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Elliptic curves are ubiquitous in number theory, algebraic geom-
etry, complex analysis, cryptography, physics, and beyond. They
lie at the forefront of arithmetic geometry, as shown in this issue’s
feature on Andrew Wiles and his proof of Fermat’s Last Theorem.
The goal of arithmetic geometry, in general, is to determine the
set of K-rational points on an algebraic variety C (e.g., a curve
given by polynomial equations) defined over K, where K is a field,
and the K-rational points, denoted by C(K), are those points on
C with coordinates in K. For instance, Fermat’s Last Theorem
states that the algebraic variety

Xn + Y n = Zn

only has trivial solutions (one with X, Y , or Z = 0) over Q when
n ≥ 3. Here we will concentrate on the case of a 1-dimensional
algebraic variety, that is, a curve C, and a number field K (e.g.,
the rationals Q, or Q(i)). Curves are classified by their geomet-
ric genus as complex Riemann surfaces. When the genus of C is
0, as for lines and conics, the classical methods of Euclid, Dio-
phantus, Brahmagupta, Legendre, Gauss, Hasse, and Minkowski,
among others, completely determine the K-rational points on C.
For example,

C1 : 37X + 39Y = 1 and C2 : X2 − 13Y 2 = 1

have infinitely many rational points that can be completely de-
termined via elementary methods. However, when the genus of
C is 1, we are in general not even able to decide whether C has
K-rational points, much less determine all the points that belong
to C(K).

Figure 1. A curve of genus 1 over C.

For example, the curve

C : 3X3 + 4Y 3 = 5

has no Q-rational points, but the local methods we use in the genus
0 case to rule out global points fail here.1 A goal of the theory of
elliptic curves is to find all the K-rational points on curves of genus
one.

An elliptic curve E is a smooth projective2 curve of genus 1
defined over a field K, with at least one K-rational point (i.e.,
there is at least one point P on E with coordinates in K). If the
field K is of characteristic 0 (e.g., number fields) or characteristic
p > 3, then every elliptic curve can be given by a nice choice of
coordinates, called a short Weierstrass model, of the form

E : y2 = x3 + Ax + B,

with A and B in K (and 4A3 + 27B2 6= 0 for smoothness). In this
model there is only one K-rational point at infinity, denoted by
O. One of the aspects that makes the theory of elliptic curves so
rich is that the set E(K) can be equipped with an abelian group
structure, geometric in nature (see Fig. 2), where O is the zero
element (in other words, elliptic curves are 1-dimensional abelian
varieties).
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Figure 2. The addition law on an elliptic curve.

The abelian group E(K) was conjectured to be finitely gener-
ated by Poincaré in the early 1900s and proved to be so by Mordell
for K = Q in 1922. The result was generalized to abelian varieties
over number fields by Weil in 1928 (a result widely known as the
Mordell-Weil Theorem). The classification of finitely generated

1C : 3X3 + 4Y 3 = 5 is an example of Selmer where the local-to-global principle fails. This means that there are points on C over every completion of Q, i.e.,
over R and the p-adics Qp for every prime p, but not over Q itself.
2Curves are considered in projective space P2(K) where, in addition to the affine points, there may be some points of the curve at infinity.
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abelian groups tells us that E(K) is the direct sum of two groups:
its torsion subgroup and a free abelian group of rank R ≥ 0, i.e.,

E(K) ∼= E(K)tors ⊕ ZR

We then call R = RE/K the rank of the elliptic curve E/K. For
instance, for

E : y2 + y = x3 + x2 − 10x + 10,

the group E(Q) is generated by P = (2,−2) and Q = (−4, 1).
Here P is a point of order 5 and Q is of infinite order, and so
E(Q) ∼= Z/5Z⊕ Z.

Which finitely generated abelian groups can arise as the group
structure of an elliptic curve over a fixed field K? The possible
torsion subgroups E(K)tors that can occur have been determined
only when K = Q, or when K is a quadratic or cubic number field
(e.g., K = Q(i), or K = Q( 3

√
2)). For K = Q, the list of torsion

subgroups was conjectured by Levi in 1908, later re-conjectured
by Ogg in 1970, and finally proved in 1976 by Mazur:

E(Q)tors ∼=

{
Z/NZ for 1 ≤ N ≤ 10, or N = 12,

Z/2Z⊕ Z/2MZ for 1 ≤M ≤ 4.

In contrast, the list of possible ranks RE/K is completely un-
known, even over Q. We do not even know if this list is finite or
infinite for any fixed number field. The largest rank known over
Q is 28, for a curve found by Elkies.

The open questions about the rank of an elliptic curve are cen-
tral to what makes the K-rational points on elliptic curves so hard
to determine. The difficulty arises from the failure of the local-
to-global principle (or Hasse principle) on curves of genus greater
than or equal to 1 (see footnote 1). For an elliptic curve E/K,
one defines the Tate-Shafarevich group X = X(E/K) to mea-
sure the failure of the Hasse principle on E. In a sense, X plays
the role of the ideal class group of a number field. However, we
do not know that X(E/K) is always a finite group.3 If we knew
that X is always finite, then a method Fermat inaugurated, called
descent, would presumably yield an algorithm to determine all the
K-rational points on E.

In the 1960s, Birch and Swinnerton-Dyer conjectured an ana-
lytic approach to computing the rank of an elliptic curve. Later,
their conjecture was refined in terms of the Hasse-Weil L-function
of an elliptic curve E (over Q for simplicity), which is defined by
an Euler product:

L(E, s) =
∏

p prime

Lp(E, p−s)−1

where Lp(E, T ) = 1− apT + pT 2 for all but finitely many primes,
ap = p+1−#E(Fp), and #E(Fp) is the number of points on E con-
sidered as a curve over Fp. Thus defined, L(E, s) converges as long
as Re(s) > 3/2. In fact, Hasse conjectured more: any L-function
of an elliptic curve over Q has an analytic continuation to the
whole complex plane. This has now been proved as a consequence

of the modularity theorem that we discuss below. The Birch and
Swinnerton-Dyer conjecture (BSD) claims that the order of vanish-
ing of L(E, s) at s = 1 is equal to RE/Q, the rank of E(Q). In fact,
the conjecture also predicts the residue at s = 1 in terms of invari-
ants of E/Q. For instance, the curve E : y2 + y = x3− 7x+ 6 is of
rank 3, with E(Q) ∼= Z3, and the graph of L(E, x), for 0 ≤ x ≤ 3
is displayed in Figure 3. The BSD conjecture is known to hold
only in certain cases of elliptic curves of rank 0 and 1, by work
of Coates and Wiles, Gross and Zagier, Kolyvagin, Rubin, Skin-
ner and Urban, among others. However, Bhargava, Skinner, and
Zhang have shown that BSD is true for at least 66% of all elliptic
curves over the rationals.

The study of elliptic curves grew in popularity in the 1980s
when Hellegouarch, Frey, and Serre outlined a roadmap to prove
Fermat’s Last Theorem by proposing that a certain elliptic curve
cannot exist. Roughly speaking, if p ≥ 11, and ap + bp = cp is a
non-trivial solution of Fermat’s equation Xp + Y p = Zp, then the
so-called Frey-Hellegouarch curve y2 = x(x − ap)(x + bp) would
have two properties thought to be contradictory. First, the curve
would be semi-stable, which is a mild technical condition about
the type of curves E/Fp that we get by reducing the coefficients
of E modulo p. Second, the curve would be modular, a prop-
erty we explain in the next paragraph. The statement that the
Frey-Hellegouarch curve is semi-stable but not modular was first
formalized by Serre and then proved by Ribet. With Ribet’s re-
sult, to prove Fermat’s last theorem, one needed to prove “only”
that all semi-stable elliptic curves over Q are modular. This state-
ment emerged in the 1950s and is sometimes called the modularity
conjecture, or Taniyama-Shimura-Weil conjecture.4 The modular-
ity conjecture relates two seemingly very distinct objects: elliptic
curves and modular forms.
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Figure 3. An L-function L(E, x) with a zero of
order 3 at x = 1

A modular form is a complex-analytic function f on the upper-
half complex plane that satisfies certain symmetries. In particular,

3The finiteness of X is known only in certain cases with rank ≤ 1, by work of Kolyvagin and Rubin.
4See Lang’s article in the Notices, Nov. 1995, for a detailed historical account of the modularity conjecture.
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f(s) admits a Fourier series expansion f(s) =
∑
n≥0 anq

n, where

q = e2πis, and we can attach to the modular form f an L-function
L(f, s) =

∑
n≥0 an/n

s. The modularity conjecture says that ev-
ery elliptic curve E is associated to a modular form f , such that
L(E, s) = L(f, s), i.e., their L-functions coincide. In particular,
implies that L(E, s) has an analytic continuation to C, because
L(f, s) is known to have one. In 1993, Wiles [2] announced a proof
of the modularity conjecture in the semi-stable case, but a flaw was
found in the proof, which was fixed in 1995 by Taylor and Wiles.
In 2001, the full conjecture was proved for all elliptic curves over
Q, by Brueil, Conrad, Diamond, and Taylor. In 2015, Freitas, Le
Hung, and Siksek extended the modularity theorem to real qua-
dratic fields. Modularity fits in a much larger context, together

with the Langlands program and the Fontaine-Mazur conjecture,
that was described in Kisin’s What is a Galois Representation in
June 2007.

The canonical starting point for a graduate student interested in
learning more about elliptic curves is Silverman’s The Arithmetic
of Elliptic Curves [1]. A more elementary approach is Silverman
and Tate’s Rational Points on Elliptic Curves.
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