Math 5020-Elliptic Curves

Homework 2 (3.4 (use SAGE), 3.5, 3.8, and the exercise below)
3.4 Referring to example (2.4), express each of the points $P_{2}, P_{4}, P_{5}, P_{6}, P_{7}, P_{8}$ in the form $[m] P_{1}+[n] P_{3}$ with $m, n \in \mathbb{Z}$.
3.5 Let E / K be given by a singular Weierstrass equation.
(a) Suppose that E has a node, and let the tangent lines at the node be $y=\alpha_{i} x+\beta_{i}, i=1,2$.
(i) If $\alpha_{1} \in K$, prove that $\alpha_{2} \in K$ and

$$
E_{n s}(K) \cong K^{*} .
$$

(ii) If $\alpha_{1} \notin K$, prove that $L=K\left(\alpha_{1}, \alpha_{2}\right)$ is a quadratic extension of K. From (i), $E_{n s}(K) \subset E_{n s}(L) \cong L^{*}$. Show that

$$
E_{n s}(K) \cong\left\{t \in L^{*}: \mathrm{N}_{L / K}(t)=1\right\} .
$$

(b) Suppose that E has a cusp. Prove that

$$
E_{n s}(K) \cong K^{+} .
$$

3.8 (a) Let E / \mathbb{C} be an elliptic curve. There is a lattice $L \subset \mathbb{C}$ and a complex analytic isomorphism of groups $\mathbb{C} / L \cong E(\mathbb{C})$. Then $\operatorname{deg}[m]=m^{2}$ and $E[m]=\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$.
(b) Let E / K be an elliptic curve with $\operatorname{char}(K)=0$. Then $\operatorname{deg}[m]=m^{2}$.

Problem 1 Let E / \mathbb{Q} be an elliptic curve given by a Weierstrass equation of the form $y^{2}=f(x)$, where $f(x) \in \mathbb{Z}[x]$ is a monic cubic polynomial with distinct roots (over $\overline{\mathbb{Q}}$).
(a) Show that $P=(x, y) \in E(\overline{\mathbb{Q}})$ is a torsion point of exact order 2 if and only if $y=0$ and $f(x)=0$.
(b) Let us define $\mathbb{Q}(E[2])$ by

$$
\mathbb{Q}(E[2])=\mathbb{Q}(\{x, y: P=(x, y) \in E[2]\}) .
$$

Show that $\operatorname{Gal}(\mathbb{Q}(E[2]) / \mathbb{Q})$ is isomorphic to a subgroup of $\mathrm{GL}\left(2, \mathbb{F}_{2}\right)$, unique up to conjugation. Note that the isomorphism is not canonical, because it depends on a choice of basis for $E[2]$.
(c) Prove that $S_{3} \cong \mathrm{GL}\left(2, \mathbb{F}_{2}\right)$. List all subgroups of $\mathrm{GL}\left(2, \mathbb{F}_{2}\right)$.
(d) For every subgroup $G \leq \mathrm{GL}\left(2, \mathbb{F}_{2}\right)$, either find an elliptic curve E / \mathbb{Q} and an isomorphism

$$
\operatorname{Gal}(\mathbb{Q}(E[2]) / \mathbb{Q}) \cong G
$$

or prove that no such curve exists. For example, $y^{2}=x^{3}-x$ affords $G=\{\mathrm{Id}\}$.
(e) The elliptic curve $y^{2}=x^{3}+2 x^{2}-3 x$ satisfies $E(\mathbb{Q})[4]=\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, i.e. the full 2 -torsion is defined over \mathbb{Q} and there is also a point of order 4 defined over \mathbb{Q}. Describe the possible isomorphism types of $\operatorname{Gal}(\mathbb{Q}(E[4]) / \mathbb{Q})$ as a subgroup of $\mathrm{GL}(2, \mathbb{Z} / 4 \mathbb{Z})$.

