An idea which can be used only once is a trick. If one can use it more than once it becomes a method.

G. Polya and G. Szego

Read: Keith Conrad's handout on characters of finite abelian groups (sections 1-4).

Exercise 1. (a) Express $(\mathbb{Z}/(63))^{\times}$ as a direct product of cyclic groups abstractly and then as a direct product of cyclic *subgroups*, each with an explicit generator from $(\mathbb{Z}/(63))^{\times}$.

(b) Use the explicit generating set found in part a to find all solutions to $a^3 \equiv 1 \mod 63$.

Exercise 2. On $(\mathbb{Z}/(m))^r$ the dot product of $\mathbf{a} = (a_1, a_2, \dots, a_r)$ and $\mathbf{b} = (b_1, b_2, \dots, b_r)$ is

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \dots + a_r b_r \bmod m.$$

For $\mathbf{a} \in (\mathbb{Z}/(m))^r$, let $\chi_{\mathbf{a}} \colon (\mathbb{Z}/(m))^r \to S^1$ by $\chi_{\mathbf{a}}(\mathbf{x}) = e^{2\pi i (\mathbf{a} \cdot \mathbf{x})/m}$. (It makes sense to talk about $e^{2\pi i a/m}$ where $a \in \mathbb{Z}/(m)$ since $a \equiv a' \mod m \Rightarrow e^{2\pi i a/m} = e^{2\pi i a'/m}$.)

- (a) Show each $\chi_{\mathbf{a}}$ is a character of $(\mathbb{Z}/(m))^r$.
- (b) Show the mapping $(\mathbb{Z}/(m))^r \to ((\mathbb{Z}/(m))^r)$ given by $\mathbf{a} \mapsto \chi_{\mathbf{a}}$ is a group isomorphism.

Exercise 3. In $(\mathbb{Z}/(73))^{\times}$ the element 2 mod 73 has order 9, so the subgroup $\langle 2 \rangle$ has index 72/9 = 8.

(a) Compute the indices of successive pairs of subgroups in the rising tower

$$\langle 2 \rangle \subset \langle 2, 3 \rangle \subset \langle 2, 3, 5 \rangle = (\mathbb{Z}/(73))^{\times}.$$

- (b) Explicitly describe all 8 characters χ of $(\mathbb{Z}/(73))^{\times}$ that satisfy $\chi(2) = 1$ by extending characters stepwise through the rising tower in part a, as in the proof of Lemma 3.2 in the handout on characters. Describe each character by its values at $2^{j}3^{k}5^{\ell}$. Explain clearly why your choices for character values really work.
- (c) Use the same method as part b to explicitly describe all 8 characters χ of $(\mathbb{Z}/(73))^{\times}$ that satisfy $\chi(2) = e^{2\pi i/3}$.

Exercise 4. Write the following functions $\mathbb{Z}/(4) \to \mathbb{C}$ as linear combinations of characters of $\mathbb{Z}/(4)$.

- (a) f(0) = 1, f(1) = 5, f(2) = 9, f(3) = i.
- (b) f(0) = f(1) = -1, f(2) = 0, f(3) = 14.

Exercise 5. If H is a subgroup of a finite abelian group G, let $H^{\perp} = \{\chi \in \widehat{G} : \chi = 1 \text{ on } H\}$. These are the characters of G that are trivial on H. It depends on both H and G. In part b of exercise 3 you computed $(2 \mod 73)^{\perp}$ in the character group of $(\mathbb{Z}/(73))^{\times}$.

- (a) For a character χ on G, let $\chi|_H$ be its restriction to H. Show $\chi \mapsto \chi|_H$ is a surjective homomorphism $\widehat{G} \to \widehat{H}$ with kernel H^{\perp} , so H^{\perp} is a subgroup of \widehat{G} and $\widehat{G}/H^{\perp} \cong \widehat{H}$.
- (b) Show $\widehat{G/H} \cong H^{\perp}$. (Hint: Think about a character in $\widehat{G/H}$ as a character on G.)
- (c) The group $H^{\perp\perp} = (H^{\perp})^{\perp}$ belongs to $\widehat{\widehat{G}}$. Show the isomorphism $G \to \widehat{\widehat{G}}$ from Pontryagin duality restricts to an isomorphism $H \to H^{\perp\perp}$. (This is stronger than saying $H^{\perp\perp} \cong H$: it says they are isomorphic in a *specific* way.)
- (d) Use part c to show $H \mapsto H^{\perp}$ is a bijection between the subgroups of G and the subgroups of \widehat{G} . Then use this to help explain why, for each d dividing |G|, G has the same number of subgroups with order d as it does subgroups with index d.