The main difficulty for the beginner is to absorb a reasonable vocabulary in a short time. None of the concepts is difficult, but there is an accumulation of new concepts which may sometimes seem heavy.
S. Lang

Read $\S 1.2-1.6,2.4,3.1-3.3,3.5$ (Dummit and Foote).
Exercise 1. Let G be a cyclic group, and let H be an arbitrary subgroup. Prove that G is abelian, and that H is abelian also. Moreover, if G is finite, and H^{\prime} is another subgroup $H^{\prime} \subseteq G$ such that $|H|=\left|H^{\prime}\right|$, then $H=H^{\prime}$. (Here $|H|$ denotes the order, the size, the number of elements of H.)
Exercise 2. (a) For complex numbers z and w with $(z, w) \neq(0,0)$, set

$$
f(z, w):=\left(\begin{array}{cc}
z & -w \\
\bar{w} & \bar{z}
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{C})
$$

Fill in the following equations, and indicate why the numbers you use are not both 0 :

$$
f(z, w) f(u, v)=f(?, ?), \quad f(z, w)^{-1}=f(?, ?)
$$

This shows the set of matrices $f(z, w)$ with $(z, w) \neq(0,0)$ is a subgroup of $\mathrm{GL}_{2}(\mathbb{C})$. (Note: The eight matrices where one of z or w is ± 1 or $\pm i$ and the other is 0 is a concrete model of the quaternion group Q_{8}.)
(b) On the set $\mathbb{C}^{2}-\{(0,0)\}$ consider the following binary operation:

$$
(z, w)(u, v)=(z u+i w \bar{v}, z v+\bar{u} w)
$$

(This operation on $\mathbb{C}^{2}-\{(0,0)\}$ nearly resembles the multiplication in part a.) Show there is a 2-sided identity and each pair in $\mathbb{C}^{2}-\{(0,0)\}$ has a left inverse and a right inverse, but that these inverses are usually not the same and that the operation is not associative.
Exercise 3. Express each of the permutations (15)(1234)(12563) and (123)(246)(345) in S_{6} as a product of disjoint cycles and as a product of transpositions. Then determine their order.
Exercise 4. Fix a group G and a positive integer m. Let P_{m} be the subgroup of G that is generated by the set of m th powers $\left\{x^{m}: x \in G\right\}$.
(a) Show $P_{m} \triangleleft G$ and $\bar{g}^{m}=1$ in the quotient group G / P_{m} for all $g \in G$.
(b) For any group homomorphism $f: G \rightarrow H$ such that $f(g)^{m}=1$ for all $g \in G$, show there is a unique group homomorphism $f_{m}: G / P_{m} \rightarrow H$ such that $f_{m}(\bar{g})=f(g)$ for all $g \in G$.
(c) Show the commutator subgroup of G lies inside P_{2}. (Hint: show G / P_{2} is abelian.)
(d) If $G=D_{n}$, show $P_{m}=D_{n}$ when m is odd and $P_{m}=\left\langle r^{m}\right\rangle$ when m is even.
(e) For any finite group G show $P_{m}=P_{(m,|G|)}$.

Exercise 5. Let $f: G_{1} \rightarrow G_{2}$ be a group isomorphism.
(a) If $g \in G_{1}$, show g and $f(g)$ have the same order (allow for the possibility of g or $f(g)$ having infinite order).
(b) Show f induces isomorphisms between the centers of G_{1} and G_{2}, and between the commutator subgroups of G_{1} and G_{2}.
(c) If H is a subgroup of G_{1}, show f induces a bijection between the left cosets of H in G_{1} and the left cosets of $f(H)$ in G_{2}, so $\left[G_{1}: H\right]=\left[G_{2}: f(H)\right]$ as cardinal numbers.
(d) If N is a normal subgroup of G_{1}, show $f(N)$ is a normal subgroup of G_{2} and f induces a group isomorphism between G_{1} / N and $G_{2} / f(N)$.

