I have often pondered over the roles of knowledge or experience, on the one hand, and imagination or intuition, on the other, in the process of discovery. I believe that there is a certain fundamental conflict between the two, and knowledge, by advocating caution, tends to inhibit the flight of imagination. Therefore, a certain naivete, unburdened by conventional wisdom, can sometimes be a positive asset. Harish-Chandra

Read: text sections 7.1-7.4, 8.1-8.2
Exercise 1. Let R be a (nonzero) commutative ring. An element $x \in R$ is called nilpotent if $x^{n}=0$ for some n.
(a) Find all the nilpotent elements of $\mathbb{Z} /(9)$ and $\mathbb{Z} /(27)$.
(b) Describe (with justification) all the nilpotent elements of $\mathbb{Z} /\left(p^{k}\right)$ where p is prime and $k \geq 2$.
(c) Describe (with justification) all the nilpotent elements of $\mathbb{Z} /(20)$ and then all the nilpotent elements of any $\mathbb{Z} /(m)$ for $m \geq 2$. (Note: these are generally not all the non-invertible elements!)
(d) Show the nilpotent elements of R form an ideal. (Hint for addition: if $x^{n}=0$ and $y^{m}=0$, show $(x+y)^{n+m}=0$ by thinking about what powers of x and y can show up when expanding this power.)
(e) If x is nilpotent, show $1+x$ is invertible. (Hint: geometric series!)

Exercise 2. Let K and L be fields and A be a subring of K that admits a homomorphism $f: A \rightarrow L$. We want to extend f to a homomorphism on larger subrings of K (see diagram below). We can't always extend f all the way to K, e.g., the reduction map $\mathbb{Z} \rightarrow \mathbb{Z} /(p)$, for prime p can't be extended to a homomorphism $\mathbb{Q} \rightarrow \mathbb{Z} /(p)$.

(a) If $a \in A-\{0\}$ and $f(a) \neq 0$, show f admits a unique extension to a ring homomorphism $A[1 / a] \rightarrow L$. (It is insufficient to show there is at most one extension of f to $A[1 / a]$: you must show there really is an extension of f to $A[1 / a]$.)
(b) Use Zorn's lemma to show there is an extension of f to a ring homomorphism $\widetilde{f}: \widetilde{A} \rightarrow L$ for some ring \widetilde{A} between A and $\underset{\sim}{K}$, and \widehat{f} can't be extended further to a ring homomorphism $R \rightarrow L$ for any R strictly between \widetilde{A} and K.
(c) If $x \in \widetilde{A}$ and $\widetilde{f}(x) \neq 0$, use parts a and b to show $1 / x \in \widetilde{A}$. Conclude that ker \widetilde{f} is a maximal ideal in \widetilde{A}, and in fact is the only maximal ideal in \widetilde{A}.

Exercise 3. Let d be a nonsquare integer. For $\alpha=a+b \sqrt{d}$ in $\mathbb{Z}[\sqrt{d}]$, where a and b are integers, we set $\bar{\alpha}=a-b \sqrt{d}$ and $\mathrm{N}(\alpha)=\alpha \bar{\alpha}=a^{2}-d b^{2}$. Then $\mathrm{N}(\alpha) \in \mathbb{Z}$, and $\mathrm{N}(\alpha) \neq 0$ if $\alpha \neq 0$. The task of this problem is to give a combinatorial interpretation for $\mathrm{N}(\alpha)$, or rather for $|\mathrm{N}(\alpha)|$.
(a) For nonzero integers m, show $\mathbb{Z}[\sqrt{d}] /(m)$ has size m^{2}.
(b) For nonzero α, show multiplication by $\bar{\alpha}$ is an additive group isomorphism $\mathbb{Z}[\sqrt{d}] /(\alpha) \rightarrow$ $(\bar{\alpha}) /(\mathrm{N}(\alpha))$ and conjugation induces an additive group isomorphism $(\alpha) /(\mathrm{N}(\alpha)) \rightarrow(\bar{\alpha}) /(\mathrm{N}(\alpha))$.
(c) Conclude from parts a and b that the ring $\mathbb{Z}[\sqrt{d}] /(\alpha)$ has size $|\mathrm{N}(\alpha)|$. (Hint: Think of $\mathbb{Z}[\sqrt{d}] /(\alpha)$ as an additive group.)

Exercise 4. (a) Mimic the proof that $\mathbb{Z}[i]$ is Euclidean to show $\mathbb{Z}[\sqrt{-2}]$ is Euclidean with respect to the function $\mathrm{N}(a+b \sqrt{-2})=a^{2}+2 b^{2}$. That is, for any α and β in $\mathbb{Z}[\sqrt{-2}]$ with $\beta \neq 0$ show there are γ and ρ in $\mathbb{Z}[\sqrt{-2}]$ such that $\alpha=\beta \gamma+\rho$ and $\mathrm{N}(\rho)<\mathrm{N}(\beta)$.
(b) Mimic the proof that $\mathbb{Z}[i]$ is Euclidean to show $\mathbb{Z}[\sqrt{2}]$ is Euclidean with respect to the function $|\mathrm{N}(a+b \sqrt{2})|=\left|a^{2}-2 b^{2}\right|$. That is, for any α and β in $\mathbb{Z}[\sqrt{2}]$ with $\beta \neq 0$ show there are γ and ρ in $\mathbb{Z}[\sqrt{2}]$ such that $\alpha=\beta \gamma+\rho$ and $|\mathrm{N}(\rho)|<|\mathrm{N}(\beta)|$. (Warning: don't make mistakes with inequalities, like saying $|x-y| \leq|x|-|y|!$)
(c) Use your method of proof in parts and b to solve $8+20 \sqrt{-2}=(5+4 \sqrt{-2}) \gamma+\rho$ in $\mathbb{Z}[\sqrt{-2}]$ with $\mathrm{N}(\rho)<\mathrm{N}(\beta)$ and $27+7 \sqrt{2}=(7+3 \sqrt{2}) \gamma+\rho$ in $\mathbb{Z}[\sqrt{2}]$ with $|\mathrm{N}(\rho)|<|\mathrm{N}(\beta)|$.

Exercise 5. Decide which of the following ideals in $\mathbb{Z}[X]$ are prime or maximal by identifying the quotient rings by these ideals with more familiar rings:
(a) (3)
(b) (10)
(c) $(5, X)$
(d) $\left(X^{2}-3\right)$
(e) $\{f(X) \in \mathbb{Z}[X]: f(2)=0\}$.

