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Abstract. The theory of complex multiplication has proven to be an essential tool in number theory, mainly due

to the connections with class field theory developed by Kronecker, Weber, Fricke, Hasse, Deuring, and Shimura,
among others. Certain important results have been shown first in the case of complex multiplication. Thus, it

is a natural question to find all the isomorphism classes of elliptic curves with complex multiplication defined

over a fixed number field, for which these important results hold. In this article, we prove an upper bound on
the number of isomorphism classes of CM elliptic curves defined over a number field of a fixed odd degree N , in

terms of the prime factorization of N .

1. Introduction

The theory of complex multiplication has proven to be an essential tool in number theory, mainly due to the
connections with class field theory developed by Kronecker, Weber, Fricke, Hasse, Deuring, and Shimura, among
others. Certain important results have been shown first in the case of complex multiplication, such as the analytic
continuation to the entire complex plane for the L-function of an elliptic curve (see [Sil94], Ch. III, §10), some
cases of the Birch and Swinnerton-Dyer conjecture (see [CW77], [Rub99]) or the main conjectures of Iwasawa
theory for elliptic curves (see for example [PR04]). Thus, it is a natural question to find all the isomorphism
classes of elliptic curves with complex multiplication defined over a fixed number field, for which these important
results hold. In this article, we concentrate on finding an upper bound on the number of isomorphism classes of
CM elliptic curves defined over a number field of a fixed degree, and concentrate in the case of odd degree.

It is well known that there are only 13 isomorphism classes of elliptic curves defined over Q with complex
multiplication ([Sil09], Appendix A, §3), namely the curves with j-invariant in the list:

{0, 243353, −215 · 3 · 53, 2633, 2333113, −3353, 3353173, 2653,

− 215, −21533, −2183353, −2153353113, −2183353233293}.
However, the number of CM j-invariants varies wildly depending on the choice of field of definition, even in the
case of quadratic number fields (see Table 1). For a number field L, we will write Σ(L) for the set of all CM
j-invariants defined over L, but not defined over Q, so that the total number of CM j-invariants defined over L
is 13+#Σ(L). It is known that Σ(L) is a finite set, for any number field L. In this article, we show the following
simple bound for #Σ(L) when the degree of L is odd.

Theorem 1.1. Let L be a number field of odd degree. Then, #Σ(L) ≤ 2 log3([L : Q]). In particular, the number
of distinct CM j-invariants defined over L is bounded by 13 + 2 log3([L : Q]).

Remark 1.2. The simple bound given in Theorem 1.1 is essentially sharp. The bound is trivially sharp when
L = Q. Moreover, let K = Q(

√
−3), and for any fixed e ≥ 1, let Oe be an order of OK with conductor f = 2 · 3e.

Let Ee be an elliptic curve with CM by O, and define Le = Q(j(Ee)). Then, [Le : Q] = 3e, and it follows from
Theorem 1.3 that #Σ(L) = 2e− 1 = 2 log3([Le : Q])− 1, which is just one unit below the bound of Theorem 1.1.

Theorem 1.1 is a consequence of more refined bounds (Theorems 1.3 and 1.4; see Remark 1.5) which we discuss
below after we provide some computational data (our calculations have been performed using Sage [S+14]; see
also [Wat04] for some of the algorithms that Sage uses). For instance, we will show in Section 2 that, for a fixed

quadratic number field L = Q(
√
d), the number of elements in Σ(L) is given as in Table 1 (see Remark 2.15).

In particular, Σ(L) = ∅ for all imaginary quadratic fields L, and in fact Σ(L) = ∅ for all but the 14 distinct
real quadratic fields that appear in the table. Given a fixed integer N ≥ 2, we write O(N) for the set of all
orders of class number N in some imaginary quadratic field, and Σ(N) for the set of CM j-invariants j(E) such
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d 2 3 5 6 7 13 17 21 29 33 37 41 61 89 else

#Σ(Q(
√
d)) 8 4 18 2 2 6 4 2 2 2 2 2 2 2 0

Table 1. The number of non-rational CM j-invariants defined over each quadratic field.

that Q(j(E))/Q is an extension of degree N (notice that #Σ(N) = N ·#O(N)). Finally, we write L(N) for the
set of all non-isomorphic fields L = Q(j(E)), where E is an elliptic curve with CM by an order of class number
N (thus, #O(N) ≥ #L(N) for all N), and we write L(N) for the set of all number fields of degree N . Table 1
shows that #Σ(2) = 58 (so #O(2) = 29), and #L(2) = 14. Notice that if L/Q is quadratic and contains a CM
j-invariant j(E) not defined over Q, then L = Q(j(E)), and so L ∈ L(2). For similar reasons, if N is prime,
and L is a number field of degree N that contains a j-invariant j(E) of class number N , then L ∈ L(N), i.e.,
L = Q(j(E)).

We record the sizes of O(N), Σ(N), L(N) in Table 2, for N = 1, . . . , 11, as well as the maximum number of
elements of Σ(L) for L ∈ L(N), and also the maximum of Σ(L) over all number fields L of degree N over Q (and
not just those fields of the form Q(j(E))). We will explain how the data in Table 2 was collected in Section 2,
Remark 2.15.

N 2 3 4 5 6 7 8 9 10 11

#O(N) 29 25 84 29 101 38 208 55 123 46

#Σ(N) 58 75 336 145 606 266 1664 495 1230 506

#L(N) 14 23 72 25 96 32 202 50 114 42

max{#Σ(L(N))} 18 2 42 2 22 2 84 3 22 2

max{#Σ(L(N)))} 18 2 42 2 22 2 84 4 22 2

Table 2. The number of (a) orders of class number N ; (b) CM j-invariants j(E) such that
Q(j(E)) is of degree N ; (c) fields Q(j(E)) as in (b), up to isomorphism; (d) maximum #Σ(L)
for L as in (c); and maximum #Σ(L) for any L of degree N .

In Table 2 and in the rest of the article, we use two abbreviations:

max{#Σ(L(N))} := max{#Σ(L) : L ∈ L(N)} = max{#Σ(L) : [L : Q] = N,L = Q(j(E)) for some CM j(E)},
max{#Σ(L(N))} := max{#Σ(L) : L ∈ L(N)} = max{#Σ(L) : [L : Q] = N}.

In this paper we give upper bounds for max{#Σ(L(N))} and max{#Σ(L(N))} when N is odd. Our bounds
are sharp, in the sense that we exhibit examples for arbitrarily large N that attain the bound (see Examples
5.4, 5.5, and 5.9). Our first intermediary result describes the number of CM j-invariants found in an extension
of the form L = Q(j(E)), where E is itself an elliptic curve with complex multiplication by an order O in an
imaginary quadratic field K (i.e., L ∈ L(N), where N is the class number of O).

Theorem 1.3. Let j(E) be a j-invariant with CM by an order O in an imaginary quadratic field K of conductor
f, and j(E) 6∈ Q. Let L = Q(j(E)), and suppose that [L : Q] = N > 1 is odd. Let σ0(f) =

∑
d|f d

0 be the number

of positive divisors of f. Then, the number of j-invariants with CM defined over L is

13 + σ0(f)− J(K)

if f is even, or if 2 does not split completely in K, and 13 + σ0(2f)− J(K) otherwise, where J(K) is the number
of rational j-invariants of curves with CM by an order of K, i.e.,

dK −3 −4 −7 −8 −11 −19 −43 −67 −163 else
J(K) 3 2 2 1 1 1 1 1 1 0,

where dK is the discriminant of K.

Our second and main result provides a bound for the number of CM j-invariants defined over any number
field of odd degree N , in terms of the factorization of N . If we know the list of CM imaginary quadratic fields
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that intervene in Σ(L), and the prime factorization of their class numbers, then we can significantly improve the
bound on the number of CM j-invariants defined over L, but this finer data is not required, and we also obtain
a bound that only depends on the factorization of N .

Theorem 1.4. Let L/Q be a number field of odd degree N = pe11 · · · perr , and let K1, . . . ,Kt be the list of imaginary
quadratic fields such that there is j(E) ∈ Σ(L) where E has CM by an order of Ki, for some i = 1, . . . , t. Further,
let hi be the class number of Ki, and suppose that hi > 1 for i = 1, . . . , s and hi = 1 for i = s+ 1, . . . , t. Then,

#Σ(L) ≤ 2s+ 2

r∑
j=1

(
ej −

s∑
i=1

fi,j

)
.

where hi = p
fi,1
1 · · · pfi,rr . In particular, #Σ(L) ≤ 2

∑r
j=1 ej .

Remark 1.5. Let L be a number field of odd degree N = pe11 · · · perr . Theorem 1.4 shows that #Σ(L) ≤
2
∑r
j=1 ej . Since pj ≥ 3, it is clear that the quantity

∑
ej would be maximized if r = 1, p1 = 3, and e1 = log3(N).

Thus,

#Σ(L) ≤ 2

r∑
j=1

ej ≤ 2 log3(N),

which shows Theorem 1.1.

The article is organized as follows. In Section 2 we include a number of well-known results on class numbers
of orders in imaginary quadratic fields, and then we specialize those to the case of odd class number. In Section
3, we study the number of CM j-invariants defined over a field extension L ∈ L(N), for some fixed N , i.e.,
L = Q(j(E)) for some CM curve E. In particular, we prove Theorem 1.3 (see Theorem 3.4). In Section 4 we
study the intersection of ring class fields, and we use these results in Section 5 in order to prove Theorem 1.4.
We also provide several explicit examples, in order to demonstrate that our bounds are, in fact, sharp in the
sense that there are number fields of arbitrarily high odd degree where the bound is an equality (see Examples
5.4, 5.5, and 5.9).

Acknowledgements. The authors would like to thank Keith Conrad, David Cox, and Liang Xiao for their
comments and suggestions.

2. Preliminaries

In this section we collect a number of results on orders in imaginary quadratic fields, and their class numbers.
Throughout the paper K will be an imaginary quadratic field with ring of integers OK , and the class number
of OK will be denoted by hK . The discriminant of OK will be denoted by dK . If O is an order of OK , then
we denote its class number by h(O). The basic theory of complex multiplication is summarized in the following
result.

Theorem 2.1 ([Sil94], Ch.2, Theorems 4.3 and 6.1; [Cox89], Theorem 11.1). Let K be an imaginary quadratic
field with ring of integers OK and let E be an elliptic curve with CM by an order O of OK of conductor f. Then:

(1) The j-invariant of E, j(E), is an algebraic integer.
(2) The field L = K(j(E)) is the ring class field of the order O.
(3) [Q(j(E)) : Q] = [K(j(E)) : K] = h(O), where h(O) is the class number of O.
(4) Let {E1, . . . , Eh} be a complete set of representatives of isomorphism classes of elliptic curves with CM

by O. Then {j(E1), . . . , j(Eh)} is a complete set of Gal(K/K) conjugates of j(E).

We shall need a formula for the class number of an arbitrary order in terms of its conductor, and the class
number of the maximal order. Such a formula is given in the next theorem.

Theorem 2.2 ([Cox89], Theorem 7.24). Let O be the order of conductor f in an imaginary quadratic field K.
Then, the class number of O is an integer multiple of hK , and it satisfies

h(O) =
hK · f

[O×K : O×]
·
∏
p|f

(
1−

(
dK
p

)
· 1

p

)
,

where
(
·
p

)
is the Kronecker symbol.
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We remind the reader that for an odd prime p, the Kronecker symbol is just the Legendre symbol, and if
p = 2, we have the formula (

dK
2

)
=


0 if 2|dK ,
1 if dK ≡ 1 mod 8,

−1 if dK ≡ 5 mod 8.

In this note we are specially interested in orders with odd class number. The class number formula of Theorem
2.2 shows that, for our purposes, we only need to consider imaginary quadratic fields whose ring of integers has
odd class number (we will show this carefully, and improve the characterization in Theorem 2.8 below). Genus
theory will tell us that we should only consider those with prime discriminant. We remind the reader that the
genus field of K is the maximal unramified extension of K which is an abelian extension of Q.

Theorem 2.3 ([Cox89], Theorem 6.1). Let K be an imaginary quadratic field of discriminant dK , let µ be the
number of primes dividing dK , and let p1, . . . , pr be the odd primes dividing dK . Set p∗i = (−1)(pi−1)/2pi. Then,
the genus field of K is K(

√
p∗1, . . . ,

√
p∗r). In particular, the class number hK is divisible by 2µ−1.

Corollary 2.4. If K/Q is an imaginary quadratic extension with odd class number, then K = Q(
√
−d) where

d = 1 or 2, or a prime q ≡ 3 mod 4.

Proof. By Theorem 2.3, if hK is odd, then the discriminant dK has precisely one prime divisor. In particular
d = 1, 2, or an odd prime q. Moreover, since dK = −d or −4d, according to the class of −d modulo 4, it follows
that if d = q is an odd prime, then q ≡ 3 mod 4. �

Theorem 2.5. Let K = Q(
√
−d) be an imaginary quadratic number field with d 6= 1 or 2, and let O be the order

of OK of conductor f. Then h(O) is odd if and only if hK is odd, K = Q(
√
−q) for some prime q ≡ 3 mod 4,

and f = 2nqm, where n ∈ {0, 1} and m ≥ 0.

Proof. Let us first assume that K = Q(
√
−q) for some prime q ≡ 3 mod 4, hK is odd, and f = 2nqm for some

n ∈ {0, 1} and m ≥ 0. Under these hypotheses dK = −q. Since we are assuming that K 6= Q(i), we know that
[O×K : O×] = 1 or 3, so in either case [O×K : O×] is odd. Thus, it suffices to check that [O×K : O×]h(O) is odd.
Applying Theorem 2.2 we have that

[O×K : O×]h(O) = hK · f ·
∏
p|f

(
1−

(
dK
p

)
1

p

)
= hK · 2n · qm

∏
p|2nqm

(
1−

(
−q
p

)
1

p

)

=


hK · qm

(
1−

(
−q
q

)
1
q

)
if n = 0, and

hK · 2 · qm
(
1−

(−q
2

)
1
2

) (
1−

(
−q
q

)
1
q

)
if n = 1

=

hK · q
m if n = 0, and

hK · 2 · qm
(

2±1
2

)
if n = 1

=

hK · q
m if n = 0, and

hK · qm (2± 1) if n = 1.

Therefore, h(O) is also odd, by the assumption that hK is odd and the fact that q ≡ 3 mod 4.
For the converse, let us assume that h(O) is odd. By Theorem 2.2, h(O) is a multiple of hK , so hK must be

odd. By Corollary 2.4, and since we are assuming d 6= 1 or 2, we have K = Q(
√
−q) for some prime q ≡ 3 mod 4,

and so dK = −q. Since h(O) is assumed to be odd, and [O×K : O×] is odd (d 6= 1 or 2), then [O×K : O×]h(O) is
odd. By Theorem 2.2 we have that

[O×K : O×]h(O) = hK · f ·
∏
p|f

(
1−

(
−q
p

)
1

p

)
.

It is clear that the 2-adic valuation of the denominator of
∏
p|f

(
1−

(
−q
p

)
1
p

)
is at most 1, and this occurs when

2|f, but if 4|f, then the 2-adic valuation of [O×K : O×]h(O) would be at least 1, and so the number would be odd.
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We conclude that the 2-adic valuation of f is 0 or 1. Moreover, suppose p is a prime not equal to 2 or q and such

that p|f. Then
(
−q
p

)
= ±1, which implies that(

1−
(
−q
p

)
1

p

)
=
p± 1

p
,

and so the 2-adic valuation of this factor is positive, since p is odd. Hence, the 2-adic valuation of [O×K : O×]h(O)
satisfies

ν2([O×K : O×]h(O)) ≥ max{ν2(f)− 1, 0}+ #{p : p|f, p 6= 2, q}.
It follows that if h(O) is odd, then the only primes dividing f may be 2 or q, but no others. Hence, f = 2nqm,
with n ∈ {0, 1} and m ≥ 0 as claimed. �

Next, we find the orders of Q(i) and Q(
√
−2) with odd class number. We remark first that the class number

of the order O of Q(i) of conductor 2 is, by Theorem 2.2, given by

h(O) =
hK · f

[O×K : O×]

∏
p|f

(
1−

(
dK
p

)
1

p

)
=

1 · 2
2

(
1−

(
−4

2

)
1

2

)
= 1,

and so h(O) = 1 is odd. Indeed, there are elliptic curves defined over Q with CM by O, namely those with
j = 2333113.

Lemma 2.6. Let O be an order of Q(i) of conductor f > 2. Then h(O) is even.

Proof. Notice that if f > 2, then [O×K : O×] = 2. Applying Theorem 2.2, we see that

h(O) =
hK · f

[O×K : O×]

∏
p|f

(
1−

(
dK
p

)
1

p

)
=

f

2

∏
p|f

(
1−

(
−4

p

)
1

p

)
.

We will break this lemma into three cases, according to whether f is a power of 2, or it has an odd prime divisor
≡ ±1 mod 4.
Case 1: f > 2 is a power of 2 (in particular, f is divisible by 4). Let us write f = 2n for some n > 1. Applying
Theorem 2.2 we obtain

h(O) =
1 · 2n

2

∏
p|2n

(
1−

(
−4

p

)
1

p

)
= 2n−1

(
1−

(
−4

2

)
1

2

)
= 2n−1.

Thus, h(O) is even.

Case 2: The conductor of O is divisible by an odd prime q ≡ 1 mod 4. Let us write f = f′ · q and again apply
Theorem 2.2 to calculate

h(O) =
f

2

(
1− 1

q

)∏
p|f′

(
1−

(
−4

p

)
1

p

)
=

(
q − 1

2

)
·

f′
∏
p|f′
p 6= q

(
1−

(
−4

p

)
1

p

) .

Since q ≡ 1 mod 4, we have that
q − 1

2
≡ 0 mod 2, and since f′

∏
p|f′
p 6=q

(
1−

(
−4

p

)
1

p

)
is an integer, we see that

h(O) is even.

Case 3: The conductor of O is divisible by an odd prime q ≡ 3 mod 4. Let us write f = f′ · q. Then,

h(O) =

(
q + 1

2

)
·

f′
∏
p|f′
p 6= q

(
1−

(
−4

p

)
1

p

) .
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Since q ≡ 3 mod 4, we have that
q + 1

2
≡ 0 mod 2, and again f′

∏
p|f′
p 6= q

(
1−

(
−4

p

)
1

p

)
is an integer, we conclude

that h(O) is even. �

Lemma 2.7. Let O be an order of Q(
√
−2) of conductor f > 1. Then h(O) is even.

Proof. Applying Theorem 2.2, we see that

h(O) =
hK · f

[O×K : O]

∏
p|f

(
1−

(
dK
p

)
1

p

)
= f
∏
p|f

(
1−

(
−8

p

)
1

p

)
.

We consider two cases, according to whether f is a power of 2.

Case 1: f is a power of 2. Let us write f = 2n, with n > 0. Then,

h(O) = 2n
(

1−
(
−8

2

)
1

2

)
= 2n.

Thus, h(O) is even.

Case 2: f is divisible by an odd prime q. Let us write f = q · f′. Then,

h(O) = f
∏
p|f

(
1−

(
−8

p

)
1

p

)
= q

(
1−

(
−8

q

)
1

q

)
· f′
∏
p|f′
p 6=q

(
1−

(
−8

p

)
1

p

)

= (q ± 1)

f′
∏
p|f′
p 6=q

(
1−

(
−8

p

)
1

p

) .

Since q is an odd prime, we know that q ± 1 is even, and since f′
∏
p|f′
p 6=q

(
1−

(
−8
p

)
1
p

)
is an integer, we conclude

that h(O) is even. �

Putting together Theorem 2.5, Lemma 2.6, and Lemma 2.7, we show a formula for the class number of orders,
in the case when the class number is odd.

Theorem 2.8. Let K be an imaginary quadratic field, let O be an order of conductor f, and suppose that h(O)
is odd. Then, exactly one of the following occurs:

(1) If K = Q(i), then O = OK or f = 2, and h(O) = 1.
(2) If K = Q(

√
−2), then O = OK and h(O) = 1.

(3) If K 6= Q(i) or Q(
√
−2), then K = Q(

√
−q) for some prime q ≡ 3 mod 4, and f = 2nqm, where n ∈ {0, 1}

and m ≥ 0. Thus,
(a) If K = Q(

√
−3), and O = OK , then h(O) = 1. Otherwise, if f > 1 with f = 2n3m, then

h(O) =

{
3m−1 if f = 3m,

3m if f = 2 · 3m.

(b) If K = Q(
√
−q) 6= Q(i),Q(

√
−2),Q(

√
−3), then

h(O) =


hK · qm if f = qm,

hK · qm if f = 2 · qm, q ≡ 7 mod 8,

3 · hK · qm if f = 2 · qm, q ≡ 3 mod 8.

A direct consequence of the formulas for odd class numbers is that, for a fixed imaginary quadratic field, there
are only finitely many orders of odd class number below a given bound. We record this as a corollary.

Corollary 2.9. Let K be an imaginary quadratic field, and let N ≥ 1 be fixed. Then,

(1) There are only finitely many orders of K with odd class number ≤ N .
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(2) There are only finitely many isomorphism classes of elliptic curves E with CM by K, such that [Q(j(E)) :
Q] is odd and ≤ N .

Proof. Part (1) follows from Theorem 2.8, because the class number grows as the conductor grows. Part (2)
follows from part (1) and the fact that there only finitely many elliptic curves with CM by a given order, by
Theorem 2.1. �

Remark 2.10. Of course, Corollary 2.9 is true much more generally (and not just for odd class number). It is
well known that there are only finitely many imaginary quadratic fields with class number less or equal than a
given bound N (see [Gol85]) and, together with Theorem 2.2, this shows that there are only finitely many orders
of class number ≤ N , for any fixed N ≥ 1.

Corollary 2.11. Let K be an imaginary quadratic field and suppose that E1 and E2 have CM by orders O1

and O2 of OK with conductors f1 ≤ f2 respectively, such that h(O1) and h(O2) are odd. Let fg = gcd(f1, f2) and
fl = lcm(f1, f2), and let Og and Ol be, respectively, orders of OK with conductors fg and fl. Then:

h(Og) = gcd(h(O1), h(O2)), and h(Ol) = lcm(h(O1), h(O2)).

Proof. Throughout the proof, we will use the formulas of Theorem 2.8. If K = Q(i) or Q(
√
−2), then the theorem

is clear because all the class numbers involved are equal to 1, so let us assume that K 6= Q(i) or Q(
√
−2). If

K = Q(
√
−3) and O1 = OK (i.e., f1 = 1), then Og = OK and Ol = O2, and the formulas hold trivially. Thus,

we may assume that if K = Q(
√
−3), then neither O1 or O2 are OK , and therefore λ = [O×K : O×1 ] = [O×K : O×2 ]

is equal to 3 if K = Q(
√
−3) and to 1 if K 6= Q(

√
−3). In particular, if f1 = 2n1qm1 and f2 = 2n2qm2 , then

fg = gcd(f1, f2) = 2min{n1,n2}3min{m1,m2} and so

gcd(h(O1), h(O2)) =

{
3 · hK · qmin{m1,m2}/λ if n1 = n2 = 1 and q ≡ 3 mod 8,

hK · qmin{m1,m2}/λ otherwise,

= h(Og).

Similarly, fl = lcm(f1, f2) = 2max{n1,n2}3max{m1,m2} and so

lcm(h(O1), h(O2)) =

{
3 · hK · qmax{m1,m2}/λ if n1 or n2 = 1 and q ≡ 3 mod 8,

hK · qmax{m1,m2}/λ otherwise,

= h(Ol).
Thus, the proof is complete. �

We will also need a lemma about conductors in abelian extensions of imaginary quadratic fields.

Lemma 2.12. Let O be an order of conductor f in an imaginary quadratic field K, and let L be the ring class
field attached to O. Then:

(1) Let O′ be another order in K, with conductor f′, and ring class field L′. Then, O ⊆ O′ if and only if
f′|f. Moreover, f′|f implies that L′ ⊆ L.

(2) Let L and L′ be ring class fields attached to O and O′ respectively, and let C = C(L/K) and C′ = C(L′/K)
be the conductors of the abelian extensions L/K and L′/K. If L′ ⊆ L, then C′ is a divisor of C.

(3) The relationship between the conductors f of O and C = C(L/K) is given by

C(L/K) =


OK if f = 2 or 3, and K = Q(

√
−3),

OK if f = 2, and K = Q(i),

(f/2)OK if f is even and f/2 is odd, and 2 splits completely in K,

fOK otherwise.

In particular, C(L/K) = (f/k)OK with k = 1, 2, or 3.

Proof. Parts (1), and (3) are shown, respectively in Exercise 9.19, and Exercise 9.20 in [Cox89]. It remains to
justify (2), i.e., if L/K and L′/K are abelian extensions such that K ⊆ L′ ⊆ L, then C′ = C(L′/K) is a divisor
of C = C(L/K). In order to show this, we recall that the conductor of an abelian extension F/K is the greatest
common divisor of all moduli m such that F ⊆ Km, where Km is the ray class field modulo m (see Exercise 8.6
in [Cox89]). In particular L ⊆ KC , and if L′ ⊆ L, then L′ ⊆ KC as well. From this it follows that C′ = C(L′/K)
is a divisor of C. �
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The following result is a corollary of Theorem 2.2 and Lemma 2.12.

Corollary 2.13. Let O be the order of conductor f in an imaginary quadratic field K, and let O ⊆ O′ be a
suborder of conductor f′. Then, h(O′) is a divisor of h(O).

Proof. If f′ = 1, i.e., if O′ = OK , then hK divides h(O) by Theorem 2.2. Otherwise, assume that f′ > 1 (and so
f > 1 as well because f′ needs to be a divisor of f for O ⊆ O′ to hold). In this case, [O×K : O×] = [O×K : O′×], and

the index equals 2 if K = Q(i), equals 3 if K = Q(
√
−3), and 1 otherwise. Now the divisibility of class numbers

is clear from the formula for h(O) in Theorem 2.2, since f′|f (by Lemma 2.12) and since the same factors in∏
p|f′

(
1−

(
dK
p

)
· 1
p

)
appear in the product

∏
p|f

(
1−

(
dK
p

)
· 1
p

)
. �

The result that follows characterizes extensions of K contained in a ring class field.

Theorem 2.14 ([Cox89], Theorem 9.18). Let K be an imaginary quadratic field. Then, an abelian extension L
of K is generalized dihedral over Q if and only if L is contained in a ring class field of K.

We finish this section with a remark about the computation of the data in Tables 1 and 2

Remark 2.15. The data in Tables 1 and 2 was gathered using SAGE version 6.1.2 ([S+14]), as follows. Given a
positive integer N , the command cm orders(N) returns a complete list of orders of class number N , i.e., a list of
all the ordered pairs (−D, f) such that the order O of Q(

√
−D) of conductor f has class number h(O) = N . The

length of this list is exactly #O(N), while Σ(N) = N ·#O(N). Once we had a complete list of the orders of class
number N , we used hilbert class polynomials(-D*f2) to find the minimal polynomial of the j-invariants of
the elliptic curves with CM by O. With a minimal polynomial for j(E), we can define the field L = Q(j(E)). To
compute #L(N), we simply compute how many of these fields are non-isomorphic for a fixed N . Last, we used
the command cm j invariants(L) that returns a list of all of the j-invariants of CM elliptic curves that are
defined over the number field L. Thus, in order to order to compute # max{#Σ(L(N)))}, we simply compute
the length of the list returned by cm j invariants(L), for every L ∈ L(N) and take the maximum value. To
compute # max{#Σ(L(N)))} we do the same, but this time we take the maximum over all fields of the form
L = Q(j1, ..., jr) such that [L : Q] = N , and each ji for i = 1, . . . , r, is a j-invariant with CM by an order of class
number dividing N .

For instance, when N = 2, the command cm orders(2) returns the list

(−3, 7), (−3, 5), (−3, 4), (−4, 5), (−4, 4), (−4, 3), (−7, 4), (−8, 3), (−8, 2), (−11, 3),

(−15, 2), (−15, 1), (−20, 1), (−24, 1), (−35, 1), (−40, 1), (−51, 1), (−52, 1), (−88, 1), (−91, 1),

(−115, 1), (−123, 1), (−148, 1), (−187, 1), (−232, 1), (−235, 1), (−267, 1), (−403, 1), (−427, 1).

Then, the command hilbert class polynomials(-D*f2) for each pair in the list gave us minimal polynomials,
which in turn allow us to define all the number fields L in L(2). Finally, we used cm j invariants(L), for each
L in L(2) to gather the data in Table 1.

3. The case when L = Q(j(E))

In this section we consider the special case of a number field obtained by adjoining the j-invariant of a single
elliptic curve with complex multiplication.

Lemma 3.1. Let j(E) be a j-invariant with complex multiplication by an order O in an imaginary quadratic
field K of conductor f, such that the class number of O is n > 1. Then:

(1) If n > 1 is odd, then the field H = K(j(E)) contains a unique quadratic subfield, namely K.
(2) Suppose that K 6⊆ Q(j(E)), and assume the extension K(j(E))/K is not 2-elementary abelian. Then

Q(j(E))/Q is not Galois.

Proof. Let j(E) be a j-invariant with complex multiplication by an order O in an imaginary quadratic field K
of conductor f, such that the class number of O is odd > 1. Then, by the theory of complex multiplication the
field H = K(j(E)) is the ring class field of O (Theorem 11.1 in [Cox89]). In particular, H/Q is Galois (Lemma
9.3 in [Cox89]), and Gal(H/Q) has order 2n. Since n is odd, H/Q contains a unique quadratic subfield, namely
K (note that if this was not the case, then there would be two distinct quadratic fields inside H, and therefore
Gal(H/Q) would be divisible by 4). This shows (1).
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For (2), let us assume that K 6⊆ Q(j(E)), and assume the extension H = K(j(E))/K is not 2-elementary
abelian. In particular, H/Q(j(E)) is quadratic and Gal(H/Q(j(E))) ∼= Gal(K/Q). Lemma 9.3 of [Cox89] says
that

Gal(H/Q) ∼= Gal(H/K) o Gal(H/Q(j(E)))

is a semi-direct product, such that the non-trivial element τ ∈ Gal(H/Q(j(E))) acts by conjugation on Gal(H/K)
and sends σ to σ−1, i.e., τστ−1 = σ−1. Now, Gal(Q(j(E))/Q) is Galois if and only if Gal(H/Q(j(E))) is normal
in Gal(H/Q), and Proposition 11 in Section 5.5 of [DF04] says that Gal(H/Q(j(E))) is normal in H/Q if and
only if the semi-direct action is trivial, i.e., σ = σ−1 for all σ ∈ Gal(H/K), which means that every non-trivial
element of Gal(H/K) has order 2. However, by assumption, Gal(K(j(E))/K) is not 2-elementary abelian and
therefore it contains an element σ such that σ 6= σ−1. Hence, Q(j(E))/Q cannot be Galois. �

Lemma 3.2. Let j and j′ be distinct j-invariants with complex multiplication by an order O of conductor f,
within the maximal order OK of an imaginary quadratic field K, such that h(O) is odd and > 1. Then,

Q(j, j′) = K(j) = K(j′).

Proof. Since j and j′ have CM by the same order, they are Galois conjugates, by Theorem 2.1. By Lemma 3.1,
neither Q(j) nor Q(j′) are Galois extensions of Q, but K(j)/Q is Galois (Theorem 11.1 in [Cox89]), and therefore

Q(j) ⊆ Q(j, j′) ⊆ K(j).

Since K(j)/Q(j) is quadratic, either Q(j) = Q(j, j′) or K(j) = Q(j, j′).
Suppose for a contradiction that Q(j) = Q(j, j′), i.e., Q(j) = Q(j′), where the last equality follows from the fact

that their degrees are equal. Let G = Gal(K(j)/Q). By Lemma 9.3 of [Cox89] we can write N = Gal(K(j)/K)
and 〈τ〉 = Gal(K(j)/Q(j)), so that Gal(K(j)/Q) ∼= N o 〈τ〉. Since h(O) is odd, it follows that the order of N
is odd, and 〈τ〉 is a 2-Sylow subgroup of G = Gal(K(j)/Q) that fixes Q(j). Since j′ is a conjugate of j, there
exists some g ∈ G such that j′ = g(j). In particular, j′ is fixed by τ , because j′ ∈ Q(j), but j′ is also fixed by
τ ′ = gτg−1 because

τ ′(j′) = gτg−1(j′) = gτg−1(g(j)) = gτ(j) = g(j) = j′,

where we used the fact that τ fixes j. Hence, Q(j) is the fixed field of 〈τ〉 and Q(j) = Q(j′) is the fixed field of
〈gτg−1〉, so we conclude that 〈τ〉 = 〈gτg−1〉, and so gτg−1 = τ , i.e., g and τ commute (recall that τ acts on g
by conjugation and τgτ−1 = g−1). We distinguish two cases. Since G = N o 〈τ〉, either g ∈ N , or g = nτ , for
some n ∈ N :

(1) If g ∈ N commutes with τ , i.e., gτ = τg, then g = τgτ−1 = g−1, so g2 = 1. Since N has odd order,
g = 1.

(2) If g = nτ for some n ∈ N , and g commutes with τ , then n = (nτ)τ = τ(nτ), hence n = τnτ = τnτ−1 =
n−1, so n = 1 as before, and so g = nτ = τ .

In either case we find that g = 1 or τ , i.e., g ∈ 〈τ〉, which fixed j, and so j′ = g(j) = j, contradicting the fact
that j and j′ are distinct. Hence, we have reached a contradiction, and we must have Q(j) 6= Q(j, j′), which
implies Q(j, j′) = K(j) as desired. �

Lemma 3.3. Let E be an elliptic curve with complex multiplication by an order O of conductor f, within the
maximal order OK of an imaginary quadratic field K, such that h(O) is odd. Let O′ be another order with
conductor f′ of odd class number, and such that there is an inclusion of ring class fields K(O′) ⊆ K(O). Then,
there exists a unique j-invariant j′ with CM by O′, such that any elliptic curve E′ with j(E′) = j′ satisfies
Q(j(E′)) ⊆ Q(j(E)).

Proof. Let E, O, O′, f, and f′ be as in the statement, and let E′′ for the moment be any elliptic curve with
CM by the order of O′ of conductor f′. Since K(j(E)) is the ring class field of O (Theorem 11.1 in [Cox89])
we have by assumption that the ring class field K(j(E′′)) = K(O′) is contained in K(j(E)) = K(O). In
particular, Q(j(E′′)) ⊆ K(j(E)). By Lemma 9.3 of [Cox89] we can write N = Gal(K(j(E))/K), so that
Gal(K(j(E))/Q) ∼= N o 〈τ〉. Since h(O) is odd, it follows that the order of N is odd, and 〈τ〉 is a 2-Sylow
subgroup of G = Gal(K(j(E))/Q).

Since h(O′) = [Q(j(E′′)) : Q] is odd by assumption, it follows that Q(j(E′′)) is fixed by some element τ ′′ of
order 2 of G. Since 〈τ ′′〉 is also a 2-Sylow subgroup, it follows that 〈τ〉 and 〈τ ′′〉 are conjugates, and so there is
g ∈ G such that τ = gτ ′′g−1. Let us define j′ = g(j(E′′)). Then, j′ is fixed by τ :

τ(j′) = gτ ′′g−1(j′) = gτ ′′g−1(g(j(E′′))) = gτ ′′(j(E′′)) = g(j(E′′)) = j′,
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where we have used the fact that τ ′′ fixes j(E′′). Hence, j′ is a conjugate of j(E′′) that is fixed by τ . Since the
fixed field of 〈τ〉 is precisely Q(j(E)), we conclude that j′ ∈ Q(j(E)). Moreover, since j′ is a conjugate of j(E′′),
any elliptic curve E′ with j(E′) = j′ has CM by the order O′ of conductor f′ as desired.

It remains to show that j′ is the unique j-invariant with CM by O′ contained in Q(j(E)). Suppose that
j′′ is another j-invariant with CM by O′ which is also in Q(j(E)). Then, j′′, j(E′) are two j-invariants with
CM by O′ contained in Q(j(E)), and if they are distinct, then K(j(E′)) ⊆ Q(j(E)), by Lemma 3.2. However,
[K(j(E′)) : Q] is even, while [Q(j(E)) : Q] is odd, so this is a contradiction. Hence, we must have j′′ = j(E′),
and there is a unique such j-invariant within Q(j(E)) as claimed. �

Armed with these lemmas we are now ready to prove the following theorem.

Theorem 3.4. Let L be a number field of degree d, and let j(E) ∈ L be a j-invariant with complex multiplication
by an order O in an imaginary quadratic field K of conductor f, and j(E) 6∈ Q.

(1) The class number of O is a divisor of d = [L : Q].
(2) Let F = Q(j(E)) be a number field of odd degree n > 1, and suppose j(E′) ∈ F is another j-invariant

with complex multiplication, such that j(E′) 6∈ Q. Then, the curve E′ has CM by an order O′ also in K.
(3) Let F = Q(j(E)) ⊆ L, and suppose that [F : Q] = n > 1 is odd. Let σ0(f) =

∑
d|f d

0 be the number of

positive divisors of f. Then, the number of j-invariants with CM defined over F is

13 + σ0(f)− J(K)

if f is even, or if 2 does not split completely in K, and 13 + σ0(2f)− J(K) otherwise, where J(K) is the
number of rational j-invariants of curves with CM by an order of K, i.e.,

dK −3 −4 −7 −8 −11 −19 −43 −67 −163 else
J(K) 3 2 2 1 1 1 1 1 1 0.

Proof. Let L be a number field of degree d, and let j(E) be a j-invariant with complex multiplication by an
order O in an imaginary quadratic field K of conductor f, and j(E) 6∈ Q.

(1) From Theorem 2.1, we have [Q(j(E)) : Q] = h(O), and since Q(j(E)) ⊆ L, it follows that h(O) is a
divisor of d = [L : Q].

(2) Let j(E′) ∈ Q(j(E)) be another j-invariant with complex multiplication by an order O′ in an imaginary
quadratic field K ′, such that j(E′) 6∈ Q. Now consider Q(j(E′)) ⊆ Q(j(E)) ⊆ K(j(E)) = H. Since H/Q
is Galois, it follows that the Galois closure of Q(j(E′)) is contained in H. Moreover, j(E′) is not in Q, so
Q(j(E′))/Q is non-trivial and of odd degree (because Q(j(E))/Q is of odd degree and j(E′) ∈ Q(j(E))).
Since Q(j(E′))/Q is of odd degree, K ′ is not a subfield of Q(j(E′)) and K ′(j(E′))/K ′ cannot be 2-
elementary abelian. Thus, by Lemma 3.1, it follows that Q(j(E′))/Q is not Galois. Since K ′(j(E′)) is
Galois over Q (by Lemma 9.3 in [Cox89]), we have K ′(j(E′)) ⊆ H, and in particular, K ′ ⊆ H. But
Lemma 3.1 says that H/Q contains a unique quadratic subfield, namely K, and so K = K ′. Hence E
and E′ have complex multiplications by orders of a common imaginary quadratic field K.

(3) Let F = Q(j(E)) ⊆ L, and suppose that [F : Q] = n > 1 is odd. Let j(E′) be another CM j-invariant
defined over F , with CM by an order O′ in an imaginary quadratic field K ′.

Now consider Q(j(E′)) ⊆ Q(j(E)) ⊆ K(j(E)) = H. Since H/Q is Galois, it follows that the Galois
closure of Q(j(E′)) is contained in H. There are two possibilities. Either
(a) Q(j(E′))/Q is Galois. In this case, since [Q(j(E′)) : Q] = n′ is a divisor of n, which is odd, then

n′ is also odd. Thus K ′ cannot be contained in Q(j(E′)) and K(j(E′))/K cannot be 2-elementary
abelian. Thus, by Lemma 3.1, we must have n′ = 1. Hence, j(E′) ∈ Q.

(b) Or Q(j(E′))/Q is not Galois. Since K ′(j(E′)) is a ring class field, it is Galois over Q, and therefore
K ′(j(E′)) ⊆ H. In particular, K ′ ⊆ H. By Lemma 3.1, it follows that K = K ′, and O and O′ are
orders within the same imaginary quadratic field K.
Let L = K(j(E)) and L′ = K(j(E′)) be ring class fields attached to O and O′ respectively (of
conductor f and f′ respectively), and let C = C(L/K) and C′ = C(L′/K) be the conductors of the
abelian extensions L/K and L′/K. Since L′ ⊆ L, then C′ is a divisor of C. We distinguish several
possibilities according to the choice of K. The results below follow from Lemma 2.12, part (3):

(i) If K = Q(i), then either
• f′|f, so that O′ ⊆ O; or
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• f′ = 2 and f = 1, so that O′ = O = OK . Since the class number of OK is 1, this means
that j(E), j(E′) ∈ Q.

(ii) If K = Q(
√
−3), then either

• f′|f, so that O′ ⊆ O; or
• f′ = 2 or 3, and f = 1, so that O′ = O = OK . Since the class number of OK is 1, this

means that j(E), j(E′) ∈ Q.
(iii) If K 6= Q(i) or Q(

√
−3), then either

• f′|f, so that O′ ⊆ O; or
• f′|2f, where f is odd, and 2 splits completely in K.

Hence, in all cases, either j(E′) ∈ Q, or f′|f, or f is odd, and 2 splits completely in K, and f′|2f.
Since every conductor f′ as above corresponds to a unique order O′ with K(O′) ⊆ K(O), which in
turn corresponds to a unique j-invariant j(E′) ∈ Q(j(E)) by Lemma 3.3, it follows that the number
of j(E′) ∈ Q(j(E)) with j(E′) 6∈ Q is precisely

13 + σ0(f)− J(K)

if f is even, or if 2 does not split completely in K, and

13 + σ0(2f)− J(K)

otherwise, as desired. Notice, the correction factor J(K) ensures that no CM elliptic curves defined
over Q are double counted.

�

We conclude this section with a theorem about fields generated by several CM j-invariants.

Theorem 3.5. Let K be an imaginary quadratic field and suppose that E1 and E2 have CM by orders O1 and
O2 of OK with conductors f1 and f2 respectively. Then, if [Q(j(E1) : Q] and [Q(j(E2)) : Q] are odd, then

(1) There exists an elliptic curve Eg with CM by an order Og of OK with conductor fg = gcd(f1, f2) such
that Q(j(E1)) ∩Q(j(E2)) = Q(j(Eg)), and

(2) Assume that Q(j(E1), j(E2)) is an extension of odd degree. Then, there exists an elliptic curve El with
CM by an order Ol of OK with conductor fl = lcm(f1, f2) such that Q(j(E1), j(E2)) = Q(j(El)).

Proof. Let fg = gcd(f1, f2), and let Og be the order of K with conductor fg. Since fg divides f1 and f2, it follows
from Lemma 2.12 that there are inclusions of ring class fields K(Og) ⊆ K(Oi) for i = 1, 2. By assumption
h(O1) and h(O2) are odd, so Lemma 3.3 implies that there is a unique j-invariant jg such that any elliptic
curve Eg with j(Eg) = jg has CM by Og, and Q(j(Eg)) is contained in both Q(j(E1)) and Q(j(E2)), so
Q(j(Eg)) ⊆ Q(j(E1)) ∩ Q(j(E2)). Since the degree of Q(j(E1)) ∩ Q(j(E2)) divides the GCD of the degrees of
Q(j(E1)) and Q(j(E2)), it follows that h(Og) = [Q(j(Eg) : Q] is a divisor of gcd(h(O1), h(O2)). But Corollary
2.11 shows that h(Og) = gcd(h(O1), h(O2)), and hence Q(j(Eg)) = Q(j(E1)) ∩ Q(j(E2)). This completes the
proof of part (1).

For (2), let fl = lcm(f1, f2), and let Ol be the order of K with conductor fl. Let E′l be for the moment any
elliptic curve with CM by Ol. Since fi divides fl, for i = 1, or 2, it follows that K(Oi) ⊆ K(Ol), and therefore
Lemma 3.3 implies that there are elliptic curves E′1 and E′2 with CM by O1 and O2 respectively, such that
j(E′1), j(E′2) ∈ Q(j(E′l)).

Next, from part (1) of this theorem we know that there exists an elliptic curve E′g such that Q(j(E′1)) ∩
Q(j(E′2)) = Q(j(E′g)). Thus, K(j(E′1)) ∩ K(j(E′2)) = K(j(E′g)) and by our previous remarks it follows that
K(j(E′1), j(E′2)) ⊆ K(j(E′l)). Next we remark that K(j(E′1), j(E′2))/Q is Galois (because each K(j(E′i))/Q is
Galois) and compute

[K(j(E′1), j(E′2)) : Q] =
[K(j(E′1)) : Q] · [K(j(E′2)) : Q]

[K(j(E′1)) ∩K(j(E′2)) : Q]
=

[K(j(E′1)) : Q] · [K(j(E′2)) : Q]

[K(j(E′g)) : Q]

=
2h(O1) · 2h(O2)

2h(Og)
=

2h(O1) · h(O2)

gcd(h(O1), h(O2))

= 2lcm(h(O1), h(O2)) = 2h(Ol) = [K(j(E′l)) : Q],

where we have used Corollary 2.11 twice in the last two strings of equalities. Thus, we conclude that we have
an equality K(j(E′1), j(E′2)) = K(j(E′l)). From Galois theory, we know that Gal(K(j(E′l))/K) is isomorphic to
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the subgroup of Gal(K(j(E′1))/K)×Gal(K(j(E′2))/K) given by{
(σ1, σ2) : σ1

∣∣
K(j(E′

1))∩K(j(E′
2))

= σ2

∣∣
K(j(E′

1))∩K(j(E′
2))

}
=
{

(σ1, σ2) : σ1

∣∣
K(j(E′

g))
= σ2

∣∣
K(j(E′

g))

}
.

Theorem 2.1 implies that j(E1) and j(E′1) are roots of the same polynomial, and so there exists an element
σ1 ∈ Gal(K(j(E′1))/K) such that σ1(j(E′1)) = j(E1). Similarly, there is a σ2 ∈ Gal(K(j(E′2))/K) such that
σ2(j(E′2)) = j(E2). Notice that for i = 1 or 2, the element σi sends j(E′g) to some conjugate σi(j(E

′
g)) of j(Eg),

but σi(j(E
′
g)) ∈ σi(Q(j(E′i))) = Q(j(Ei)), and therefore σi(j(E

′
g)) ∈ Q(j(E1)) ∩ Q(j(E2)). Since j(Eg) is the

unique j-invariant with CM by Og in Q(j(E1)) and Q(j(E2)) (by Lemma 3.3), it also follows that j(Eg) is the
unique such j-invariant in Q(j(E1)) ∩Q(j(E2)). Thus, it must be that σ1(j(E′g)) = j(Eg) = σ2(j(E′g)). Hence

σ1

∣∣
K(j(E′

g))
= σ2

∣∣
K(j(E′

g))
.

Thus there is an element σ ∈ Gal(K(j(E′l)/K) corresponding to the pair (σ1, σ2), such that σ(j(E′1)) = j(E1)
and σ(j(E′2)) = j(E2). Letting El = σ(E′l) we have j(E1), j(E2) ∈ Q(j(El)) by construction, and El has CM
by the order of OK of conductor fl. Since K(j(El)) = K(j(E1), j(E2)) and Q(j(E1), j(E2)) is of odd degree by
assumption, it must be that Q(j(El)) = Q(j(E1), j(E2)), as desired. This concludes the proof of (2). �

4. Intersections of Ring Class Fields of Different Imaginary Quadratic Fields

In this section we study the intersection of ring class fields attached to distinct imaginary quadratic fields.

Lemma 4.1. Let K1, . . . ,Kn be distinct imaginary quadratic fields of odd class number, and let K be the com-
positum K1 · · ·Kn. Then, the only imaginary quadratic subfields of K of odd class number are K1, . . . ,Kn.

Proof. By Corollary 2.4, each Ki is of the form Q(
√
−qi) where qi = 1 or a prime, with qi 6= qj for i 6= j. In

particular, every quadratic subfield of the compositum K =
∏n
i=1Ki is of the form

F = Q

√√√√ n∏
i=1

(−qi)ti


where each ti = 0 or 1. But, if ti = 1 for two different indices, then either F is real quadratic, or two different
primes divide the discriminant and Theorem 2.3 would imply that the class number of F is even. Therefore, if
F ⊆ K is an imaginary quadratic field of odd class number, then ti = 1 for a unique index i, and so F = Ki as
desired. �

Lemma 4.2. Let K1, . . . ,Kn be distinct imaginary quadratic fields, and let Hi be a ring class field of Ki, for
each i = 1, . . . , n, such that [Hi : Ki] = ni is odd. Let H be the compositum of all Hi. Then, any quadratic
subfield F ⊆ H is contained in the compositum K of all Ki, for i = 1, . . . , n.

Proof. Since the fields Ki are distinct, the compositum K has degree 2n over Q. And since [Hi : Ki] = hi is
odd and Hi/Q Galois, it follows that [H : Q] is a divisor of 2n(

∏n
i=1 hi), and therefore the power of 2 dividing

[H : Q] is precisely 2n. If F ⊆ H was a quadratic field not contained in K, then FK/Q would be of degree 2n+1,
and since FK ⊆ H, it would follow that 2n+1 divides [H : Q], and a contradiction arises. �

Lemma 4.3. Let E1, . . . , En be elliptic curves with CM by orders Oi of distinct imaginary quadratic fields
Ki = Q(

√
−di). Assume that the extension Q(j(E1), . . . , j(En)) is of odd degree. Then, if E is a CM elliptic

curve defined over Q(j(E1), . . . , j(En)), then E has CM by an order of class number 1 or an order of Ki, for
some i = 1, . . . , n.

Proof. Let K be the compositum of all Ki, for i = 1, . . . , n. Suppose that E has CM by an order O of the
imaginary quadratic field F = Q(

√
−d) and that [Q(j(E)) : Q] = m. If the class number of O is 1, then j(E) is

defined over Q, so let us assume that m > 1.
Since every Q(j(Ei)) is of odd degree, we have that Q(j(E1), . . . , j(En))/Q is of odd degree, and since

j(E) ∈ Q(j(E1), . . . , j(En)), it follows that [Q(j(E)) : Q] = m > 1 is also odd. In particular, the Ga-
lois closure of Q(j(E)) is the field F (j(E)) by Lemma 3.1. Also, we know that Ki(j(Ei)) is Galois, and so
K(j(E1), . . . , j(En))/Q is also Galois, and so F (j(E)) ⊆ K(j(E1), . . . , j(En)). It follows that F ⊆ K, by Lemma
4.2. But F is an imaginary quadratic field of odd class number contained in K, and Lemma 4.1 implies that
F = Ki for some i = 1, . . . , n. �
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Theorem 4.4. Let K1, . . . ,Kn be distinct imaginary quadratic fields of odd class number. Let H1, . . . ,Hn be
ring class fields of K1, . . . ,Kn respectively, such that [Hi : Ki] = ni are all odd. Let H =

∏n
i=2Hi. Then

H1 ∩H = Q.

Proof. Let F = H1 ∩ H. Since each Hi is a ring class field, we know that H1/Q and H/Q are both Galois
extensions, and therefore their intersection, F , is also Galois over Q.

Next, we know that since [H1 : Q] = 2n1 with n1 odd, it must be that H1 contains a unique quadratic
extension (Lemma 3.1); namely, K1, and in particular, F ⊆ H1 contains at most one quadratic extension. But
if K1 ⊆ F , then K1 ⊆ H, and Lemma 4.2 would imply that K1 is contained in the compositum K =

∏n
i=2Ki.

By Lemma 4.1, and since all Ki are distinct of odd class number, K1 cannot be contained in K. It follows that
F has no quadratic subextension, and in particular F is of odd degree.

Since K1 ∩ F = Q we get that

Gal(FK1/K1) ∼= Gal(F/(F ∩K1)) = Gal(F/Q),

by Galois theory, but we know that FK1/K1 is an abelian extension since it is a subextension of H1/K1.
Therefore, we also have that F/Q is an abelian extension. Now, Galois theory implies that

Gal(FK1/Q) ∼= Gal(K1/Q)×Gal(F/Q),

which is clearly abelian. From Theorem 2.14 we know that FK1/K1 is contained in a ring class field if and only
if FK1/Q is generalized dihedral, but all nontrivial generalized dihedral groups are nonabelian. Thus it must be
that FK1/K1 is a trivial extension and since K1 6⊆ F it follows that F/Q is trivial and F = Q. �

Proposition 4.5. Let n ≥ 1, and suppose that Ei, for i = 1, . . . , n, is an elliptic curve with CM by an order
Oi of an imaginary quadratic field Ki of odd class number, with Ki 6= Kj for i 6= j, and such that j(Ei) 6∈ Q.
Further, assume that Q(j(E1), . . . , j(En))/Q is an extension of odd degree. Then:

[Q(j(E1), . . . , j(En)) : Q] =

n∏
i=1

[Q(j(Ei)) : Q].

Proof. We will prove the formula using induction on n. The statement is trivial for n = 1, so let us assume that
it is true for n = k − 1, for some k ≥ 2, and let Ei, for i = 1, . . . , k, be elliptic curves as in the statement of
the theorem. Let K be the compositum of K2, . . . ,Kk, and let K′ = K1K be the compositum of K1, . . . ,Kk. It
follows from Lemma 4.1 that [K′ : Q] = 2k and [K : Q] = 2k−1. Consider the following diagram

H′ = K′(j(E1), . . . , j(Ek))

H = K(j(E2), . . . , j(Ek))

H1 = K1(j(E1))

Q

and notice that every field in the diagram is Galois over Q, because they are compositums of ring class fields.
Since H = K(j(E2), . . . , j(Ek)) is the compositum of all ring class fields Hi = Ki(j(Ei)) for i = 2, . . . , k, and
since all the imaginary quadratic fields are distinct, it follows from Theorem 4.4 that H1 and H are disjoint, and
therefore

[K′(j(E1), . . . , j(Ek)) : Q] = [K1(j(E1)) : Q] · [H : Q].

By the induction hypothesis, since [K : Q] = 2k−1 and K/Q is Galois, and Q(j(E2), . . . , j(Ek)) is of odd degree
by assumption, it follows that

[H : Q] = 2k−1 · [Q(j(E2), . . . , j(Ek)) : Q] = 2k−1
k∏
i=2

[Q(j(Ei)) : Q].
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Hence, if we write H′ = K′(j(E1), . . . , j(Ek)), we have

2k · [Q(j(E1), . . . , j(Ek)) : Q] = [H′ : Q] = [K′(j(E1), . . . , j(Ek)) : Q] = [K1(j(E1)) : Q] · [H : Q]

= (2 · [Q(j(E1)) : Q]) ·

(
2k−1

k∏
i=2

[Q(j(Ei)) : Q]

)

= 2k ·
k∏
i=1

[Q(j(Ei)) : Q],

which shows [Q(j(E1), . . . , j(Ek)) : Q] =
∏k
i=1[Q(j(Ei)) : Q], as desired, as this completes the proof of the

induction step, and thus the statement is true for all n ≥ 1. �

Theorem 4.6. Suppose that Ei, for i = 1, 2, 3, . . . , n, is an elliptic curve with CM by an order Oi of an
imaginary quadratic field Ki of odd class number. Further suppose that the extension Q(j(E1), . . . , j(En))/Q is
of odd degree, and Ki 6= Kj if i 6= j. Then,

(1) Q(j(E1)) ∩Q(j(E2), . . . , j(En)) = Q, and
(2) If E is an elliptic curve with CM by O an order of an imaginary quadratic field K such that j(E) ∈

Q(j(E1), j(E2), . . . , j(En)), then K = Ki and j(E) ∈ Q(j(Ei)), for some i = 1, 2, 3, . . . , n.

Proof. Let K be the compositum of K2 through Kn. Consider Q(j(E1)) ⊆ K(j(E1)) = H1 and

Q(j(E2), . . . , j(En)) ⊆ K(j(E2), . . . , j(En)) = H.
By Theorem 4.4, we have H1 ∩H = Q, and therefore Q(j(E1))∩Q(j(E2), . . . , j(En)) = Q. This shows part (1).

Suppose that E is an elliptic curve with CM such that j(E) ∈ Q(j(E1), . . . , j(En)). From Lemma 4.3 we
know that E must have CM by an order of class number 1 (and thus j(E) ∈ Q) or an order of Ki, for some
i = 1, . . . , n. Without loss of generality assume that E has CM by O ⊂ K1. Now, by Proposition 4.5 we have

[Q(j(E1), . . . , j(En)) : Q] =

n∏
i=1

[Q(j(Ei)) : Q].

Since E and E1 have CM by orders of odd class number of the same imaginary quadratic field, and Q(j(E), j(E1))
is contained in an extension of odd degree by assumption, Theorem 3.5 implies that there is an elliptic curve El
with CM by an order of K1 such that Q(j(E), j(E1)) = Q(j(El)). Thus,

Q(j(E1), j(E2), . . . , j(En)) = Q(j(E), j(E1), j(E2), . . . , j(En)) = Q(j(El), j(E2), . . . , j(En))

and so, using Proposition 4.5 once again, we obtain

[Q(j(E1), . . . , j(En)) : Q] = [Q(j(El), . . . , j(En)) : Q] = [Q(j(El)) : Q] ·
n∏
i=2

[Q(j(Ei)) : Q].

It follows that [Q(j(E1)) : Q] = [Q(j(El)) : Q], and since Q(j(E1)) ⊆ Q(j(E), j(E1)) = Q(j(El)), we conclude
that Q(j(E1)) = Q(j(El)) = Q(j(E), j(E1)) and so j(E) ∈ Q(j(E1)) as desired. �

5. A Sharp Upper Bound

We are finally ready to find an upper bound on the number of elliptic curves with CM defined over a number
L of odd degree over Q. In order to simplify the situation further, we introduce the following notation.

Definition 5.1. Given a number field L/Q and an imaginary quadratic field K, let Σ(L,K) be the set j-
invariants of elliptic curves defined over L with CM by an order of OK that are not defined over Q. We define
the field of definition of Σ(L,K) as Q(Σ(L,K)) = Q({j : j ∈ Σ(L,K)}). Also, let Σ(L) be the set of j-invariants
of elliptic curves defined over L with CM that are not defined over Q. The field of definition of Σ(L) will be
denoted by Q(Σ(L)) = Q({j : j ∈ Σ(L)}).

We begin by showing that Σ(L,K) is a finite set.

Lemma 5.2. If L is a number field of odd degree over Q, then

(1) Σ(L,K) is a finite set, and
(2) There exists an elliptic curve E with CM by an order O of OK such that Q(Σ(L,K)) = Q(j(E)).
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Proof. If E is an elliptic curve with CM by K and j(E) ∈ L, then [Q(j(E)) : Q] is a divisor of N = [L : Q].
Since L/Q is assumed to have odd degree, it follows that [Q(j(E)) : Q] is odd and ≤ N . Hence, Corollary 2.9
implies that there are only finitely many possibilities for j(E). Hence Σ(L,K) is finite. This shows (1).

Now, part (2) follows by induction on the size of Σ(L,K) by Theorem 3.5. �

It is worth pointing out that the previous finiteness result (Lemma 5.2, part (1)) is also true in even degree
(see Remark 2.10).

Proposition 5.3. Let L/Q be a number field of odd degree and let K be an imaginary quadratic field such that

Σ(L,K) 6= ∅. Further, suppose that d = [Q(Σ(L,K)) : Q] = pe11 · · · perr , and hK = pf11 · · · pfrr , for some distinct
primes pi, and some ei, fi ≥ 0. Then,

(1) If hK = 1, we have #Σ(L,K) ≤ 2

r∑
i=1

ei, and

(2) If hK > 1, then #Σ(L,K) ≤ 2

(
1 +

r∑
i=1

(ei − fi)

)
≤ 2

r∑
i=1

ei.

In all cases, #Σ(L,K) ≤ 2

r∑
i=1

ei.

Proof. Notice first that the assumption that L/Q is an odd degree extension guarantees that d is also odd since
Q(Σ(L,K)) is a subfield of L. From Lemma 5.2, we know that there is an elliptic curve with CM by an order O of
OK such that Q(Σ(L,K)) = Q(j(E)). Suppose that the conductor of O is f. Therefore, d = [Q(Σ(L,K)) : Q] =
[Q(j(E)) : Q] = h(O) and so it must be that hK divides d and so hK must be odd. In particular, 0 ≤ fi ≤ ei
for i = 1, . . . , r. Also, Lemmas 2.6 and 2.7 show that K 6= Q(i) or Q(

√
−2) because Σ(L,K) = ∅ in those cases.

Combining all of this we get that K = Q(
√
−q) and f = 2nqm, with q ≡ 3 mod 4, n ∈ {0, 1}, and m ≥ 0. Further,

we have that dK = −q.
Assume that hK 6= 1, so that at least one exponent fi > 0 in the prime factorization of hK . Applying Theorem

3.4, and noting that J(K) = 0 because we are assuming hK 6= 1, we can see that

#Σ(L,K) =

{
σ0(f) if n = 1, or 2 does not split completely in K,

σ0(2f) otherwise (in particular n = 0),

=

{
σ0(2qm) if n = 1, or 2 does not split completely in K,

σ0(2 · qm) otherwise (in particular n = 0),

≤ 2(m+ 1).

By Theorem 2.8 we have that

pe11 · · · perr = d = [Q(Σ(L,K)) : Q] = h(O) =


hK · f if f is odd,

hK · f2 if f is even and dK ≡ 1 mod 8,

hK · 3·f
2 if f is even and dK ≡ 5 mod 8.

=

{
pf11 · · · pfrr qm if f is odd, or dK ≡ 1 mod 8,

3pf11 · · · pfrr qm otherwise.

In particular,
∑r
i=1 ei ≥ m+

∑r
i=1 fi, and therefore m ≤

∑r
i=1(ei − fi). It follows that

#Σ(L,K) ≤ 2(m+ 1) ≤ 2

(
1 +

r∑
i=1

(ei − fi)

)
.

Since we are assuming hK > 1, we know that at least one index fi > 0. Thus,

#Σ(L,K) ≤ 2(m+ 1) ≤ 2

(
1 +

r∑
i=1

(ei − fi)

)
≤ 2

(
1 +

r∑
i=1

ei −
r∑
i=1

fi

)
≤ 2

(
1 +

r∑
i=1

ei − 1

)
= 2

r∑
i=1

ei.

This proves (2) in the case of hK > 1. If hK = 1, then we distinguish three cases according to whether q = 3,
q = 7, or q ∈ D = {11, 19, 43, 67, 163}. For each of these 3 cases we also need to consider if n = 0 or 1. In all six
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possible cases we calculate d = h(O) and the corresponding sum of the exponents, as well as #Σ(L,K):

d = h(O) =



qm−1 if q = 3, n = 0,

qm if q = 3, n = 1,

qm if q = 7, n = 0,

qm if q = 7, n = 1,

qm if q ∈ D,n = 0,

3qm if q ∈ D,n = 1,

, 2

r∑
i=1

ei =



2(m− 1) if q = 3, n = 0,

2m if q = 3, n = 1,

2m if q = 7, n = 0,

2m if q = 7, n = 1,

2m if q ∈ D,n = 0,

2(m+ 1) if q ∈ D,n = 1,

=



2m− 2 if q = 3, n = 0,

2m if q = 3, n = 1,

2m if q = 7, n = 0,

2m if q = 7, n = 1,

2m if q ∈ D,n = 0,

2m+ 2 if q ∈ D,n = 1,

#Σ(L,K) =



σ0(f)− 3 if q = 3, n = 0,

σ0(f)− 3 if q = 3, n = 1,

σ0(2f)− 2 if q = 7, n = 0,

σ0(f)− 2 if q = 7, n = 1,

σ0(f)− 1 if q ∈ D,n = 0,

σ0(f)− 1 if q ∈ D,n = 1,

=



(m+ 1)− 3 if q = 3, n = 0,

2(m+ 1)− 3 if q = 3, n = 1,

2(m+ 1)− 2 if q = 7, n = 0,

2(m+ 1)− 2 if q = 7, n = 1,

(m+ 1)− 1 if q ∈ D,n = 0,

2(m+ 1)− 1 if q ∈ D,n = 1,

=



m− 2 if q = 3, n = 0,

2m− 1 if q = 3, n = 1,

2m if q = 7, n = 0,

2m if q = 7, n = 1,

m if q ∈ D,n = 0,

2m+ 1 if q ∈ D,n = 1.

Here it is worth noting that the condition Σ(L,K) 6= ∅ imposes some lower bounds on m, so that #Σ(L,K) > 0.

In all of these cases, we have that #Σ(L,K) ≤ 2

r∑
i=1

ei, as claimed (and there is equality in certain cases!). �

Example 5.4. Let K = Q(
√
−7). Let E be an elliptic curve with complex multiplication by the order O of OK

of conductor f = 2 · 7m. In this case hk = 1 and h(O) = 7m, so if we define L = Q(j(E)), then [L : Q] = 7m.
Since Q(Σ(L,K)) ⊆ L, and Q(j(E)) ⊆ Q(Σ(L,K)), it follows that L = Q(Σ(L,K)). Thus, Proposition 5.3 says
that #Σ(L,K) ≤ 2m. While Theorem 3.4 part (3) says that #Σ(L,K) = σ0(f)− J(K) = σ0(2 · 3m)− 2 = 2m.
Therefore, the upper bound established in Proposition 5.3 is sharp.

Example 5.5. Let K = Q(
√
−23). Let E be an elliptic curve with complex multiplication by the order of OK

with conductor f = 2 · 23m. In this case, we have that hK = 3 and so if we define L = Q(j(E)), then [L : Q] =
3 · 23m. Since Q(Σ(L,K)) ⊆ L by definition, and Q(j(E)) ⊆ Q(Σ(L,K)), it follows that L = Q(Σ(L,K)). Thus,
Proposition 5.3, part (2), says that #Σ(L,K) ≤ 2(1 + (m + 1) − 1) = 2(m + 1). While Theorem 3.4 part (3)
says that #Σ(L,K) = σ0(f) = σ0(2 · 23m) = 2(m + 1). Therefore, the upper bound established in Proposition
5.3 is again sharp.

Remark 5.6. Examples 5.4 and 5.5 show that the bound established in Proposition 5.3 is sharp when the class
number of K is 1 or if the class number of K is greater than 1. In the proof of Proposition 5.3, however, one can
see that when the class number of K is 1, then the bound can be sharp only for K = Q(

√
−7).

Next, we will show that Σ(L) is a union of sets of the form Σ(L,K), for a finite number of quadratic fields K.

Lemma 5.7. Given a number field L/Q of odd degree n, there exists a finite list of imaginary quadratic fields

K1, ...,Kt of odd class number such that Σ(L) =
⋃t
i=1 Σ(L,Ki) with Σ(L,Ki) ∩ Σ(L,Kj) = ∅ if i 6= j, and

Σ(L,Ki) 6= ∅ for each i = 1, . . . , t.

Proof. Let L be a number field of odd degree, and let L̂ be the Galois closure of L. Let KL be the largest 2-
elementary abelian extension contained in L, and let K1, . . . ,Ku, for some u ≥ 1, be all the imaginary quadratic

fields of odd class number contained in KL ⊆ L̂.
Let K be an imaginary quadratic field such that there is an elliptic curve E with CM by an order O in K,

and such that j(E) ∈ L but not in Q. Since [L : Q] is odd, and Q(j(E)) ⊆ L, it follows that h(O) is odd, and

therefore Lemma 3.1 implies that the Galois closure of Q(j(E)) is K(j(E)). In particular, K(j(E)) ⊆ L̂ and so

K ⊆ L̂. Since the class number h(O) is odd, and hK divides h(O), it follows that hK is odd, and therefore K
is one of K1, . . . ,Ku. If we let K1, . . . ,Kt, for some t ≤ u, be the subset of fields such that Σ(L,Ki) 6= ∅ for

i = 1, . . . , t, then we have shown that Σ(L) ⊆
⋃t
i=1 Σ(L,Ki). Clearly Σ(L,Ki) ⊆ Σ(L) ⊆ L for each i, and so

we have an equality Σ(L) =
⋃t
i=1 Σ(L,Ki).
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The disjointness Σ(L,Ki)∩Σ(L,Kj) = ∅ if i 6= j follows from the fact that an elliptic curve cannot have CM
by orders of two different imaginary quadratic fields. �

Theorem 5.8. Let L/Q be a number field of odd degree n = pe11 · · · perr , and let K1, . . . ,Kt be the list of those
imaginary quadratic fields given by Lemma 5.7, such that K1, . . . ,Ks, for some 0 ≤ s ≤ t, are those with odd

class number > 1. Let hi be the class number of Ki, and write hi = p
fi,1
1 · · · pfi,rr , for i = 1, . . . , s. Then,

#Σ(L) ≤ 2s+ 2

r∑
j=1

(
ej −

s∑
i=1

fi,j

)
≤ 2

r∑
j=1

ej .

Moreover, if t = s = 0, then Σ(L) is empty.

Proof. From Lemma 5.7 we know that there is a finite list of imaginary quadratic fields of odd class number
K1,K2, . . . ,Kt such that Σ(L) =

⋃t
i=1 Σ(L,Ki) with Σ(L,Ki)∩Σ(L,Kj) = ∅ if i 6= j, and Σ(L,Ki) 6= ∅ for each

i = 1, . . . , t (in particular, if t = 0, then Σ(L) = ∅). Assume that t ≥ 1, and let K1, . . . ,Ks, for some 0 ≤ s ≤ t,
be the subset of those fields with odd class number > 1. By Lemma 5.2, for each i there is an elliptic curve Ei
with CM by an order in Ki such that Q(Σ(L,Ki)) = Q(j(Ei)). Moreover, by Theorem 4.6, we have that for
fixed i,

Q(j(Ei)) ∩Q({j(Ek) : 1 ≤ k ≤ t, k 6= i}) = Q,
and Proposition 4.5 shows that

[Q(j(E1), . . . , j(En)) : Q] =

t∏
i=1

[Q(j(Ei)) : Q].

Hence,

[Q(Σ(L)) : Q] =

[
Q

(
t⋃
i=1

Σ(L,Ki)

)
: Q

]
=

[
t∏
i=1

Q (Σ(L,Ki)) : Q

]

=

[
t∏
i=1

Q (j(Ei)) : Q

]
= [Q(j(E1), . . . , j(Et)) : Q]

=

t∏
i=1

[Q(j(Ei)) : Q] =

t∏
i=1

[Q(Σ(L,Ki)) : Q].

Let us write [Q(Σ(L,Ki)) : Q] = ni = p
ei,1
1 p

ei,2
2 . . . p

ei,r
r . Since Q(Σ(L)) ⊆ L, the previous equations show that∏t

i=1 ni divides n. Hence, ej ≥
∑t
i=1 ei,j . Now it follows from Proposition 5.3 that

#Σ(L) =

t∑
i=1

#Σ(L,Ki) ≤
s∑
i=1

#Σ(L,Ki) +

t∑
i=s+1

#Σ(L,Ki)

≤
s∑
i=1

2

1 +

r∑
j=1

(ei,j − fi,j)

+

t∑
i=s+1

2

r∑
j=1

ei,j


= 2s+ 2

r∑
j=1

(
t∑
i=1

ei,j −
s∑
i=1

fi,j

)

≤ 2s+ 2

r∑
j=1

(
ej −

s∑
i=1

fi,j

)
.

Moreover, by Proposition 5.3 we also know

#Σ(L) =

t∑
i=1

#Σ(L,Ki) ≤
t∑
i=1

2

r∑
j=1

ei,j

 = 2

r∑
j=1

t∑
i=1

ei,j ≤ 2

r∑
j=1

ej ,

as desired. �
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Example 5.9. Let K1 = Q(
√
−7), K2 = Q(

√
−31), and K3 = Q(

√
−47). Let Ei, for i = 1, 2, 3, be an elliptic

curve with complex multiplication by an order Oi of OKi , respectively. Further, suppose that the conductor of
the orders O1, O2, and O3 are f1 = 2 · 7m1 , f2 = 2 · 31m2 , and f3 = 2 · 47m3 with m1,m2,m3 ≥ 1 respectively.
In this case, we have that h(O1) = 7m1 , h(O2) = 3 · 31m2 , and h(O3) = 5 · 47m3 , by Theorem 2.8. Let
L = Q(j(E1), j(E2), j(E3)). From the proof of Theorem 5.8, we know that

[L : Q] =

3∏
i=1

[Q(j(Ei)) : Q] = 3 · 5 · 7m1 · 31m2 · 47m3 .

Since Q(Σ(L)) ⊆ L and L = Q(j(E1), j(E2), j(E3)) ⊂ Q(Σ(L)) by definition, we know that L = Q(Σ(L)) and
that Σ(L) = Σ(L,K1) ∪ Σ(L,K2) ∪ Σ(L,K3). Thus, from Theorem 3.4 part (3), we have that

#Σ(L) = #Σ(L,K1) + #Σ(L,K2) + #Σ(L,K3)

= (σ(2 · 7m1)− J(K1)) + σ0(f2) + σ0(f3)

= (σ0(2 · 7m1)− 2) + σ0(2 · 31m2) + σ0(2 · 41m3)

= (2(m1 + 1)− 2) + 2(m2 + 1) + 2(m3 + 1) = 4 + 2m1 + 2m2 + 2m3.

Next, Theorem 5.8 says that #Σ(L) ≤ 2(1 + 1 +m1 +m2 +m3) = 4 + 2m1 + 2m2 + 2m3. Therefore, the bound
established in Theorem 5.8 is in fact sharp.
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