An idea which can be used only once is a trick. If one can use it more than once it becomes a method. G. Polya and G. Szego

Read: Keith Conrad's handout on characters of finite abelian groups (sections 1-4).
Exercise 1. (a) Express $(\mathbb{Z} /(63))^{\times}$as a direct product of cyclic groups abstractly and then as a direct product of cyclic subgroups, each with an explicit generator from $(\mathbb{Z} /(63))^{\times}$.
(b) Use the explicit generating set found in part a to find all solutions to $a^{3} \equiv 1 \bmod 63$.

Exercise 2. On $(\mathbb{Z} /(m))^{r}$ the dot product of $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{r}\right)$ is

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{r} b_{r} \bmod m
$$

For $\mathbf{a} \in(\mathbb{Z} /(m))^{r}$, let $\chi_{\mathbf{a}}:(\mathbb{Z} /(m))^{r} \rightarrow S^{1}$ by $\chi_{\mathbf{a}}(\mathbf{x})=e^{2 \pi i(\mathbf{a} \cdot \mathbf{x}) / m}$. (It makes sense to talk about $e^{2 \pi i a / m}$ where $a \in \mathbb{Z} /(m)$ since $a \equiv a^{\prime} \bmod m \Rightarrow e^{2 \pi i a / m}=e^{2 \pi i a^{\prime} / m}$.)
(a) Show each $\chi_{\mathbf{a}}$ is a character of $(\mathbb{Z} /(m))^{r}$.
(b) Show the mapping $(\mathbb{Z} /(m))^{r} \rightarrow\left((\mathbb{Z} /(m))^{r}\right)^{\wedge}$ given by $\mathbf{a} \mapsto \chi_{\mathbf{a}}$ is a group isomorphism.

Exercise 3. In $(\mathbb{Z} /(73))^{\times}$the element $2 \bmod 73$ has order 9 , so the subgroup $\langle 2\rangle$ has index $72 / 9=8$.
(a) Compute the indices of successive pairs of subgroups in the rising tower

$$
\langle 2\rangle \subset\langle 2,3\rangle \subset\langle 2,3,5\rangle=(\mathbb{Z} /(73))^{\times}
$$

(b) Explicitly describe all 8 characters χ of $(\mathbb{Z} /(73))^{\times}$that satisfy $\chi(2)=1$ by extending characters stepwise through the rising tower in part a, as in the proof of Lemma 3.2 in the handout on characters. Describe each character by its values at $2^{j} 3^{k} 5^{\ell}$. Explain clearly why your choices for character values really work.
(c) Use the same method as part b to explicitly describe all 8 characters χ of $(\mathbb{Z} /(73))^{\times}$that satisfy $\chi(2)=e^{2 \pi i / 3}$.
Exercise 4. Write the following functions $\mathbb{Z} /(4) \rightarrow \mathbb{C}$ as linear combinations of characters of $\mathbb{Z} /(4)$.
(a) $f(0)=1, f(1)=5, f(2)=9, f(3)=i$.
(b) $f(0)=f(1)=-1, f(2)=0, f(3)=14$.

Exercise 5. If H is a subgroup of a finite abelian group G, let $H^{\perp}=\{\chi \in \widehat{G}: \chi=1$ on $H\}$. These are the characters of G that are trivial on H. It depends on both H and G. In part b of exercise 3 you computed $\langle 2 \bmod 73\rangle^{\perp}$ in the character group of $(\mathbb{Z} /(73))^{\times}$.
(a) For a character χ on G, let $\left.\chi\right|_{H}$ be its restriction to H. Show $\left.\chi \mapsto \chi\right|_{H}$ is a surjective homomorphism $\widehat{G} \rightarrow \widehat{H}$ with kernel H^{\perp}, so H^{\perp} is a subgroup of \widehat{G} and $\widehat{G} / H^{\perp} \cong \widehat{H}$.
(b) Show $\widehat{G / H} \cong H^{\perp}$. (Hint: Think about a character in $\widehat{G / H}$ as a character on G.)
(c) The group $H^{\perp \perp}=\left(H^{\perp}\right)^{\perp}$ belongs to $\widehat{\hat{G}}$. Show the isomorphism $G \rightarrow \widehat{\widehat{G}}$ from Pontryagin duality restricts to an isomorphism $H \rightarrow H^{\perp \perp}$. (This is stronger than saying $H^{\perp \perp} \cong H$: it says they are isomorphic in a specific way.)
(d) Use part c to show $H \mapsto H^{\perp}$ is a bijection between the subgroups of G and the subgroups of \widehat{G}. Then use this to help explain why, for each d dividing $|G|, G$ has the same number of subgroups with order d as it does subgroups with index d.

