have that Z[i]π/πZ[i]π is a finite field of odd order, so this proof is just

like the proof of Corollary 2.1.9.
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4.2 Hilbert Symbol on Q(i)π

The completions of Q(i) are denoted by Q(i)v where v is a place, either a Gaussian

prime π or ∞. Here we have one infinite prime, ∞, and Q(i)∞ = C.

Definition 4.2.1. For any a, b ∈ Q(i)×v , the Hilbert symbol of a and b relative to

Q(i)v is defined as

(a, b)v :=


+1, if ax2 + by2 = z2 has a solution in Q(i)3v besides (0, 0, 0),

−1, otherwise.

Remark 4.2.2. Since we can multiply the equation ax2 + by2 = z2 by any nonzero

square without changing its solvability, for v 6=∞ if there is a solution to ax2 + by2 =

z2 with x, y, z ∈ Q(i)v not all zero, then there is a solution with x, y, z ∈ Z[i]v and x,

y, or z in Z[i]×v .

Example 4.2.3. We will compute (2, 3)v. Consider the equation 2x2 + 3y2 = z2

for x, y, z ∈ Q(i)v. This equation has the solution (x, y, z) = (i, 1, 1). And since

i, 1 ∈ Q(i)v for all v, we now have that (2, 3)v = 1 for all v.

Theorem 4.2.4. Let a, b, c ∈ Q(i)×v . We have

(i) (a, b)v = (b, a)v and (a, c2)v = 1,

(ii) (a,−a)v = (a, 1− a)v = 1,

(iii) (a, b)v = (ac2, b)v = (a, bc2)v

Proof. The proof is the same as the one for Theorem 3.1.5.
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Lemma 4.2.5. Let a, b ∈ Q(i)∞ = C×. Then (a, b)∞ = 1.

Proof. Since every complex number is a square in C, we have that a and b are squares.

Thus, (a, b)∞ = 1 by Theorem 4.2.4 (i).

Definition 4.2.6. For b ∈ Q(i)×v , set Nb,v = {x2 − by2 6= 0 : x, y ∈ Q(i)v}.

Theorem 4.2.7.

(i) For all b ∈ Q(i)×v , Nb,v is a subgroup of Q(i)×v and (Q(i)×v )2 ⊂ Nb,v ⊂ Q(i)×v .

(ii) If b ∈ (Q(i)×v )2, then Nb,v = Q(i)×v .

Proof.

(i) The proof is the same as the one for Theorem 3.1.7.

(ii) Same as the proof in Theorem 3.1.8.

Remark 4.2.8. We will see in Theorems 4.4.1 and 4.4.2 that if b ∈ Q(i)×v and

b /∈ (Q(i)×v )2, then Nb,v 6= Q(i)×v .

Theorem 4.2.9. For a, b ∈ Q(i)×v , (a, b)v = 1 if and only if a ∈ Nb,v.

Proof. The proof is the same as the one for Theorem 3.1.10.

4.3 Square Classes

In this section, we will find a list of square class representatives of Q(i)×π for each

Gaussian prime π. The methods we use to do this will be very similar to the ones

used when finding square class representatives for Q×p .
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Theorem 4.3.1. Let π be an odd prime Gaussian integer and let r ∈ Z[i]×π such that

r 6≡ � mod π. A complete set of square class representatives for Q(i)×π is {1, r, π, rπ}.

Proof. Since Q(i)×π = πZ × Z[i]×π and (Q×π )2 = π2Z × (Z[i]×π )2, we have

Q(i)×π /(Q(i)×π )2 =
πZ × Z[i]×π

π2Z × (Z[i]×π )2
∼=

πZ

π2Z
× Z[i]×π

(Z[i]×π )2
.

Since πZ

π2Z depends only on the parity of the power of π, it is represented by {1, π}.

Also, Z[i]π/πZ[i]π ∼= Z[i]/πZ[i] is a finite field of odd order, so its nonzero squares

are a subgroup of index 2 in the group of all nonzero elements. So Z[i]×π /πZ[i]×π is

represented by {1, r} where r 6≡ � mod π, just like in the proof of Theorem 3.2. Thus,

Q(i)×π /(Q(i)×π )2 is represented by {1, π} × {1, r} = {1, r, π, rπ}.

In order to classify the square class representatives for Q(i)1+i, in a way analogous

to Q2, we will need a more general form of Hensel’s lemma.

Theorem 4.3.2. Let f(x) = a0 + a1x + · · · + anx
n be a polynomial in Z[i]1+i[x].

Suppose that there exists a (1 + i)-adic integer α0 ∈ Z[i]1+i such that

|f(α0)|1+i < |f ′(α0)|21+i.

Then there exists a unique (1 + i)-adic integer α ∈ Z[i]1+i such that f(α) = 0 and

|α− α0| < |f ′(α0)|.

Proof. See [2, pp. 1-3, Theorem 1.4].

We will now do an example using this form of Hensel’s lemma to determine an

m ≥ 1 such that all elements of 1 + (1 + i)mZ[i]1+i are squares, just as we determined

all elements of 1 + 8Z2 are squares in Z×2 .



35

Example 4.3.3. We will examine the polynomial f(x) = x2−u where u ∈ Z[i]×1+i. We

want to use 1 as an approximate root. For this, we want |f(1)|1+i < |f ′(1)|21+i, which

is equivalent to |u−1|1+i < |2|21+i = |1+i|41+i. This is equivalent to u ≡ 1 mod (1+i)5.

So Hensel’s lemma tells us that if u ≡ 1 mod (1 + i)5, then u is a square in Z[i]×1+i.

It is important to note that this condition does not hold in the reverse direction.

For example, −1 = � in Q(i)1+i but −1 6≡ 1 mod (1 + i)5. However, this example

does imply that if we want a multidirectionial statement regarding unit squares in

Q(i)1+i, it would be enough to examine units mod (1 + i)5: if u ≡ v mod (1 + i)5

then u
v

= �, so u = � ⇐⇒ v = �.

Since we’ll be using 1 + i a lot, let τ = 1 + i. To compute unit squares mod τ 5,

we can look at numbers of the form 1 + aτ + bτ 2 + cτ 3 + dτ 4 where a, b, c, d ∈ {0, 1}.

Now we will square each of these mod τ 5. This information is in Table 4.3.1.

It is useful to note that τ 5 = −4 − 4i, so 4i ≡ −4 mod τ 5. Additionally, since

8 = iτ 6, we have −4 ≡ 4 mod τ 5 and integers only matter mod 8 when we consider

them in Z[i]τ/τ
5Z[i]τ .
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a b c d (1 + aτ + bτ 2 + cτ 3 + dτ 4)2 mod τ 5

0 0 0 0 1

0 1 0 0 −3 + 4i ≡ −3 + 4 ≡ 1

0 0 1 0 −3− 4i ≡ −3 + 4 ≡ 1

0 0 0 1 9 ≡ 1

0 1 1 0 −15− 8i ≡ −15 + 8 ≡ 1

0 1 0 1 5− 12i ≡ 5− 12 ≡ 1

0 0 1 1 21− 20i ≡ 5− 20 ≡ 1

0 1 1 1 9− 40i ≡ 9 ≡ 1

1 0 0 0 3 + 4i ≡ 3− 4 ≡ −1

1 1 0 0 −5 + 12i ≡ −5 + 12 ≡ −1

1 0 1 0 −9 ≡ −1

1 0 0 1 3− 4i ≡ 3− 4 ≡ −1

1 1 1 0 −25 ≡ −1

1 1 0 1 −5− 12i ≡ −5 + 12 ≡ −1

1 0 1 1 7 + 24i ≡ 7 + 24 ≡ −1

1 1 1 1 −9− 40i ≡ −1
.

Table 4.3.1: The 16 unit squares of Z[i]τ/τ
5

From these calculations, we have the following theorem.

Theorem 4.3.4. Let u ∈ Z[i]×τ . Then u is a square in Q(i)×τ if and only if u ≡

±1 mod τ 5.

Proof. Let u ∈ Z[i]×τ . First suppose u = x2 in Q(i)×τ . Then |x|2τ = |u|τ = 1, so

x ∈ Z[i]×τ . Thus, u is a square in Q(i)×τ if and only if u is a square in Z[i]×τ , which
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is equivalent to u ≡ � mod τ 5. By Table 4.3.1, if u ∈ (Z[i]×τ )2, then u ≡ ±1 mod τ 5.

On the other hand, if u ≡ ±1 mod τ 5, then u ∈ 1 + τ 5Z[i]τ or u ∈ −(1 + τ 5Z[i]τ ) =

i2(1 + τ 5Z[i]τ ). Since all elements in 1 + τ 5Z[i]τ are squares by Example 4.3.3, u is a

square in Q(i)×τ .

Here is a list of several numbers in Z[i]τ and their τ -adic expansions mod τ 5. We

will be using this list to help simplify modular congruences later in this section.

Number τ -adic expansion mod τ 5

−1 1 + τ 2 + τ 3 + τ 4

i 1 + τ + τ 2 + τ 3 + τ 4

−i 1 + τ + τ 3 + τ 4

2 τ 2 + τ 3

Table 4.3.2: The τ -adic expansions of some numbers mod τ5.

We will now construct a table of the 16 units in Z[i]τ/τ
5, paired up to multiplica-

tion by −1 in each row.
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1 −1 ≡ 1 + τ 2 + τ 3 + τ 4 mod τ 5

1 + τ −(1 + τ) ≡ 1 + τ + τ 2 mod τ 5

1 + τ 2 −(1 + τ 2) ≡ 1 + τ 3 + τ 4 mod τ 5

1 + τ 3 −(1 + τ 3) ≡ 1 + τ 2 + τ 4 mod τ 5

1 + τ 4 −(1 + τ 4) ≡ 1 + τ 2 + τ 3 mod τ 5

1 + τ + τ 3 −(1 + τ + τ 3) ≡ 1 + τ + τ 2 + τ 3 mod τ 5

1 + τ + τ 4 −(1 + τ + τ 4) ≡ 1 + τ + τ 2 + τ 4 mod τ 5

1 + τ + τ 3 + τ 4 −(1 + τ + τ 3 + τ 4) ≡ 1 + τ + τ 2 + τ 3 + τ 4 mod τ 5

Table 4.3.3: The 8 units of Z[i]τ/τ
5 up to multiplication by ±1.

We are now ready to list square class representatives of Q(i)×τ .

Theorem 4.3.5. The 16 square classes of Q(i)×τ are represented by

{1, τ} × {1, 1 + τ, 1 + τ 2, 1 + τ 3, 1 + τ 4, 1 + τ + τ 3, 1 + τ + τ 4, 1 + τ + τ 3 + τ 4}.

Proof. We have that

Q(i)×τ /(Q(i)×τ )2 =
τZ × Z[i]×τ

τ 2Z × (Z[i]×τ )2
.

As in Theorem 4.3.1, τZ

τ2Z
is represented by {1, τ}. Also, from Tables 4.3.1 and 4.3.3

we see that {1, 1 + τ, 1 + τ 2, 1 + τ 3, 1 + τ 4, 1 + τ + τ 3, 1 + τ + τ 4, 1 + τ + τ 3 + τ 4}

represents Z[i]×τ /(Z[i]×τ )2. Thus, Q(i)×τ /(Q(i)×τ )2 = {1, τ}×{1, 1+τ, 1+τ 2, 1+τ 3, 1+

τ 4, 1 + τ + τ 3, 1 + τ + τ 4, 1 + τ + τ 3 + τ 4}.
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4.4 Bimultiplicativity of the Hilbert Symbol over

Q(i)v

Here we will prove the bimultiplicativity of the Hilbert symbol over Q(i)v in the same

manner in which we proved it for the Hilbert symbol over Qv. We will show that the

square classes of norms from the quadratic extensions of Q(i)v are each a subgroup

of Q(i)×v /(Q(i)×v )2 with index 2.

Theorem 4.4.1. Let π be an odd prime Gaussian integer and let d be a nonsquare in

Q(i)×π . If Ld = Q(i)π(
√
d), then the group of norms N(L×d ) = {x2 − dy2 6= 0 : x, y ∈

Q(i)π} is a subgroup of Q(i)×π with index 2.

Proof. It suffices to prove this statement for d = r, π, rπ where r ∈ Z[i]×π and

r 6≡ � mod π, so we will break this proof into 3 cases. For any d 6= �, we have

(Q(i)×π )2 ⊂ N(L×d ) ⊂ Q(i)×π and |Q(i)×π /(Q(i)×π )2| = 4. So it suffices to find an ele-

ment of Q(i)×π that is not in N(L×d ) and an element of N(L×d ) that is not in (Q(i)×π )2.

Then N(L×d ) is strictly between Q(i)×π and (Q(i)×π )2, so its index is 2. First off, the

equation x2−dy2 = d always has the solution (x, y) = (0, i), so for all d 6= �, we have

(Q(i)×π )2 ( N(L×d ). It remains to show N(L×d ) ( Q(i)×π .

Case 1) Let d = r. Suppose the equation x2 − ry2 = π has a solution in Q(i)π.

Clearing denominators gives x2 − ry2 = πz2 with x, y, z ∈ Z[i]π and at least one is

a unit. Now if we had that π|x, then we would have that π|(x2 − πz2) = ry2. This

would mean that π|y, which would imply that π|z. This would be a contradiction

as x, y, and z would all be non-units. A similar situation would arise if we originally

let π|y. So we must have both x and y in Z[i]×π . Now we can reduce mod π to

get x2 − ry2 ≡ 0 mod π. Then x2 ≡ ry2 mod π and y 6≡ 0 mod π, implying that
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r ≡ � mod π, which is a contradiction.

Case 2) Let d = π. To show r /∈ N(L×d ), suppose x2 − πy2 = r for some x, y ∈

Q(i)π. By clearing denominators, we get x2 − πy2 = rz2 for x, y, z ∈ Z[i]π and at

least one is a unit. If x is not a unit, z and y also are not units, a contradiction. Thus

x ∈ Z[i]×π . Reduce mod π to get x2 ≡ rz2 mod π, which implies that r ≡ � mod π,

which is a contradiction.

Case 3) Let d = rπ. To show r /∈ N(L×d ), suppose x2 − rπy2 = r for some x, y ∈

Q(i)π. By clearing denominators, we get x2−rπy2 = rz2 for x, y, z ∈ Z[i]π and at least

one is a unit. We must have x a unit, so z must also be a unit, or else x, y, z /∈ Z[i]×π .

Reduce mod π to get x2 ≡ rz2 mod π, which implies that r ≡ � mod π, which is a

contradiction.

Now we will show that every norm subgroup of Q(i)×τ has index 2.

Theorem 4.4.2. Let τ = 1 + i and let d be a nonsquare in Q(i)×τ . Set Ld =

Q(i)τ (
√
d). Then the group N(L×d ) = {x2 − dy2 6= 0 : x, y ∈ Q(i)τ} is a subgroup of

Q(i)×τ with index 2.

Proof. It suffices to let d run through the square classes in Q(i)×τ . Since (Q(i)×τ )2 ⊂

N(L×d ) ⊂ Q(i)×τ and Q(i)×τ /(Q(i)×τ )2 has order 16, N(L×d ) has index dividing 16 in

Q(i)×τ . Our strategy will be to first find an element of Q(i)τ that is not in N(L×d ).

This will show that the index of N(L×d ) is less than or equal to 8. Next we will find 8

elements of Q(i)×τ that are in N(L×d ) and are in different square classes, showing that

the index of N(L×d ) in Q(i)×τ is exactly 8. Since there are 15 cases to check, we will

only showcase four of them here, two where d is a unit and two where d is a non-unit.

Case 1) Let d = 1 + τ . First, we will show that 1 + τ 2 /∈ N(L×d ) using our

knowledge of the unit squares in Z[i]τ/τ
5Z[i]τ . Since the unit squares are ±1 mod τ 5,
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representatives for the set of all squares mod τ 5 are {0,±1,±τ 2, τ 4}. (Note that listing

±τ 4 would be redundant, as −τ 4 ≡ τ 4 mod τ 5.) Now we will show that there are no

solutions in Q(i)τ to x2−(1+τ)y2 = 1+τ 2 by viewing it as (1+τ)y2+(1+τ 2)z2 = x2

with x, y, z ∈ Z[i]τ and at least one is a unit. Since the coefficients of the square terms

are units, if there exists a solution (x, y, z) in Q(i)τ that is not (0, 0, 0), then there must

exist a solution where x, y, z ∈ Z[i]τ and at least one is a unit. Furthermore, if one

variable is a unit, then exactly one of the other two variables is also a unit. If not, there

would be a contradiction when the equation is reduced mod τ , as 1 + 1 6≡ 1 mod τ .

From this, we can conclude that either both y, z ∈ Z[i]×τ or one of them is a unit

while the other is not. With this knowledge, we can plug in all possible combinations

for y2 and z2 mod τ 5. We do this in the table below. (Note: Several redundant cases

are omitted from the table since we can ignore overall sign changes on squares as

−1 = i2.)
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y2, z2 mod τ 5 (1 + τ)y2 + (1 + τ 2)z2 mod τ 5

1, 1 τ + 2 + τ 2 ≡ τ + τ 3 + τ 4

1,−1 τ − τ 2 ≡ τ + τ 2 + τ 4

1, 0 1 + τ

1, τ 2 1 + τ + τ 2 + τ 4

−1, τ 2 −1− τ + τ 2 + τ 4 ≡ 1 + τ

1, τ 4 1 + τ + τ 4

0, 1 1 + τ 2

τ 2, 1 1 + τ 3 − iτ 4 ≡ 1 + τ 3 + τ 4

τ 2,−1 −1 + τ 3 ≡ 1 + τ 2 + τ 4

τ 4, 1 1 + τ 2 + τ 4

Table 4.4.1: Possible values of (1 + τ)y2 + (1 + τ2)z2 mod τ5.

From the above calculations, we can see that none of the unit entries in the right-

hand column are ±1 mod τ 5 and none of the non-unit entries are divisible by an even

power of τ . Therefore, we have a contradiction and 1 + τ 2 /∈ N(L×1+τ ).

Now that we have shown that N(L×1+τ )/(Q(i)×τ )2 does not have order 16, we will find

8 of its elements and then conclude it must have order 8. It is clear that τ and 1 + τ

are norms (i.e. of the form x2 − (1 + τ)y2) using (x, y) = (i, i) and (0, i), respec-

tively. Also, 1 + τ 4 is a norm since (x, y) = (1, iτ 2) gives 12 − (1 + τ)(iτ 2)2 =

1 + τ 4 + τ 5 ≡ 1 + τ 4 mod τ 5. With this, τ {0,1} × (1 + τ){0,1} × (1 + τ 4){0,1} =

{1, 1 + τ, 1 + τ 4, 1 + τ + τ 4, τ, τ + τ 2, τ + τ 5, τ + τ 2 + τ 5} gives us eight different square

class representatives of Q(i)×τ /(Q(i)×τ )2 that are elements of N(L×1+τ )/(Q(i)×τ )2.
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Case 2) Let d = 1 + τ 3. Similar to the previous case, we will show that 1 + τ is

not a norm by showing that the homogenized equation x2 − (1 + τ 3)y2 = (1 + τ)z2

when x, y, z ∈ Z[i]τ has no solution with x,y, or z in Z[i]×τ . Assume there is such a

solution. Since the coefficients of all the square terms are units, reduce this equation

mod τ 5 and plug in all combinations of y2 and z2 mod τ 5. We do this in the table

below. We can ignore overall sign changes since −1 = i2.

y2, z2 mod τ 5 (1 + τ 3)y2 + (1 + τ)z2 mod τ 5

1, 1 2 + τ + τ 3 ≡ τ + τ 2

1,−1 −τ + τ 3 ≡ τ + τ 4

1, 0 1 + τ 3

1, τ 2 1 + τ 2 + 2τ 3 ≡ 1 + τ 2

−1, τ 2 −1 + τ 2 ≡ 1 + τ 3

1, τ 4 1 + τ 3 + τ 4 + τ 5 ≡ 1 + τ 3 + τ 4

0, 1 1 + τ

τ 2, 1 1 + τ + τ 2 + τ 5 ≡ 1 + τ + τ 2

τ 2,−1 −1− τ + τ 2 + τ 5 ≡ 1 + τ + τ 4

τ 4, 1 1 + τ + τ 4 + τ 7 ≡ 1 + τ + τ 4

Table 4.4.2: Possible values of (1 + τ3)y2 + (1 + τ)z2 mod τ5.

From the above calcuations, we can see that none of the unit entries in the right-

hand column of Table 4.4.2 are ±1 mod τ 5 and none of the non-unit entries are

divisible by an even power of τ . Thus, they cannot be squares, so 1 + τ is not a

norm in L1+τ3 . So N(L×1+τ3)/(Q(i)×τ )2 has order at most 8 and we will now find 8

elements. Since 1 + τ 3 = x2− (1 + τ 3)y2 using (x, y) = (0, i), 1 + τ 3 is a norm. Using
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(x, y) = (1, iτ 2) in x2− (1 + τ 3)y2 gives 1 + τ 4 + τ 7 ≡ 1 + τ 4 mod τ 5, so 1 + τ 4 is also

a norm. Lastly, using (x, y) = (1, 1) yields −τ 3 = (iτ)2(τ), so τ is also a norm. From

this, (1+τ 3){0,1}×(1+τ 4){0,1}×(τ){0,1} = {1, 1+τ 3, 1+τ 4, τ, 1+τ 2, τ+τ 4, τ+τ 5, τ+τ 3}

gives us eight norms that are also different square class representatives.

Case 3) Let d = τ . We will show that 1 + τ 2 is not a norm by showing that

the homogenized equation x2 − τy2 = (1 + τ 2)z2 when x, y, z ∈ Z[i]τ has no solution

with x,y, or z in Z[i]×τ . Assume there is such a solution and reduce the equation

mod τ . This gives x2 ≡ z2 mod τ . If x ≡ 0 mod τ , then z ≡ 0 mod τ , meaning that

y ≡ 0 mod τ and x, y, z /∈ Z[i]×τ . So we must have that x and z are units. Thus x2

and z2 are both congruent to ±1 mod τ 5 and we can construct the table below. Once

more, we can ignore overall sign changes.

x2, z2 mod τ 5 x2 − (1 + τ 2)z2 mod τ 5

1, 1 −τ 2 ≡ τ 2 + τ 4

1,−1 2 + τ 2 ≡ τ 3 + τ 4

Table 4.4.3: Possible values of x2 − (1 + τ2)z2 mod τ5

Using these calculations, we see that if we divide each of the entries in the right-

hand column of Table 4.4.3 by τ , none of them will be squares. Thus, 1 + τ 2 is not

a norm from Lτ . So N(L×τ )/(Q(i)×τ )2 does not have order 16. We will now find its

eight elements. We have that τ, 1 + τ , and 1 + τ 3 are norms, or of the form x2− τy2,

using (x, y) = (0, i), (1, i), and (1, iτ), respectively. From this, τ {0,1} × (1 + τ){0,1} ×

(1 + τ 3){0,1} = {1, τ, 1 + τ, 1 + τ 3, τ + τ 2, τ + τ 4, 1 + τ + τ 3 + τ 4, τ + τ 2 + τ 4 + τ 5} gives

us eight norms that are also different square class representatives.

Case 4) Let d = τ + τ 2. We will show that 1 + τ 3 /∈ N(L×τ+τ2) by analyzing the
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equation x2 − (τ + τ 2)y2 = (1 + τ 3)z2 in a similar manner as the previous case. If

the equation is solvable, then without loss of generality there exists a solution with

x, y, z ∈ Z[i]τ and at least one being a unit. Just like the previous case, x and z must

be units. Using this knowledge and Table 4.3.2, we construct Table 4.4.4.

x2, z2 mod τ 5 x2 − (1 + τ 3)z2 mod τ 5

1, 1 −τ 3 ≡ τ 3

1,−1 2 + τ 3 ≡ τ 2

Table 4.4.4: Possible values of x2 − (1 + τ3)z2 mod τ5

If we divide each entry in the right-hand column of Table 4.4.4 by τ + τ 2, the

resulting numbers will not be squares. Therefore 1+τ 3 is not a norm from Lτ+τ2 . On

the other hand, τ +τ 2, τ , τ +τ 2 +τ 4 = x2− (τ +τ 2)y2 using (x, y) = (0, i), (iτ, i), and

(τ 2, i), respectively. So, (τ + τ 2){0,1} × (τ){0,1} × (τ + τ 2 + τ 4){0,1} = {1, τ + τ 2, τ, τ +

τ 2 + τ 4, 1 + τ, 1 + τ + τ 3, τ + τ 3, 1 + τ 2} gives us eight norms that are also different

square class representatives.

In the table below, for each nontrivial square class representative d we list an

element of Q(i)×τ not in N(L×d ) and three elements t1, t2, and t3 in N(L×d ) whose

images in Q(i)×τ /(Q(i)×τ )2 ∼= F4
2 are linearly independent, so they generate a subgroup

of order 8.
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d Non-norm t1, t2, t3

1 + τ 1 + τ 2 τ, 1 + τ, 1 + τ 4

1 + τ 2 1 + τ 1 + τ 2, 1 + τ 3, τ + τ 2

1 + τ 3 1 + τ 1 + τ 3, 1 + τ 2, 1 + τ + τ 3 + τ 4

1 + τ 4 τ 1 + τ 4 , 1 + τ 2, 1 + τ + τ 3

1 + τ + τ 3 1 + τ 1 + τ + τ 3, τ + τ 2, τ + τ 3

1 + τ + τ 4 1 + τ 2 1 + τ + τ 4, 1 + τ, τ + τ 4

1 + τ + τ 3 + τ 4 1 + τ 1 + τ + τ 3 + τ 4, 1 + τ + τ 3, τ + τ 5

τ 1 + τ 2 τ, 1 + τ, 1 + τ 3

τ + τ 2 1 + τ 3 τ + τ 2, τ, τ + τ 2 + τ 4

τ + τ 3 1 + τ τ + τ 3, τ + τ 2, τ + τ 5

τ + τ 4 1 + τ τ + τ 4, 1 + τ + τ 4, τ

τ + τ 5 1 + τ 2 τ + τ 5, 1 + τ, τ + τ 3

τ + τ 2 + τ 4 1 + τ τ + τ 2 + τ 4, τ + τ 4, τ + τ 2

τ + τ 2 + τ 5 1 + τ 3 τ + τ 2 + τ 5, τ + τ 5, τ + τ 2 + τ 4 + τ 5

τ + τ 2 + τ 4 + τ 5 1 + τ 3 τ + τ 2 + τ 4 + τ 5, τ + τ 3, τ + τ 2 + τ 5

Table 4.4.5: Each N(L×d )/(Q(i)×τ )
2 has order 8.

Example 4.4.3. We will find a set of representatives for the eight elements of

N(L×1+τ4)/(Q(i)×τ )2. By Table 4.4.5 we have that 1, 1 + τ 4, 1 + τ 2, 1 + τ + τ 3 ∈

N(L×1+τ4)/(Q(i)×τ )2. Now we will find the other four representatives.

We have (1 + τ 4)(1 + τ 2) = 1 + τ 2 + τ 4 + τ 6 ≡ 1 + τ 2 + τ 4 ≡ −(1 + τ 3) mod τ 5.

Thus 1 + τ 3 ∈ N(L×1+τ4)/(Q(i)×τ )2.
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We also have (1+τ 4)(1+τ+τ 3) = 1+τ+τ 3+τ 4+τ 5+τ 7 ≡ 1+τ+τ 3+τ 4 mod τ 5.

So 1 + τ + τ 3 + τ 4 ∈ N(L×1+τ4)/(Q(i)×τ )2.

Since (1 + τ 2)(1 + τ + τ 3) = 1 + τ + τ 2 + 2τ 3 + τ 5 ≡ 1 + τ + τ 2 ≡ −(1 + τ) mod τ 5,

we have that 1 + τ ∈ N(L×1+τ4)/(Q(i)×τ )2.

Lastly, we have (1 + τ 4)(1 + τ 2)(1 + τ + τ 3) = 1 + τ + τ 2 + 2τ 3 + τ 4 + 2τ 5 + τ 7 ≡

1 + τ + τ 2 + τ 4 ≡ −(1 + τ + τ 4) mod τ 5. Thus 1 + τ + τ 4 ∈ N(L×1+τ4)/(Q(i)×τ )2.

Overall we have that N(L×1+τ4)/(Q(i)×τ )2 is represented by

{1, 1 + τ, 1 + τ 2, 1 + τ 3, 1 + τ 4, 1 + τ + τ 3, 1 + τ + τ 4, 1 + τ + τ 3 + τ 4}.

Theorem 4.4.4. The Hilbert symbol on Q(i)v is bimultiplicative. That is, for all

a, a′, b, b′ ∈ Q(i)×v , (aa′, b)v = (a, b)v(a
′, b)v and (a, bb′)v = (a, b)v(a, b

′)v.

Proof. By Lemma 4.2.5, we have that (a, b)v = 1 for v =∞ for all a, b ∈ Q(i)×∞ = C×.

Thus the symbol is trivially multiplicative for v =∞. For all other places, the proof

is the same as the one for Theorem 3.3.6.

4.5 Q(i)τ = Q2(i)

We will now work towards showing that Q(i)τ = Q2(i). This fact will be useful for

us in the next section.

Lemma 4.5.1. We have that Q2(i) ⊂ Q(i)τ . Further, let a, b ∈ Q2. Then |a+ bi|τ =

|a2 + b2|2.

Proof. In Z[i], we have 2 = −iτ 2, so vτ (2) = 2. Thus on Q, | · |τ = | · |22. As a result,

a sequence in Q is τ -adically Cauchy if and only if it is 2-adically Cauchy. Therefore
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Q2 ⊂ Q(i)τ , so Q2(i) ⊂ Q(i)τ . Now let a, b ∈ Q2. We want to show that

|a+ bi|τ = |a2 + b2|2.

This is clear if a = b = 0, so assume that a 6= 0 or b 6= 0. For r ∈ Q, we have that

|(ra) + (rb)i|τ = |r|τ |a + bi|τ = |r|22|a + bi|τ and |(ra)2 + (rb)2|2 = |r|22|a2 + b2|2. So

without loss of generality, we can consider a, b ∈ Z2, and we can factor out the largest

power of 2 common to a and b. Thus we can let a or b be odd (that is, in 1 + 2Z2).

If exactly one is odd, then a + bi ≡ 1 mod τ , so |a + bi|τ = 1. We also have that

a2 + b2 is odd, so |a2 + b2|2 = 1. On the other hand, let both a and b be odd. We

have that a + bi = 1 + i + (a − 1) + (b − 1)i. Since (a − 1) + (b − 1)i is divisible

by 2 = −iτ 2, we have that τ divides 1 + i + (a − 1) + (b − 1)i exactly once. Thus

|a+bi|τ = 1
2
. Lastly, since a2 and b2 are unit squares in Z2, by Theorem 3.2.4 we have

that a2 ≡ b2 ≡ 1 mod 8Z2. So a2 +b2 ≡ 2 mod 8Z2, implying 2 divides a2 +b2 exactly

once. Thus |a2 + b2|2 = 1
2
. So in both cases we have that |a+ bi|τ = |a2 + b2|2.

Lemma 4.5.2. Let a, b ∈ Q2 and n ≥ 1. If a2+b2 ≡ 0 mod 22n, then a, b ≡ 0 mod 2n.

Proof. We will prove this by induction. For the base case, suppose n = 1 and assume

that a2 + b2 ≡ 0 mod 4. Working modulo 4, the only solutions to this are (a, b) =

(0, 0), (2, 0), (0, 2), or (2, 2). In each case we have that a, b ≡ 0 mod 2, so our base

case is done. For the induction case, assume that if a2 + b2 ≡ 0 mod 22n, then a, b ≡

0 mod 2n. We must show that if a2 + b2 ≡ 0 mod 22(n+1), then a, b ≡ 0 mod 2n+1.

Assume a2 + b2 ≡ 0 mod 22(n+1) = 22n+2. Then we have that a2 + b2 ≡ 0 mod 22n.

By our induction hypothesis, this means that a, b ≡ 0 mod 2n. Then we can write

a = 2na′ and b = 2nb′ for some a′, b′ ∈ Z2. Then a2 + b2 = 22n((a′)2 + (b′)2), and we



49

have that 22n((a′)2 +(b′)2) ≡ 0 mod 22n+2. This implies (a′)2 +(b′)2 ≡ 0 mod 4. Then

by our base case, we have that a′, b′ ≡ 0 mod 2. Thus a, b ≡ 0 mod 2n+1.

Lemma 4.5.3. The sequence {an + bni}∞n=1 in Q2(i) is τ -adically Cauchy if and only

if the sequences {an}∞n=1 and {bn}∞n=1 in Q2 are 2-adically Cauchy.

Proof. For the forwards direction, assume {an+bni}∞n=1 in Q2(i) is τ -adically Cauchy.

Then given ε > 0 we can find k ∈ N such that 1
2k
< ε. Since the sequence is Cauchy,

there exists N ∈ N such that for n,m ≥ N we have

|(an+bni)−(am+bmi)|τ = |(an−am)+(bn−bm)i|τ = |(an−am)2+(bn−bm)2|2 <
1

22k
.

From this we have that (an − am)2 + (bn − bm)2 ≡ 0 mod 22k, and by Lemma 4.5.2

we have that an − am ≡ 0 mod 2k and bn − bm ≡ 0 mod 2k. This implies that

|an − am|2 < 1
2k
< ε and |bn − bm|2 < 1

2k
< ε, so we have that {an}∞n=1 and {bn}∞n=1 in

Q2 are 2-adically Cauchy.

For the other direction, assume that {an}∞n=1 and {bn}∞n=1 are 2-adically Cauchy

sequences in Q2. Then given ε > 0 there exists N ∈ N such that for n,m ≥ N we

have |an − am|2 <
√
ε and |bn − bm|2 <

√
ε. Then we have

|(an − am) + (bn − bm)i|τ = |(an − am)2 + (bn − bm)2|2

≤ max(|(an − am)2|2, |(bn − bm)2|2) < max(
√
ε
2
,
√
ε
2
) = ε,

where the first inequality results from the strong triangle inequality. Thus {an +

bni}∞n=1 in Q2(i) is τ -adically Cauchy.

Lemma 4.5.4. Let a, b ∈ Q2 and define the absolute value | · | on Q2(i) by |a+ bi| =

|a2 + b2|2. Then Q2(i) is complete with respect to the absolute value | · |.
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Proof. To start, we will show that | · | : Q2(i)→ R≥0 defined by |a+ bi| = |a2 + b2|2

for a, b ∈ Q2 is an absolute value. First we will show that |a + bi| = 0 if and only if

a + bi = 0. For the forward direction, assume that |a + bi| = |a2 + b2|2 = 0. Since

| · |2 is an absolute value, we have that a2 + b2 = 0. Now we must show that this

implies a = b = 0. Suppose by way of contradiction that a2 + b2 = 0 and a 6= 0. Then

b2 = −a2, which implies that −1 = ( b
a
)2 = � in Q2, a contradiction. Thus a = 0.

This implies that b = 0, so a+bi = 0. For the other direction, assume that a+bi = 0.

Then a = b = 0, so a2 + b2 = 0 and |a+ bi| = |a2 + b2|2 = |0|2 = 0.

Next we will show that for α, β ∈ Q2(i) we have |αβ| = |α||β|. Since the norm

function N : Q2(i) → Q2 defined by N(a + bi) = a2 + b2 is multiplicative, we have

that

|αβ| = |N(αβ)|2 = |N(α)N(β)|2

= |N(α)|2|N(β)|2

= |α||β|.

Here we used that | · |2 is multiplicative, as it is an absolute value.

Lastly, we will show that for α, β ∈ Q2(i), we have |α + β| ≤ max(|α|, |β|). If

α = 0 or β = 0 this inequality is clear, so assume α 6= 0 and β 6= 0. Without loss of

generality assume |α| ≤ |β|. We want to show that |α + β| ≤ max(|α|, |β|), which is

true if and only if |α
β

+ 1| ≤ max(|α
β
|, 1) = 1. So it suffices to show that for γ ∈ Q2(i),

if |γ| ≤ 1, then |γ + 1| ≤ 1. Write γ = x + yi for some x, y ∈ Q2. We will first show

that if |x+ yi| ≤ 1, then |x|2 ≤ 1 and |y|2 ≤ 1. Assume that |x+ yi| = |x2 + y2|2 ≤ 1.

Then suppose by way of contradiction that |x|2 > 1 or |y|2 > 1. Then we have two

cases: |x|2 6= |y|2 and |x|2 = |y|2. For the first case, assume without loss of generality
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that |x|2 > |y|2. If |x|2 6= |y|2, then |x2|2 6= |y2|2, so |x2 + y2| = max(|x2|2, |y2|2).

Since |x2 + y2|2 ≤ 1 by assumption, we have that |x|22 ≤ 1, a contradiction. For the

second case, assume |x|2 = |y|2 > 1. Then we can write x = u
2n

and y = v
2n

where u

and v are in Z×2 and n ∈ Z+. Then x2 + y2 = 1
22n

(u2 + v2). But u2 ≡ v2 ≡ 1 mod 8Z2

by Theorem 3.2.4, so u2 + v2 ≡ 2 mod 8Z2. Thus v2(u
2 + v2) = 1, implying that

|x+ yi|τ = |x2 + y2|2 = 1
2
|x|22 ≥ 1

2
· 4 = 2 > 1, a contradiction. So both cases lead to a

contradiction, implying that |x|2 ≤ 1 and |y|2 ≤ 1. Now we will show that if |γ| ≤ 1,

then |γ+ 1| ≤ 1. Suppose that |γ| = |x+ yi| = |x2 + y2|2 ≤ 1. Then by what we have

just shown, |x|2 ≤ 1 and |y|2 ≤ 1, implying that x, y ∈ Z2. From this, x2+y2+2x+1 ∈

Z2 as well. Then, |γ + 1| = |x+ 1 + yi| = |(x+ 1)2 + y2|2 = |x2 + y2 + 2x+ 1|2 ≤ 1.

Thus we have shown that for α, β ∈ Q2(i) we have |α+ β| ≤ max(|α|, |β|). So | · | is

an absolute value.

Now we will show that Q2(i) is complete with respect to | · |. Let {an + bni}∞n=1 be

a Cauchy sequence in Q2(i). Then by Lemma 4.5.3, {an}∞n=1 and {bn}∞n=1 are Cauchy

sequences in Q2. Since Q2 is complete, there exist a, b ∈ Q2 such that an → a and

bn → b. We will show that the Cauchy sequence {an + bni}∞n=1 in Q2(i) converges

to a + bi ∈ Q2(i). Given ε > 0 there exists N ∈ N such that for n ≥ N we have

|an − a|2 <
√
ε and |bn − b|2 <

√
ε. Then we have

|(an + bni)− (a+ bi)| = |(an − a) + (bn − b)i|

= |(an − a)2 + (bn − b)2|2 ≤ max(|(an − a)2|2, |(bn − b)2|2)

< max(
√
ε
2
,
√
ε
2
) = ε,

where the first inequality follows from the strong triangle inequality. Thus the Cauchy

sequence {an + bni}∞n=1 in Q2(i) converges to a+ bi ∈ Q2(i), and we have that Q2(i)
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is complete with respect to the absolute value | · |.

Theorem 4.5.5. We have that Q(i)τ = Q2(i). In particular, Z[i]τ = Z2[i].

Proof. By Lemma 4.5.1, we have that Q2(i) ⊂ Q(i)τ . Also, Q(i) ⊂ Q2(i) and Q(i)

is dense in Q(i)τ , so we can conclude that Q2(i) is dense in Q(i)τ . Lastly, by Lemma

4.5.4 we have that Q2(i) is complete. Altogther this implies that Q2(i) = Q(i)τ .

To show that Z[i]τ = Z2[i], we will show that for a, b ∈ Q2 we have |a + bi|τ ≤ 1

if and only if |a|2 ≤ 1 and |b|2 ≤ 1. We proved the forward direction in the proof

of Lemma 4.5.4. For the other direction, assume that |a|2 ≤ 1 and |b|2 ≤ 1. Then

|a+ bi|τ = |a2 + b2|2 ≤ max(|a2|2, |b2|2) ≤ 1. With this, we have that |a+ bi|τ ≤ 1 if

and only if |a|2 ≤ 1 and |b|2 ≤ 1, implying that Z[i]τ = Z2[i].

4.6 Hilbert Reciprocity on Q(i)

Now that we have shown that the Hilbert symbol on Q(i)v is bimultiplicative, we can

show that Hilbert reciprocity on Q(i)v is equivalent to quadratic reciprocity on Z[i].

First we will state the law of quadratic reciprocity for Z[i].

Theorem 4.6.1. (Quadratic reciprocity on Z[i].) Let π, π′ ∈ Z[i] be distinct odd

Gaussian integer primes with π ≡ π′ ≡ 1 mod τ 3 and let π = x + yi where x, y ∈ Z.

Then we have the following:

(i)
(
π
π′

)
=
(
π′

π

)
.

(ii)
(
i
π

)
= (−1)

N(π)−1
4 .

(iii)
(
1+i
π

)
= (−1)

(x+y)2−1
8 .
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Remark 4.6.2. Every odd Gaussian integer prime has a unit multiple that is con-

gruent to 1 mod τ 3. We will see proof of this in the proof of Theorem 4.6.3.

Our task in the next three theorems is to compute (α, β)τ for α, β ∈ Q(i)×τ . In the

proof of Theorem 4.6.3 we will show that Q(i)×τ = τZ×Z[i]×τ = τZ×〈i〉×(1+τ 3Z[i]τ ).

We also know that (α, α)τ = 1. Now let u,w ∈ Q(i)×τ such that u ≡ w ≡ 1 mod τ 3.

Using the bimultiplicativity of the symbol, computing (α, β)τ reduces to computing

the following symbols:

(i) (i, τ)τ

(ii) (u, τ)τ

(iii) (i, u)τ

(iv) (u,w)τ

Since ix2 + τy2 = z2 has the solution (x, y, z) = (i, 1, 1), we have that (i, τ)τ = 1.

The following theorems will address the other three cases.

Theorem 4.6.3. Let u ∈ Z[i]×τ = Z2[i]
× and let u = x+ yi with x, y ∈ Z2. Then we

have the following:

(i) If x ∈ Z×2 , then

(u, τ)τ =


1, if x+ y ≡ ±1 mod 8,

−1, if x+ y ≡ ±3 mod 8.
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(ii) If x ∈ 2Z2, then

(u, τ)τ =


1, if x− y ≡ ±1 mod 8,

−1, if x− y ≡ ±3 mod 8.

Proof. First we will consider the units of Z2[i] mod τ 3, which are represented by

numbers of the form 1 + aτ + bτ 2 where a, b ∈ {0, 1}.

a, b 1 + aτ + bτ 2 mod τ 3

0, 0 1

1, 0 1 + τ ≡ −i

0, 1 1 + τ 2 ≡ −1

1, 1 1 + τ + τ 2 ≡ i

Table 4.6.1: The four units of Z2[i] mod τ3.

Looking at Table 4.6.1, we can see that Z2[i]
× = {1,−1, i,−i} × (1 + τ 3Z2[i]).

Using this direct product decomposition, for any u ∈ Z2[i]
×, we have u = ikε for

some k ∈ Z and some ε ∈ 1 + τ 3Z2[i]. So to compute (u, τ)τ , we can compute

(ikε, τ)τ = (i, τ)kτ (ε, τ)τ , with the equality coming from the bimultiplicativity of the

Hilbert symbol. The equation ix2 + τy2 = z2 has the solution (i, 1, 1), so (i, τ)τ =

1. Therefore, computing (u, τ)τ reduces to computing (ε, τ)τ for the appropriate ε.

Furthermore, it suffices to consider ε modulo mod τ 5, so consider ε ∈ (1+τ 3Z2[i])/(1+

τ 5Z2[i]). This has four representatives, which can be written as numbers of the form

1 + aτ 3 + bτ 4 where a, b ∈ {0, 1}. We show these representatives in the table below.
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a, b 1 + aτ 3 + bτ 4

0, 0 1

1, 0 1 + τ 3 = −1 + 2i

0, 1 1 + τ 4 = −3

1, 1 1 + τ 3 + τ 4 = −5 + 2i

Table 4.6.2: The four representatives of (1 + τ3Z2[i])/(1 + τ5Z2[i]).

So computing (ε, τ)τ has been reduced to computing the symbol for ε ∈ {1,−1 +

2i,−3,−5 + 2i}. Thus we have four cases.

Case 1) Let ε = 1. Since 1 is a square we have that (ε, τ)τ = 1.

Case 2) Let ε = −1 + 2i. Since −1 + 2i = 1 + τ 3 and 1 + τ 3 ∈ N(L×τ ) by Table

4.4.5, we have that (ε, τ)τ = 1.

Case 3) Let ε = −3. Since −3 = 1 + τ 4 and 1 + τ 4 /∈ N(L×τ ) by our work in Case

3 of the proof of Theorem 4.4.2, we have that (ε, τ)τ = −1.

Case 4) Let ε = −5 + 2i. Since −5 + 2i = 1 + τ 3 + τ 4 ≡ −(1 + τ 2) mod τ 5, and

1 + τ 2 /∈ N(L×τ ) by our work in Case 3 of the proof of Theorem 4.4.2, we have that

(ε, τ)τ = −1.

In summary we can construct the following table.
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a, b 1 + aτ 3 + bτ 4 (1 + aτ 3 + bτ 4, τ)τ

0, 0 1 1

1, 0 1 + τ 3 = −1 + 2i 1

0, 1 1 + τ 4 = −3 −1

1, 1 1 + τ 3 + τ 4 = −5 + 2i −1

Table 4.6.3: The values of (ε, τ)τ .

From Table 4.6.3, we can clearly see that the value of (1 + aτ 3 + bτ 4, τ)τ depends

on the value of b. In particular, (1 + aτ 3 + bτ 4, τ)τ = (−1)b. So for any u ∈ Z2[i]
×

we can find the corresponding ε and value of b in order to compute (u, τ)τ . However,

this process is a bit laborious, so it would be much nicer to have a direct formula for

(u, τ)τ .

Along these lines, we can note that

u = 1 + aτ 3 + bτ 4 = 1− 2a− 4b+ 2ai (4.6.1)

and consider the sum of the “real” and “imaginary” parts, which is 1−4b ≡ 1 mod 4.

Now set u = x + yi for some x, y ∈ Z2. Since u is a unit in Z2[i], it must be that

x 6≡ y mod 2Z2. So x+ y ≡ 1 mod 2Z2, meaning x+ y is either 1 or 3 mod 4Z2. And

since we can either have x ≡ 0 mod 2Z2 and y ≡ 1 mod 2Z2 or vice versa, we have

two cases.

Case 1) Let x ≡ 1 mod 2Z2 and y ≡ 0 mod 2Z2. Then y = 2A for some A ∈ Z2.

First suppose that x+y ≡ 1 mod 4Z2. Then we have that x ≡ 1−2A mod 4Z2, which

means that x = 1−2A+4B for some B ∈ Z2. With this, x+yi = 1−2A+4B+2Ai =

1 +Aτ 3 +Bτ 4. Also, the class of x+ yi mod τ 5 only depends on the values of A and
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B mod 2Z2, so we can conclude that (u, τ)τ = (−1)B. So we need only to determine

the parity of B. Since x+ y = 1 + 4B, the parity of B depends on the value of x+ y

mod 8Z2. If x+ y ≡ 1 mod 8Z2, then B ≡ 0 mod 2Z2 and (u, τ)τ = 1. On the other

hand, if x + y ≡ 5 mod 8Z2, then B ≡ 1 mod 2Z2 and (u, τ)τ = −1. Next suppose

that x + y ≡ 3 mod 4Z2. Then x + y ≡ 3 mod 8Z2 or x + y ≡ 7 mod 8Z2. Also,

−x − y ≡ 5 mod 8Z2 or −x − y ≡ 1 mod 8Z2. Now since (u, τ)τ = (x + yi, τ)τ =

(−x − yi, τ)τ = (−u, τ)τ , as −1 is a square, we can use the work that we did when

x + y ≡ 1 mod 4Z2. By doing this we can conclude that if x + y ≡ 3 mod 8Z2, then

−x − y ≡ 5 mod 8Z2, which implies that (u, τ)τ = (−u, τ)τ = −1. Additionally,

we have that if x + y ≡ 7 mod 8Z2, then −x − y ≡ 1 mod 8Z2, which implies that

(u, τ)τ = (−u, τ)τ = 1. In summary we now have that if x ≡ 1 mod 2Z2 then

(u, τ)τ =


1, if x+ y ≡ ±1 mod 8Z2,

−1, if x+ y ≡ ±3 mod 8Z2.

Case 2) Let x ≡ 0 mod 2Z2 and y ≡ 1 mod 2Z2. Then iu = −y + xi is covered

by Case 1 if the roles of x and y are replaced with −y and x, respectively. Since

(i, τ)τ = 1, we have that if x ≡ 0 mod 2Z2 then

(u, τ)τ = (iu, τ)τ =


1, if x− y ≡ ±1 mod 8Z2,

−1, if x− y ≡ ±3 mod 8Z2.



58

Theorem 4.6.4. Let u ∈ Z[i]×τ such that u = x+ yi for x, y ∈ Z2. Then

(i, u)τ =


1, if x2 + y2 ≡ 1 mod 8,

−1, if x2 + y2 ≡ 5 mod 8.

.

Proof. One could prove this in a way similar to the proof for Theorem 4.6.3. However,

instead of examining the sum of the real and imaginary parts of u, one would have

to examine the sum of the squares of the real and imaginary parts of u.

Theorem 4.6.5. Let u,w ∈ Z[i]×τ such that u ≡ w ≡ 1 mod τ 3. Then (u,w)τ = 1.

Proof. Let u,w ∈ Q(i)×τ such that u ≡ w ≡ 1 mod τ 3 and consider (u,w)τ . As we

have seen before, the value of this symbol will only depend on u and w mod τ 5. Thus

we will consider u and w in (1+τ 3Z[i]τ )/(1+τ 5Z[i]τ ). So u has the form 1+aτ 3+bτ 4

and w has the form 1 + a′τ 3 + b′τ 4 where a, a′, b, b′ ∈ {0, 1}. With this, we will now

construct a table with the possible values of u and w and their corresponding symbols.

a, b a′, b′ (u,w)τ

1, 0 1, 0 (1 + τ 3, 1 + τ 3)τ

1, 0 0, 1 (1 + τ 3, 1 + τ 4)τ

1, 0 1, 1 (1 + τ 3, 1 + τ 3 + τ 4)τ

0, 1 0, 1 (1 + τ 4, 1 + τ 4)τ

0, 1 1, 1 (1 + τ 4, 1 + τ 3 + τ 4)τ

1, 1 1, 1 (1 + τ 3 + τ 4, 1 + τ 3 + τ 4)τ
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Since we know that (α, α)τ = 1 for all α ∈ Q(i)×τ , we have only three nontrivial

symbols to check: (1 + τ 3, 1 + τ 4)τ , (1 + τ 3, 1 + τ 3 + τ 4)τ , and (1 + τ 4, 1 + τ 3 + τ 4)τ .

We will first compute (1+τ 3, 1+τ 4)τ . By Example 4.4.3, we can see that 1+τ 3 ∈

N(L×1+τ4)/(Q(i)×τ )2. Thus (1 + τ 3, 1 + τ 4)τ = 1.

Next consider (1+τ 3, 1+τ 3+τ 4)τ . By Table 4.3.3 we have that 1+τ 3+τ 4 ≡ −(1+

τ 2) mod τ 5. With this, (1+τ 3, 1+τ 3+τ 4)τ = (1+τ 3, 1+τ 2)τ . In addition, Table 4.4.5

shows that 1+τ 2 ∈ N(L×1+τ3)/(Q(i)×τ )2. So (1+τ 3, 1+τ 3+τ 4)τ = (1+τ 3, 1+τ 2)τ = 1.

Lastly, we will compute (1+τ 4, 1+τ 3+τ 4)τ . Since 1+τ 3+τ 4 ≡ −(1+τ 2) mod τ 5

by Table 4.3.3 and Table 4.4.5 tells us that 1 + τ 2 ∈ N(L×1+τ4)/(Q(i)×τ )2, we have

(1 + τ 4, 1 + τ 3 + τ 4)τ = (1 + τ 4, 1 + τ 2)τ = 1.

By checking all of the above symbols, we have shown that (u,w)τ = 1.

Remark 4.6.6. Note that this statement is much simpler than its analogue, Lemma

3.4.3, just as the main law of quadratic reciprocity over Z[i] is much simpler than the

main law of quadratic reciprocity over Z.

Theorem 4.6.7. If π is an odd Gaussian integer prime and a ∈ Z[i]×π , then (a, π)π =

( a
π
).

Proof. The argument is just like Lemma 3.4.1. First we will show that ( a
π
) = 1

implies (a, π)π = 1. Suppose ( a
π
) = 1. Then a ≡ � mod π, and by Corollary 4.1.17,

a = � in Z[i]×π . Then (a, π)π = 1 by Theorem 4.2.4(i). To show (a, π)π = 1 implies

( a
π
) = 1, suppose (a, π)π = 1. Then there exists x, y, z ∈ Z[i]π with at least one

in Z[i]×π such that ax2 + πy2 = z2. If π|x then π|(ax2 + πy2) = z2. With this,

π2|(z2 − ax2) = πy2 which implies that π|y, a contradiction since one of x, y, or z is

a unit. So x 6≡ 0 mod π. Now reducing ax2 + πy2 = z2 mod π gives ax2 ≡ z2 mod π.

This implies that a ≡ � mod π, so ( a
π
) = 1.
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Finally, we have the Gaussian analogue of Theorem 3.5.2.

Theorem 4.6.8. The following are equivalent:

(i) The quadratic reciprocity law on Z[i].

(ii) Hilbert reciprocity on Q(i)v: for all a, b ∈ Q(i)×v we have (a, b)v = 1 for all but

finitely many v and ∏
v

(a, b)v = 1.

Proof. Since a and b can be decomposed into a product of primes and powers of i, the

Hilbert symbol can be split apart using its bimultiplicativity until the only numbers

in the symbols are either primes or i. As a result, we only need to check
∏

v(a, b)v = 1

when a and b are primes or i. We can always ignore v =∞ unlike in the rational case,

since the Hilbert symbol on Q(i)∞ = C is trivial. Let π, π′ be distinct odd Gaussian

integer primes such that π ≡ π′ ≡ 1 mod τ 3.

Case 1:
∏

v(i, i)v = 1

Since the equation ix2 + iy2 = z2 has the solution (x, y, z) = (1, i, 0), we have that

(i, i)v = 1 for all v. This is an analogue of Case 1 in the proof of Theorem 3.5.2.

Case 2:
∏

v(i, τ)v = 1

Since the equation ix2 + τy2 = z2 has the solution (x, y, z) = (i, 1, 1), we have

that (i, τ)v = 1 for all v. This is an analogue of Case 2 in the proof of Theorem 3.5.2.

Case 3:
∏

v(i, π)v = 1

By Corollary 4.1.19 and Lemma 4.2.5, we only have to compute (i, π)v for v = τ

and v = π. By Theorem 4.6.4 we have (i, π)τ = (−1)
N(π)−1

4 . Also, by Theorem 4.6.7

we have (i, π)π = ( i
π
). Thus

∏
v(i, π)v = 1 if and only if ( i

π
) = (−1)

N(π)−1
4 , the first
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supplementary law for quadratic reciprocity on Z[i]. This is an analogue of Case 3 in

the proof of Theorem 3.5.2.

Case 4:
∏

v(τ, τ)v = 1

Since the equation τx2 + τy2 = z2 has the solution (x, y, z) = (1, i, 0), we have

that (τ, τ)v = 1 for all v. This is an analogue of Case 4 in the proof of Theorem 3.5.2.

Case 5:
∏

v(τ, π)v = 1

By Corollary 4.1.19 and Lemma 4.2.5, we only have to compute (τ, π)v for v = τ

and v = π. Since π ≡ 1 mod τ 3, by Equation 4.6.1 we have that π = x + yi with x

odd and y even. Then by Theorem 4.6.3 we have

(τ, π)τ =


1, if x+ y ≡ ±1 mod 8,

−1, if x+ y ≡ ±3 mod 8.

Also, by Theorem 4.6.7 we have (τ, π)π = ( τ
π
). Thus

∏
v(τ, π)v = 1 if and only if

(τ
π

)
=


1, if x+ y ≡ ±1 mod 8,

−1, if x+ y ≡ ±3 mod 8.

This is equivalent to ( τ
π
) = (−1)

(x+y)2−1
8 , the second supplementary law for quadratic

reciprocity on Z[i]. This is an analogue of Case 5 in the proof of Theorem 3.5.2.

Case 6:
∏

v(π, π)v = 1

Since πx2 + πy2 = z2 has the solution (x, y, z) = (1, i, 0), we have that (π, π)v = 1

for all v. This is an analogue of Case 6 of Theorem 3.5.2, but much simpler.

Case 7:
∏

v(π, π
′)v = 1

By Corollary 4.1.19 and Lemma 4.2.5, we only have to compute (π, π′)v for v = τ ,
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v = π, and v = π′. By Theorem 4.6.5 we have (π, π′)τ = 1. Also by Theorem 4.6.7

we have (π, π′)π = (π
′

π
) and (π′, π)π′ = ( π

π′
). Thus

∏
v(π, π

′)v = 1 if and only if

( π
π′

)(π
′

π
) = 1, which is equivalent to ( π

π′
) = (π

′

π
), the main law of quadratic reciprocity.

This is an analogue of Case 7 of Theorem 3.5.2.

So by checking these seven cases we see that if Hilbert reciprocity on Q(i) holds,

then quadratic reciprocity on Z[i] holds.

For the other direction, assume that quadratic reciprocity on Z[i] holds. Then we

have that ( π
π′

) = (π
′

π
) for π ≡ π′ ≡ 1 mod τ 3, which means that ( π

π′
)(π

′

π
) = 1. Then

by Theorem 4.6.7, we have that (π, π′)π′(π, π
′)π = 1. From here, Theorem 4.6.5,

Corollary 4.1.19, and Lemma 4.2.5 tell us that (π, π′)v = 1 for all v other than v = π

and v = π′. So,
∏

v(π, π
′)v = 1.

Assuming quadratic reciprocity, we also have ( i
π
) = (−1)

N(π)−1
4 , so ( i

π
)(−1)

N(π)−1
4 =

1. Then by Theorem 4.6.4 and Theorem 4.6.7, we have (i, π)π(i, π)τ = 1. Also,

Corollary 4.1.19 and Lemma 4.2.5 tell us that (i, π)v = 1 for all v other than v = π

and v = τ . With this, we have
∏

v(i, π)v = 1.

Lastly, quadratic reciprocity tells us that for π ≡ 1 mod τ 3 with π = x + yi for

x, y ∈ Z, (τ
π

)
=


1, if x+ y ≡ ±1 mod 8,

−1, if x+ y ≡ ±3 mod 8.

Then by Theorem 4.6.7 and Theorem 4.6.3, we have (τ, π)π(τ, π)τ = 1. Just like

before, Corollary 4.1.19 and Lemma 4.2.5 tell us that
∏

v(τ, π)v = 1.

Along with the bimultiplicativity of the Hilbert symbol and what we showed in

Cases 1, 2, 4, and 6, we have that
∏

v(a, b)v = 1 for all a, b ∈ Q(i)×v . Thus Hilbert

reciprocity on Q(i) is equivalent to quadratic reciprocity on Z[i].
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