FORMAL GROUPS OF ELLIPTIC CURVES WITH POTENTIAL GOOD SUPERSINGULAR REDUCTION

ÁLVARO LOZANO-ROBLEDO

Abstract. Let L be a number field and let E/L be an elliptic curve with potential supersingular reduction at a prime ideal \wp of L above a rational prime p. In this article we describe a formula for the slopes of the Newton polygon associated to the multiplication-by-p map in the formal group of E, that only depends on the congruence class of p mod 12, the \wp-adic valuation of the discriminant of a model for E over L, and the valuation of the j-invariant of E. The formula is applied to prove a divisibility formula for the ramification indices in the field of definition of a p-torsion point.

1. Introduction

Let L be a number field with ring of integers O_L, let $p \geq 2$ be a prime, let \wp be a prime ideal of O_L lying above p, and let L_\wp be the completion of L at \wp. Let E be an elliptic curve defined over L with potential good (supersingular) reduction at \wp. Let us fix an embedding $\iota : L \hookrightarrow L_\wp$. Via ι, we may regard E as defined over L_\wp. Let L_{\wp}^{ur} be the maximal unramified extension of L_\wp, and let K_E be the extension of L_{\wp}^{ur} of minimal degree such that E has good reduction over K_E (see Section 3 for more details). Let $K = K_E$, and let ν_K be a valuation on K such that $\nu_K(p) = e$ and $\nu_K(\pi) = 1$, where π is a uniformizer for K. Let A be the ring of elements of K with valuation ≥ 0. We fix a minimal model of E over A with good reduction, given by

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

with $a_i \in A$. In particular, the discriminant Δ is a unit in A. Let \widehat{E}/A be the formal group associated to E/A, with formal group law given by a power series $F(X,Y) \in A[[X,Y]]$, as defined in Ch. IV of [12]. Let

$$[p](Z) = \sum_{i=1}^{\infty} s_i Z^i$$

be the multiplication-by-p homomorphism in \widehat{E}, for some $s_i \in A$ for all $i \geq 1$. Since E/K has good supersingular reduction, the formal group \widehat{E}/A associated to E has height 2 (see [12], Ch. V, Thm. 3.1). Thus, $s_1 = p$ and the coefficients s_i satisfy $\nu_K(s_i) \geq 1$ if $i < p^2$ and $\nu_K(s_{p^2}) = 0$. Let $q_0 = 1$, $q_1 = p$ and $q_2 = p^2$, and put $e_i = \nu_K(s_{q_i})$. In particular $e_0 = \nu_K(s_1) = \nu_K(p) = e$ and $e_2 = \nu_K(s_{p^2}) = 0$. Let $e_1 = \nu_K(s_p)$. Then, the multiplication-by-p map can be expressed as

$$[p](Z) = pf(Z) + \pi^{e_1}g(Z^p) + h(Z^{p^2}),$$

where $f(Z)$, $g(Z)$ and $h(Z)$ are power series in $Z \cdot A[[Z]]$, with $f'(0) = g'(0) = h'(0) \in A^\times$.

In this article, we are interested in determining the value of e_1. In the next section we discuss three examples that will be used during the rest of the paper to fix ideas. In Section 3, we prove

1991 Mathematics Subject Classification. Primary: 11G05, Secondary: 11G07, 14H52, 14L05.
consecutive refinements of a formula for \(e_1 \) that culminate in Theorem 3.9 and Corollary 3.12, where we show a formula that only depends on the congruence class of \(p \) mod 12, the \(\wp \)-adic valuation of the discriminant of a model for \(E \) over \(L \), and the valuation of the \(j \)-invariant of \(E \). In Section 4 we use the formula to calculate the value of \(e_1 \) for several interesting examples, and we show that if \(p > 3 \), the ramification index of \(\wp \) in \(L/\mathbb{Q} \) is \(e(\wp, L) = 1 \), and \(e_1 < e \), then the numbers \(e_1 \) and \(e - e_1 \) can only take the values 1, 2, or 4 (see Corollary 4.7). Finally, in Section 5, we apply our formula to prove the following divisibility formulas for the ramification indices in the field of definition of a \(p \)-torsion point (see Theorem 5.2 and Corollary 5.4):

Theorem 1.1. Let \(E/L \) be an elliptic curve with potential good supersingular reduction at a prime \(\wp \) above a prime \(p > 3 \), and let \(e \) and \(e_1 \) be defined as above. Let \(P \in E[p] \) be a non-trivial \(p \)-torsion point. Then:

1. If \(e_1 \geq pe/(p+1) \), then the ramification index of any prime over \(\wp \) in the extension \(L(P)/L \) is divisible by \((p^2 - 1)/\gcd(p^2 - 1, e) \).
2. If \(e_1 < pe/(p+1) \),
 - there are \((p^2 - p) \) points \(P \) in \(E[p] \) such that the ramification index of a prime above \(\wp \) in \(L(P)/L \) is divisible by \((p-1)p/(\gcd(p(p-1), e_1)) \).
 - and there are \((p-1) \) points \(P \) in \(E[p] \) such that the ramification index of any prime above \(\wp \) in \(L(P)/L \) is divisible by \((p-1)/\gcd(p-1, e-e_1) \).

In particular, suppose that \(e(\wp, L) = 1 \):

- If \(e_1 < e \), then \(e_1 < pe/(p+1) \) and the ramification index of any prime over \(\wp \) in \(L(P)/L \) is divisible by \((p-1)/(\gcd(p-1, 4)) \).
- If \(p \equiv 1 \mod 12 \), then \(e_1 \geq e \) and the ramification index of any prime over \(\wp \) in \(L(P)/L \) is divisible by \((p^2 - 1)/\gcd(p^2 - 1, e) \).

Acknowledgements. I would like to thank Kevin Buzzard, Brian Conrad, and Felipe Voloch for several useful references and suggestions. I am also thankful to the anonymous referee for numerous suggestions, and a very thorough report.

2. First examples

Before we dive deeper into the theory, let us exhibit two examples of elliptic curves over \(L = \mathbb{Q} \) and one curve defined over a quadratic field \(L = \mathbb{Q}(\sqrt{13}) \), together with their minimal fields of good reduction (over \(L^{nr}_p \)), and the values of \(e \) and \(e_1 \). The calculations have been completed with the aid of the software packages Sage [9] and Magma [5].

Example 2.1. Let \(E/\mathbb{Q} \) be the elliptic curve with Cremona label “121c2”, with \(j(E) = -11 \cdot 131^3 \), given by a Weierstrass equation

\[
y^2 + xy = x^3 + x^2 - 3632x + 82757.
\]

The elliptic curve \(E \) has bad additive reduction at \(p = 11 \), but potential good supersingular reduction at the same prime. The extension \(K = K_E \) of \(\mathbb{Q}^{nr}_p \) is given by adjoining \(\pi = \sqrt[3]{11} \), thus \(e = 3 \). The curve \(E \) has a minimal model with good supersingular reduction of the form

\[
y^2 + \sqrt[3]{11}xy = x^3 + \sqrt[3]{11}^2 x^2 + 3\sqrt[3]{11}x + 2
\]
over $\mathbb{Q}_{11}^m(\pi)$, where $\pi = \sqrt[11]{11}$, and the discriminant of this model is $\Delta = -1$. The multiplication-by-11 map on the associated formal group \tilde{E} is given by a power series:

$$[11](Z) = 11Z - 55\pi Z^2 - 275\pi^2 Z^3 + 42350Z^4 - 181148\pi Z^5 - 659417\pi^2 Z^6 + 96265708Z^7 - 341161040\pi Z^8 - 1521191342\pi^2 Z^9 + 183261837077Z^{10} - 497606935519\pi Z^{11} + O(Z^{12}).$$

Since $497606935519 = 17 \cdot 23 \cdot 151 \cdot 8428159$ is relatively prime to 11, we conclude that $e_1 = \nu_K(s_{11}) = \nu_K(-497606935519\pi) = 1$.

Example 2.2. Let E/\mathbb{Q} be the elliptic curve with Cremona label “27a4”, with $j(E) = -2^{15} \cdot 3 \cdot 5^3$, given by a Weierstrass equation

$$y^2 + y = x^3 - 30x + 63.$$

The elliptic curve E has bad additive reduction at $p = 3$, but potential good supersingular reduction at the same prime. The extension $K = K_E$ of \mathbb{Q}_3^m is given by adjoining $\alpha = \sqrt[3]{3}$ and a root β of $x^3 - 120x + 506 = 0$. The result is an extension $K = \mathbb{Q}_3^m(\alpha, \beta)$ of degree $e = 12$. For convenience we write $K = \mathbb{Q}_3^m(\gamma)$ where γ is a root of $p(x) = 0$, with

$$p(x) = x^{12} - 480x^{10} - 2024x^9 + 86391x^8 + 728640x^7 - 5378664x^6 - 87509664x^5 - 161677413x^4 + 2979983776x^3 + 22119216120x^2 + 62098532232x + 65301304309.$$

The curve E has a minimal model with good supersingular reduction (which we will not write here, because the coefficients are unwieldy expressions in γ). The multiplication-by-3 map on the associated formal group \tilde{E} is given by a power series:

$$[3](Z) = 3Z + s_3Z^3 + O(Z^4),$$

where

$$s_3 = \frac{91366247104560778}{113527481110579959} \gamma^{11} - \frac{1556952329592412502}{340582443331739877} \gamma^{10} + \frac{3943076616393619924}{340582443331739877} \gamma^9 + \cdots + \frac{495013631117553848}{340582443331739877} \gamma^2 - \frac{544095024526171682}{113527481110579959} \gamma - \frac{3353034524919522230}{340582443331739877}.$$

The valuation we sought (computed with Sage) is $\nu_K(s_3) = 2$. Hence, $e_1 = 2$ in this case.

Example 2.3. Let j_0 be a root of the polynomial

$$x^2 - 6896880000x - 567663552000000,$$

and let $L = \mathbb{Q}(j_0) = \mathbb{Q}(\sqrt[3]{13})$. Let $p = 13$ and let $\phi = (\sqrt[3]{13})$ be the ideal above p in O_L. Let E/L be the elliptic curve with j-invariant equal to j_0. The curve E has complex multiplication by $\mathbb{Z}[\sqrt{-13}]$, i.e., $\text{End}(E/\mathcal{O}) \cong \mathbb{Z}[\sqrt{-13}]$ and, in fact, all the endomorphisms are defined over $\mathbb{Q}(\sqrt{13}, i)$, see [13], Chapter 2, Theorem 2.2(b)). Since 13 ramifies in L, it follows from Deuring’s criterion (see [4], Ch. 13, §4, Theorem 12) that the reduction of E at ϕ is potential supersingular. We choose a model for E/L given by

$$y^2 = x^3 + \frac{5231j_0 - 5069288080000}{3825792}x + \frac{-550711j_0 + 44853961842000000}{239112}.$$
The discriminant of this model is $\Delta_L = 13546495176890000_{26889}-93429639900045292464000000$ and $\nu_{\wp}(\Delta_L) = 0$. Hence, E/L has good supersingular reduction at \wp. In particular $K_E = L_{\wp}^{nr}$ and $e = 2$. The multiplication-by-13 map on the associated formal group \hat{E} is given by a power series:

$$[13](Z) = 13Z + \frac{-8092357j_0 + 78421886609976000}{39852}Z^5 + \ldots + s_{13}Z^{13} + O(Z^{15})$$

where

$$s_{13} = \frac{-193923815261040770875476640000}{29889}.$$

Since $\nu_K(s_{13}) = \nu_{\wp}(s_{13}) = 1$, we conclude that $e_1 = 1$. The formal group and the valuation of s_{13} were calculated using Magma [5]. Thanks to Harris Daniels for providing the polynomial that defines j_0.

Remark 2.4. Let N be the part of the Newton polygon of $[p](Z)$ that describes the roots of valuation > 0. Let $P_0 = (1, e)$, $P_1 = (p, e_1)$, and $P_2 = (p^2, 0)$. The slope of the segment P_0P_1 is $-(e-e_1)/(p-1)$, while the slope of the segment P_0P_2 is $-e/(p^2-1)$. It follows from the theory of Newton polygons (see [10], p. 272) that:

1. If $pe/(p+1) < e_1$, then N is given by a single segment P_0P_2.
2. Otherwise, if $pe/(p+1) \geq e_1$, then N is given by two segments P_0P_1 and P_1P_2.

In particular, if $e_1 \geq e$, then N has one single segment. We will frequently focus on the case $e_1 < e$, in which case the Newton Polygon may have two segments. In this case, we shall show later (Corollary 3.2) that e_1 is independent of the chosen minimal model for E/K.

3. A FORMULA FOR e_1

In this section we prove a formula for e_1 in terms of the valuations of the constants c_4 and c_6 of a minimal model for E/A. We need a number of preliminary results before we state and prove our formulas in Theorem 3.9 and Corollary 3.12. Let us begin with some further details about the extension K_E/L_{\wp}^{nr} that was mentioned in the introduction. We follow Serre and Tate (see in particular [11] p. 498, Cor. 3) to define an extension K_E of L_{\wp}^{nr} of minimal degree such that E has good reduction over K_E. Let ℓ be any prime such that $\ell \neq p$, and let $T_\ell(E)$ be the ℓ-adic Tate module. Let $\rho_{E,\ell} : \text{Gal}(\overline{L_{\wp}^{nr}/L_{\wp}^{nr}}) \to \text{Aut}(T_\ell(E))$ be the usual representation induced by the action of Galois on $T_\ell(E)$. We define the field K_E as the extension of L_{\wp}^{nr} such that

$$\text{Ker}(\rho_{E,\ell}) = \text{Gal}(\overline{L_{\wp}^{nr}/K_E}).$$

In particular, the field K_E enjoys the following properties:

1. E/K_E has good (supersingular) reduction.
2. K_E is the smallest extension of L_{\wp}^{nr} such that E/K_E has good reduction, i.e., if K'/L_{\wp}^{nr} is another extension such that E/K' has good reduction, then $K_E \subseteq K'$.
3. K_E/L_{\wp}^{nr} is finite and Galois. Moreover (see [10], §5.6, p. 312 when $L = \mathbb{Q}$, but the same reasoning holds over number fields, as the work of Néron is valid for any local field, [8] p. 124-125):
 - If $p > 3$, then K_E/L_{\wp}^{nr} is cyclic of degree 1, 2, 4, or 6.
 - If $p = 3$, the degree of K_E/L_{\wp}^{nr} is a divisor of 12.
 - If $p = 2$, the degree of K_E/L_{\wp}^{nr} is 2, 3, 4, 6, 8, or 24.
As before, we will write $K = K_E$. Let ν_K be a valuation on K such that $\nu_K(p) = e$ and $\nu_K(\pi) = 1$, where π is a uniformizer for K. Let A be the ring of elements of K with valuation ≥ 0.

Proposition 3.1. Let $\omega(Z) = (1 + \sum_{i=1}^{\infty} w_i Z^i)dz$ be the unique normalized invariant differential associated to \hat{E} (as in [12], IV, §4), with $w_i \in A$ for all $i \geq 1$. Then,

$$[p](Z) = \sum_{i=1}^{\infty} s_i Z^i \equiv w_{p-1} Z^p + O(Z^{p+1}) \mod pA.$$

In particular, $s_p \equiv w_{p-1} \mod pA$. Thus, if $\nu_K(w_{p-1}) < e$, then $e_1 = \nu_K(s_p) = \nu_K(w_{p-1})$.

Otherwise, if $\nu_K(w_{p-1}) \geq e$, then $e_1 \geq e$.

Proof. The congruence is shown in [2], Lemma 3.6.5, so here we just give the key ingredients in the proof. Let $\varphi(Z) = Z + \sum_{k=2}^{\infty} \frac{w_{k-1}}{k} Z^k$ so that $\omega = d(\varphi(Z))$, and let $\psi(Z)$ be the inverse series to $\varphi(Z)$, so that $\psi(\varphi(Z)) = Z$. Since ω is the normalized invariant differential for \hat{E}, it follows that $p\omega(Z) = (\omega \circ [p])(Z)$ (see [12], Ch. IV, Cor. 4.3), and therefore $[p](Z) = \psi(p\varphi(Z))$. The desired congruence falls out from this and the equality $\psi(\varphi(Z)) = Z$.

The congruence implies that $s_p = w_{p-1} + p\alpha$, for some $\alpha \in A$. In particular,

$$\nu_K(s_p) \geq \min\{\nu_K(w_{p-1}), \nu_K(p\alpha)\} = \min\{\nu_K(w_{p-1}), e + \nu_K(\alpha)\}.$$

If we assume that $\nu_K(w_{p-1}) < e$, then $\nu_K(w_{p-1}) < e + \nu_K(\alpha)$, and the inequality is in fact an equality and $\nu_K(s_p) = \nu_K(w_{p-1})$. Otherwise, if $\nu_K(w_{p-1}) \geq e$, then $e_1 = \nu_K(s_p) \geq e$, as claimed. \square

Corollary 3.2. Let $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ and $y^2 + a'_1xy + a'_3y = x^3 + a'_2x^2 + a'_4x + a'_6$ be two minimal models for an elliptic curve E/A and let $[p](Z) = \sum s_i Z^i$ and $[p]'(Z) = \sum s'_i(Z)$ be the multiplication-by-p maps for their respective formal group. Then, there is a constant $u \in A^\times$ such that $s_p \equiv w_{p-1} s'_p \mod pA$. In particular, if $e_1 < e$, then the number $e_1 = \nu_K(s_p)$ as defined above is independent of the chosen minimal model for the elliptic curve E/A.

Proof. Let

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

be two minimal models, with $a_i, a'_i \in A$, for the same elliptic curve E/A, and let \hat{E}/A and \hat{E}'/A be the formal groups associated to each model, with formal group laws given by $F(X, Y)$ and $F'(X, Y)$, respectively. Since these are minimal models for the same curve E/A, it follows that (\hat{E}, F) and (\hat{E}', F') are isomorphic formal groups (see [12], Ch. VII, Prop. 2.2). Thus, there is a power series $f(Z) = uZ + O(Z^2)$, for some $u \in A^\times$, such that

$$f(F(X, Y)) = F'(f(X), f(Y)).$$

Let $\omega(Z) = \sum w_n Z^n$, $[p](Z) = \sum s_i Z^i$ and $\omega'(Z) = \sum w'_n Z^n$, $[p]'(Z) = \sum s'_i(Z)$ be the invariant differentials, and multiplication-by-p maps, for \hat{E} and \hat{E}', respectively. Then, by Prop. 3.1:

$$f([p](Z)) = [p]'(f(Z)) = \sum s'_i(f(Z)) \equiv w_{p-1}^p(f(Z))^p + \ldots \equiv u^p \cdot w_{p-1}^p Z^p + O(Z^{p+1})$$

and

$$f([p](Z)) = u([p](Z)) + \ldots \equiv u(w_{p-1} Z^p + \ldots) + \ldots \equiv u \cdot w_{p-1} Z^p + O(Z^{p+1})$$
Therefore, $w^p \cdot w_{p-1}' \equiv u \cdot w_{p-1} \mod pA$, or $w_{p-1} \equiv u^{p-1}w_{p-1}' \mod pA$. Hence $s_p \equiv u^{p-1}s_p' \mod pA$, as claimed.

In particular, if $e_1 < e$, and $e_1 = \nu_K(s_p)$ and $e_1' = \nu_K(s_p')$, then there is some $\alpha \in A$ such that $s_p = u^{p-1}s_p' + p\alpha$. Hence:

$$e_1 = \nu_K(s_p) = \nu_K(u^{p-1}s_p' + p\alpha) = \min\{\nu_K(s_p'), e + \nu_K(\alpha)\} = \nu_K(s_p') = e_1'.$$

Thus, the valuation of s_p is independent of the chosen minimal model for E/A. \hfill \square

Remark 3.3. Here is an alternative proof of Corollary 3.2 using the Hasse invariant $H(E, \omega)$ as defined by Katz in [2], Section 2.0. Let E/A be given by a minimal model $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$

with $a_i \in A$, and let $\omega = dx/(2y + a_1x + a_3)$ be an invariant differential for E/A. Let $H(E, \omega)$ be the Hasse invariant. Moreover, let \hat{E}/A be the associated formal group, let

$$\omega(Z) = (1 + \sum_{n=1}^{\infty} w_n Z^n) dZ = (1 + a_1Z + (a_1^2 + a_2)Z^2 + \ldots) dZ,$$

be the unique normalized invariant differential associated to \hat{E} and write $[p](Z) = \sum_{i=1}^{\infty} s_i Z^i$, as before. Then, Lemmas 3.6.1 and 3.6.5 of [2] imply that $a_p \equiv H(E, \omega) \mod pA$.

Now, if

$$y^2 + a_1'xy + a_3'y = x^3 + a_2'x^2 + a_4'x + a_6',$$

is another minimal model for E/A, then there is a constant $u \in A^\times$ such that the new invariant differential ω' and ω are related by $\omega' = u\omega$, and $H(E, \omega) = u^{p-1}H(E, \omega)$ (see [2], p. Ka-29). If \hat{E}'/A is the formal group associated to this new minimal model, and $[p]'(Z) = \sum_{i=1}^{\infty} s_i' Z^i$, then

$$s_p \equiv H(E, \omega) \equiv u^{p-1}H(E, \omega') \equiv u^{p-1}s_p' \mod pA.$$

Since we have assumed that $e' = \nu(a_p) < e$, the coefficients s_p and s_p' have the same valuation.

Lemma 3.4. Let E/A be given by a model $y^2 + a_1xy + a_3y - (x^3 + a_2x^2 + a_4x + a_6)$ and let $v(Z) \in A[[Z]]$ be the unique power series such that $v(Z) = f(Z, v(Z))$. The existence of $v(Z)$ is shown in [12], Ch. IV, Prop. 1.1. and, moreover, it is also shown that $v(Z) = Z^3(1 + \sum_{k=1}^{\infty} A_k Z^k) \in \mathbb{Z}[a_1, \ldots, a_6][[Z]]$. When we assign weights $\text{wt}(a_i) = i$, then A_n is homogeneous of weight n.

Proof. Let $f(x, y) = y^2 + a_1xy + a_3y - (x^3 + a_2x^2 + a_4x + a_6)$ and let $v(Z) \in A[[Z]]$ be the unique power series such that $v(Z) = f(Z, v(Z))$. The existence of $v(Z)$ is shown in [12], Ch. IV, Prop. 1.1. and, moreover, it is also shown that $v(Z) = Z^3(1 + \sum_{k=1}^{\infty} A_k Z^k) \in \mathbb{Z}[a_1, \ldots, a_6][[Z]]$. When we assign weights $\text{wt}(a_i) = i$, then A_n is homogeneous of weight n.

Now define $x(Z) = Z/v(Z)$ and $y(Z) = -1/v(Z)$. It follows that the coefficients of Z^n in $Z^2 x(Z)$, $Z^3 \frac{d}{dZ}(x(Z))$, and $Z^3 y(Z)$ are homogeneous of weight n. Since

$$\omega(Z) = \left(\frac{\frac{d}{dZ}(x(Z))}{2y(Z) + a_1X(Z) + a_3}\right) dZ = \left(\frac{Z^3 \frac{d}{dZ}(x(Z))}{2Z^3y(Z) + (a_1Z)(Z^2 x(Z)) + a_3Z^3}\right) dZ,$$

it follows that w_n, the coefficient of Z^n in $\omega(Z)$, must be homogeneous of degree n, as claimed. \hfill \square
Lemma 3.5. Let E/A be given by a model $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$, with $a_i \in A$, with discriminant $\Delta(E)$ and j-invariant $j(E)$, and let $\omega(Z) = \sum w_n Z^n$ be the normalized invariant differential on \hat{E}/A. Define the constants $b_2, b_4, b_6, b_8, c_4,$ and $c_6 \in A$ as usual, such that

$$y^2 = x^3 - 27c_4x - 54c_6$$

is an alternative model for E/A (which is also minimal as long as $p \neq 2$ or 3), and such that

$$1728\Delta(E) = c_4^3 - c_6^2 \text{ and } j(E) = \frac{c_4}{\Delta}.$$

Then:

1. With the grading $\text{wt}(a_k) = k$, the constants $b_{2k}, c_4, c_6 \in \mathbb{Z}[a_1, a_2, a_3, a_4, a_6]$ have weights $2k$, 4 and 6, respectively.
2. We have $w_1^3 \equiv a_1^3 \equiv c_4 \mod 2A$, and $w_2^3 \equiv (a_1^2 + a_2^2)^3 \equiv c_4 \mod 3A$.
3. Let $p > 3$ and let $R = \mathbb{Z}[X, Y]$ be a graded ring with $\text{wt}(X) = 4$ and $\text{wt}(Y) = 6$. Then, there is a constant $u \in A^\times$ and a homogeneous polynomial $P_p(X, Y) \in R$ of degree $p - 1$ such that $w_{p - 1} \equiv u^{p - 1}P_p(c_4, c_6) \mod pA$.

Proof. Part (1) follows directly from inspection of the formulas that define $b_2, \ldots, b_8, c_4, c_6$ (see for instance [12], Ch. III.1, but notice that there is a typo in the formula for b_2; the correct formula is $b_2 = a_1^2 + 4a_2$).

Part (2) follows from the expression of $\omega(Z)$ in terms of a_1, \ldots, a_6:

$$\omega(Z) = (1 + a_1 Z + (a_1^2 + a_2)Z^2 + (a_1^3 + 2a_1a_2 + 2a_3)Z^3 + \cdots)dZ$$

together with the fact that from the formulas one can easily check that $c_4 \equiv b_2^3 \mod 6$, $b_2 = a_1^2 + 4a_2 \equiv a_1^2 \mod 2$, and $b_2 = a_1^2 + a_2 \mod 3$.

To show part (3), let us assume that $p > 3$. Thus, E/A has a minimal model of the form $y^2 = x^3 - 27c_4x - 54c_6$. Let \hat{E}'/A be the formal group associated to this model, and let $\omega'(Z) = \sum w'_n Z^n$ be its normalized invariant differential. By Lemma 3.4, $w_{p - 1}$ may be expressed as a homogeneous polynomial in $\mathbb{Z}[a'_4, a'_6]$, where $a'_4 = -27c_4$ and $a'_6 = -54c_6$. Hence, there is a polynomial $P_p \in R = \mathbb{Z}[X, Y]$ such that $w_{p - 1} = P_p(c_4, c_6)$. Now, if E/A is given by any other minimal model, Prop. 3.1 and Cor. 3.2 combined say that there exists some $u \in A^\times$ such that $w_{p - 1} \equiv s_p \equiv u^{p - 1}s_p' \equiv u^{p - 1}w'_{p - 1} \equiv u^{p - 1}P_p(c_4, c_6) \mod pA$,

as claimed. \square

Before we state the next result, we define quantities $r(p)$ and $s(p)$ for each prime $p > 3$, by

$$r(p) = \begin{cases} 1, & \text{if } p \equiv 5 \text{ or } 11 \mod 12, \\ 0, & \text{if } p \equiv 1 \text{ or } 7 \mod 12, \end{cases}$$

and

$$s(p) = \begin{cases} 1, & \text{if } p \equiv 3 \mod 4, \\ 0, & \text{if } p \equiv 1 \mod 4. \end{cases}$$

Equivalently, $r(p) = \frac{1}{2} \left(1 - \left(\frac{-3}{p} \right) \right)$ and $s(p) = \frac{1}{2} \left(1 - \left(\frac{-4}{p} \right) \right)$, where $\left(\frac{\cdot}{p} \right)$ is the Legendre symbol.
Lemma 3.6. Let $p > 3$ be a prime, and let $R = \mathbb{Z}[X,Y]$ be a graded ring with $\text{wt}(X) = 4$ and $\text{wt}(Y) = 6$. Suppose $P(X,Y) \in R$ is homogeneous of degree $p-1$, and let Δ and j be two extra variables such that $1728\Delta = X^3 - Y^2$ and $\Delta \cdot j = X^3$. Then, there is some polynomial $Q(T) \in \mathbb{Z}[T]$ such that:

$$P(X,Y) = X^{r(p)}Y^{s(p)}\Delta^{p-\alpha\over 12}Q(j),$$

where $\alpha = 1, 5, 7$ or 11, and such that $p \equiv \alpha \mod 12$.

Proof. Suppose that $p > 3$ is a prime with $p \equiv \alpha \mod 12$, with $\alpha = 1, 5, 7$ or 11. Since $P(X,Y)$ is homogeneous of degree $p-1$, we can write

$$P(X,Y) = \sum c_{a,b}X^aY^b$$

such that $a, b \geq 0$, $4a + 6b = p - 1$, and $c_{a,b} \in \mathbb{Z}$. Since $p \equiv \alpha \mod 12$, there is some integer $t \geq 0$ such that $p = \alpha + 12t$. In particular, $4a + 6b = (\alpha - 1) + 12t$, or $2a + 3b = \frac{\alpha - 1}{2} + 6t$. Notice that $2r(p) + 3s(p) = \frac{\alpha - 1}{2}$. It follows that $a, b > 0$, and we may write

$$P(X,Y) = \sum c_{a,b}X^aY^b = X^{r(p)}Y^{s(p)}\sum c_{a,b}X^{a-r(p)}Y^{b-s(p)}$$

and $2(a - r(p)) + 3(b - s(p)) = 6t$. We conclude that $a - r(p) \equiv 0 \mod 3$, and $b - s(p) \equiv 0 \mod 2$.

Let us write $a - r(p) = 3f$ and $b - s(p) = 2g$, so that

$$P(X,Y) = X^{r(p)}Y^{s(p)}\sum c_{3f+3r(p),2g+s(p)}(X^3)^{f}(Y^2)^g$$

where $f, g \geq 0$ and $f + g = t = \frac{p-\alpha}{12}$. Put $d_{f,g} = c_{3f+3r(p),2g+s(p)}$. Then:

$$P(X,Y) = X^{r(p)}Y^{s(p)}\sum d_{f,g}(X^3)^{f}(Y^2)^g$$

$$= X^{r(p)}Y^{s(p)}\sum d_{f,g}(X^3)^{f}(X^3 - 1728\Delta)^{p-\alpha\over 12}f$$

$$= X^{r(p)}Y^{s(p)}\Delta^{p-\alpha\over 12}\sum d_{f,g}f\left(X^3\over \Delta\right)^f\left(X^3 - 1728\Delta\over \Delta\right)^{p-\alpha\over 12}f$$

$$= X^{r(p)}Y^{s(p)}\Delta^{p-\alpha\over 12}\sum d_{f,g}f(j - 1728\Delta)^{p-\alpha\over 12}f.$$

Hence, if we define a polynomial $Q(T) = \sum d_{f,g}f(T - 1728\Delta)^{p-\alpha\over 12}f \in \mathbb{Z}[T]$, then

$$P(X,Y) = X^{r(p)}Y^{s(p)}\Delta^{p-\alpha\over 12}Q(j),$$

as desired. \qed

Definition 3.7. Let $p > 3$ be a prime and let $P_p(X,Y)$ be the polynomial whose existence was shown in Lemma 3.5. We define $Q_p(T) \in \mathbb{Z}[T]$ as the unique polynomial with integer coefficients such that

$$P_p(X,Y) = X^{r(p)}Y^{s(p)}\Delta^{p-\alpha\over 12}Q_p(j),$$

where, as usual, $1728\Delta = X^3 - Y^2$ and $\Delta \cdot j = X^3$, and $\alpha = 1, 5, 7$ or 11 such that $p \equiv \alpha \mod 12$.

Remark 3.8. Let $p > 3$. The polynomial $P_p(c_4, c_6)$ of Lemma 3.5 can be explicitly calculated (mod pA) as follows. Let E/A be given by $y^2 + a_1xy + a_2y = x^3 + a_2x^2 + a_4x + a_6$, with $a_1 \in A$, and let $\omega = dx/(2y + a_1x + a_3)$ be an invariant differential for E/A. Let $\mathcal{H}(E, \omega)$ be the Hasse invariant (as in Remark 3.3). Then $w_{p-1} \equiv \mathcal{H}(E, \omega) \mod pA$. The curve E/A is also given by a minimal model $E'/A : y^2 = x^3 - 27c_4x - 54c_6$ and it is well known that the Hasse invariant $\mathcal{H}(E', \omega')$ of a
Theorem 3.9. Let E/L be an elliptic curve with potential good supersingular reduction at a prime \wp above a prime p. Let $K = K_E$ be the extension of L_\wp^{nr} defined above, let A, $e = \nu_K(p)$, and e_1 be as before, and let $e_1(\wp, L)$ be the ramification index of \wp in L/Q. Let $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ be a minimal model for E/A with good reduction, and let $c_4, c_6 \in A$ be the usual quantities associated to this model. Then:

1. If $p = 2$, and $\frac{\nu_K(c_4)}{4} < e$, then
 \[
 e_1 = e = \nu_K(j(E)) = e \cdot \nu_\wp(j(E)) = \frac{e \cdot \nu_\wp(j(E))}{12e(\wp, L)}.
 \]

2. If $p = 3$, and $\frac{\nu_K(c_4)}{2} < e$, then
 \[
 e_1 = \nu_K(c_4) = \nu_K(j(E)) = e \cdot \nu_\wp(j(E)) = \frac{e \cdot \nu_\wp(j(E))}{6e(\wp, L)}.
 \]

3. If $p > 3$, and $\lambda = r(p)\nu_K(c_4) + s(p)\nu_K(c_6) + \nu_K(Q_p(j(E))) < e$, then
 \[
 e_1 = \lambda = \frac{r(p)\nu_K(j(E))}{3} + s(p)\nu_K(j(E) - 1728) + \nu_K(Q_p(j(E)))
 \]
 \[
 = \frac{e}{e(\wp, L)} \cdot \left(r(p)\nu_\wp(j(E)) + s(p)\nu_\wp(j(E) - 1728) + \nu_\wp(Q_p(j(E))) \right).
 \]

Otherwise, $e_1 \geq e$.

Proof. Let \hat{E}/A be the formal group associated to E and let $[p](Z) = \sum_{i=1}^\infty s_i Z^i$ be the multiplication-by-p map on \hat{E}. By definition, $e = \nu_K(p)$ and $e_1 = \nu_K(s_p)$. Moreover, by Proposition 3.1, we know that if $\nu_K(w_{p-1}) < e$, then $e_1 = \nu_K(w_{p-1})$ where $\omega(Z) = (1 + \sum_{i=1}^\infty w_i Z^i)$$dZ$ is the normalized invariant differential for \hat{E}, and $e_1 \geq e$ otherwise. Let us assume that $\nu_K(w_{p-1}) < e$. Now we can use Lemma 3.5:
(1) If \(p = 2 \), then \(w_4^1 \equiv c_4 \mod 2A \). Since we are assuming that \(\nu_K(2) = e > \nu_K(w_1) \), we must have \(4\nu_K(w_1) = \nu_K(w_4^1) = \nu_K(c_4) \), and it follows that \(e_1 = \nu_K(c_4)/4 \).

(2) Similarly, if \(p = 3 \), then \(w_2^2 \equiv c_4 \mod 3A \). Hence, \(e_1 = \nu_K(c_4)/2 \).

(3) Suppose \(p > 3 \). Then, there is a constant \(u \in A^\times \) and a homogeneous polynomial \(P_p(X, Y) \in R \) of degree \(p-1 \) (where \(\operatorname{wt}(X) = 4 \) and \(\operatorname{wt}(Y) = 6 \)) such that \(w_{p-1} \equiv u^{p-1}P_p(c_4, c_0) \mod pA \). Let \(\alpha = 1, 5, 7, \) or 11, such that \(p \equiv \alpha \mod 12 \). Then, by Lemma 3.6, there is a polynomial \(Q_p(T) \in Z[T] \) such that

\[
w_{p-1} \equiv u^{p-1}c_4^r(p)c_6^s(p)\Delta(E)\frac{\nu_{\wp}}{12}Q_p(j(E)) \mod pA.
\]

Since \(E/L \) has potential good reduction, the \(j \)-invariant \(j(E) \) is integral at \(\wp \) (see [12], Ch. VII, Prop. 5.5), thus via our fixed embedding \(\iota \), we have \(j(E) \in A \). Since \(j(E) \in A \cap L_{\wp} \), and \(Q_p(T) \in Z[T] \), it follows that \(Q_p(j(E)) \in A \cap L_{\wp} \). Therefore, \(\nu_K(Q_p(j(E))) \) is a non-negative multiple of \(e/e(\wp, L) \). Define \(\lambda \) as in the statement of the theorem, so that \(\lambda \) equals \(\nu_K(u^{p-1}c_4^r(p)c_6^s(p)\Delta(E)\frac{\nu_{\wp}}{12}Q_p(j(E))) \). Thus, if \(\lambda < e \), it follows that \(\nu_K(w_{p-1}) = \lambda \) and Proposition 3.1 implies that \(e_1 = \lambda \), as desired.

When \(p \equiv 1 \mod 12 \), the quantities \(r(p) \) and \(s(p) \) vanish simultaneously and we obtain the following simpler formula.

Corollary 3.10. Let \(E/L \) be an elliptic curve with potential good supersingular reduction at a prime \(\wp \) above a prime \(p \equiv 1 \mod 12 \). Let \(K_E, A, e \) and \(e_1 \) be as before, and let \(e(\wp, L) \) be the ramification index of \(\wp \) in \(L/Q \). Let \(Q_p(T) \in Z[T] \) be as in Definition 3.7, and define an integer \(\lambda \) by

\[
\lambda = \nu_K(Q_p(j(E))) = e/e(\wp, L) \cdot \nu(\wp)(Q_p(j(E))).
\]

If \(\lambda < e \), then \(e_1 = \lambda > 1 \). Otherwise, if \(\lambda \geq e \), then \(e_1 \geq e \). In particular, if \(e(\wp, L) = 1 \) or \(\nu(\wp)(Q_p(j(E))) = 0 \), then \(e_1 = e \).

The value of \(e/e(\wp, L) \), and therefore the value of \(e \), can be obtained directly from a model of \(E/L \), thanks to the classification of Néron models. As a reference for the following theorem, the reader can consult [8], p. 124-125, or [10], §5.6, p. 312, where \(\text{Gal}(K_E/L^\wp) \) is denoted by \(\Phi_p \), and therefore \(e/e(\wp, L) = \text{Card}(\Phi_p) \). Notice, however, that the section we cite of [10] restricts its attention to the case \(L = Q \).

Theorem 3.11. Let \(p > 3 \), let \(E/L \) be an elliptic curve with potential good reduction, and let \(\Delta_L \) be the discriminant of any model of \(E \) defined over \(L \). Let \(K_E \) be the smallest extension of \(L^\wp \) such that \(E/K_E \) has good reduction. Then \(e/e(\wp, L) = [K_E:L^\wp] = 1, 2, 3, 4, \) or \(6 \). Moreover:

- \(e/e(\wp, L) = 2 \) if and only if \(\nu(\wp)(\Delta_L) \equiv 6 \mod 12 \),
- \(e/e(\wp, L) = 3 \) if and only if \(\nu(\wp)(\Delta_L) \equiv 4 \) or \(8 \mod 12 \),
- \(e/e(\wp, L) = 4 \) if and only if \(\nu(\wp)(\Delta_L) \equiv 3 \) or \(9 \mod 12 \),
- \(e/e(\wp, L) = 6 \) if and only if \(\nu(\wp)(\Delta_L) \equiv 2 \) or \(10 \mod 12 \).

Therefore, our formula for \(e_1 \) only depends on the \(\wp \)-adic valuation of \(j(E) \), \(j(E) - 1728 \), and \(\Delta_L \).

Corollary 3.12. Let \(p > 3 \) be a prime and let \(E/L \) be an elliptic curve with potential supersingular good reduction at a prime \(\wp \) above \(p \). Let \(e(\wp, L) \) be the ramification index of \(\wp \) in \(L/Q \). Let \(j(E) \in L \).
be its j-invariant, let Δ_L be the discriminant of a model for E over L, and define an integer λ as follows:

- If $\nu_\varphi(\Delta_L) \equiv 6 \mod 12$, then $e/e(\varphi, L) = 2$. Let
 \[\lambda = \frac{2}{3} r(p)\nu_\varphi(j(E)) + s(p)\nu_\varphi(j(E) - 1728) + 2\nu_\varphi(Q_p(j(E))), \]
- If $\nu_\varphi(\Delta_L) \equiv 4 \text{ or } 8 \mod 12$, then $e/e(\varphi, L) = 3$. Let
 \[\lambda = r(p)\nu_\varphi(j(E)) + \frac{3}{2} s(p)\nu_\varphi(j(E) - 1728) + 3\nu_\varphi(Q_p(j(E))), \]
- If $\nu_\varphi(\Delta_L) \equiv 3 \text{ or } 9 \mod 12$, then $e/e(\varphi, L) = 4$. Let
 \[\lambda = \frac{4}{3} r(p)\nu_\varphi(j(E)) + 2s(p)\nu_\varphi(j(E) - 1728) + 4\nu_\varphi(Q_p(j(E))), \]
- If $\nu_\varphi(\Delta_L) \equiv 2 \text{ or } 10 \mod 12$, then $e/e(\varphi, L) = 6$. Let
 \[\lambda = 2r(p)\nu_\varphi(j(E)) + 3s(p)\nu_\varphi(j(E) - 1728) + 6\nu_\varphi(Q_p(j(E))). \]

If $\lambda < e$, then $e_1 = \lambda$. Otherwise, if $\lambda \geq e$, then $e_1 \geq e$.

4. More examples

In this section we provide a few examples of usage of the formula for e_1 developed in Theorem 3.9.

Example 4.1. Let us return to the curve E/\mathbb{Q} with label “121c2”. In Example 2.1 we showed a minimal model over $\mathbb{Q}_{11}^\text{nr}(\sqrt{11})$ and we proved that $e_1 = 1$. We can verify the value $e_1 = 1$ using the formula of Theorem 3.9. Here $p = 11$, so $r(11) = s(11) = 1$, and $L = \mathbb{Q}$, so $e(\varphi, L) = 1$. Moreover, for the chosen minimal model we have quantities

\[c_4 = 131\sqrt{11}, \quad c_6 = -4973. \]

Moreover, we saw in Remark 3.8 that $Q_{11}(T) = 29160 = 2^3 \cdot 3^6 \cdot 5$. Thus,

\[\lambda = \nu_K(c_4) + \nu_K(c_6) + \nu_K(Q_p(j)) = \nu_K(131\sqrt{11}) + \nu_K(-4973) + \nu_K(29160) = 1 + 0 + 0 = 1. \]

Since $\lambda < e = 3$, we conclude that $e_1 = \lambda = 1$. We may also verify this value using the formula in Corollary 3.12. The discriminant of the model for E/\mathbb{Q} given in Example 2.1 is $\Delta_{Q} = -11^8$, we have $j(E) = -11 \cdot 131^3$ and $j(E) - 1728 = -4973^2$. Hence:

\[\lambda = r(p)\nu_p(j(E)) + \frac{3}{2} s(p)\nu_p(j(E) - 1728) + 3\nu_p(Q_p(j(E))) = 1 \cdot 1 + \frac{3}{2} \cdot 1 \cdot 0 + 3 \cdot 0 = 1. \]

and so, $e_1 = \lambda = 1$.

Example 4.2. Let E'/\mathbb{Q} be the curve with label “121a1”, given by a Weierstrass equation

\[y^2 + xy + y = x^3 + x^2 - 30x - 76. \]

The j-invariant of E' is $j(E') = -11 \cdot 131^3$, equal to $j(E)$, where E is “121c2” as in Examples 2.1 and 4.1. Thus, E' is a quadratic twist of E. Indeed, E' is the quadratic twist of E by -11. In particular, E and E' are isomorphic over $\mathbb{Q}(\sqrt{-11})$. Since $K_E = \mathbb{Q}_{11}^\text{nr}(\sqrt{11})$, it follows that

\[K_{E'} = \mathbb{Q}_{11}^\text{nr}(\sqrt{11}, \sqrt{-11}) = \mathbb{Q}_{11}^\text{nr}(\sqrt[3]{11}). \]
Thus, $e = e(E') = 6$, while $e = e(E) = 3$, and $\nu_{K_{E'}}(\kappa) = 2\nu_{K_E}(\kappa)$ for any $\kappa \in K_E \subseteq K_{E'}$. Moreover, since $K_E \subseteq K_{E'}$, the minimal model for E over \overline{K}_E,

$$y^2 + \sqrt{11}xy = x^3 + \sqrt{11}^2x^2 + 3\sqrt{11}x + 2,$$

is also a minimal model for E' over $K_{E'}$. It follows that

$$\lambda(E') = \nu_{K_{E'}}(c_4) + \nu_{K_{E'}}(c_6) + \nu_{K_{E'}}(Q_{11}(j)) = 2\nu_{K_E}(c_4) + 2\nu_{K_E}(c_6) + 2\nu_{K_E}(Q_{11}(j)) = 2 \cdot 1 + 0 + 0 = 2,$$

where we have used the fact that $c_4, c_6 \in K_E$. Since $\lambda(E') < e(E') = 6$, we conclude that $e_1(E') = 2$.

Alternatively, we can verify $e_1(E') = 2$ using the formula of Cor. 3.12. The discriminant of the rational model for E'/\mathbb{Q} listed above is $\Delta_Q = -11^2$. Moreover, $j(E') = -11 \cdot 13^3$, and $j(E') - 1728 = -4973^2$. Hence:

$$\lambda = 2r(p)\nu_\varphi(j) + 3s(p)\nu_\varphi(j - 1728) + 6\nu_\varphi(Q_p(j)) = 2 \cdot 1 \cdot 1 + 3 \cdot 1 \cdot 0 + 6 \cdot 0 = 2.$$

Hence, $e_1 = \lambda = 2$.

Example 4.3. In Example 2.2 we looked at the elliptic curve E/\mathbb{Q} with label “27a4”, for $p = 3$, and concluded that $e_1 = 2$. The constant c_4 (which we will not write explicitly here due again to its unwieldy form in terms of γ) for the minimal model we used to compute e_1 has valuation $\nu_K(c_4) = 4$, in agreement with the formula $e_1 = \nu_K(c_4)/2$ given by Theorem 3.9. Alternatively, and much easier to compute,

$$\lambda = \frac{e \cdot \nu_\varphi(j(E))}{6} = \frac{12 \cdot 15(-215 \cdot 3 \cdot 5^3)}{6} = 2.$$

Since $2 = \lambda < e = 12$, we conclude that $e_1 = \lambda = 2$.

Example 4.4. Let $L = \mathbb{Q}(\sqrt{13})$, put $p = 13$ and $\varphi = (\sqrt{13})$, and let E/L be the elliptic curve with j-invariant j_0 as described in Example 2.3. There we found that $K = L^\mu_p$. Thus, $e = e(\varphi, L) = 2$, and we calculated directly that $e_1 = 1$. Since $p \equiv 1 \mod 12$, we may use Corollary 3.10 to verify that indeed $e_1 = 1$. Here $e(\varphi, L) = 2$, and we know from Remark 3.8 that $Q_{13}(T) = -349920T - 75582720$. One can verify (using Sage or Magma) that

$$\nu_\varphi(Q_{13}(j_0)) = \nu_\varphi(-349920j_0 - 75582720) = 1.$$

Thus,

$$\lambda = \nu_K(Q_{13}(j(E))) = \frac{e}{e(\varphi, L)}\nu_\varphi(Q_{13}(j_0)) = \nu_\varphi(Q_{13}(j_0)) = 1.$$

Since $1 = \lambda < 2 = e$, it follows from Cor. 3.10 that $e_1 = \lambda = 1$, as desired.

Example 4.5. In this example (see Table 1) we provide the values of e and e_1, calculated using our formula, and verified using the multiplication-by-p map on the formal group, for all those elliptic curves with potential supersingular reduction that appear as rational points on modular curves $X_0(p)$ of genus > 0 (if the curve $X_0(p)$ has genus 0, then $p = 2, 3, 5, 7, 13$, and there are infinitely many rational points given by a 1-parameter family, see [6]). These points are well-known, but seem to be spread out across the literature. Our main references are [1], pp. 78-80, [7], and [3].
The reader may notice that in Table 1 the difference $e - e_1$, and the value e_1, are always 1 or 2, for all $p > 3$. In addition, in Example 4.2 we have seen an example of a curve with $e - e_1 = 6 - 2 = 4$. A priori, we know that $e = 1, 2, 3, 4$ or 6 for elliptic curves over \mathbb{Q} (see [10], §5.6, p. 312), so if we assume $e_1 < e$, then e_1 and $e - e_1$ may take the values 1, 2, 3, 4, or 5. In fact, we will show next that the difference $e - e_1$ and e_1 may only take the values 1, 2, or 4, when $L = \mathbb{Q}$ and more generally whenever $e(\varphi, L) = 1$.

Corollary 4.6. Let E/L be an elliptic curve with potential supersingular reduction at a prime φ lying above a prime $p > 3$, and let e and e_1 be defined as in Section 1. Assume that $e_1 < e$, and also assume that $e(\varphi, L) = 1$. Then e_1 and $e - e_1$ can only take the values 1, 2, or 4. Moreover, $j(E) \equiv 0$ or 1728 mod φ, and

1. If $j(E) \equiv 0$ mod φ, then $e = 3$ or 6, and $e_1 = ek/3$, where $k = \nu_\varphi(j(E)) = 1$ or 2;
2. If $j(E) \equiv 1728$ mod φ, then $e = 2$ or 4, and $e_1 = e/2$.

Proof. Let $p > 3$ be a prime, assume that $e_1 < e$, let K_E be the extension of degree e of L_E^{nr} defined above, and fix a minimal model of E over K_E with good supersingular reduction. Let Δ be its discriminant, and let c_4 and c_6 be the usual quantities. Let $\lambda = r(p)\nu_K(c_4) + s(p)\nu_K(c_6) + \nu_K(Q_p(j(E)))$ as in Theorem 3.9. If $\lambda \geq e$ then $e_1 \geq e$, but we have assumed that $e_1 < e$, and hence $e_1 = \lambda$. Notice that we have assumed $e(\varphi, L) = 1$. In this case, $\nu_K(Q_p(j(E))) = e \cdot \nu_\varphi(Q_p(j(E)))$ is a multiple of e. Since $e_1 = \lambda < e$, it follows that $\nu_K(Q_p(j(E))) = 0$, and under our assumptions

1. $e_1 = r(p)\nu_K(c_4) + s(p)\nu_K(c_6)$.

Since $\nu_K(\Delta) = 0$ and $p \neq 2, 3$, the equality $1728\Delta = c_4^3 - c_6^2$ implies that $\nu_K(c_4)$ and $\nu_K(c_6)$ cannot be simultaneously positive. If both were zero, then our formula in Eq. (1) would say $1 \leq e_1 = 0$, a contradiction, so one of the valuations must be positive and the other one must vanish.

If $\nu_K(c_4) > 0$ and $\nu_K(c_6) = 0$, then $\nu_K(j(E)) = \nu_K(c_4^3/\Delta) = 3\nu_K(c_4) > 0$. Since $j(E) \in L$, it follows that $j(E) \equiv 0$ mod φ. In particular, $\nu_K(j)$ is a multiple of $e/e(\varphi, L) = e$, say $\nu_K(j) = ek$,
for some $k \geq 1$. Theorem 3.9 says that $e_1 = r(p)\nu_K(c_4) + s(p)\nu_K(c_6) = r(p)\nu_K(c_4)$. Thus, we must have $r(p) = 1$ (in particular, $p \equiv 5 \mod 6$ in this case) and $e_1 = \nu_K(c_4)$, otherwise $0 = e_1 \geq 1$, a contradiction. Hence,

$$e_1 = \nu_K(c_4) = \frac{\nu_K(j)}{3} = \frac{ek}{3}.$$

Since $e_1 < e$ by assumption, it follows that $1 \leq k < 3$. In addition, e_1 is a positive integer, so $ek \equiv 0 \mod 3$, hence $e \equiv 0 \mod 3$. Finally, $e = 1, 2, 3, 4, 6$, so $e = 3$ or 6 in this case, and $e_1 = 1, 2, 4$ as claimed.

If instead we have $\nu_K(c_4) = 0$ and $\nu_K(c_6) > 0$, we have $e_1 = \nu_K(c_6)$ (we must have $p \equiv 3 \mod 4$ in this case). The equality $c_6^2 = \Delta \cdot (j(E) - 1728)$ implies that

$$e_1 = \nu_K(c_6) = \frac{\nu_K(j - 1728)}{2} > 0.$$

It follows that $j \equiv 1728 \mod \wp$ and $\nu_K(j - 1728) = eh$ for some $h \geq 1$. Since $e_1 < e$, we have $h < 2$ so $h = 1$, and since e_1 is an integer, we have $e_1 \equiv 0 \mod 2$. Thus, $e = 2, 4, 6$, and therefore, $e_1 = 1, 2, 3$. However, we shall show next that $j \equiv 1728 \mod \wp$ and $e = 6$ is not possible. Thus, $e_1 = 1, 2$, and the proof of the corollary would be finished.

Indeed, suppose $j \equiv 1728 \mod \wp$ and $e = 6$. Let Δ_L, c_{4L} and c_{6L} be the discriminant and the usual constants associated to the original model of E over L. By the work of Néron on minimal models (Theorem 3.11), the degree $e = 6$ if and only if $\nu_\wp(\Delta_L) \equiv 2$ or 10 mod 12. Since $\Delta_L \cdot j(E) = (c_{4L})^3$, and $j \equiv 1728 \mod \wp$, with $p > 3$, it follows that

$$\nu_\wp(\Delta_L) = 3\nu_\wp(c_{4L})$$

and therefore $\nu_\wp(\Delta_L) \equiv 0 \mod 3$, and we cannot have $\nu_\wp(\Delta_L) \equiv 2$ or 10 mod 12. This is a contradiction, and therefore $e = 6$ and $j \equiv 1728 \mod \wp$ are incompatible. This ends the proof of the corollary.

Corollary 4.7. Under the notation and assumptions of Corollary 4.6, if $p > 3$ and $e_1 < e$, then $e_1 < \frac{\wp e}{3}$. In particular, $pe/(p + 1) > e_1$.

Proof. Let $p \geq 5$ and $e_1 < e$. It follows from Corollary 4.6 that, in all cases, we have $e_1 = e/3$, or $e_1 = 2e/3$ or $e_1 = e/2$. Thus, $e_1 \leq 2e/3$. In particular,

$$\frac{pe}{p + 1} \geq \frac{5e}{6} > \frac{2e}{3} > e_1,$$

as claimed.

5. TORSION POINTS

Lemma 5.1 (Serre). Let E/L be an elliptic curve with potential good supersingular reduction at a prime \wp above p. Let $K = K_E$ be the smallest extension of L^{nr}_\wp such that E/K has good (supersingular) reduction at \wp, and let $e = \nu_K(p)$ be its ramification index. Let $A, e_1 = \nu(s_p)$ and π be as above, so that $[p](Z) = pf(Z) + \pi^{e_1}g(Z^p) + h(Z^{p^2}),$ where $f(Z), g(Z)$ and $h(Z)$ are power series in $Z \cdot A[[Z]],$ with $f'(0) = g'(0) = h'(0) \in A^\times.$ Then:

1. If $pe/(p + 1) \leq e_1$, then $[p](Z) = 0$ has $p^2 - 1$ roots of valuation $\frac{e - e_1}{p - 1}$;
2. If $pe/(p + 1) > e_1$, then $[p](Z) = 0$ has $p - 1$ roots with valuation $\frac{e - e_1}{p - 1}$ and $p^2 - p$ roots with valuation $\frac{e_1}{p(p - 1)}$.

This concludes the proof of the theorem.

Theorem 5.2. Let E/L be an elliptic curve with potential good supersingular reduction at a prime \wp above a prime $p > 3$, and let e and e_1 be defined as above. Let $P \in E[p]$ be a non-trivial p-torsion point. Then:

1. If $e_1 \geq pe/(p+1)$, then the ramification index of any prime over \wp in the extension $L(P)/L$ is divisible by $(p^2 - 1)/\gcd(p^2 - 1, e)$.
2. If $e_1 < pe/(p+1)$,
 - there are $(p^2 - p)$ points P in $E[p]$ such that the ramification index of a prime above \wp in $L(P)/L$ is divisible by $(p-1)p/(\gcd(p(p-1), e_1))$.
 - and there are $(p-1)$ points P in $E[p]$ such that the ramification index of any prime above \wp in $L(P)/L$ is divisible by $(p-1)/(\gcd(p-1, e - e_1))$.

In particular, if $e(\wp, L) = 1$ and $e_1 < e$, then $e_1 < pe/(p+1)$ and the ramification index of any prime over \wp in $L(P)/L$ is divisible by $(p-1)/(\gcd(p-1, 4))$.

Proof. Let E'/L be an elliptic curve with potential supersingular reduction at \wp above $p > 3$, and let $P \in E'(\mathbb{T})$ be a point of exact order p. Let $\iota: \mathbb{T} \rightarrow \mathbb{T}_\wp$ be a fixed embedding. Let $F = L(P)$ and let \wp' be the prime of F above \wp associated to the embedding ι. Let K be the smallest extension of $L_{\wp'}^{nr}$ such that E/K has good (supersingular) reduction at \wp. Choose a model E'/K with good reduction and isomorphic to E over K, and let $T \in E'(K)[p]$ be the point that corresponds to $\iota(P)$ on $E(\mathbb{T}_\wp)$. Suppose that the degree of the extension $K(T)/K$ is g. Since $K/L_{\wp'}^{nr}$ is of degree $e/e(\wp, L)$, it follows that the degree of $K(T)/L_{\wp'}^{nr}$ is $eg/e(\wp, L)$.

Let $\mathcal{F} = \iota(F) \subseteq \mathbb{T}_\wp$. Since E and E' are isomorphic over K, it follows that $K(T) = K\mathcal{F}$ and, therefore, the degree of the extension $KF/L_{\wp'}^{nr}$ is $eg/e(\wp, L)$. Since $K/L_{\wp'}^{nr}$ is Galois (see Section 1), it follows that $g = [K(T) : K] = [\mathcal{F}L_{\wp'}^{nr} : K \cap \mathcal{F}L_{\wp'}^{nr}]$, so the degree of $[\mathcal{F}L_{\wp'}^{nr} : L_{\wp'}^{nr}]$ equals $k \cdot k$ where $k = [K \cap \mathcal{F}L_{\wp'}^{nr} : L_{\wp'}^{nr}]$. Hence, the degree of $\mathcal{F}/L_{\wp'}^{nr}$ is divisible by gk and, in particular, the ramification index of the prime ideal \wp over \wp in the extension $L(P)/L$ is divisible by gk, where $g = [K(T) : K]$. Thus, we just need to show that $[K(T) : K]$ satisfies the divisibility properties that are claimed in the statement of the theorem.

Let $T \in E'[p]$ be an arbitrary point on $E'(\mathbb{K})$ of exact order p, and write t for the corresponding p-torsion point in the formal group, i.e., $t = -x(t)/y(t) \in \hat{E}'(\mathcal{M}_p)$. Let $K = \hat{E}'(\mathbb{K})$.

1. Let us first assume that $e_1 \geq pe/(p+1)$. By Lemma 5.1, the valuation of $t \in \hat{E}'[p]$ is $e/(p^2 - 1)$. Hence, the ramification index in the extension $K(T)/K$ is divisible by the quantity $(p^2 - 1, e)$, as claimed.

2. Now let us suppose that $e_1 < pe/(p+1)$. By Lemma 5.1, there are $p - 1$ points in $\hat{E}'[p]$ with valuation $(e - e_1)/(p-1)$ and $p^2 - p$ points with valuation $e_1/(p(p-1))$, respectively. Thus, the ramification index of $K(T)/K$ is divisible by $(p-1)/\gcd(p-1, e - e_1)$ or $p(p-1)/\gcd(p-1, e_1)$, respectively.

Finally, suppose that $e(\wp, L) = 1$ and $e_1 < e$. Then, Corollary 4.7 shows that $pe/(p+1) > e_1$. Moreover, we showed in Corollary 4.6 that, when $p > 3$ and $e_1 < e$, the numbers e_1 and $e - e_1$ can only take the values $1, 2, or 4$. Thus, the ramification index in $K(T)/K$ is divisible by at least $(p-1)/\gcd(p-1, 4)$, as claimed.

This concludes the proof of the theorem.
Example 5.3. Let E/Q be the elliptic curve with Cremona label “121c2” which we already studied in Examples 2.1 and 4.1, and we calculated $e = 3$ and $e_1 = 1$. Hence, if P is any non-trivial 11-torsion point on $E(\mathbb{Q})$, then the ramification of any prime above $p = 11$ in the extension $\mathbb{Q}(P)/\mathbb{Q}$ must be divisible by, at least, $(p - 1)/\gcd(p - 1, 4) = 10/2 = 5$. Let us show that there is a 11-torsion point where the ramification index is exactly 5.

Indeed, let $F = \mathbb{Q}(\zeta)$, where $\zeta = \zeta_{11}$ is a primitive 11th root of unity. Then, $E(F)_{\text{tors}} \cong \mathbb{Z}/11\mathbb{Z}$ and there is a point $P \in E(F)$ of order 11 with coordinates

$$x(P) = 11\zeta^9 + 11\zeta^8 + 22\zeta^7 + 22\zeta^6 + 22\zeta^5 + 22\zeta^4 + 11\zeta^3 + 11\zeta^2 + 39,$$

$$y(P) = 44\zeta^9 - 55\zeta^8 - 66\zeta^7 - 99\zeta^6 - 99\zeta^5 - 66\zeta^4 - 55\zeta^3 + 44\zeta^2 + 85.$$

Notice, however, that $x(P)$ and $y(P)$ are stable under complex conjugation. Hence, $P \in E(\mathbb{Q}(\zeta^+))$, and in fact $\mathbb{Q}(P) = \mathbb{Q}(x(P), y(P)) = \mathbb{Q}(\zeta^+) = \mathbb{Q}(\zeta + \zeta^{-1})$. Thus, $\mathbb{Q}(P)/\mathbb{Q}$ is totally ramified at 11 and the ramification index is 5.

Corollary 3.10 implies that if $p \equiv 1 \text{ mod } 12$, and $e(\varphi, L) = 1$, then $e_1 \geq e$. When we combine this with Theorem 5.2 we obtain:

Corollary 5.4. Let E/L be an elliptic curve with potential good supersingular reduction at a prime φ above a rational prime $p \equiv 1 \text{ mod } 12$, let e be as above, and suppose $e(\varphi, L) = 1$. Let $P \in E[p]$ be a non-trivial p-torsion point. Then the ramification index of any prime over φ in $L(P)/L$ is divisible by $(p^2 - 1)/\gcd(p^2 - 1, e)$.

However, the conclusion of the previous corollary is not valid when $e(\varphi, L) > 1$.

Example 5.5. Let $L = \mathbb{Q}(\sqrt{13})$, and let E/L be the elliptic curve with j-invariant j_0 as described in Example 2.3 and 4.4. There is a point $P \in E(L)$ such that $L(P)$ is given by $L(\alpha)$, where α is a root of a polynomial $q(x) \in L[x] = \mathbb{Q}(j_0)[x]$,

$$q(x) = x^{12} + \frac{34960589j_0 - 281342663307000000}{478224}x^{10} + \ldots$$

of degree 12, and such that $L(P)/L$ is totally ramified above φ. Recall that we have calculated $e = 2$ and $e_1 = 1$ for this curve, so the ramification in this extension agrees with the conclusion of Theorem 5.2 which predicts the existence of 12 points in $E[p]$ such that the ramification index of any prime above φ in $L(P)/L$ is divisible by $12/(\gcd(12, e - e_1)) = 12/(\gcd(12, 2 - 1)) = 12$.

References

Dept. of Mathematics, Univ. of Connecticut, Storrs, CT 06269, USA
E-mail address: alvaro.lozano-robledo@uconn.edu