If it's just turning the crank it's algebra, but if it's got an idea in it, then it's topology.
S. Lefschetz

Read $\S 4.4,4.5,5.1,5.4,5.5$ in Dummit and Foote.
Exercise 1. For $n \geq 3$, show $\operatorname{Aut}\left(D_{n}\right) \cong \operatorname{Aff}(\mathbb{Z} /(n))$. (Hint: Writing $D_{n}=\langle r, s\rangle$ as usual, decide where an automorphism of D_{n} could possibly send the generators r and s, and then show all those possibilities truly work, which will lead to a parametrization $\varphi_{a, b}$ of the automorphisms of D_{n} by parameters $a \in(\mathbb{Z} /(n))^{\times}$and $b \in \mathbb{Z} /(n)$.)
Exercise 2. Let H and K be groups and $\varphi: K \rightarrow \operatorname{Aut}(H)$ be a homomorphism.
(a) For any automorphism $f: K \rightarrow K, \varphi \circ f$ is a homomorphism $K \rightarrow \operatorname{Aut}(H)$. Show the groups $H \rtimes_{\varphi} K$ and $H \rtimes_{\varphi \circ f} K$ are isomorphic.
(b) For any automorphism $f: H \rightarrow H$, let γ_{f} be conjugation by f in $\operatorname{Aut}(H)$, i.e., $\left(\gamma_{f}(\alpha)\right)(h)=$ $\left.f\left(\alpha\left(f^{-1}(h)\right)\right)\right)$. Then $\gamma_{f} \circ \varphi$ is a homomorphism $K \rightarrow \operatorname{Aut}(H)$. Show the groups $H \rtimes_{\varphi} K$ and $H \rtimes_{\gamma_{f} \circ \varphi} K$ are isomorphic.

Exercise 3. Let's classify the groups of order $2013=3 \cdot 11 \cdot 61$.
(a) If G has order 2013, show it has unique subgroups of orders 11 and 61 , and both are normal.
(b) Let P be the subgroup of order 11 and Q be the subgroup of order 61 . Show the set $P Q=\{x y$: $x \in P, y \in Q\}$ is a subgroup and $P Q \cong P \times Q \cong \mathbb{Z} /(671)$.
(c) Prove $G \cong \mathbb{Z} /(671) \rtimes_{\varphi} \mathbb{Z} /(3)$ for some homomorphism $\varphi: \mathbb{Z} /(3) \rightarrow(\mathbb{Z} /(671))^{\times}$and use a computer algebra system to count the number of possible φ (it is more than 2).
(d) Use exercise 2 to prove the nonabelian semidirect products in part c are isomorphic, so there are two groups of order 2013 up to isomorphism: one abelian and one nonabelian.

Exercise 4. If G_{1} and G_{2} are groups with normal subgroups $N_{1} \triangleleft G_{1}$ and $N_{2} \triangleleft G_{2}$, then $N_{1} \times$ $N_{2} \triangleleft G_{1} \times G_{2}$ and $\left(G_{1} \times G_{2}\right) /\left(N_{1} \times N_{2}\right) \cong G_{1} / N_{1} \times G_{2} / N_{2}$. Your task is to generalize this to semidirect products. Let $H \rtimes_{\varphi} K$ be a semidirect product defined by some action $\varphi: K \rightarrow \operatorname{Aut}(H)$, so $(h, k)\left(h^{\prime}, k^{\prime}\right)=\left(h \varphi_{k}\left(h^{\prime}\right), k k^{\prime}\right)$. We write $H \rtimes_{\varphi} K$ as $H \rtimes K$ to avoid cluttering the notation.

Given normal subgroups $N \triangleleft H$ and $M \triangleleft K$, we'd like to know if

$$
(H \rtimes K) /(N \rtimes M) \cong H / N \rtimes K / M
$$

where the actions of M on N (to define $N \rtimes M$) and K / M on H / N (to define $H / N \rtimes K / M$) should come in a reasonable way from that of K on H that defines $H \rtimes K$ (namely, from φ).

For $N \rtimes M$ and $H / N \rtimes K / M$ to make sense using K 's action on H, we want

- the action of K on H to preserve $N\left(\right.$ i.e., $\varphi_{k}(N) \subset N$ for each $\left.k \in K\right)$, so K acts on H / N and (by restricting the domain of φ) $M \subset K$ acts on N, thus giving meaning to $N \rtimes M$.
- the action of $M \subset K$ on H / N to be trivial (that is, $\varphi_{m}(h) \in h N$ for all $m \in M$ and $h \in H$), so the action of K on H / N induces an action of K / M on H / N.

Now for the exercise: under the two conditions above, show $N \rtimes M \triangleleft H \rtimes K$ and there is an isomorphism as displayed above. (For example, using $M=K,(H \rtimes K) /(N \rtimes K) \cong H / N$ if $N \triangleleft H$ and $\varphi_{k}(h) \in h N$ for all $k \in K$ and $h \in H$.)

Remark. If we assume only the first condition, then $N \rtimes M \triangleleft H \rtimes K$ if and only if the action of M on H / N is trivial, but you are not asked to show this.

