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1. Introduction

It is a classical result that the points of an elliptic curve E over a number field K (a smooth
projective genus one curve with at least one K-rational point) can be given the structure of an
abelian group. In fact, it is known from the Mordell-Weil theorem, that this group is finitely
generated. Therefore, we have that

E(K) ∼= Etor(K)× ZrK

where Etor(K) is the torsion subgroup of E(K) and r = rK is the rank of E(K). There are many
interesting questions about the rank of an elliptic curve that are still open, but the focus of this
paper is on the torsion part of E(K).

Let p be a prime number, and let E[p] be the Fp-vector space of p-torsion points on E(K), where
K is a fixed algebraic closure of K. The natural Galois action of Gal(K/K) on E[p] induces a
Galois representation Gal(Q/Q)→ GL(E[p]), and if we choose a Z/pZ-basis of E[p], then we obtain
a Galois representation ρE,p : Gal(Q/Q)→ GL2(Z/pZ). The image of ρE,p was extensively studied
by Serre in [15].
Theorem 1.1. [15] If E is an elliptic curve over Q that does not have complex multiplication, then
there exists a constant CE > 0 such that for every prime p > CE, the mod-p Galois representation
ρ : Gal(Q/Q)→ GL2(Z/pZ) is surjective.

Serre asked the next natural question: can the constant CE be chosen independently of E?
Question 1.2 (Serre’s Uniformity Problem, [15], §4.3). Does there exist a constant C > 0 such
that ρE,p is surjective for all p > C and all E without complex multiplication?

In [15], Serre also shows that there are five possible cases for what the image of ρE,p could be.
There is an Fp-basis of E[p] such that one of the following happens:

(1) ρE,p is surjective;
(2) The image of ρE,p is contained in a Borel subgroup of GL2(Z/pZ);
(3) The image of ρE,p is contained in the normalizer of a split Cartan subgroup of GL2(Z/pZ);
(4) The image of ρE,p is contained in the normalizer of a non-split Cartan subgroup of GL2(Z/pZ);
(5) The image of ρE,p is contained in one of a finite list of “exceptional” subgroups.

Serre showed the exceptional groups, as in case (5) above, are not subgroups of GL2(Z/pZ) for
p greater than 13. The uniformity question in case (2) was proven by Mazur [11] where he showed
that if p is greater than 37, and E does not have CM, then the image of ρE,p cannot be contained in
a Borel subgroup. Bilu, Parent, and Bilu, Parent, and Rebolledo [3] (also using results of Momose
[12]) have shown that if p ≥ 11, p 6= 13, and E is not CM, then case (3) cannot occur. This just
leaves the case when the image of ρE,p is contained in the normalizer of a non-split Cartain subgroup
of GL2(Z/pZ). In this case, the arguments used by Mazur [11], and Bilu and Parent [2], fail and a
different tactic must be taken. The focus of this paper is on the split case for the case of p = 11.
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Theorem 1.3 (Theorem 5.5, Corollary 5.6). Any elliptic curve defined over Q whose associated
Galois representation at 11 has image contained in the normalizer of a split Cartan subgroup of
GL2(Z/11Z) has complex multiplication.

As mentioned above, Theorem 1.3 has already been proven. It is the simplest case of [13, Theorem
1.1] and in fact was probably even known before that. Here, the main goal is to prove the result by
analyzing completely the arithmetic of the modular curve, X+

s (11), that parametrizes elliptic curves
over Q with ρE,11 having split Cartan image. In the proof of Parent, the author shows a bound
on the height of the j-invariant of any elliptic curve in the split case (3) above, and then run an
exhaustive calculation that proves that none of the curves up to that bound have split Cartan image
and are not CM, therefore proving the desired result. Our methods work directly on X+

s (11), in
that we calculate all the rational points on X+

s (11), and in doing so, we compute the structure of
the jacobian of the modular curve, and determine its rational points.

More concretely, the main theorem of this article is the following.

Theorem 1.4. Let X be the modular curve X+
s (11) and let J be its associated jacobian variety.

Then:
(1) X has a model y2 = x6 − 6x5 + 11x4 − 8x3 + 11x2 − 6x+ 1, and the j-map X → P

1(Q) can
be calculated explicitly.

(2) X(Q) contains exactly 6 points, two of which are points at infinity ∞+ and ∞−, and one is
a cusp (0,−1). The points, together with the j-invariant of the elliptic curve associated to
each non-cuspidal point are given in the following table:

P (0, 1) (0,−1) (1, 2) (1,−2) ∞+ ∞−
j(P ) 8000 cusp −3375 16581375 −884736 −88473600

(3) J(Q) ∼= Z/5Z × Z. The torsion subgroup of J(Q) is generated by [(0, 1) − ∞−], while
[∞+ −∞−] is a generator of infinite order.

Another main goal of this paper is to illustrate several important techniques in the computation
of rational points on (hyperelliptic) curves. First, a model for X = X+

s (11) is computed using Siegel
functions and modular units and compute the j-map that gives the j-invariant of the elliptic curve
associated to each non-cuspidal point on the curve. The method used to compute a model for X
should readily generalize to other modular curves of prime level. In order to be able to apply the
method of Chabauty and Coleman to find a bound on the number of rational points on X, we first
need to determine the rank of the jacobian variety (in particular, one needs to show that the rank
of J(Q) less than the genus of X, which is 2). The jacobian is studied by performing a 2-descent
via the methods of Poonen, Schaefer, and Stoll, that allows us to determine the structure of J(Q),
and in particular show that the free rank is 1, less than the genus of X, as desired. The method
of Chabauty and Coleman now produces a bound of 8 rational points on X, but a naive search for
points only yields the 6 points listed in Theorem 1.4. Finally, we find several automorphisms of
X(Q) that allows us to conclude that if there was an additional point beyond the 6 we list, then
there would be at least 10 points on X, contradicting the bound of 8. Hence, the ones we list are
all the rational points on X.

The paper is organized as follows. In Section 2 Siegel functions, and modular units are defined.
In Section 3 we construct a model for X+

s (11) using modular units built out of Siegel functions, and
in Section 3.5 we go on to compute the j-map. The 2-descent on the jacobian variety is described in
Section 4. Finally, the method of Chabauty and Coleman is summarized in Section 5 and Theorem
1.3 is proved in Section 5.4.

1.1. Acknowledgments. Much of the contents of this paper were originally written in partial
fulfillment of the requirements for the degree of doctor of philosophy at the University of Connecticut
in 2013. Without the help and guidance of my thesis advisor, Álvaro Lozano-Robledo, this paper
would not have been possible.
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2. Klein Forms, Siegel Functions, and Modular Units

2.1. Klein Forms and Siegel Functions. In this Section we follow the notation and terminology
laid out in Section 1 and 2 of Chapter 2 of [10]. In these sections, the authors give explicit methods
for computing units in the function field of the modular curve X(N). These functions are units
because they only have poles and zeros at the cusps, and so when we consider the functions only
on the non-cuspidal points, they are invertible. Before diving in, we need to recall the definition of
what it means to be modular for a given congruence subgroup.
Definition 2.1. A modular function for a congruence subgroup Γ is a meromorphic function on the
compact Riemann surface Γ\H ∗.

Often, modular functions are considered as meromorphic functions on H ∗ that are invariant
under the action of Γ. From this perspective a modular function for Γ is a function that satisfies
the following conditions:

(1) f(τ) is invariant under the Γ. That is, f(γτ) = f(τ) for all γ ∈ Γ;
(2) f(τ) is meromorphic in H ;
(3) f(τ) is meromorphic at the cusps.
Let L be a lattice in the complex plane and let f(z, L) be the Klein form attached to L (see [10]).

This is a function which takes a complex variable z and a lattice L as its arguments. These functions
are homogeneous of degree 1; that is to say that f(λz, λL) = λf(z, L) for λ ∈ C.

Let W =
(
ω1
ω2

)
∈ C2 such that ω1

ω2
6∈ R. Take L = L(W ) = Zω1 + Zω2, and let z = z(a, w) =

a1ω1 + a2ω2 with a = (a1, a2) ∈ R2. Now, we can create a new function that takes as its arguments
a vector a ∈ R2 instead of z ∈ C and a vector W ∈ C2 whose entries are linearly independent over
R by fa(W ) = f(z, L). In [10, Chapter 2], the authors show that these functions have the following
properties:

K0. fa(λW ) = λfa(W ).
K1. For α ∈ SL2(Z), fa(αW ) = faα(W ).
K2. If b = (b1, b2) ∈ Z2, then fa+b(W ) = ε(a,b)fa(W ), where

ε(a,b) = (−1)b1b2+b1+b2e−πi(b1a2−b2a1).

K3. If α ∈ Γ(N), and a = (a1, a2) ∈ Q2 such that the denominators of a1 and a2 divide N , then
fa(αW ) = faα(W ) = εa(α)fa(W )

where εa(α) is a 2Nth root of unity. If we let a =
(
r
N ,

2
N

)
, ε(α) is given by

εa(α) = −(−1)(
a−1
N r+ c

N s+1)( bN r+ d−1
N s+1)e2πi(br2+(b−1)rs−cs2)2N2

.

Definition 2.2. For α =
(
a b
c d

)
∈ SL2(Z) and τ ∈ H , let j(α, τ) be the factor of automorphy

given by
j(α, τ) = cτ + d.

The Klein functions may be considered as functions on the upper half plane, as follows: let τ ∈H

and define fa(τ) = fa(Wτ ), where Wτ =
(
τ
1

)
.

Proposition 2.3. For α ∈ SL2(Z)
faα(τ) = j(α, τ)fa(ατ).

Proof: Using properties K0 and K1 we see that for

faα(τ) = faα(Wτ ) = fa(αWτ ) = fa

((
aτ + b
cτ + d

))
= fa

(
(cτ + d)

(
aτ+b
cτ+d

1

))
= j(α, τ)fa(ατ).
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Definition 2.4. The Siegel function associated to a ∈ R2, ga(τ), is a function on H defined by
ga(τ) = fa(τ)η(τ)2,

where η(τ)2 = q
1

12
∏∞
n=1(1− qn)2 is the Dedekind eta function and q = e2πiτ .

Notice that property K2 says that if we are normalizing our functions to have leading coefficient
1, then a ∈ R2 only matters modulo Z. That is, we can actually take a ∈ (R/Z)2. In fact, for the
rest of the paper we are going to restrict ourselves, for the sake of simplicity, to considering functions
where a ∈ (Q/Z)2.

Before we continue, let us recall a theorem about the Dedekind eta function.

Proposition 2.5. [1, page 51] If α ∈ SL2(Z), then

η(ατ) = ξ(α) ·
√
j(α, τ)η(τ),

where ξ(α) is a 24th root of unity.

Remark 2.6. The observant reader might ask about how the square root above is chosen and whether
the choice depend on τ . We will ignore this question for now and see in the proof of 2.8 that this
ambiguity can be ignored.

For our purposes, we will only be interested in a = (a1, a2) ∈ (Q/Z)2 and we let z = a1τ + a2
and qz = e2πiz.

Theorem 2.7. [10, p. 29] For each a ∈ (Q/Z)2, the Siegel function ga(τ) can be given by the
following q-expansion:

ga(τ) = −q(1/2)B2(a1)
τ e2πia2(a1−1)/2(1− qz)

∞∏
n=1

(1− qnτ qz)(1− qnτ /qz)

where B2(x) = x2 − x+ 1
6 is the second Bernoulli polynomial.

Theorem 2.8. If α ∈ SL2(Z) as above and a ∈ (Q/Z)2, then
ga(ατ) = ζ(α) · gaα(τ)

where ζ(α) is a 12th root of unity that depends only on α.

Proof: Using Propositions 2.3 and 2.5 we have,
ga(ατ) = fa(ατ)(η(ατ))2

= j(α, τ)−1faα(τ)
(
ξ(α) ·

√
j(α, τ)η(τ)

)2

= ξ(α)2faα(τ)η(τ)2 = ζ(α)gaα(τ).

Here ζ(α) = ξ(α)2 and since ξ(α) is a 24th root of unity, ζ(α) is a 12th root of unity and since√
j(α, τ) appears inside the square, which square root we choose doesn’t matter.

In [10], Kubert and Lang develop sufficient conditions for products of the ga’s to be modular of
level N . These conditions are more difficult to state if N is not prime to 6, and also not of interest
to us, so we will only state conditions for (N, 6) = 1.

Theorem 2.9. [10, Chapter 3, Theorem 5.2] Let N ∈ N such that (N, 6) = 1. Let A be the set of
all a =

(
r1
N ,

r2
N

)
∈
( 1
NZ
)2 and a 6∈ Z2. Let

g(τ) =
∏
a∈A

gm(a)
a (τ).

Then g is modular of level N if and only if the family {m(a)} satisfies the following:
(1)

∑
a∈A

m(a)r2
1 ≡

∑
a∈A

m(a)r2
2 ≡

∑
a∈A

m(a)r1r2 ≡ 0 mod N , and
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(2)
∑
a∈A

m(a) ≡ 0 mod 12.

In general, we will always assume that an element a = (a1, a2) ∈ (Q/Z)2 is normalized so that
0 ≤ a1 < 1 and 0 ≤ a2 < 1. If we wish to remove this assumption then we will always use the
notation 〈a1〉 and 〈a2〉 to mean the fractional part of a1 and a2.

Lemma 2.10. [10, p. 31] For a = (a1, a2) ∈ (Q/Z)2 we have

ordqτ ga(τ) = ordi∞ ga(τ) = 1
2B2

(
〈a1〉

)
.

With this lemma we will be able to compute the divisor of any Siegel function we want. This
will be important when we start to use these functions along with the Riemann-Roch theorem to
compute models of curves.

2.2. Modular Units for Congruence subgroups of Level p. In this section we generalize the
methods used in [6] to find a class of explicitly computable modular units for an arbitrary congruence
subgroup of prime level p 6= 2, 3. For the rest of this section let Γ be a congruence subgroup of level
p 6= 2, 3. Let Γ∗(p) = 〈−I2,Γ(p)〉 if −I2 ∈ Γ, otherwise let Γ∗(p) = Γ(p). Next, let Ω = Γ/Γ∗(p),
and let Ω be a fixed set of representatives of Ω in Γ.

Remark 2.11. Notice that Ω and Ω are finite since Γ is a congruence subgroup of level p.

Now that we have defined these basic objects, we can define the basic functions that we are going
to be interested in:

Definition 2.12. For a ∈
(

1
pZ/Z

)2
with a 6∈ Z2 let

va(Γ, τ) = va(τ) = Θa(Ω)
∏
γ∈Ω

gaγ(τ)

where Θa(Ω) ∈ C× is defined so that the leading term of the q-expansion of va(τ) is 1. Also, let

ua(Γ, τ) = ua(τ) = va(Γ, τ)c = Θa(Ω)c
∏
γ∈Ω

gaγ(τ)c

where c is the smallest positive integer such that c · #Ω ≡ 0 mod 12. In each case, when the
congruence subgroup is obvious, we will use the notation that omits Γ.

Lemma 2.13. For δ ∈ Γ∗(p), a ∈
(

1
pZ/Z

)2
, a 6∈ Z2, we have gaδ(τ) = εa(δ)ga(τ), where εa(δ) is

the 2p-th root of unity in K3.

Proof: Suppose δ ∈ Γ(p) and a is as above, then

gaδ(τ) = faδ(τ)(η(τ))2 K3= εa(δ)fa(τ)(η(τ))2 = εa(δ)ga(τ).

Now, recall that

−I2τ = −1 · τ + 0
0τ − 1 = −τ

−1 = τ,

and j(−I1, τ) = 0τ − 1 = −1. This means

ga·(−I2)(τ) = j(−I2, τ)ga(−I2 · τ) = −ga(τ).

Thus, for any element of the form −δ with δ ∈ Γ(P ),

ga(−δ)(τ) = ga(−I2·δ)(τ) = g(a(−I2))·δ(τ) = εa(δ)ga(−I2)(τ) = −εa(δ)ga(τ),

and since εa(δ) is a 2p-th root of unity, so is −εa(δ) and the result follows.
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Proposition 2.14. Let Ω = {γi}#Ω
i=1 and Ω′ = {γ′i}

#Ω
i=1 be two different choices of lifts for Ω ordered

so that there exists a δi ∈ Γ∗(p) such that γi = γ′iδi. Then
#Ω∏
i=1

gaγi(τ) = κ ·
#Ω∏
i=1

gaγ′
i
(τ)

where κ =
#Ω∏
i=1

εaγ′
i
(δi). Further,

Θa(Ω′) = Θa(Ω) · κ.

Proof: Suppose that Ω and Ω′ are as above. For any a ∈
(

1
pZ/Z

)2
such that a 6∈ Z2, we have

#Ω∏
i=1

gaγi(τ) =
#Ω∏
i=1

gaγ′
i
δi(τ) =

#Ω∏
i=1

εaγ′
i
(δi)gaγ′

i
(τ) =

#Ω∏
i=1

εaγ′
i
(δi) ·

#Ω∏
i=1

gaγ′
i
(τ) = κ ·

#Ω∏
i=1

gaγ′
i
(τ).

Therefore, we get that, if we choose a different set of lifts, we simply change our normalization
constant by κ, more specifically, Θa(Ω′) = Θa(Ω) · κ.

Corollary 2.15. The q-expansion va is independent of choice of the representatives of Ω and thus
so it the q-expansions of ua(τ).

Proof: Follows immediately from Proposition 2.14

Theorem 2.16. Let a ∈
(

1
pZ/Z

)2
, with a 6∈ Z2, then for any α ∈ Γ,

va(ατ) = ζ(α)#Ωε1(a, α)va(τ),

where ε1(a, α) is an explicitly computable 2pth-root of unity that depends on a and α and ζ(α) is the
12th root of unity in Theorem 2.8. Further, ε1(a, α) = 1 if and only if the product of Siegel functions
defining va satisfies condition (1) of Theorem 2.9. Similarly, ζ(α)#Ω is 1 if and only if the product
of Siegel functions defining va satisfies condition (2) of Theorem 2.9.

Proof: Recall that Ω = Γ/Γ∗(p) and that Ω is a fixed set of lifts of Ω to Γ. Fix α ∈ Γ, α its
reduction to Ω. Let σ be the permutation of Ω given by σ(β) = β · α. For any γ ∈ Γ, we can
write γα = γσ · δ(γ, α) where γσ is the unique lift of σ(γ) into Ω and δ(γ, α) ∈ Γ∗(p). By abuse of
notation, we can let σ be a permutation of Ω by γ 7→ γσ. Therefore,

gaγα(τ) = gaγσδ(γ,α)(τ) = εaγσ (γ, α)gaγσ (τ),

where εaγσ (α, γ) is the 2p-th root of unity from Lemma 2.13 that depends on a and δ(γ, α). Let
ε1(a, α) =

∏
γ∈Ω

εaγ(γ, α). Then

va(ατ) = Θa(Ω)
∏
γ∈Ω

gaγ(ατ) = Θa(Ω)
∏
γ∈Ω

ζ(α) · gaγα(τ) = Θa(Ω) · ζ(α)#Ω
∏
γ∈Ω

εaγ(γ, α)gaγσ (τ)

= Θa(Ω) · ζ(α)#Ωε1(a, α)
∏
γ∈Ω

gaγσ (τ) = ζ(α)#Ωε1(a, α)va(τ),

where the last equality follows from the fact that σ is a permutation of Ω, so the terms are simply
being reordered.

Finally, we note that the content of the proof of [10, Chapter 3, Theorem 5.2] is exactly showing
that ε1(a, α) = 1 if and only if our product satisfies condition (1) of Theorem 2.9, while condition
(2) ensures that ζ(α)#Ω would be 1.
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Definition 2.17. For a = (a1, a2) =
(
r1
p ,

r2
p

)
∈
(

1
pZ/Z

)2
and α ∈ SL2(Z), let (aα)1 and (aα)2 be

the integers such that aα =
(

(aα)1
p , (aα)2

p

)
.

Proposition 2.18. For each a = (a1, a2) =
(
r1
p ,

r2
p

)
∈
(

1
pZ/Z

)2
such that∑

γ∈Ω
c(aγ)2

1 ≡
∑
γ∈Ω

c(aγ)2
2 ≡

∑
γ∈Ω

c(aγ)1(aγ)2 ≡ 0 mod p,

ua(τ) is modular for Γ. Further, in this case ε1(a, α) = 1 for all α ∈ Γ, where ε1(a, α) is as defined
in Theorem 2.16.

Proof: Suppose that a ∈
(

1
pZ/Z

)2
such that∑

γ∈Ω
c(aγ)2

1 ≡
∑
γ∈Ω

c(aγ)2
2 ≡

∑
γ∈Ω

c(aγ)1(aγ)2 ≡ 0 mod p.

This means that the function ua(τ) is modular for Γ∗(p) from Theorem 2.9. This implies ua(δτ) =
ua(τ) for all δ ∈ Γ∗(p), but by the definition ua(τ), this means that ε1(a, γ) is also 1 since the
product that defines it only depends on the δ(γ, α)’s which are elements in Γ∗(p). Therefore, for all
α ∈ Γ,

ua(ατ) =
(
ζ(α)#Ωε1(a, α)va(τ)

)c = ζ(α)#Ω·c · 1c · va(τ)c = va(τ)c = ua(τ),
and ua(τ) is modular for Γ.

3. The modular Curve X+
s (11)

3.1. Modular curves associated to Normalizers of Split Cartan Subgroups. We start this
section by defining the basic groups that we will be interested in.

Definition 3.1. A split Cartan subgroup of GL2(Z/pZ) is a conjugate of the group of diagonal
matrices;

Cs(p) =
{(

a 0
0 b

)
: a, b ∈ (Z/pZ)×

}
.

The normalizer of Cs(p) is given by

C+
s (p) =

{(
a 0
0 b

)
,

(
0 c
d 0

)
: a, b, c, d ∈ (Z/pZ)×

}
.

The congruence subgroup, Γ+
s (p), is the inverse image of C+

s (p) ∩ SL2(Z/pZ) under the standard
reduction map SL2(Z)→ SL2(Z/pZ).

With these definitions we are now ready to define the modular curve X+
s (p).

Definition 3.2. Let X+
s (p) be the Riemann surface given by Γ+

s (p)\H ∗.

Theorem 3.3. [7, p. 4] For p > 3, the genus of the curve X+
s (p) is given by

g+
s (p) = 1

24

(
p2 − 8p+ 11− 4

(
−3
p

))
.

Example 3.4.

p 5 7 11 13 17 19 23 29 31 37 41 43 47
g+
s (p) 0 0 2 3 7 9 15 26 30 45 57 63 77
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3.2. Curves of Genus Two. Using Theorem 3.3, we can see that the genus of X+
s (11) is equal

to 2. Before we start looking at this curve in particular it would be worth it to better understand
general genus 2 curves.

Proposition 3.5. Every smooth projective curve of genus two, C, is birationally equivalent to a
curve of the form:

y2 + yh(x) = f(x),
with deg(h) ≤ 3 and deg(f) ≤ 5.

Proposition 3.5 tells us that every genus two curve is hyperelliptic. In fact, if the base field of C
is not of characteristic two, then C is birationally equivalent to a curve of the form y2 = f(x) where
deg(f) = 5 or 6. This model is obtained by completing the square on the left hand side and doing
a change of variables.

Remark 3.6. Here we notice that it is impossible to embed a smooth genus two curve into P2.
Indeed, if C is a smooth curve given as the vanishing set of a degree d homogeneous polynomial then
its genus must be g = (d−1)(d−2)

2 . A quick check shows that this formula never equals two since it is
impossible for (d−1)(d−2) to be 4. Therefore in regular projective space the models of these curves
are always singular. To combat this, when we consider a genus two curve given by a hyperelliptic
equation, we are really thinking about them in weighted projective space. More specifically, we
give x and z weight 1 and y weight 3. Therefore, when the models are homogenized they become
Y 2 + Y h(X,Z) = f(X,Z) where deg(h) = 3 and deg(f) = 6, or Y 2 = f(X,Z) with deg(f) = 6.

3.3. Modular Units for X+
s (11). Now, we aim to find a model for X+

s (11) using a technique
similar to the proof of Proposition 3.5. We start noticing that in this case #Ω = 12 and so c = 1.
Therefore in this case, have that ua = va. To ease notation, we let

wa,b = va

vb
.

Using SAGE, we check that for every a ∈
( 1

11Z/Z
)2 the product defining va satisfies the condition

in Proposition 2.18 and we compute the divisors of the modular units of the form wa,b. Doing so
gives us the following table:

0/∞ 1 2 3 4 5
w(1/11,1/11),(0/11,1/11) −5 1 3 1 0 0
w(3/11,1/11),(0/11,1/11) −5 1 0 3 1 0
w(2/11,1/11),(0/11,1/11) −5 3 0 0 1 1
w(5/11,1/11),(0/11,1/11) −5 0 1 0 3 1
w(4/11,1/11),(0/11,1/11) −5 0 1 1 0 3

w(1/11,1/11),(3/11,1/11) 0 0 3 −2 −1 0
w(3/11,1/11),(2/11,1/11) 0 −2 0 3 0 −1
w(2/11,1/11),(5/11,1/11) 0 3 −1 0 −2 0
w(5/11,1/11),(4/11,1/11) 0 0 0 −1 3 −2
w(4/11,1/11),(1/11,1/11) 0 −1 −2 0 0 3

w(4/11,1/11),(3/11,1/11) 0 −1 1 −2 −1 3
w(1/11,1/11),(2/11,1/11) 0 −2 3 1 −1 −1
w(3/11,1/11),(5/11,1/11) 0 1 −1 3 −2 −1
w(2/11,1/11),(4/11,1/11) 0 3 −1 −1 1 −2
w(5/11,1/11),(1/11,1/11) 0 −1 −2 −1 3 1
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Remark 3.7. From Theorem 2.7 we know that the field of definition of the functions defined in
Section 2.2 is the p-th cyclotomic field. In practice, the field of definition might actually be a
subfield of the p-th cyclotomic field. In fact, using the Riemann-Roch Theorem, one can show that
all of the functions above are actually defined over the maximal real subfield of Q(ζ11), usually
denoted Q(ζ11)+.

Example 3.8. Using SAGE, one can compute that the first few terms of the q-expansion of
w(2/11,1/11),(0/11,1/11)(τ) are given by

q−5 + (−ζ9
11 − ζ2

11 + 1)q−4 + (ζ8
11 + ζ7

11 + ζ6
11 + ζ5

11 + ζ4
11 + ζ3

11 + 4)q−3+
(−2ζ9

11 − 2ζ2
11 + 4)q−2 + (−2ζ9

11 + ζ8
11 + ζ7

11 + ζ6
11 + ζ5

11 + ζ4
11 + ζ3

11 − 2ζ2
11 + 9)q−1+

(−4ζ9
11 + ζ8

11 + 2ζ7
11 + ζ6

11 + ζ5
11 + 2ζ4

11 + ζ3
11 − 4ζ2

11 + 12)+
(−5ζ9

11 + 2ζ8
11 + 2ζ7

11 + 2ζ6
11 + 2ζ5

11 + 2ζ4
11 + 2ζ3

11 − 5ζ2
11 + 20)q+

(−8ζ9
11 + 2ζ8

11 + 2ζ7
11 + 2ζ6

11 + 2ζ5
11 + 2ζ4

11 + 2ζ3
11 − 8ζ2

11 + 27)q2+
(−9ζ9

11 + 5ζ8
11 + 5ζ7

11 + 5ζ6
11 + 5ζ5

11 + 5ζ4
11 + 5ζ3

11 − 9ζ2
11 + 43)q3+

(−16ζ9
11 + 5ζ8

11 + 5ζ7
11 + 5ζ6

11 + 5ζ5
11 + 5ζ4

11 + 5ζ3
11 − 16ζ2

11 + 57)q4+
(−19ζ9

11 + 7ζ8
11 + 7ζ7

11 + 7ζ6
11 + 7ζ5

11 + 7ζ4
11 + 7ζ3

11 − 19ζ2
11 + 84)q5 +O(q6)

If we have any hope to use these functions to compute a model for X+
s (11), we somehow have

to use these functions to construct new functions that are defined over Q and apply the argument
from Proposition 3.5 to them.

Proposition 3.9. Let K/Q be a number field of degree n and let {e1, e2, . . . , en} be a Z-basis for
OK . Let Gal(K/Q) = {σi}ni=1. Let Γ be a congruence subgroup of SL2(Z) such that the cusp of
X(Γ) at infinity is rational. Further, let f(τ) =

∑
k

ak q
k be the q-expansion of a modular function

for Γ with coefficients in K. Let ak = ak,1e1 + · · · + ak,nen with ai,j ∈ Q. Then the function
fk(τ) =

∑
i ak,j q

k is also modular for Γ. In particular, there are constants, bj ∈ K depending on k,

such that fk =
n∑
j=1

bj σj(f(τ)).

Proof: Using the fact that every element σ ∈ Gal(K/Q) is a field automorphism that fixes Q, for
any α = α1 e1 + · · ·+ αn en ∈ K we get

(3.1)


σ1(e1) σ1(e2) . . . σ1(en)
σ2(e1) σ2(e2) . . . σ2(en)

...
...

. . .
...

σn(e1) σn(e2) . . . σn(en)



α1
α2
...
αn

 =


σ1(α)
σ2(α)

...
σn(α)

 .

For convenience let A be the matrix on the left hand side of (3.1), and let Ai be the matrix obtained
from replacing the i-th row of A with the column vector on the right hand side of (3.1). Applying
Cramer’s rule we get that αi = detAi/detA. Now, if we let Aji be the matrix obtained by deleting
the j-th row and i-th column of Ai, we can compute the determinant of Ai by looking at the cofactor
expansion of Ai along the i-th column. Doing this shows that:

αi = detAi
detA = 1

detA

n∑
j=1

(−1)j+iσj(α) detAji.

Letting bj = (−1)j+i detAji
detA we have that αi =

∑n
j=1 bj σj(α). Notice that the definition of bj does

not depend on α because both determinants are polynomials in the σi(ek)’s.
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Now, if we assume that X(Γ) has a rational cusp at infinity, then Gal(K/Q) acts on the q-
expansion of a modular form f =

∑
k ak q

k simply by acting on the coefficients. Since the bj ’s don’t
depend on anything other than the choice of basis for OK , we get that

fk(τ) =
n∑
j=1

bj σj(f(τ)),

and the modularity of fj(τ) follows from the modularity of σj(f(τ)).

Looking at the first 5 functions on our table, we see that they all have poles of order 5 at
infinity and no where else. Now, since ordp is a non-archemedian valuation on the functions of
X+
s (11), and∞ is a rational point, we know that taking linear combinations of the Galois conjugates

won’t introduce any other poles. With this in mind we let X = [w(2/11,1/11),(0/11,1/11)(τ)]1, Y =
[w(1/11,1/11),(0/11,1/11)(τ)]2, Z = [w(3/11,1/11),(0/11,1/11)(τ)]0, where the subscript indicates which
coefficients we are using to create the q-expansions. The important thing is that ord∞(X) = −3,
ord∞(Y ) = −4, and ord∞(Z) = −5 and these functions don’t have any other poles.

3.4. Computing a Model for X+
s (11). Now that we have computed some functions whose poles

are concentrated at infinity, we need to find a polynomial relationship between them.

Proposition 3.10. Let C be a smooth genus 2 curve. Let X, Y , and Z be in K(C) the function
field of C with poles of order 3, 4, and 5 respectively at ∞ and nowhere else. Then C can be mapped
into P2(K) as the vanishing set of a polynomials of degree at most 7.

Proof: We start by noticing that all the monomials of degree d > 0 in X, Y , and Z are contained
in L (5d∞). Using the Riemann-Roch theorem, we know that the dimension of this space is

`(5d(∞)) = deg(5d(∞))− g + 1 = 5d− 1.

The number of three variable monomials of degree d is given by
(
d+ 2

2

)
.

So we build a table and see when the number of monomials of degree d becomes greater than the
dimension of L (5d · ∞).

d 1 2 3 4 5 6 7

`(5d · ∞) 4 9 14 19 24 29 34(
d+ 2

2

)
3 6 10 15 21 28 36

The table above shows that there must be a polynomial, p, of degree at most 7 such that
p(X,Y, Z) = 0.

Lemma 3.11. Let C be a genus g curve. The only function without any poles and a zero at infinity
is the zero function.

Proof: Let f be a function that has no poles and a zero at∞. This means that f is in L (−∞), but
by the Riemann-Roch Theorem, we know that `(−∞) = 0. Thus, f must be the zero function.

Now, we notice that since X, Y , and Z are functions whose only poles are at∞, any polynomial in
X, Y , and Z can also only have a pole at infinity. Thus, by Lemma 3.11, if we can find a polynomial
in X, Y , and Z that has a zero at infinity, it must in fact be zero. Computing the q-expansions of
X, Y , and Z to a reasonable precision, it is easy to show that

0 = p(X,Y, Z) = 3X2Y 3 +X2Y 2Z −X2Y Z2 + 2XY 4 − 2XY 2Z2 + 2XY Z3+
XZ4 − Y 5 + 3Y 4Z − Y 3Z2 − Y 2Z3 +O(qN ).
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for some N ≥ 1 depending on the initial precision that was used to calculate X, Y , and Z. Unfor-
tunately, this is not in the best model for the modular curve. First of all it is singular, and secondly
it isn’t written in hyperelliptic form.

A quick check show that if we use the change of variables

X1 = Y 2Z4 + 1
2Y Z

5,

Y1 = 3
2XY

5Z12 − 3
2Y

6Z12 + 2XY 4Z13 + 1
2Y

5Z13 + 3
8XY

3Z14 + 5
8Y

4Z14

− 3
8XY

2Z15 − 1
2Y

3Z15 − 1
8XY Z

16 + 1
4Y

2Z16 + 1
2Y Z

17 + 1
8Z

18,

Z1 = Y 2Z4 − 1
2Y Z

5 − 1
2Z

6.

and x1 = X1/Z1 and y1 = Y1/Z
3
1 , then we see that X+

s (11) is isomorphic to the hyperelliptic curve
given by

y2
1 + (x3

1 + x2
1 + x1 + 1)y1 = −2x5

1 + 2x4
1 − 3x3

1 + 2x2
1 − 2x1.

Here we note that we are working in weighted projective space where x1 and z1 have weight one and
y1 has weight three. While this model is minimal, it will not be the most convenient for us to use.
Instead we will use its simplified model:

X+
s (11) : y2 = x6 − 6x5 + 11x4 − 8x3 + 11x2 − 6x+ 1.

Here the change of variables from the initial curve is given by

X2 = Y 2Z4 + 1/2Y Z5,

Y2 = −3XY 5Z12 − Y 6Z12 − 4XY 4Z13 − Y 5Z13 − 3
4XY

3Z14 + 3
4Y

4Z14

+ 3
4XY

2Z15 + 1
4XY Z

16 − 5
4Y

2Z16 − 3
4Y Z

17 − 1
8Z

18,

Z2 = Y 2Z4 − 1/2Y Z5 − 1/2Z6,

and again x = X2/Z2 and y = Y2/Z
3
2 . This model has bad reduction at two and eleven, but the

extra prime of bad reduction will not cause any problems.

Remark 3.12. The minimal and simplified models for X+
s (11), along with the changes of variables,

were found using Magma and checked to work by hand.

3.5. Computing the j-map for X+
s (11). The last task for this section is to compute the map

from X+
s (11) to Q that takes a point on X+

s (11) and returns the j-invariant of the corresponding
elliptic curve. Since we know that j must be a function in the function field of X+

s (11), it must
be a rational function in x and y. Therefore, we know that there is a rational combination of the
q-expansions of x and y that will give us the q-expansion of the j function. Recall, we are using the
nonstandard notation q = e

2πiτ
11 , then

j(τ) = q−11 + 744 + 196884q11 + 21493760q22 + 864299970q33 +O(q44).

Since x and y satisfy a hyperelliptic relationship, y2 = f(x) we know that the highest powers
of y that can occur in numerator and denominator of our rational function is one. Further, if the
denominator of our rational function is C ′y +D′ with C ′ and D′ in Q[x], we can multiply both the
numerator and denominator by C ′y−D′ to get the denominator to be completely in Q[x]. Therefore
we know that there must be A, B, and C in Q[x] such that

j = Ay +B

C
.
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This is equivalent to finding a solution to Cj = Ay +B. We do this by creating two vector spaces,
one spanned by vectors made of the coefficients of the q-expansions of V1 = {j, x · j, x2 · j, . . . , xn · j},
and the other spanned by V2 = {1, x, xy, x2, x2y, . . . , xn, xny} for various values of n. Then we
look at the intersection of these two vector spaces, increasing n until there is a one dimensional
intersection and we can use this to find j as a rational combination of x and y.

In the end, we find that A is a polynomial of degree 63, B is a polynomial of degree 66, and C is
a polynomial of degree 66. Their explicit formulas can be found in the appendix to this section.

3.6. Appendix. Throughout this section we will be using the nonstandard notation q = e
2πiτ

11 .
The functions that give the singular model of X+

s (11).

X = 1
q3 + 1

q
+ 1 + 2q + 2q2 + 5q3 +O(q4)

Y = 1
q4 + 1

q3 + 2
q2 + 3

q
+ 6 + 7q + 10q2 + 14q3 +O(q4)

Z = 1
q5 + 1

q4 + 3
q3 + 4

q2 + 8
q

+ 11 + 18q + 25q2 + 38q3 +O(q4)

4. The Mordell-Weil Group of the Jacobian of X+
s (11)

4.1. Introduction. Given a curve C, one can construct an associated abelian variety J called its
jacobian. As an abelian group, the jacobian is isomorphic to the Picard group of C. The Mordell-
Weil theorem says that for any number field K, the K-rational points of the jacobian, J(K), form
a finitely generated abelian group. Therefore, it is non-canonically isomorphic to the product of a
finite abelian group, J(K)tors, and a free abelian group; i.e.,

J(K) ∼= J(K)tors × Zr.
for some r ∈ Z≥0. In this case we say that J(K) has rank r.

It turns out that computing J(Q)tors is not very difficult using the following theorem.

Theorem 4.1. [9, Theorem C.1.4] Let A be an abelian variety defined over a number field K, let v
be a finite place of K at which A has good reduction, let K̃ be the residue field of v, and let p be the
characteristic of K̃. Then for any m ≥ 1 with p - m, the reduction map

A(K)[m]→ A(K̃)
is injective, where A(K)[m] denotes the m-torsion of A(K). In other words, the reduction modulo
v map is injective on the prime-to-p torsion subgroup of A(K).

The basic idea for computing the rank of J is to try and compute the F2-dimension of the so-called
weak Mordel-Weil group, J(Q)/2J(Q). This is something that is easily done if one already knows
the structure of J(Q), but since we don’t know the structure of this group we have to find another
way to do this. We describe a method below, the 2-descent method, to bound the F2-dimension of
J(Q)/2J(Q) and therefore calculate a bound on the rank of J(K). The method of 2-descent relies
on the fact that we have the following short exact sequence of Galois modules

0 // J [2] // J
[2] // J // 0

where J [2] is the 2-torsion of J . Let Sel(2)(Q, J) be the 2-Selmer group as defined in [9]. This gives
us the following short exact sequence.

0 // J(Q)/2J(Q) // Sel(2)(Q, J) //X(Q, J)[2] // 0

Using this sequence we can get a formula that involves the rank of J(Q) and the F2-dimensions of
the other groups that we defined.
(4.1) rank J(Q) + dimF2 J(Q)[2] + dimF2 X(Q, J)[2] = dimF2 Sel(2)(Q, J).
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Using equation (4.1), we get the following computable upper bound on the rank

(4.2) rank J(Q) ≤ dimF2 Sel(2)(Q, J)− dimF2 J(Q)[2].

In order to calculate this upper bound we must compute the dimension of Sel(2)(Q, J). If it turns
out that this bound is not sharp, which frequently happens, one would need to compute X(Q, J)[2].
This is a very subtle task that lies outside of the scope of this paper. The interested reader should
consult either [17] or [16] to read about computing X(Q, J)[2] or X(Q, J) in the case that X is
elliptic or hyperelliptic.

4.2. The Two-Descent Procedure. The notation that we use in this section will follow that set
out in [17]. Throughout the rest of this section we will focus on computing the dimension of the
2-Selmer group of the jacobian of a smooth projective curve, C, given by an affine equation of the
form

C : y2 = f(x),
where f is squarefree and deg(f) = 6. In this case, our curve is hyperelliptic of genus g = 2 with two
points at infinity in the projective closure. Before we can compute the dimension of the 2-Selmer
group, we must define a few objects of interest and examine some of their properties.

Remark 4.2. Almost all of what we do here will go through for deg(f) ≥ 6 with deg(f) even. We
simply limit ourselves to this case for the sake of making this section cleaner. In fact, [14] considered
the more general case of an equation of the form yp = f(x) with p a prime dividing deg(f). This is
actually more difficult than the case when p does not divide deg(f).

Definition 4.3. For any field extension K of Q, let LK = K[T ]/(f(T )) denote the algebra defined
by f and NK denote the norm map from LK down to K.

Remark 4.4. We can denote LK = K[θ], where θ is the image of T under the reduction map
K[T ]→ K[T ]/(f(T )), and LK is a product of finite extensions of K:

LK = LK,1 × · · · × LK,mK ,

where mK is the number of irreducible factors of f(x) in K[x]. Here, the fields LK,j correspond
to the irreducible factors of f(x) in K[x]. Here NK : LK → K is just the product of the norms
on each component. That is if α = (α1, α2, . . . , αmK ), then NK(α) =

∏mK
i=1 NLK,i/K(αi) where

NLK,i/K : LK,i → K is the typical field norm.

When K = Q we will drop the subscripts altogether and if K = Qp, we will just use the subscript
p. This convention will apply to anything that has a field as a subscript throughout the paper, e.g.,
Lp = Qp[T ]/(f(T )) and L = Q[T ]/(f(T )).

We will let OK , I(K), and Cl(K) denote the ring of integers of K, the group of fractional ideals,
and the ideal class group of K, respectively. We would like to define analogous objects for the
algebra LK , and we do so in the most natural way:

OLK = OLK,1 × · · · × OLK,mK ,
I(LK) = I(LK,1)× · · · × I(LK,mK ),

Cl(LK) = Cl(LK,1)× · · · × Cl(LK,mK ).

Definition 4.5. Let Ip(L) denote the subgroup of I(L) consisting of prime ideals in L with support
above p a prime in Q. For a finite set S of finite places, let

IS(L) =
∏

p∈Sr∞
Ip(L).
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Definition 4.6. For any field extension K of Q, let

HK = ker
(
NK : L×K/(L

×
K)2K× → K×/(K×)2) .

For any place, v, of Q, we let resv : H → Hv be the map induced by the natural inclusion Q ↪→ Qv.

Remark 4.7. Notice that the norm map is well defined on L×K/(L
×
K)2K×. Since the deg(f) is even,

the dimension of LK/K is even and N(x) = xdeg(f) is a square in K for all x ∈ K.

Definition 4.8. Let Div×(C) denote the group of degree-zero divisors on C with support disjoint
from the principal divisor div(y).

Theorem 4.9. [4, Chapter 11] For every K we get a homomorphism

FK : Div×(C)(K)→ L×K ,
∑
P

nPP 7→
∏
P

(x(P )− θ)np ,

which induces a homomorphism
δK : J(K)→ HK .

Definition 4.10. Let

Sel(2)
fake(Q, J) = {ξ ∈ H : resv(ξ) ∈ δv(J(Qv)) for all places v}.

We will call this group the fake 2-Selmer group.

The link between the fake 2-Selmer and the 2-Selmer group will be explained in Corollary 4.23.

Remark 4.11. If we use this definition for Sel(2)
fake(Q, J), in order to check if ξ ∈ H is in Sel(2)

fake(Q, J)
we have to check that resv(ξ) ∈ δv(J(Qv)) for ALL places v. In order to make this definition more
tractable, we will need the following definition and proposition.

Definition 4.12. Let K be a finitely ramified algebraic extension of Qp with maximal ideal pK . We
let IpK (LK) be the group of ideals in LK and

IK = ker
(
N : IpK (LK)2/IpK (LK)IpK (K)→ IpK (K)/IpK (K)2) .

For all primes p in Q, let

Ip = ker
(
N : Ip(L)/(Ip(L))2Ip(Q)→ Ip(Q)/(Ip(Q))2) .

We also have maps valp : Hp → Ip. These maps, taken together, give us a map val : H ⊂
L×/(L×)2 → I(L)/(I(L))2I(Q). We denote ṽal the canonical map L×/(L×)2 → I(L)/(I(L))2.

Remark 4.13. The notation Ip is not breaking with the subscript convention that we established at
the beginning of this section since Ip is naturally isomorphic to

IQp = ker
(
N : Ip(Lp)/Ip(Lp)2Ip(Q)→ Ip(Qp)/Ip(Qp)2) .

Proposition 4.14. [17, Proposition 5.10] If p 6∈ S = {∞, 2} ∪ {p : p2|disc(f)}, then

J(Qp)/2J(Qp)
δp // Hp

valp // Ip // 0

is exact.

Proposition 4.15. If S = {∞, 2} ∪ {p : p2|disc(f)}

Sel(2)
fake(Q, J) = {ξ ∈ H :val(ξ) ∈ IS(L)/IS(L)2I(Q),

and resv(ξ) ∈ δv(J(Qv)) for v ∈ S}.
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Proof: Since

J(Qp)/2J(Qp)
δp // Hp

valp // Ip // 0

is exact for p 6∈ S, we know that resp(ξ) ∈ δp(J(Qp)) if and only if valp(resp(ξ)) is the trivial
class for p 6∈ S. Each ξ ∈ L×/(L×)2Q× has a squarefree representative β in OL. Fix ξ = [β] ∈
H ⊆ L×/(L×)2Q× with β normalized to be a squarefree element of OL. Using the fact that for
ξ = [β] ∈ H, resp(ξ) ∈ δp if and only if [(β)] = [(1)] ∈ Ip. Using this we can rewrite Definition 4.10
as

Sel(2)
fake = {ξ ∈ H : resv(ξ) ∈ δv(J(Qv)) for all places v}

= {ξ ∈ H : valp(resv(ξ)) = [(1)] for p 6∈ S, and resv(ξ) ∈ δv(J(Qv)) for v ∈ S}
= {ξ ∈ H : val(ξ) ∈ IS(L)/IS(L)2IS(Q), and resv(ξ) ∈ δv(J(Qv)) for v ∈ S}.

Before exploring the relationship between Sel(2)(Q, J) and Sel(2)
fake(Q, J), we need to figure out

when the kernel of δ is exactly 2J(Q).

Definition 4.16. We say that K satisfies condition (‡), if either of the following occurs:
(‡.a) f(x) has a factor of odd degree in K[x], or
(‡.b) f factors as hh̄ over a quadratic extension K ′ of K, where h̄ is the Gal(K ′/K)-conjugate of

h.

Remark 4.17. Condition (‡.b) is equivalent to LK containing a quadratic extension of K.

Lemma 4.18. [14, Theorem 11.2] The kernel of δK is 2J(K) if K satisfies condition (‡), or if there
is no K-rational divisor class of degree 1 on C. Otherwise, 2J(K) has index two in ker(δK).

Lemma 4.19. [17, Lemma 5.2] Condition (‡) is satisfied in each of the following situations.
(1) K = R.
(2) K is a p-adic field, and the irreducible factors of f in K[x] all define unramified extensions

of K.

Lemma 4.20. [17, Lemma 5.3] Write f(x) =
6∏
j=1

(x− αj), and let

h(f) =
∏
σ

(x− (ασ(1)ασ(2)ασ(3) + ασ(4)ασ(5)ασ(6))),

where the product is over left coset representative σ ∈ S6 modulo the stabilizer of the partition
{{1, 2, 3}, {4, 5, 6}}. Then h(f) has degree 10.

(1) For a ∈ K, (‡.b) holds for f if and only if it holds for f(x+ a).
(2) If h(f) has a simple root in K, then K satisfies (‡.b).
(3) If h(f) has no root in K, then K does not satisfy (‡.b).
(4) There are at most 45 values of a ∈ K such that h(f(x+ a)) is not squarefree.

Now, we answer the question about the relationship between Sel(2)(K,J) and Sel(2)
fake(K,J) with

the following theorem.

Theorem 4.21. [14, Theorem 13.2] There is an exact sequence

µ2(K) φ // Sel(2)(K,J) ε // Sel(2)
fake(K,J) // 0.

Moreover, the image of φ is trivial in Sel(2)(K,J) if and only if K satisfies (‡).
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Remark 4.22. Here the map ε is a map that is closely related to a generalization of the Weil pairing
defined on J [2] × J [2]. The map φ is the connecting homomorphism on the Galois cohomology
groups induced from the short exact sequence

0 // J [2] ε // µ2(LK)/µ2(K) Norm // µ2(K) // 0.

We use φ here only because δ has already been defined. We think of µ2(K) living inside of µ2(LK)
diagonally.

Corollary 4.23. The relationship between the dimensions of Sel(2)
fake(K,J) and Sel(2)(K,J) is as

follows:

dimF2 Sel(2)(K,J) =
{

dimF2 Sel(2)
fake(K,J) if K satisfies (‡),

dimF2 Sel(2)
fake(K,J) + 1 otherwise.

Now that we have the relationship between dim Sel(2)
fake(Q, J) and dim Sel(2)(Q, J), we need to

compute dim Sel(2)
fake(Q, J). To make this possible we need to be able to compute the image of δK for

various K. To do this, we will use a theorem that tells us what the images of some specific divisors
are.

Theorem 4.24. [14] Let K be a field extension of Q.
(1) Suppose that the points ∞± at infinity on C are K-rational. Then for a point P ∈ C(K)

not in the support of div(y), we have δK(P −∞±) = x(P )− θ mod (L×K)2K×.
(2) To every monic polynomial h ∈ K[x] of even degree such that h divides f , we can associate

an element Ph ∈ J(K)[2] such that:
(a) The Ph generate J(K)[2] and satisfy

∑
j Pj = 0, if

∏
j hj = f .

(b) Let h̃ be the polynomial such that f = hh̃. Then δK(Ph) = h(θ)− h̃(θ) mod (L×K)2K×.
(3) dim J(K)[2] = mK−1, if all irreducible factors of f over K have even degree, and dim J(K)[2] =

mK − 2 otherwise.

Now that we know what the images of these divisors are, we want to compute the dimensions of
these F2-vector spaces. This way, we can compute the images of “enough” divisors until we have a
basis. To make things a little easier we define the following quantities:

Definition 4.25. For any field extension K of Q, let:
• tK = 0 if all the factors of f in K[x] have even degree, and tK = 1 otherwise,
• uK = 0 if there is a quadratic extension of K contained in LK , and uK = 1 otherwise.

For a p-adic field K, let:
• Let rK = 0 if all ramification indices of the field extensions LK,j/K are even, and rK = 1
otherwise,
• Let sK = 0 if all the residue class degrees of the field extensions LK,j/K are even and sk = 1
otherwise,
• Let dK = [K : Q2] if p = 2 and dK = 0 if p is odd.

With these definitions we can now compute the dimensions of most of the local groups we are
interested in.

Lemma 4.26. [17, Lemma 5.7] Let K be a p-adic field. Then
(1) dim J(K)/2J(K) = dim J(K)[2] + dKg = mK − 1− tK + dK · g.
(2) dim IK = mK − rK − sK .
(3) dimHK = 2 dim IK if p is odd.
(4) If p is odd and rK = 1, then valp : Hp → Ip is onto.

The last thing we need is to compute the dimensions of some of these same spaces over R.



SIEGEL FUNCTIONS, MODULAR CURVES, AND SERRE’S UNIFORMITY PROBLEM 17

Lemma 4.27. [17, Lemma 4.8]
(1) dim J(R)/2J(R) = dim δ∞(J(R)) = dim J(R)[2]− g.
(2) δ∞(J(R)) is generated by δ∞(P+Q−∞+−∞−) with P,Q ∈ C(R), and δ∞(P+Q−∞+−∞−)

only depends on the connected components of C(R) contacting P and Q. Here ∞± are the
two points at infinity on C.

We have now translated the question of finding the dimension of Sel(2)(Q, J) to finding the
dimension of Sel(2)

fake(Q, J), a finite subspace of L×/(L×)2Q. In order to compute Sel(2)
fake(Q, J) as a

finite subspace of L×/(L×)2Q×, we consider the following diagram. We want to define Ker, Sel1,
and Sel2 so that the top and bottom row of the diagram become exact.

1 // Ker // Sel2 //

��

Sel1 //

��

Sel(2)
fake(Q, J) //

��

1

1 // Ker // Q×/(Q×)2 // L×/(L×)2 // L×/(L×)2Q× // 1

(4.3)

In order for the bottom row to be exact, clearly we need
Ker = {d ∈ Q :

√
d ∈ L×}.

So now we need to find finite subgroups, Sel1 and Sel2, of L×/(L×)2 and Q×/(Q×)2, respectively,
that makes the top row of the diagram exact.

To determine exactly what Sel1 and Sel2 are, we need the following proposition:

Proposition 4.28. [17, Lemma 4.9] Let Gp be the image of J(Qp) in Ip (i.e. Gp = valp◦δp(J(Qp))).
Recall that rp = 0 if and only if all the fields Lp,j have even ramification index. Let Sel2 be the span
in Q×/(Q×)2 of {−1} ∪ S′, where

S′ = {p : rp = 0 or Gp 6= {1}}.
Define

H̃ = {ξ ∈ L×/(L×)2 : ṽal(ξ) ∈ IS′(L)/IS′(L)2 and
valp(ξ) ∈ Gp for all p ∈ S′}

where ṽalv is the canonical map from L×/(L×)2 to I(L)/I(L)2. Then H̃ is finite. Let S = S′∪{∞, 2}
and set

Sel1 = {ξ ∈ H̃ : resv(ξ) ∈ δv(J(Qv)) for all v ∈ S}.
Then with these definitions of Sel1 and Sel2, the top row of diagram (4.3) is exact.

With all of this, we finally have enough information to compute Sel(2)
fake(Q, J) and dimF2 Sel(2)(Q, J)

for a specific f(x).

4.3. Explicit Computations. Now that we have laid the foundation we are ready to perform a
2-descent. The curve we will be working with is given by the affine equation

C : y2 = f(x) = x6 − 6x5 + 11x4 − 8x3 + 11x2 − 6x+ 1.
In the projective closure, this curve has two points at infinity, call them ∞±. Using SAGE, we
compute disc(f) = −1 · 220 · 113 and that f(x) is irreducible over Q. We let S = {p : p2|disc(f)} ∪
{2,∞} = {∞, 2, 11} and compute all of the basic information about the local groups associated to
these places.

Using SAGE we can factor f(x) over Qp[x] to get the following table:
p mp tp up rp sp dp
2 1 0 0 0 1 1
11 2 0 0 1 1 0
∞ 3 − − − − −
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From the information above and Lemmas 4.26 and 4.27 we have the following:

p dim J(Qp)/2J(Qp) dim δp(J(Qp)) dimHp dim Ip
2 2 2 ? 0
11 1 0 0 0
∞ 0 0 − −

Remark 4.29. Lemma 4.26 doesn’t give us a formula for dimH2. We could compute it directly, but
we will postpone its computation for now as we will need to compute all of H2 later in the paper.

Next we use SAGE to compute h(f) as in Lemma 4.20 in our case and we get

h(f) = x10 − 7x9 + 76x8 − 696x7 + 2800x6 − 3328x5 − 4464x4 + 8256x3 + 3712x2 − 1280x− 512.

Reducing h(f) mod 17 we get

x10 + 10x9 + 8x8 + x7 + 12x6 + 4x5 + 7x4 + 11x3 + 6x2 + 12x+ 15,

which is irreducible in F17. Thus we know that h(f) is irreducible in Q[x] and so Lemma 4.20 tells
us that in our case Q does not satisfy (‡). So, by Corollary 4.23, we have that

dim Sel(2)(Q, J) = dim Sel(2)
fake(Q, J) + 1,

and we now turn our attention to determining the dimension of Sel(2)
fake(Q, J).

The first step to computing the dimension of Sel(2)
fake(Q, J) is to find the subgroups Sel1 and Sel2

from Proposition 4.28. To do this we start by computing H̃. Recall that

H̃ = {ξ ∈ L×/(L×)2 : ṽal(ξ) ∈ IS′(L)/IS′(L)2 and
valp(ξ) ∈ Gp for all p ∈ S′}

where S′ = {p : rp = 0 or Gp 6= {1}}. In this case we can see that we have that S′ = {2}. Using
SAGE, we find that the class number of L is one and that the prime factorization of the ideal
2OL = p6

2 = (β2)6.
This means that IS′/IS′(L)2 = {[(1)], [(β2)]}, and so ξ is in H̃ only if it is equivalent modulo

(L×)2 to either a unit, or a unit multiple of β2. Since G2 is a subset of I2, we only need to check if
val2(β2) is in G2. The table above gives us that G2 = {[(1)]} since it is a subgroup of I2 = {[(1)]}.
Therefore, we know that val2(β2) is not in G2, since [(β2)] 6= [(1)]. Hence the only classes modulo
squares in H̃ correspond to ones that are represented by units.

To find representatives of these classes we simply compute the fundamental units of L. Using
SAGE, we find that r1 = 0 and r2 = 3 and so by Dirchlet’s unit theorem we know that there are
r1 + r2 − 1 = 2 fundamental units. Again using SAGE, one can check that the only roots of unity
in L are ±1. Therefore,

O×L /(O
×
L )2 = 〈−1, u1, u2〉

where

u1 = 53
6455θ

5 − 1334
6455θ

4 + 1729
1291θ

3 + 70491
6455 θ

2 + 92264
6455 θ + 4485

1291 ,

u2 = 843
71005θ

5 − 21072
71005θ

4 + 132243
71005 θ

3 + 238525
14201 θ

2 + 1200429
71005 θ + 235233

71005 .

Recall that θ is the image of T under the map K[T ]→ K[T ]/(f(T )).
Before moving on we notice that with u1 and u2 defined as above, 2 = −u1u2β

6
2 and so 2 ≡

−u1u2 mod (L×)2. Thus, H̃ = 〈−1, u1, u2〉 = 〈−1, 2, u1〉. Here we are suppressing the equivalence
class notation to make things cleaner. From the work we did in the last section and to compute the
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tables at the beginning of the section, we know that Sel2 = 〈−1, 2〉 and since L does not satisfy (‡)
we know that Ker = {1}. But using the fact that

1 // 〈−1, 2〉 //
� _

��

Sel1 //
� _

��

Sel(2)
fake(Q, J) //
� _

��

1

〈−1, 2, u1〉� _

��
1 // Q×/(Q×)2 // L×/(L×)2 // L×/(L×)2Q× // 1

has exact rows, we know that Sel1 ⊇ 〈−1, 2〉. So the question becomes, is u1 in Sel1? From
Proposition 4.28, this question amounts to checking if resv(u1) ∈ δv(J(Qv)) for all v ∈ S, where
S = {2, 11,∞}. We start by checking if res2(u1) is in δ2(J(Q2)) and hope that, in fact, res2(u1) 6∈
δ2(J(Q2)), and therefore we are done.

In order to do this, we need to find explicit generators for δ2(J(Q2)). From the table above we
know that dim δ2(J(Q2)) = 2, so we just start looking for points P ∈ C(Q2) and using Theorem
4.24 to compute the images of P −∞+ under δ2.

Lemma 4.30. For f(x) = x5 − 6x5 + 11x4 − 8x8 + 11x2 − 6x+ 1, the field Q2 does not satisfy (‡).

Proof: To prove this we just need to show that
h(f) = x10 + 10x9 + 8x8 + x7 + 12x6 + 4x5 + 7x4 + 11x3 + 6x2 + 12x+ 15,

does not have a simple root in Q2. First, notice that since h(f) is a monic polynomial, if it has a
root in Q2, that root has to be in Z2. Next, if h(f) has a root in Z2, then of course that root will
reduce to a root in F2. So to show that h(f) doesn’t have a root in Q2 it is sufficient to show that
the reduction of h(f) modulo 2 doesn’t have a root in F2. The reduction of h(f) modulo 2 is

h(f) = x10 + x7 + x4 + x3 + 1.

Clearly zero isn’t a root of h(f), and a quick check shows that one isn’t a root of h(f) as well.
Therefore since h(f) doesn’t have a root in F2, we know that h(f) doesn’t have a root in Q2.

Lemma 4.31. Two elements, a and b, in L×2 are congruent modulo (L×2 )2Q×2 if and only if there
is an r ∈ Q×2 /(Q

×
2 )2 = {±1,±2,±5,±10} such that a

br is a square in L×2 .

Proof: From Lemma 4.30 we know that L2 does not contain a quadratic extension of Q2 and so
we have the following exact sequence:

1 // Q×2 /(Q
×
2 )2 ψ // L×2 /(L

×
2 )2 φ // L×2 /(L

×
2 )2Q×2 // 1.

Therefore, a ≡ b mod (L×2 )2Q×2 ⇔ a
b ≡ 1 mod (L×2 )2Q×2 if and only if a

b is in the kernel of φ.
Since we know that the kernel of φ is Q×2 /(Q

×
2 )2 = {±1,±2,±5,±10}, if we want to check if a ≡

b mod (L×2 )2Q×2 , it is sufficient to check if ab ≡ r mod (L×)2 for all representatives r of Q×2 /(Q
×
2 )2 =

{±1,±2,±5,±10}. Another way to say this is that a ≡ b (L×2 )2Q×2 if and only if there is an
r ∈ {±1,±2,±5,±10} such that a

rb is a square in L×2 .

Lemma 4.31 gives us an easy way to check if two elements are congruent modulo (L×2 )2Q2 since
Magma has a built in command that checks if an element of a field is a square or not, so we can
check these equivalencies in Magma quite easily.

First, using Hensel’s lemma, we can find that P1 = (2, 72512802334441 + O(249)) is a point
on C(Q2) and from Theorem 4.24, we know that δ2(P1 − ∞+) = 2 − θ. Using Lemma 4.31 we
can check that 2 − θ 6≡ 1 mod (L×2 )2Q×2 . Therefore, we only need to find one more non-trivial
element in δ2(J(Q2)) that is not equivalent to 2 − θ mod (L×2 )2Q2. Next, we search for points on
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C(Q2) using Magma and find that P2 = (151123620125253 · 2 +O(250), 1) is also a point on C(Q2)
and δ2(P2 − ∞+) = α − θ where α = 151123620125253 · 2 + O(250). We just need to know if
2− θ ≡ α− θ mod (L×2 )2Q×2 . Again using Lemma 4.31, we check this in Magma.

Remark 4.32. Here we note that div(y) =
∑6
i=1(0, αi) where the αi’s are the roots of f(x). Therefore

none of the points we found are in the support of div(y).

Fortunately, it turns out that 2−θ 6≡ α−θ mod (L×2 )2Q2. Thus we have two independent elements
in a 2-dimensional F2-vector space and so we have generators for δ2(J(Q2)). One can directly check
in Magma, using the same method as in Lemma 4.31, if res2(u1) is in δ2(J(Q2)). A few calculations
later we see that

res2(u1) 6≡ 2− θ mod L×/(L×)2Q
res2(u1) 6≡ α− θ mod L×/(L×)2Q
res2(u1) 6≡ (2− θ)(α− θ) mod L×/(L×)2Q.

Again, the details of this computation can be found in the appendix to this section.
Thus we have that u1 6∈ Sel1 and Sel1 = 〈−1, 2〉. Using the top row in diagram 4.3 we know that

Sel1 = Sel2 = 〈−1, 2〉 and Sel(2)
fake(Q, J) = {1}. Combining this with proposition 4.23 and equation

(5.3) we get that the rank of J(Q) is less than or equal to one.
In fact, using Magma, one can show that the divisor class of∞+−∞− is of infinity order. Further

we can show that

J(X+
s (11))(Q) = 〈[(0,−1)−∞−], [∞+ −∞−]〉 ∼= Z/5Z⊕ Z.

5. Applying the Method of Chabauty and Coleman

5.1. Introduction to the method.

Theorem 5.1 (Faltings’ Theorem). Let K be a number field and let C/K be a non-singular curve
defined over K of genus g ≥ 2. Then the set of K-rational points on C is finite.

Faltings’ theorem tells us that there can only be finitely many rational points on a curve of genus
greater than or equal to 2, but it does not give us any way to show that a set of points on a curve
is complete. In 1941, Claude Chabauty proved the following weaker version of Faltings’ theorem:

Theorem 5.2 (Chabauty’s Theorem [5]). Let X be a curve of genus g ≥ 2 over Q. Let J be the
jacobian of X. Let p be a prime, and let r′ = dimQp J(Q) where J(Q) is the closure of J(Q) with
the p-adic topology. Suppose r′ < g. Then X(Qp) ∩ J(Q) is finite.

Corollary 5.3. If X is as in Chabauty’s theorem, then X(Q) is finite.

The corollary follows because X(Q) is inside of X(Qp) ∩ J(Q) and thus it must be finite as well.
Clearly, Chabauty’s theorem is weaker than Faltings’ as it requires the assumption that r′ < g,

which is not always true.
As they are stated, neither Faltings’ theorem nor Chabauty’s theorem is effective. In 1985 Robert

Coleman was able to apply the theory of Newton polygons to Chabauty’s theorem to come up with
a method for finding an explicit bound on the size of X(Q) in the case when r′ is less then the genus
of X.

Theorem 5.4 (Coleman’s Theorem [8]). Let X, J, p, r′ be as in Theorem 5.2. Suppose that p is
a prime of good reduction for X.

a) Let ω be a non-zero 1-form in H0(XQp ,Ω1) satisfying conditions 1-3. We scale ω by an
element of Q×p so that it reduces to a nonzero 1-form ω̃ ∈ H0(XFp ,Ω1). Let m = ord

Q̃
ω̃. If

m < p− 2, then the number of points in X(Q) reducing to Q̃ is at most m+ 1.
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b) If p > 2g, then
#X(Q) ≤ #X(Fp) + (2g − 2).

To apply Coleman’s method and get an upper bound on the number of points on X+
s (Q), we will

use the fact that the rank of the jacobian of X+
s (11) is one, which is less than its genus which is

two in this case. It will turn out that the simplest bound obtained from Coleman’s method is not
sharp, but utilizing some extra structure of X+

s (11), we will be able to show that the only points on
X+
s (11) are the ones found by a naive search. That is to say that

X+
s (11)(Q) = {(0,±1), (1,±2),∞±}.(5.1)

5.2. Applying Coleman’s Theorem. We now return to the question of computing all of the
points on the genus 2 modular curve
(5.2) X+

s (11) : y2 = f(x) = x6 − 6x5 + 11x4 − 8x3 + 11x2 − 6x+ 1.
We know that this curve has two points at infinity, call them ∞− and ∞+, and a naive search
yielded four other points, (1,±2), and (0,±1). Now, we have seen that the group of rational points
on the jacobian of X+

s (11) has rank 1. Thus we can apply Theorem 5.4 to get that
(5.3) #X+

s (11)(Q) ≤ #X+
s (11)(F5) + (2 · 2− 2) = 6 + 2 = 8.

Unfortunately this bound does not line up with the number of points that we found, there could
still be two other points that we are missing. From the moduli interpretation, one expects that the
six points in (5.1) are in fact, the only ones on X+

s (11)(Q), but how do we show that these are the
only points?

One could try studying the ηJ corresponding to the holomorphic 1-form we used in Theorem 5.4,
but this turns out to be quite difficult in this case because all six of the points that we found are in
unique residue classes for all odd p. Thus, computing the power series of ω in local coordinates is
not a straightforward task since we cannot take our open set to be the kernel of the reduction map
J(Qp)→ J(Fp).

Instead, we aim to exploit the symmetry of f(x). Looking at the affine model of X+
s (11) given in

(5.2), it becomes clear that there is a ψ ∈ Aut(X+
s (11)), given by ψ((x, y)) =

( 1
x ,

y
x3

)
. Upon further

inspection, the set
S = {∞±, (0,±1), (1,±2)}

is stable under ψ. In fact, S is also stable under the standard hyperelliptic “conjugation” automor-
phism that maps (x, y) to (x,−y).

With this in mind, we can finally prove the following theorem:

Theorem 5.5. The set of Q-rational points on X+
s (11) is S = {∞±, (0,±1), (1,±2)}.

Proof: The set S is stable under the automorphisms ψ and σ, so if P is a Q-rational point not in
S, the points P, σ(P ), ψ(P ), and σ(ψ(P )) are all not in S.

Next we notice that the only points that are fixed by either ψ or σ have either x-coordinate 0
or 1, or y-coordinate 0, but these points are already in S. Thus the points P, σ(P ), ψ(P ), and
σ(ψ(P )) are actually distinct.

Therefore, if there is one Q-rational point on X+
s (11) that is not in S then there must actually be

four such points. But this would mean that there are at least ten points in X+
s (11)(Q), contradicting

the upper bound of eight that we found in equation (5.3).

We know that X+
s (11) has one rational cusp and one can check using SAGE that there are 5

Q̄-isomorphism classes of elliptic curves with complex multiplication and split representation at 11.

Corollary 5.6. The only elliptic curves whose Galois representation at 11 with image contained
in the normalizer of a split Cartan subgroup have complex multiplication. Their j-invariants are
−3375, 16581375, 8000, −884736, −884736000.
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Proof: Plugging the points in S into the j-map from Section 3.5 we get the following table.

P (0, 1) (0,−1) (1, 2) (1,−2) ∞+ ∞−
j(P ) 8000 cusp -3375 16581375 -884736 -88473600
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