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Abstract. In this paper, we give examples of elliptic curves E/K over
a number field K satisfying the property that there exist P1, P2 ∈ K[t]
such that the twists EP1 , EP2 and EP1P2 are of positive rank over K(t).
As a consequence of this result on twists, we show that for those elliptic
curves E/K, and for each σ ∈ Gal(K/K), the rank of E over the fixed

field under σ, (Kab)σ, is infinite, where Kab is the maximal abelian
extension of K.

1. Introduction

The purpose of this note is twofold. First, let K be a number field and
let E/K be an elliptic curve with a Weierstrass equation y2 = g(x) defined
over K. For d ∈ K, the curve given by dy2 = g(x) is a quadratic twist of E
by d, and we will denote it by Ed. In 1979, Goldfeld [2] conjectured that, for
every fixed elliptic curve E/K, the average rank of the quadratic twists of
E is 1/2 (see also the survey [14]). Suppose that E has root number +1 and
let d and d′ be fundamental discriminants relatively prime to the conductor
of E/K and to each other. It is well-known that if Ed and Ed′ are distinct
twists of E, and ε and ε′ are respectively their root numbers, then the root
number of Edd′ is εε′. If Ed and Ed′ are both of rank 1 then according to
the parity conjecture their root number is −1, thus the root number of Edd′

is +1, so the rank should be even. By Goldfeld’s conjecture, we expect that
the rank of Edd′ drops generically to zero. In this note, however, we give
examples of elliptic curves E/K which satisfy the following property:

(A) There are infinitely many triples (d, d′, dd′) ∈ K×K×K,
pairwise distinct in (K∗/K∗2)3, such that the twists Ed, Ed′

and Edd′ are all of positive rank over K.

In particular, if Ed and Ed′ are of rank 1 and the twist Edd′ is of positive
rank, then according to the parity conjecture it must have even rank ≥ 2.
Our results are stated in a slightly stronger fashion, since we actually show
families of elliptic curves E/K which satisfy:

(B) There exist polynomials P1 and P2 in K[t] such that
P1, P2 and P1P2 are not in K · (K[t])2 and the twists EP1(t),
EP2(t), EP1P2(t) are of positive rank over K(t).
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We note that if P (t) is not in K · (K[t])2 then P (t) is non-constant and
has a zero of odd multiplicity over K.

In Section 2, we prove that Silverman’s specialization theorem [15, The-
orem 11.4] shows that the property (B) implies (A). In Section 3, we show
that certain results of D. Rohrlich on root numbers combined with Hilbert’s
irreducibility imply that all elliptic curves over Q verify the property (A),
subject to the parity conjecture. In addition, we construct examples of
curves which satisfy the property (B). In Section 4, we introduce a certain
algebraic variety associated to the property (A) or (B) for elliptic curves.

The second purpose of the note is to give more evidence towards a con-
jecture of Larsen. Let K be an infinite field of finite type, let n be a positive
integer and denote a fixed separable closure of K and the maximal abelian
extension of K by K and Kab, respectively. For every (σ) = (σ1, . . . , σn) ∈
Gal(K/K)n we write K

(σ) for the fixed field in K of (σ1, . . . , σn). Let
A/K

(σ) be an abelian variety defined over K
(σ) with dimA ≥ 1. G. Frey

and M. Jarden have shown in [1] that for almost all σ ∈ Gal(K/K)n the
rank of A(K(σ)) is infinite. In fact, M. Larsen has conjectured in [9] that
the rank of A(K(σ)) is infinite for all (σ) ∈ Gal(K/K)n. This conjecture has
been shown to hold for n = 1 in [7]. The problem remains open for n > 1.

The simplest case, dimA = 1 (so that A is an elliptic curve) and n = 1,
has been studied to some extent (see [4],[5],[6]).

In Section 5 of this note, we define a property (Bn), which is a general-
ization of (B), and we show that if an elliptic curve E/K satisfies property
(Bn), for some n ≥ 2, then the rank of E((Kab)(σ)) is infinite, so the rank of
E(K(σ)) is infinite, for all (σ) ∈ Gal(K/K)n (see Theorem 5.2). As a con-
sequence of this, and the results on twists of section 3, we provide a simple
proof of the fact that Larsen’s conjecture holds for n = 1 for certain families
of elliptic curves (see Corollary 5.3). We note that this result is stronger
than the results in [4], [5], [6], and [7] for certain elliptic curves in the sense
that this result gives examples of elliptic curves (other than those given in
[6]) which have infinite rank over a smaller field (Kab)σ than K

(σ).

2. Property (B) implies property (A)

In this section, and again in Section 5, we will make use of the following
lemma, which appears in [9, Lemma 4]. Here we state a stronger statement
which follows from the proof presented in [9].

Lemma 2.1. Let F be a number field and P1(t), P2(t), . . ., Pn+1(t) a se-
quence of polynomials in F [t] each of which has a zero (over F ) of odd
multiplicity. If L/F is a finite separable extension of F , then the set of all
a ∈ F such that Pi(a) is not a perfect square in L, for i = 1, . . . , n + 1, is a
Hilbert set of F and therefore infinite.
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For a definition of a Hilbert set, a Hilbertian field and for a proof of the
fact that number fields are Hilbertian, see [8, Chapter 9] or [13, Chapter 3].

Silverman’s specialization theorem (see [15, p. 271, Theorem 11.4]) states
that if Et/K(t) is a non-split elliptic curve defined over K(t) then for all but
finitely many t0 ∈ K the rank of the specialization Et0/K is at least that
of Et/K(t) (there is also an specialization theorem for split surfaces due
to Dem’janenko and Manin). In order to apply Silverman’s specialization
theorem, we show that certain elliptic curves over K(t) are non-split.

Lemma 2.2. Let E/K be an elliptic curve given by y2 = x3 + Ax + B with
A,B ∈ K, and let h(t) ∈ K[t] be a polynomial not in K · (K[t])2. Then the
twist Eh(t)/K(t), given by y2 = x3 + Ah(t)2x + Bh(t)3 is non-split.

Proof. Notice that j(Eh(t)) = j(E) ∈ K is constant. In [15, p. 280], it is
shown that an elliptic curve Et/K(t) splits if and only if one of the following
conditions is true:

(1) j(Et) = 0 and c6 ∈ (K(t))6.
(2) j(Et) = 1728 and c4 ∈ (K(t))4.
(3) j(Et) = k ∈ K with k 6= 0, 1728 and c6/c4 ∈ (K(t))2.

In our case, let h(t) ∈ K(t) be a polynomial which is not in K · (K(t))2.
Then:

(1) If j(Eh(t)) = 0 then A = 0 and c6 = −864 · B · h(t)3, which implies
that c6 /∈ (K(t))6.

(2) If j(Eh(t)) = 1728 then B = 0 and c4 = −48 ·A ·h(t)2, which implies
that c4 /∈ (K(t))4.

(3) If j(Eh(t)) = k ∈ K with k 6= 0, 1728 then c6/c4 = 18·B
A·h(t) , which

implies that c6/c4 /∈ (K(t))2.
Hence, in all cases the curve Eh(t) is non-split over K(t). ¤

Next we define a weaker property than (B), which we call (wB):
(wB) There exist non-constant polynomials P1 and P2 in
K[t] such that P1, P2 and P1P2 are not in K · (K[t])2, the
twists EP1(t), EP2(t) are of positive rank over K(t) and for ev-
ery finite separable extension L/K there are infinitely many
specializations t0 ∈ K such that EP1(t0)P2(t0) is of positive
rank and P1(t0), P2(t0) and P1(t0)P2(t0) are not squares in
L.

Proposition 2.3. The property (B) implies the property (wB).

Proof. Suppose E/K satisfies (B), i.e. there exist non-constant polynomials
P1 and P2 in K[t] such that P1, P2 and P1P2 are not in K · (K[t])2 (so each
one has a zero of odd multiplicity) and the twists EP1(t), EP2(t), EP1P2(t)

are of positive rank over K(t). By the specialization theorem and Lemma
2.2, there is a finite set S ⊂ K such that for all numbers q /∈ S, the twists
EP1(q), EP2(q) and EP1(q)P2(q) are of positive rank over K. Finally, if L/K
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is a finite separable extension, by Lemma 2.1, the set of all elements q ∈ K
but q /∈ S such that P1(t0), P2(t0) and P1(t0)P2(t0) are not squares in L is
infinite. ¤
Theorem 2.4. If E/K satisfies the property (wB), then it also satisfies (A).

Proof. The idea of the proof is similar to that of Theorem 5 in [9]. Suppose
that E/K is an elliptic curve satisfying (wB) and let P1(t), P2(t) ∈ K[t] be
the given polynomials such that EP1(t), EP2(t) are of positive rank over K(t).
Then, by the specialization theorem and the property (wB) with L = K,
there is a finite set S ⊂ K and q0 /∈ S such that the twists EP1(q0), EP2(q0)

and EP1(q0)P2(q0) are of positive rank and d0 = P1(q0), d′0 = P2(q0) and d0d
′
0

are not perfect squares in K. It remains to show that there are infinitely
many pairwise distinct (di, d

′
i, did

′
i) for i ≥ 1 in (K∗/K∗2) × (K∗/K∗2) ×

(K∗/K∗2).
We finish the proof by induction. Let n ≥ 1 be fixed and let q1, . . . , qn ∈

K be chosen such that the elements (di, d
′
i, did

′
i) are pairwise distinct in

(K∗/K∗2)3, where di, d′i, did
′
i are not in K. Define a finite extension L/K

by:

L = K({
√

di,
√

d′i : i = 1, . . . , n}).
The property (wB) implies that there exists qn+1 ∈ K but not in S such
that for j = 1, 2, 3, Pj(q) is not a perfect square in L and EPj(qn+1)/K is of
positive rank. Put dn+1 = P1(qn+1) and d′n+1 = P2(qn+1). Then, dn+1 6= di

in K∗/K∗2 for i = 0, 1, . . . , n (because if dn+1 = dik
2 for some k ∈ K

then
√

dn+1 = k
√

di ∈ L) and similarly d′n+1 6= d′i and dn+1d
′
n+1 6= did

′
i in

K∗/K∗2 for i = 0, 1, . . . , n. Hence all the elements (di, d
′
i, did

′
i) ∈ K3 are

pairwise distinct in (K∗/K∗2)3, for i = 1, . . . , n, n + 1. ¤
As a consequence of the two previous results we obtain the following

important corollary which will be useful:

Corollary 2.5. The property (B) implies the property (A).

3. Results on twists

3.1. Conditional results. We begin by showing that, if we assume the
parity conjecture then all elliptic curves over Q satisfy the property (A).

Conjecture 3.1 (Parity Conjecture). Let E/Q be an elliptic curve and let
W (E/Q) be the root number of E/Q. Then W (E/Q) = (−1)rank(E(Q)).

We will need the following result by D. Rohrlich on the behaviour of the
root number in families of elliptic curves (the reader may also be interested
in [3], [10]). Here we state Rohrlich’s result in [11] in a stronger way.

Theorem 3.2 (Rohrlich, [11, Theorem 2]). Let f(t) ∈ Q[t] be a non-zero
polynomial, define

T+ = {t0 ∈ Q : f(t0) 6= 0 and W (Ef(t)/Q) = +1}
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and similarly define T−. One of two mutually exclusive alternatives hold:
(1) There exist a finite set of (bad) primes p ∈ S and open sets U+

p and
U−

p of Q (for the p-adic topology of Q) such that the sets T+ and
T− contain the intersection

⋂
p∈S U+

p or
⋂

p∈S U−
p respectively. In

particular T+ and T− are both dense in R; or
(2) One of the sets T± is {t0 ∈ Q : f(t0) > 0} and the other is {t0 ∈ Q :

f(t0) < 0}.
The following result is an extension of Corollary 2.5 of [8]:

Proposition 3.3. A Hilbert set H of Q is dense for the ordinary topology
and every p-adic topology on Q. Moreover, if S is a finite set of primes of
Z and Up are open sets of Q for the p-adic topology, then H ∩ (

⋂
p∈S Up) is

infinite.

Proof. The first statement is [8, Corollary 2.5]. For the second statement,
put N =

∏
p∈S p. If f(t,X) is irreducible over Q(t) and a ∈ ⋂

p∈S Up, then
so is f(a + tNν , X) for large ν. ¤

We will need the following lemma from [12] to prove Theorem 3.5 below
and in Section 4 later.

Lemma 3.4. Suppose E/K is an elliptic curve defined by y2 = g(x). Then
for every nonconstant h ∈ K(t) the twist Eg(h(t)) : g(h(t))y2 = g(x) is of
positive rank over K(t). Moreover, if Ep(t) is a twist of positive rank over
K(t) then there is some h ∈ K(t) such that Ep(t) is isomorphic (over K(t))
to Eg(h(t)).

Proof. See [12, Lemma 2.3, Remark 2.4]. The twist Eg(h(t)) has a point
(h(t), 1), which is non-constant, therefore it is not a torsion point.

If Ep(t) is of positive rank then there is a point of infinite order (h(t), k(t)),
with h, k ∈ K(t), such that p(t)k(t)2 = g(h(t)). Thus, the twists Ep(t) and
Eg(h(t)) are isomorphic. ¤

As a consequence of Proposition 3.3, we obtain the conditional result:

Theorem 3.5. If the parity conjecture holds, then every elliptic curve E/Q
satisfies the property (A).

Proof. Let E/Q be an elliptic curve given by y2 = g(x) where g(x) is a
monic cubic polynomial in Q[x]. By Theorem 2.4, it suffices to show that
E/Q satisfies the property (wB).

Note that the twist Eg(t) is of positive rank over Q(t) by Lemma 3.4.
Hence there is a finite set S ⊂ Q such that Eg(t0) is of positive rank for all
t0 /∈ S, by Silverman’s specialization theorem. Put P1(t) = g(t), P2(t) =
g(t + 1) and P3(t) = g(t)g(t + 1). Since g(x) has distinct roots, P1, P2 and
P3 are not in Q · (Q[t])2 (and so each one has a zero of odd multiplicity) and
EP1(t) and EP2(t) are of positive rank over Q(t).
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Consider EP3(t). Let S′ = {t0 ∈ Q : t0 or t0 + 1 ∈ S}. By the discussion
above, for all t0 /∈ S′, both Eg(t0) and Eg(t0+1) are of positive rank. We
claim that the fact that g(x) is a monic cubic polynomial implies that both
sets P+

3 = {t0 ∈ Q : P3(t0) > 0} and P−
3 = {t0 ∈ Q : P3(t0) < 0} are

infinite. Indeed, let α1, α2 ∈ R be respectively the smallest and largest
real roots of g(x), so that α1 ≤ α2. Then g(x) > 0 and P3(x) > 0 for
all x > α2, thus P+

3 is infinite (and contains an open set of Q for the
ordinary topology). Moreover, since E/K is non-singular, α1 is a simple
zero of g(x) and, since g(x) is monic, g(x) < 0 for all x < α1 and there
is 0 < δ < 1 such that g(x) > 0 for α1 < x < α1 + δ. Then for all
t0 ∈ {t0 ∈ Q : α1 − 1 < t0 < α1 − 1 + δ} one has g(t0) < 0, g(t0 + 1) > 0
and P3(t0) < 0. Hence P−

3 is infinite as well (and contains an open set of Q
for the ordinary topology).

Let L/Q be an arbitrary finite separable extension. Let

H = {t ∈ Q : Pj(t) is not a perfect square in L, for j = 1, 2, 3}.

Then, by Lemma 2.1, H is a Hilbert set of Q. In the above, we have
shown that both P+

3 and P−
3 contain non-empty open sets of Q for the

ordinary topology. By Theorem 3.2 and Proposition 3.3, regardless of what
alternative occurs in Theorem 3.2, there are infinitely many t0 ∈ H such
that EP3(t0)/Q has root number −1 and therefore, of positive rank if the
parity conjecture holds and Pj(t0) is not a square in L for j = 1, 2, 3.

Hence E/Q satisfies the property (wB), and therefore (A), if the parity
conjecture holds. ¤

3.2. Unconditional results. In this subsection, we show examples of el-
liptic curves which satisfy the properties (A) and (B), without assuming the
parity conjecture. The first result is an application of Proposition 4 of [6]:

Proposition 3.6. Let K be a number field and let E/K be an elliptic curve
such that all 2-torsion points are K-rational, given by y2 = x3 + ax + b
with a, b ∈ K. There exist polynomials f(t), g(t), h(t) ∈ K[t] and non-zero
constants c, d ∈ K such that the twists:

X1
t : cf(t)g(t)y2 = x3 + ax + b,

X2
t : df(t)h(t)y2 = x3 + ax + b,

X3
t : cdg(t)h(t)y2 = x3 + ax + b,

are pairwise non-isomorphic and of rank ≥ 1 over K(t). In particular, E/K
satisfies the properties (A) and (B).

Proof. Let K and E/K be as in the statement of the proposition. In [6],
Prop 4., Im shows that there exist polynomials f(t), g(t), h(t) ∈ K[t], such
that f ·g, f ·h and g ·h are not in K ·(K[t])2 and non-zero constants c, d ∈ K
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such that the hyperelliptic curves defined by

X1 : y2 = cf(x)g(x),
X2 : y2 = df(x)h(x),

X3 : y2 = cdg(x)h(x),

map onto E/K via K-morphisms φi : Xi → E, for i = 1, 2, 3. More con-
cretely, all three morphisms φi are of the form φi(x, y) = (αi(x), βi(x)y),
where αi(x), βi(x) are in K(x), for i = 1, 2, 3. Now define twists of E/K by

X1
t : cf(t)g(t)y2 = x3 + ax + b,

X2
t : df(t)h(t)y2 = x3 + ax + b,

X3
t : cdg(t)h(t)y2 = x3 + ax + b.

Then Xi
t has a rational point (αi(t), βi(t)) defined over K(t) which can be

verified to be non-torsion. Notice also that X3
t is trivially isomorphic to the

twist by cdf2(t)g(t)h(t). Hence E/K satisfies the property (B) and, as a
consequence of Corollary 2.5, also satisfies the property (A). ¤

Before we proceed, it is worth pointing out that the properties (A) and
(B) are isogeny-invariant. In other words, E/K satisfies one of these two
properties if and only if all the curves in the same isogeny class satisfy the
same property. Indeed, let E/K : y2 = f(x) and E′/K : y2 = g(x) be
elliptic curves and let φ : E → E′ be an isogeny, defined by φ(x, y) =
(φx(x, y), φy(x, y)), where φx, φy are rational functions in K(x, y). Since
φ(−P ) = −φ(P ) for any P ∈ E(K), the function φx is even in the vari-
able y and φy is an odd function in y. In particular, if a(t) ∈ K(t) then
φx(x,

√
a(t)y) ∈ K(x, y, t) and φy(x,

√
a(t)y)/

√
a(t) ∈ K(x, y, t). Hence,

for any a(t) ∈ K(t), the isogeny φ induces an isogeny φa(t) : Ea(t) → E′a(t)

over K defined by

φa(t)(x, y) =

(
φx(x,

√
a(t)y),

φy(x,
√

a(t)y)√
a(t)

)
.

Finally, if a(t), b(t) ∈ K(t) and Ea(t), Eb(t) and Eab(t) are of rank ≥ 1 over
K(t), so are E′a(t), E′b(t) and E′ab(t), because isogenous curves have the same
rank over any finite extension of K (since the kernel of an isogeny is finite).

As a consequence of Proposition 3.6 and the previous discussion, we obtain
the following result.

Corollary 3.7. Let K be a number field. Then the elliptic curve E/K
defined by y2 = x3 + ax2 + c2x for some a, c ∈ K satisfies the properties (A)
and (B).

Proof. Note that c(a2− 4c2) 6= 0 for the non-singularity of an elliptic curve.



8 BO-HAE IM AND ÁLVARO LOZANO-ROBLEDO

An elliptic curve of the form E/K : y2 = x3 + ax2 + c2x is 2-isogenous to
the elliptic curve E′/K : y2 = x3 − 2ax2 + (a2 − 4c2)x, via:

φ : E → E′, φ(x, y) =
(

y2

x2
,
y(c2 − x2)

x2

)
.

Moreover E′[2] is K-rational since x3 − 2ax2 + (a2 − 4c2)x = x(x− (a−
2c))(x − (a + 2c)). Thus, by Proposition 3.6, both E′/K and E/K satisfy
the desired properties. ¤

Proposition 3.8. Let K be a number field and let E/K be an elliptic curve
with a Weierstrass equation y2 = x(x2 − k) where k ∈ K satisfies 1 + k =
e2 + f2 for some e, f ∈ K. Then E/K satisfies the properties (A) and (B).

Proof. Let K, k and E be as in the statement of the proposition and put
g(x) = x2 − k. Notice that the case k = −1 (and e = f = 0) is covered by
Corollary 3.7 (by setting a = 0 and c = 1), so we may assume that k 6= −1
and e2 + f2 6= 0. We define a curve C/K with equation:

C : g(uv)− g(u)g(v) = 0

and notice that C is a conic given explicitly by u2 + v2 − (1 + k) = 0. Since
1+k = e2 +f2, the curve C has a point defined over K and, therefore, there
are infinitely many solutions over K which can be parametrized as follows:

Pt =
(

et2 − 2ft− e

t2 + 1
,
−ft2 − 2et + f

t2 + 1

)
, t ∈ K.

We define polynomials

h(x) = x2 + 1, g1(x) = ex2 − 2fx− e and g2(x) = −fx2 − 2ex + f.

Notice that the discriminants of the polynomials g1, g2, h are, respectively,
given by ∆g1 = ∆g2 = 4(e2 + f2) 6= 0 and ∆h = −4. Thus, the roots (over
C) of g1(x) (resp. g2(x) or h(x)) are distinct. Moreover, it is easily checked
that the roots of g1(x) and g2(x) are also distinct (otherwise (0, 0) ∈ C(K)
and 1 + k = 0), and different from the roots of h(x). Therefore, the roots
of g1(x) and h(x) also differ from those of (g1(x)2 − kh(x)2). Similarly, the
roots of g2(x), h(x) and (g2(x)2 − kh(x)2) are all distinct, and so are the
roots of g1, g2 and (g1(x)2g2(x)2 − kh4(x)).

We define polynomials P1(x), P2(x) and P3(x) by:

P1(x) = h(x)g1(x)(g1(x)2 − kh(x)2),
P2(x) = h(x)g2(x)(g2(x)2 − kh(x)2),
P3(x) = g1(x)g2(x)(g1(x)2g2(x)2 − kh(x)4).

Thus, by the remarks above, none of the polynomials Pi(x) ∈ K[x] can be
a square in C[x] and, in fact, they are not in K · (K[t])2. Moreover, notice
that in K(x)/K(x)2, the polynomials P1(x), P2(x) and P3(x) are equivalent
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to

P̂1(x) =
g1(x)
h(x)

(
g1(x)2

h(x)2
− k

)
=

g1(x)
h(x)

g

(
g1(x)
h(x)

)
,(1)

P̂2(x) =
g2(x)
h(x)

(
g2(x)2

h(x)2
− k

)
=

g2(x)
h(x)

g

(
g2(x)
h(x)

)
,(2)

P̂3(x) =
g1(x)g2(x)

h2(x)

(
g1(x)2g2(x)2

h(x)4
− k

)
(3)

=
g1(x)g2(x)

h2(x)
g

(
g1(x)g2(x)

h2(x)

)
= P̂1(x)P̂2(x)(4)

where in the last equality we have used the fact that g(uv) = g(u)g(v) when-
ever (u, v) ∈ C. Finally, we define twists of E over K(t) by the equations:

E1
t : P1(t)y2 = x(x2−k), E2

t : P2(t)y2 = x(x2−k), E3
t : P3(t)y2 = x(x2−k)

and notice that by equations (1) through (3), the curves Ei
t , for i = 1, 2, 3,

are isomorphic to Êi
t : P̂i(t)y2 = x(x2 − k) over K(t) and E3

t is isomorphic
to P1(t)P2(t)y2 = x(x2 − k) over K(t) by equation (4). Clearly, again by
the numbered equations above, the curves Êi

t have a rational point which
can be easily checked to be non-torsion over K(t). Therefore, the curves Ei

t ,
i = 1, 2, 3, are of positive algebraic rank over K(t). ¤
Remark 3.9. Let E : y2 = x(x2 − k) be an elliptic curve as before. Notice
that if K = Q and k, e, f are integers, then the twists Ei

t are defined over
Z[t] and, upon specialization at t ∈ Z, we obtain, generically, twists Ed, Ed′

and Edd′ with rank ≥ 1 and defined over Z.

Proposition 3.10. Let E/K : y2 = x3 +k be an elliptic curve, with k ∈ K,
k 6= 1, such that E(K) is trivial. Further suppose that the elliptic curve
x3 + y3 = 1 − k contains a point of infinite order. Then E/K satisfies the
property (A).

Proof. Put g(x) = x3 + k and define a curve C/K by:

C/K : g(uv)− g(u)g(v) = 0

and notice that the equation defining C is equivalent to x3 + y3 = 1 − k.
Therefore, if k 6= 1 then C/K is an elliptic curve. Suppose that C(K)
contains a point P = (x1, y1) of infinite order and, for every n ≥ 1, put
nP = (xn, yn). Then, for every n ≥ 1, consider the three twists of E given
by

(x3
n + k)y2 = g(x), (1− x3

n)y2 = g(x), (x3
n + k)(1− x3

n)y2 = g(x)(5)

and note that

(x3
n + k)(1− x3

n) = (x3
n + k)(y3

n + k) = g(xn)g(yn) = g(xnyn).

Moreover, notice that since we are assuming that E(K) is trivial, the ele-
ments g(xn), g(yn), g(xnyn) cannot be squares in K. Therefore, the (infin-
itely many) distinct twists given in Eq. (5) are all of rank ≥ 1 over K and



10 BO-HAE IM AND ÁLVARO LOZANO-ROBLEDO

they are of the form Ed, Ed′ , Edd′ . The fact that there are infinitely many
of these (d, d′, dd′) which are pairwise distinct in (K∗/K∗2)3 follows from
results in Section 5, in particular Lemma 5.5 and an argument similar to
the proof of Corollary 2.5. ¤

4. The underlying algebraic variety

Even though the methods of Proposition 3.8 and Proposition 3.10 may
seem ‘ad-hoc’, it is worth remarking that, in fact, in all cases there is a
certain algebraic variety inherently associated to the question of whether an
elliptic curve E/K satisfies the properties (A) or (B), and which plays the
role of C/K in the proofs of the propositions given in Section 2.

Definition 4.1. Let K be a number field and let E/K be an elliptic curve
given by y2 = g(x), for some monic cubic polynomial g(x) ∈ K[x]. Let
A4(K) be the four-dimensional affine space over K. We define an algebraic
variety VE/K in A4(K) given by the equation:

VE/K : g(x1)g(x2) = g(x3)x2
4.

Lemma 4.2. Suppose E/K is an elliptic curve defined in projective coordi-
nates by ZY 2 = g(X/Z)Z3, where g(x) is a monic cubic polynomial in K[t].
Then, for every non-constant k(t) ∈ K(t) the rational function g(k(t)) is
not in K · (K(t))2.

Proof. Let k(t) ∈ K(t) be non-constant and suppose, for a contradiction,
that there is h(t) ∈ K(t) and non-zero d ∈ K with g(k(t)) = d · (h(t))2.
Then we obtain a non-constant rational map:

ψ : P1(K) → Ed/K

given by ψ(t) = [k(t), h(t), 1]. But this is clearly impossible because the
genus of P1(K) is 0 and the genus of Ed/K is 1. ¤
Theorem 4.3. The elliptic curve E/K satisfies the property (B) if and
only if VE(K(t)) has a point with non-constant coordinates x1(t), x2(t),
x3(t) ∈ K(t) with xi(t) 6= xj(t) for i 6= j, 1 ≤ i, j ≤ 3.

Proof. Suppose first that E/K satisfies property (B), i.e. there are polyno-
mials P1(t), P2(t), P3(t) = P1(t)P2(t), not in K · (K[t])2, such that EP1 , EP2

and EP1P2 are all of positive rank over K(t). Then, by the previous lemma,
there exist xi(t), yi(t) ∈ K(t), for i = 1, 2, 3, such that g(xi(t)) = Pi(t)yi(t)2

(thus g(xi(t)) is not in K · (K(t))2 and xi(t) is non-constant) and EP1 , EP2

and EP1P2 are isomorphic to Eg(x1(t)), Eg(x2(t)) and Eg(x3(t)) respectively.
Hence, there exists x4(t) ∈ K(t) such that

g(x1(t))g(x2(t)) = g(x3(t))x4(t)2.(6)

Thus, (x1(t), x2(t), x3(t), x4(t)) ∈ VE(K(t)) with non-constant coordinates
x1(t), x2(t) and x3(t). Moreover, the fact that g(xi(t)) /∈ K ·(K(t))2 together
with the equation (6), show that xi(t) 6= xj(t) for i 6= j, 1 ≤ i, j ≤ 3.



QUADRATIC TWISTS AND RANKS OF ELLIPTIC CURVES OVER LARGE FIELDS11

Conversely, if (x1(t), x2(t), x3(t), x4(t)) ∈ VE(K(t)) with pairwise distinct
non-constant x1, x2, x3, then by Lemma 4.2 and the equation (6), it is clear
that if we set P1 = g(x1) and P2 = g(x2), then P1, P2 and P1P2 are not in
K · (K(t))2, and by Lemma 3.4, the twists EP1 , EP2 and EP1P2 are all of
positive rank. ¤

Corollary 4.4. Let K be a number field and let E/K be an elliptic curve
satisfying one of the following:

(1) All 2-torsion points are K-rational;
(2) E/K has a Weierstrass equation of the form y2 = x3 + ax2 + c2x,

for some a, c ∈ K;
(3) E/K has a Weierstrass equation of the form y2 = x(x2 − k), with

1 + k = e2 + f2, for some k, e, f ∈ K.
(4) E/K is K-isogenous to an elliptic curve as in (1), (2) or (3) above.

Then E/K satisfies the property (B) and, therefore, the variety VE has a
point (x1(t), x2(t), x3(t), x4(t)) with non-constant coordinates x1(t), x2(t),
x3(t) ∈ K(t) with xi(t) 6= xj(t) for i 6= j, 1 ≤ i, j ≤ 3.

Theorem 4.5. The curve E/K satisfies the property (A) if and only if VE

has infinitely many K-rational points (x1,i, x2,i, x3,i, x4,i) ∈ K4, i ≥ 1, such
that:

(1) For all i ≥ 1, xs,i 6= xt,i in K and g(xs,i) 6= g(xt,i) in K∗/K∗2, for
all s 6= t, 1 ≤ s, t ≤ 3.

(2) For all i 6= j and 1 ≤ s ≤ 3, g(xs,i) 6= g(xs,j) in K∗/K∗2.

Proof. Notice that if there is d ∈ K such that Ed is of positive rank, then
Ed(K) has a point of infinite order (a, b) defined over K such that g(a) = db2

and Ed is isomorphic to Eg(a). If E/K satisfies (A) then d is a square for
at most one triple (d, d′, dd′), and similarly d′ and dd′ are squares for at
most one triple each. If d1, d2, d3 = d1d2 are all non-squares of K and
g(as) = dsb

2
s, for s = 1, 2, 3, then for s 6= t, one has as 6= at in K and

g(as) 6= g(at) in K∗/K∗2. Further, if (d1, d2, d3 = d1d2) 6= (d′1, d
′
2, d

′
3 =

d′1d
′
2) in (K∗/K∗2)3 then there are as, bs, a

′
s, b

′
s, for s = 1, 2, 3 such that

g(as) = dsb
2
s, g(a′s) = d′s(b′s)2 and, therefore, g(as) 6= g(a′s) in K∗/K∗2. All

the previous statements when put together show that if E/K satisfies the
property (A) then VE(K) has infinitely many K-rational points satisfying
(1) and (2).

Next we prove the converse. Suppose VE has infinitely many K-rational
points (x1,i, x2,i, x3,i, x4,i) ∈ K4, i ≥ 1, satisfying (1) and (2) and

g(x1,i)g(x2,i) = g(x3,i) · (x4,i)2.(7)

Since for all i 6= j and for s = 1, 2, 3, g(xs,i) 6= g(xs,j) in K∗/K∗2, we
can conclude that there is at most one i0, one i1 and one i2 such that
g(x1,i0) ∈ K2, g(x2,i1) ∈ K2 and g(x3,i2) ∈ K2, and by (2), i0, i1, i2 are all
distinct (if they exist).
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Further, the twist Eg(t)/K(t) is of positive rank, by Lemma 3.4. By
Silverman’s specialization theorem there is a finite set S ⊂ K such that for
all k /∈ S, the curve Eg(k)/K is of positive rank. Let SI be the set of all
i ≥ 1 such that xs,i ∈ S for some s ∈ {1, 2, 3}. Thus, by (1), the set SI is
necessarily finite. Finally, for i ≥ 1 with i /∈ SI ∪ {i0, i1, i2} the infinite set
of all (di, d

′
i, did

′
i) with di = g(x1,i) and d′i = g(x2,i), makes E/K satisfy the

property (A). ¤

5. Application to large fields

Before we state the first lemma, we set some notation. Let K be a number
field and let GK = Gal(K/K). For a natural number n ≥ 1, and (σ) =
(σ1, . . . , σn) ∈ Gn

K we define K
(σ) = ∩iK

σi .

Lemma 5.1. Let n ≥ 1 be an integer and let a1, . . . , an+1 be elements in
a number field K. Let L = K(

√
a1, . . . ,

√
an+1) be a number field with

[L : K] = 2n+1, and let σ = (σ1, . . . , σn) be an n-tuple in Gn
K with σi 6= σj

for i 6= j. Then there is at least one quadratic extension K ′/K with K ⊂
K ′ ⊂ L ∩K

(σ).

Proof. Let n ≥ 1 be an integer and let L/K and (σ) ∈ Gn
K be as in the

statement of the lemma. For a quadratic extension M/K we define the
signature of M with respect to (σ) as M(σ) = (δ1, . . . , δn) where, for i =
1, . . . , n, the number δi = 1 if M is fixed by σi and δi = −1 otherwise.
Notice that there are 2n possible signatures for a given quadratic extension
M/K. On the other hand, there are precisely

(
n + 1

1

)
+

(
n + 1

2

)
+ · · ·+

(
n + 1
n + 1

)
= 2n+1 − 1

distinct quadratic extensions of K contained in L, and 2n+1 − 1 > 2n since
n ≥ 1. Thus, by the pigeonhole principle, there are b1 and b2 ∈ K and
two distinct quadratic extensions of K, M1 = K(

√
b1) and M2 = K(

√
b2),

with M1,M2 ⊂ L with the same signature with respect to (σ). Hence, the
signature of K ′ = K(

√
b1b2) is K ′

(σ) = (M1)(σ) · (M2)(σ) = (δ2
1, . . . , δ

2
n) =

(1, . . . , 1) and therefore K ′ is fixed by (σ). Moreover, the fact that M1 6= M2

ensures that K ′/K is a quadratic extension, contained in L, as desired. ¤
For any n ≥ 2, the property (B) of an elliptic curve E/K can be general-

ized to the following property (Bn).
(Bn) There exist polynomials P1, . . . , Pn ∈ K[t] such that
every polynomial of the form:

Q(t) =
n∏

i=1

Pi(t)ei with ei = 0 or 1

has a zero (over K) of odd degree and the twist EQ(t) is of
positive rank over K(t).
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Of course, the property (B2) is equivalent to the property (B). Now we
are ready to state the main theorem:

Theorem 5.2. Let K be a number field, Kab the maximal abelian extension
of K, let n ≥ 1 be a fixed integer and let E/K be an elliptic curve satisfying
the property (Bn+1). Then for each (σ) = (σ1, . . . , σn) ∈ Gal(K/K)n, the
rank of E((Kab)(σ)) is infinite, therefore E(K(σ)) is infinite.

Proof. The idea of the proof is a generalization of the proof of Corollary
2.5. We inductively construct quadratic extensions Kn of K and points
Tn ∈ E(Kn) as follows. Let E/K be an elliptic curve satisfying the prop-
erty (Bn+1) and let P1(t), . . . , Pn+1(t) ∈ K[t] be polynomials satisfying the
claimed properties. Let S be the set of all polynomials of the form

Q(t) =
n∏

i=1

Pi(t)ei with ei = 0 or 1.

By assumption, every polynomial Q(t) ∈ S has a zero of odd degree, which
implies that the extension K(

√
P1(t), . . . ,

√
Pn+1(t))/K is of degree 2n+1.

Now, put F0 = K. For each k ≥ 1 we apply Lemma 2.1 to find ak such
that, for all Q ∈ S, the value Q(ak) is not a square in the compositum
Fk = K1K2 · · ·Kk−1. In particular, since Q(ak) is not a square in Fk (for
any Q ∈ S), the field Fk(

√
P1(ak), . . . ,

√
Pn+1(ak)) is an extension of Fk of

degree 2n+1.
We define Lk = K(

√
P1(ak), . . . ,

√
Pn+1(ak)) which is an extension of

K of degree 2n+1, and let (σ) ∈ Gn
K be arbitrary. By Lemma 5.1, there

exists a quadratic extension Kk/K, such that K ⊂ Kk ⊂ Lk, which is
fixed by (σ). Thus (σ) fixes at least one of

√
Q(ak), for some Q ∈ S, and

in fact Kk = K(
√

Q(ak)). Since the curve EQ(ak) has a K-rational non-
torsion point, the elliptic curve E has a non-torsion point Tk defined over
Kk. Moreover, the linear disjointness of the quadratic extensions Kk over
K (which is guaranteed by the fact that Fk(

√
P1(ak), . . . ,

√
Pn+1(ak))/Fk is

an extension of degree 2n+1 for every k ≥ 1) implies that the points Tn are
linearly independent in E((Kab)(σ)). Hence E((Kab)(σ)) has infinite rank
and so does E(K(σ)). ¤

As a corollary of Theorem 5.2 and propositions 3.6, 3.8 and corollary 3.7,
we obtain the following result.

Corollary 5.3. Let K be a number field and let E/K be an elliptic curve
satisfying one of the following:

(1) All 2-torsion points are K-rational;
(2) E/K has a Weierstrass equation of the form y2 = x3 + ax2 + c2x,

for some a, c ∈ K;
(3) E/K has a Weierstrass equation of the form y2 = x(x2 − k), with

1 + k = e2 + f2, for some k, e, f ∈ K.
(4) E/K is K-isogenous to an elliptic curve as in (1), (2) or (3) above.
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Then E/K satisfies the property (B)(= (B2)) and, therefore, for every
σ ∈ Gal(K/K), the rank of E((Kab)σ) is infinite, so the rank of E(Kσ)
is infinite.

As a consequence of the methods in the proof of Theorem 5.2 and Theorem
3.5 we obtain:

Theorem 5.4. Let E/Q be an elliptic curve. If the parity conjecture holds
(over Q) then for each σ ∈ Gal(Q/Q) the rank of E((Qab)σ) is infinite,
therefore E(Qσ) is infinite.

Proof. If the parity conjecture holds then, by Theorem 3.5, every elliptic
curve over Q satisfies property (A), i.e. there are infinitely many triples
(d, d′, dd′) ∈ Q3, pairwise distinct in (Q∗/Q∗2)3, such that the twists Ed, Ed′

and Edd′ are all of positive rank over Q. Moreover, for every finite extension
L/Q, the kernel of Q∗/Q∗2 → L∗/L∗2 is finite (use Hilbert’s theorem 90, for
example) and therefore there exist infinitely many (d, d′, dd′) as above such
that d, d′ and dd′ are not squares in L. The proof can be finished now as in
the proof of Theorem 5.2. ¤

Next, we show similar result for curves of the form y2 = x3 + k. We start
with a lemma which is an analogue of Lemma 2.1.

Lemma 5.5. Let K be a number field and let L/K be a finite extension.
Let 0,−1 6= k ∈ K be such that the elliptic curve C : x3 + y3 = 1 − k has
a point Q defined over K. Put P1(x) = x3 + k, P2(x) = 1 − x3, P3(x) =
P1(x)P2(x) = k +(1− k)x3−x6. Then there are infinitely many n ≥ 1 such
that P1(x(nQ)), P2(x(nQ)) and P3(x(nQ)) are not squares in L. Therefore,
for such values of n, the field L

(√
P1(x(nQ)),

√
P2(x(nQ))

)
is a biquadratic

extension of L.

Proof. Let L/K and C/K be as in the statement of the theorem. It is clear
that all the roots of P1(x) and P2(x) are distinct. We claim that the sets
Ti = {Pi(x(nQ)) = z2 : z ∈ L} are finite for i = 1, 2, 3. Suppose for a
contradiction that T1 is infinite. Then there exist infinitely many solutions
to the system:

x3 + y3 = 1− k, z2 = x3 + k.(8)

However, Eq. (8) defines a curve Ĉ/K with a (ramified) map to C/K. By
Hurwitz genus formula, the genus of Ĉ is strictly greater than 1. Hence, by
Faltings’ theorem, Ĉ(L) is finite and a contradiction occurs.

Similarly, Faltings’ theorem implies that T2 and T3 are finite. Thus, T =
{z ∈ L : Pi(x(nQ)) is not a square for i = 1, 2, 3} is, in fact, infinite. ¤

Theorem 5.6. Let K be a number field, Kab the maximal abelian extension
of K, and let E : y2 = x3 + k be an elliptic curve, where 0,−1 6= k ∈ K is
such that x3 + y3 = 1− k has a point of infinite order defined over K. Then
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for each σ ∈ Gal(K/K), the rank of E((Kab)σ) is infinite, therefore E(Kσ)
is infinite.

Proof. The proof is exactly the same than the proof of Theorem 5.2, where
Pi(x) are the polynomials defined in Lemma 5.5 and instead of Lemma 2.1
we make use of the results in Lemma 5.5. ¤
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