Please note:
1. Calculators are not allowed in the exam.
2. You may assume the following axioms and theorems:
 (a) **Axiom**: The natural numbers \(\mathbb{N} \) satisfies the Well Ordering Principle, i.e. every non-empty subset of natural numbers contains a least element.
 (b) **Theorem**: Let \(a, b, c \) be integers. The linear equation \(ax + by = c \) has a solution if and only if \(\gcd(a, b) \) divides \(c \).
3. **You must** provide full explanations for all your answers. You must include your work.

Theory Question 1. Prove that if \(p \) is prime and \(p | ab \) then either \(p | a \) or \(p | b \). Explain why the previous statement can be re-written as follows: if \(p \) is a prime and \(ab \equiv 0 \pmod{p} \) then \(a \equiv 0 \pmod{p} \) or \(b \equiv 0 \pmod{p} \) (or equivalently, if \(ab \equiv 0 \) in \(\mathbb{Z}/p\mathbb{Z} \) then either \(a \equiv 0 \) or \(b \equiv 0 \) in \(\mathbb{Z}/p\mathbb{Z} \)).

Solution:
Suppose \(p \) divides \(ab \) but \(p \) does not divide \(a \). Then \(\gcd(p, a) = 1 \) (otherwise, there is \(d > 1 \) such that \(d | p \) and \(d | a \), and since \(p \) is prime \(d = p \) but \(p \) does not divide \(a \)). By the theorem above, there exist \(x, y \in \mathbb{Z} \) such that
\[
ax + py = 1.
\]
Multiplying this equation by \(b \) gives:
\[
abx + pby = b.
\]
Since \(p \) divides \(ab \) and \(p \) obviously divides \(pb \), then \(p \) divides any linear combination of \(ab \) and \(pb \). Hence \(p \) divides \(b = (ab)x + (pb)y \).

The rest of the problem follows from the fact that \(p | a \) if and only if \(a \equiv 0 \pmod{p} \).

Theory Question 2. Prove the existence part of the Fundamental Theorem of Arithmetic, i.e. every natural number \(n > 1 \) can be written as a product of primes.

Solution:
See the book or your class notes.

Theory Question 3. Prove the uniqueness part of the Fundamental Theorem of Arithmetic, i.e. every natural number \(n > 1 \) can be written uniquely as a product of primes, up to a reordering of the prime-power factors (you may assume Theory Question 2).
Solution:
See the book or your class notes.

Theory Question 4. Prove Euclid’s theorem on the infinitude of primes, i.e. prove that there exist infinitely many prime numbers.

Solution:
See the book or your class notes.

Question 1. Use Euclid’s algorithm to:

1. Find the greatest common divisor of 13 and 50.
2. Find all solutions of the linear diophantine equation $13x + 50y = 2$.
3. Find the multiplicative inverse of 13 modulo 50. Find the multiplicative inverse of 50 modulo 13. Can you use your previous work to find the multiplicative inverse of 7 modulo 27?
4. Find all solutions to $26x \equiv 4 \mod 100$.

Solution:

1. $50 = 13 \cdot 3 + 11$, $13 = 11 + 2$, $11 = 2 \cdot 5 + 1$. Thus, the gcd is 1.
2. One particular solution is found by reversing Euclid’s algorithm (and then multiplying through by 2). In particular, $13 \cdot 4 - 50 = 2$. By a theorem in class, since $\gcd(50, 13) = 1$, all the solutions of $13x + 50y = 2$ are given by:

 $x = 4 + 50t$, $y = -1 + 13t$, for all $t \in \mathbb{Z}$.

3. A solution to the equation $13x + 50y = 1$ is given by $x = 27$ and $y = -7$. The equation $13 \cdot 27 - 7 \cdot 50 = 1$ implies that

 $13 \cdot 27 \equiv 1 \mod 50$

 and so, 27 is a multiplicative inverse of 13 modulo 50. Also, $-7 \equiv 6 \mod 13$ is a multiplicative inverse of 50 modulo 13. And $-50 \equiv 4 \mod 27$ is the inverse of 7 modulo 27.

4. We first solve $13x \equiv 2 \mod 50$. In fact, we have already seen that $13 \cdot 4 - 50 = 2$. Thus $x \equiv 4 \mod 50$ is the unique solution. Thus, all solutions to $26x \equiv 4 \mod 100$ are $x = 4$ and $x = 4 + 50 = 54$ modulo 100 (again by a theorem proved in class).

Question 2. Prove that the equation $x^2 - 7y^3 + 21z^5 = 3$ has no solution with x, y, z in \mathbb{Z} (Hint: Calculate all possible squares modulo 7).
Solution:
Since the set \{0, 1, 2, 3, 4, 5, 6\} is a complete residue system modulo 7 and since \(a^2 = (-a)^2\), we can conclude that \{0^2, 1^2, 2^2, 3^2\} = \{0, 1, 4, 2\} is a complete system of squares modulo 7 (i.e. the squares are congruent to either 0, 1, 2 or 4 modulo 7).

Now, suppose that there are integers \(x, y, z\) such that \(x^2 - 7y^3 + 21z^5 = 3\). Then:
\[
3 = x^2 - 7y^3 + 21z^5 \equiv x^2 \pmod{7}
\]
but this, \(x^2 \equiv 3 \pmod{7}\) is impossible by our previous remark.

Question 3. Show that 257 divides \(100 \cdot 2^{25} - 57 = 3355443143\).

Solution:
Notice that \(2^8 = 256 \equiv (-1) \pmod{257}\). Thus, \(2^{25} = (2^8)^3 \cdot 2 \equiv -2 \pmod{257}\). Finally:
\[
100 \cdot 2^{25} - 57 \equiv -200 - 57 \equiv -257 \equiv 0 \pmod{257}.
\]

Question 4. What time does a clock read 100 hours after it reads 2 o’clock? If the time is now 2PM, after 100 hours, will it be in the PM or in the AM?

Solution:
We need to find the remainder of 102 modulo 12:
\[
102 = 12 \cdot 8 + 6, \quad \text{and so} \quad 102 \equiv 6 \pmod{12}.
\]
Thus, the time is 6 o’clock. By the way, is that in the PM or AM? Suppose the time now is 2PM (which is 14 : 00, the 14th hour of the day). Then we need to find the remainder of 114 = 100 + 14 modulo 24:
\[
114 = 24 \cdot 4 + 18, \quad \text{and so} \quad 114 \equiv 18 \pmod{24}
\]
and the time is 6 PM.

Question 5. Show that \(2^{2n} + 5\) is composite for every positive integer \(n\).

Solution:
First, we try a few numbers. For \(n = 1\), \(2^2 + 5 = 9 = 3 \cdot 3\). For \(n = 2\), \(2^4 + 5 = 21 = 3 \cdot 7\). For \(n = 3\), \(2^6 + 5 = 261\) which is divisible by 3. Let us prove that every number \(2^{2n} + 5\) is divisible by 3 and therefore composite. Since \(2^2 \equiv 1 \pmod{3}\), we also have \(2^{2n} = (2^2)^n \equiv 1 \pmod{3}\) for all \(n > 0\). Hence:
\[
2^{2n} + 5 \equiv 6 \equiv 0 \pmod{3}.
\]

Question 6. Find the smallest positive integer \(n\) such that
\[
n \equiv 7 \pmod{3}, \quad n \equiv 5 \pmod{5}, \quad n \equiv 3 \pmod{7}.
\]
Solution:
Simplifying, we need to solve the system:

\[n \equiv 1 \mod 3, \quad n \equiv 0 \mod 5, \quad n \equiv 3 \mod 7. \]

Since \(n \equiv 0 \mod 5 \), then \(n = 5a \). Since \(n \equiv 1 \mod 3 \) and \(n \equiv 3 \mod 7 \) then \(n \equiv 10 \mod 21 \) (solve \(n = 1 + 3x = 3 + 7y \), so \(3x - 7y = 2 \)). Hence, we need to solve:

\[5a \equiv 10 \mod 21 \]

and clearly \(a = 2 \) works. Thus, \(n \equiv 10 \mod 105 \) and \(n = 10 \) is the smallest valid solution.

Question 7. A troop of 17 monkeys store their bananas in 11 piles of equal size with a twelfth pile of 6 left over. When they divide the bananas into 17 equal groups, none remain. What is the smallest number of bananas they can have?

Solution:
Let \(x \) be the number of bananas. Then:

\[x \equiv 6 \mod 11, \quad \text{and} \quad x \equiv 0 \mod 17. \]

Hence, \(x = 17a \) for some integer \(a \). Thus, we need to solve \(17a \equiv 6 \mod 11 \) or \(17a + 11b = 6 \). Clearly, \(a = 1, b = -1 \) work. Thus \(a = 1 \) and \(x \equiv 17 \mod 187 \). The smallest possible number is 17.

Question 8. The seven digit number \(n = 72x20y2 \), where \(x \) and \(y \) are digits, is divisible by 72. What are the possibilities for \(x \) and \(y \)?

Solution:
Notice that \(72 = 2^3 \cdot 3^2 \). Thus, 8 divides \(n \) and so 8 divides the three last digits \(0y2 = y2 \). The only two digit numbers divisible by 8 and ending in 2 are 32 or 72, so \(y = 3 \) or 7.

The number \(n \) is also divisible by 9, thus the sum of its digits \(7 + 2 + x + 2 + 0 + y + 2 = x + y + 13 \) is a multiple of 9. So \(x + y + 4 \) is a multiple of 9. If \(y = 3 \) then \(x + 7 \) must be a multiple of 9, and the only possibility is \(x = 2 \). If \(y = 7 \) then \(x + 11 \) must be a multiple of 9, which implies that \(x = 7 \). Therefore:

\[n = 722032 = 72 \cdot 100306, \quad \text{or} \quad n = 7272072 = 72 \cdot 101001. \]

Question 9. Show that \(36^{100} \equiv 16 \mod 17 \).

Solution:
By the properties of congruences we know that \(36^{100} \equiv 2^{100} \mod 17 \) because \(36 \equiv 2 \mod 17 \). Moreover, \(2^4 \equiv 16 \equiv -1 \mod 17 \). Therefore:

\[36^{100} \equiv 2^{100} \equiv (2^4)^{25} \equiv (-1)^{25} \equiv -1 \equiv 16 \mod 17. \]
Question 10. Show that $42 \mid n^7 - n$ for all positive n.

Solution:
Note that $42 = 2 \cdot 3 \cdot 7$. First, notice that if n is even or odd, $n^7 - n$ will always be even, and so it is divisible by 2. Also, if $n \equiv 0, 1$ or $2 \mod 3$, it is an easy calculation to check that $n^7 - n \equiv 0 \mod 3$. And likewise (although a little more work), one checks that for $n \equiv 0, 1, 2, 3, 4, 5, 6 \mod 7$ we also get $n^7 - n \equiv 0 \mod 7$, and so 7 divides $n^7 - n$, for all $n \geq 1$.
Thus, since $n^7 \equiv n \mod 7$ and $n^7 \equiv n \mod 6$ and $\gcd(6, 7) = 1$, we obtain $n^7 \equiv n \mod 42$, for all n.

Question 11. Show that $5555^{2222} + 2222^{5555}$ is divisible by 7.

Solution:
Note that $5555 + 2222 = 7777 \equiv 0 \mod 7$. Thus, $5555 \equiv -2222 \mod 7$ and $2222 = 2100 + 122 \equiv 122 \equiv 105 + 17 \equiv 3 \mod 7$. One also calculates that $3^6 \equiv 1 \mod 7$ and $2222 = 6 \cdot 370 + 2$ and $5555 = 925 \cdot 6 + 5$. Finally:

$$5555^{2222} + 2222^{5555} \equiv (-3)^{2222} + 3^{5555} \equiv ((-3)^6)^{370} \cdot (-3)^2 + (3^6)^{925} \cdot 3^5 \equiv 1 \cdot 2 + 1 \cdot 5 \equiv 0 \mod 7.$$

Question 12. Prove that for any natural number $n \geq 1$, $3^{6n} - 2^{6n}$ is divisible by 35 (Hint: work modulo 5 and modulo 7, separately).

Solution:
Let us begin working modulo 5 and 7 separately. One calculates:

$$3^6 = 3^4 \cdot 3^2 = 9 \equiv 4 \mod 5, \quad 2^6 = 2^2 = 4 \mod 5, \quad 3^6 = 2^6 = 1 \mod 7.$$

Thus:

$$3^{6n} - 2^{6n} \equiv 4^n - 4^n \equiv 0 \mod 5, \quad 3^{6n} - 2^{6n} \equiv 1 - 1 \equiv 0 \mod 7.$$

Thus, since 5 and 7 are relatively prime, $3^{6n} - 2^{6n} \equiv 0 \mod 35$.

Question 13. Find the remainder when $14!$ is divided by 17.

Solution:
Let us calculate modulo 17:

$$14! \equiv 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \mod 17$$

$$\equiv 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot (-8) \cdot (-7) \cdot (-6) \cdot (-5) \cdot (-4) \cdot (-3) \mod 17$$

$$\equiv 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot (-7) \cdot (-6) \cdot (-5) \cdot (-4) \cdot (-3) \mod 17$$

$$\equiv 3 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot (-7) \cdot (-6) \cdot (-5) \cdot (-3) \mod 17$$

$$\equiv 3 \cdot 6 \cdot 8 \cdot (-6) \cdot (-3) \mod 17$$

$$\equiv 8 \mod 17$$
where, in order, we have used that \(2 \cdot (-8) \equiv -16 \equiv 1 \mod 17\), and \(4(-4) \equiv 1 \mod 17\), and \(5 \cdot 7 \equiv (-5)(-7) \equiv 1 \mod 17\), and \(3 \cdot 6 \equiv (-3)(-6) \equiv 1 \mod 17\).

Question 14. Prove that if \(n\) is odd, then \(n\) and \(n - 2\) are relatively prime. (Hint: Use the theorem (b) at the beginning of this document).

Solution:
Suppose \(n\) is odd. The numbers \(n\) and \(n - 2\) satisfy a Bezout’s identity of the form
\[
n - (n - 2) = 2.
\]
Therefore, by Theorem (b) at the beginning of this document, the GCD of \(n\) and \(n - 2\) divides 2. But it cannot be equal to 2 because \(n\) is odd and 2 does not divide \(n\). Thus, the GCD must be 1.

Question 15. Prove that if \(k \geq 1\), the integers \(6k + 5\) and \(7k + 6\) are relatively prime.

Solution:
The integers \(x = 7k + 6\) and \(y = 6k + 5\) satisfy a Bezout’s identity of the form \(6x - 7y = 1\) because:
\[
6(7k + 6) - 7(6k + 5) = 36 - 35 = 1.
\]
Thus, by Theorem (b) above, the GCD of \(x\) and \(y\) must be 1.

Question 16. Find all primes \(p\) such that \(17p + 1\) is a square.

Solution:
Suppose \(17p + 1 = n^2\) for some \(n \geq 1\). Then \(n^2 - 1 = 17p\) and, therefore,
\[
17p = (n + 1)(n - 1).
\]
By the Fundamental Theorem of Arithmetic, the prime factorization of \((n + 1)(n - 1)\) is precisely \(17p\), thus the factor \((n + 1)\) is equal to 1, \(p\), 17 or \(17p\) (and in the last case \(n - 1 = 1\), so \(n = 2\)). The cases \(n + 1 = 1\) and \(n + 1 = 17p\) are impossible (because, respectively, they imply \(n = 0\) and \(17p = 3\)). If \(n + 1 = p\) then \(17 = n - 1\) and \(n = 18\) so \(p = 19\). If \(n + 1 = 17\) then \(n - 1 = p\) and \(n = 16\), so \(p = 15\), which is not a prime, so it is not a valid choice.

Hence the only possible case is \(p = 19\), so \(17p + 1 = 17 \cdot 19 + 1 = 324 = 18^2\).

Question 17. Show that \(n(n - 1)(2n - 1)\) is divisible by 6 for every \(n > 0\).

Solution:
We shall prove that \(n(n - 1)(2n - 1)\) is congruent to 0 modulo 2 and modulo 3. Thus, we can conclude that \(n(n - 1)(2n - 1) \equiv 0 \mod 6\). Indeed, if \(n \equiv 0\) or 1 modulo 2, then \(n(n - 1) \equiv 0 \mod 2\).

Also, if \(n \equiv 0 \mod 3\) then \(n \equiv 0 \mod 3\), if \(n \equiv 1 \mod 3\) then \((n - 1) \equiv 0 \mod 3\) and if \(n \equiv 2 \mod 3\) then \((2n - 1) \equiv 0 \mod 3\). Thus, in all cases \(n(n - 1)(2n - 1) \equiv 0 \mod 3\), as desired.
Question 18. Does $3x \equiv 1 \mod 18$ have a solution? What about $3x \equiv 1 \mod 19$? Determine for which integers $1 \leq a \leq 17$ the equation $ax \equiv 1 \mod 18$ has solutions. Do the same modulo 19.

Solution:

The congruence $3x \equiv 1 \mod 18$ does not have solutions because $\gcd(3, 18)$ is not a divisor of 1. The congruence $3x \equiv 1 \mod 19$ does have solutions because $\gcd(3, 19) = 1$. The equation $ax \equiv 1 \mod 18$ only has solutions when $\gcd(a, 18) = 1$ (find them all). The equation $ax \equiv 1 \mod 19$ has solutions for any $1 \leq a \leq 18$, because then $\gcd(a, 19) = 1$, because 19 is prime.

Question 19. Verify that:

1. The numbers $0, 2, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}$ are a complete set of representatives modulo 11.

2. The numbers $0, 2, 2^2, 2^3, 2^4, 2^5, 2^6$ are not a complete set of representatives modulo 7.

Solution:

Just a number of calculations...