We may as well cut out group theory [from the curriculum]. That is a subject which will never be of any use in physics. J. Jeans (1910)
Read §1.7, 4.1-4.4 (Dummit and Foote).
Exercise 1. For a subgroup H of the group G, its normalizer is $\mathrm{N}_{G}(H)=\left\{g \in G: g H g^{-1}=H\right\}$.
(a) In the group $\mathrm{GL}_{2}(\mathbb{R})$ show the normalizer of the subgroup $\operatorname{Aff}(\mathbb{R})=\left\{\left(\begin{array}{ll}x & y \\ 0 & 1\end{array}\right): x \neq 0\right\}$ is $\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right.$: $a, d \neq 0\}$.
(b) In the group $\mathrm{GL}_{2}(\mathbb{R})$ show the normalizer of the diagonal subgroup $D=\left\{\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right): x, y \neq 0\right\}$ is $\left\{\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right),\left(\begin{array}{ll}0 & b \\ c & 0\end{array}\right): a, b, c, d \neq 0\right\}$.
(c) View S_{n} as $\operatorname{Sym}(\mathbb{Z} /(n))$ instead of as $\operatorname{Sym}(\{1,2, \ldots, n\})$. If a and b are integers such that $(a, n)=1$, let $\sigma_{a, b}: \mathbb{Z} /(n) \rightarrow \mathbb{Z} /(n)$ by $\sigma_{a, b}(x \bmod n)=a x+b \bmod n$. Show $\sigma_{a, b}$ belongs to the normalizer in S_{n} of the subgroup $\langle(123 \cdots n)\rangle$ and, conversely, any element of the normalizer of $\langle(123 \cdots n)\rangle$ in S_{n} is some $\sigma_{a, b}$. Conclude that $\mathrm{N}_{S_{n}}(\langle 123 \cdots n\rangle) \cong \operatorname{Aff}(\mathbb{Z} /(n))$.
Exercise 2. (Related to exercise 11, §4.3) For the following permutations σ_{1} and σ_{2}, compute a permutation π such that $\pi \sigma_{1} \pi^{-1}=\sigma_{2}$.
(a) $\sigma_{1}=(12)(345), \sigma_{2}=(123)(45)$
(b) $\sigma_{1}=(12)(34)(56), \sigma_{2}=(35)(24)(16)$
(c) $\sigma_{1}=(15)(372)(4689), \sigma_{2}=\sigma_{1}^{-1}$

Exercise 3. Let $\mathrm{SL}_{2}(\mathbb{Z})$ act on nonzero vectors in \mathbb{Z}^{2} by multiplication: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}$.
(a) When m and n are distinct positive integers, show $\binom{m}{0}$ and $\binom{n}{0}$ lie in distinct orbits.
(b) For any nonzero vector $\binom{x}{y}$ in \mathbb{Z}^{2}, show its $\mathrm{SL}_{2}(\mathbb{Z})$-orbit contains $\binom{m}{0}$, where $m=\operatorname{gcd}(x, y)$. (Thus the orbits for this action are the vectors in \mathbb{Z}^{2} with the same greatest common divisor.)

Exercise 4. (Related to exercise 10, §4.1) Let G be a group and fix subgroups H and K of G. We define an $H K$ double coset to be a subset of G having the form $H g K=\{h g k: h \in H, k \in K\}$, where $g \in G$. This construction is usually not symmetric in the roles of H and K.
(a) Show the rule

$$
(h, k) g:=h g k^{-1}
$$

defines a group action of $H \times K$ on the set G, and that the $H K$ double cosets are the orbits for this action. (In particular, it then follows from the theory of group actions that different $H K$ double cosets are disjoint.)
(b) Why does the rule " $h, k) x:=h x k$ " not generally define an action of $H \times K$ on G ?
(c) Compute all double cosets $H g K$ ($n o$ repetitions) when $G=S_{3}, H=\langle(12)\rangle$, and $K=\langle(13)\rangle$, and all the distinct double cosets $H+g+K$ in $G=\mathbb{Z} /(30)$ (additive cyclic group) where $H=\langle 6\rangle$, and $K=\langle 15\rangle$. In the first case there are orbits whose size is not a factor of $\# S_{3}=6$. Why does this not contradict the fact that the size of an orbit divides the size of the group?
(d) Using left multiplication, H acts on any double coset $H g K$. Prove each orbit for this action of H on $H g K$ is a right coset of H in G (not just a subset of a right coset in G). In particular, when G is finite, conclude that $\# H$ divides $\#(H g K)$. What group action lets you conclude that $\# K$ divides $\#(H g K)$?
(e) Show the number of H-orbits in $H g K$ for the action in part d is [$K: K \cap g^{-1} H g$]. Conclude that $\#(H g K)=(\# H)\left[K: K \cap g^{-1} H g\right]$.

