
MATH 3240Q Second Midterm - Practice Problems

It is impossible to separate a cube into two cubes, or a fourth power into two
fourth powers, or in general, any power higher than the second, into two like
powers. I have discovered a truly marvelous proof of this, which this margin is too
narrow to contain (Cubum autem in duos cubos, aut quadratoquadratum in duos
quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem
in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane
detexi. Hanc marginis exiguitas non caperet.)

Pierre de Fermat (annotation on a copy of Diophantus’ “Arithmetica”).

Please note:

1. Calculators are not allowed in the exam.

2. You must always provide full explanations for all your answers. You must include your
work.

—————–

Read through your notes for the proofs of the theorems of Fermat, Euler and
Wilson, and also for the statements of the other theorems and conjectures.

—————–

Just in case you need them, the following are all the primes below 100:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Question 1. Find 3 primes in each category:

1. Find 3 primes p ≡ 1 mod 3.

2. Find 3 primes p ≡ 2 mod 3.

3. Find 3 primes p ≡ 1 mod 5.

4. Find 3 primes p ≡ 2 mod 5.

5. Find 3 primes p ≡ 3 mod 5.

6. Find 3 primes p ≡ 4 mod 5.

7. Are there any primes p ≡ 3 mod 21? Why? Why not?

8. Are there any primes p ≡ 3 mod 22? Why? Why not?

9. Are there infinitely many primes in each category above? How do you know?

Solution:
For parts (1) through (6), simply look through a table of primes and find primes that fit
the description. For part (7), there is only one prime p ≡ 3 mod 21, which is p = 3. All
other numbers that are congruent to n ≡ 3 mod 21 have a factor of 3, and they are not
primes, because n = 3 + 21k = 3(1 + 7k).

For part (8), yes, there are primes that are p ≡ 3 mod 22, for example 47. For part (9):
by Dirichlet’s theorem on arithmetic progressions, if (a,m) = 1 then there are infinitely
many primes of the form p ≡ a mod m. Thus, there are infinitely many primes in the
categories of parts (1) through (6) and (8), and only one in category (7).
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Question 2. Use a Sieve method to find all the prime numbers between 105 and 115. Explain
how you did it.

Solution:
We perform a sieve on the numbers:

105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115

Notice that 112 = 121 and so
√

115 < 11. Thus, if any of those numbers is not prime, they
must have a prime factor less than 11. Hence, it is enough to cross out the multiples of
2, 3, 5, and 7. In order to start the sieve, notice that:

105 ≡ 1 mod 2, 105 ≡ 0 mod 3, 105 ≡ 0 mod 5, 105 = 7 · 15 ≡ 0 mod 7.

Hence, 106, 108, 110, 112 and 114 are multiples of 2. The numbers 105, 108, 111, 114 are
multiples of 3. The numbers 105, 110 and 115 are multiples of 5 and the numbers 105, 112
are multiples of 7. Therefore, the numbers 107, 109 and 113 are the only primes between
105 and 115.

Question 3. Find the smallest positive integer n such that

n ≡ 1 mod 3,

n ≡ 2 mod 4,

n ≡ 3 mod 5.

You must use the method that appears in the proof of the Chinese Remainder Theorem.

Solution:
First, we solve three easier problems: n1 ≡ 1, 0, 0 mod 3, 4, 5 (respectively), n2 ≡ 0, 1, 0
mod 3, 4, 5 (resp.) and n3 ≡ 0, 0, 1 mod 3, 4, 5 (resp.).

For example, to solve for n1, we must have n1 = 20k ≡ 1 mod 3 so k = 2 works and
n1 ≡ 40 mod 60. Similarly, n2 ≡ 45 mod 60 and n3 ≡ 36 mod 60.

Hence, the solution we are looking for is:

n ≡ 1 · n1 + 2 · n2 + 3 · n5 ≡ 40 + 90 + 108 ≡ 58 mod 60.

Question 4. Find the smallest positive integer that leaves remainders of 2, 4, 6 when divided
by 3, 5, 7, respectively. You must use the Chinese Remainder Theorem.

Solution:
We are looking for x ≡ 2, 4, 6 mod 3, 5, 7 (respectively). Note that this can be written as
x ≡ −1,−1,−1 mod 3, 5, 7. Therefore, x ≡ −1 ≡ 104 mod 105 works. By the Chinese
Remainder Theorem, that is the unique solution modulo 105.

Question 5. Solve the following quadratic congruences:

• Find all solutions of x2 ≡ 1 mod 133
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• Prove that there are no solutions: x2 ≡ 2 mod 133

• Find (at least) one solution: x2 ≡ 93 mod 133

Note: Trial and error will yield no points. Hint: Use the Chinese remainder theorem (133 =
7 · 19).

Solution:

• Find all solutions of x2 ≡ 1 mod 133. First reduce modulo 7 and 19: and solve x2 ≡ 1
mod 7 and x2 ≡ mod 19. Thus, we are looking for x ≡ ±1 mod 7, 19. There are
four solutions modulo 133 (find them using the Chinese Remainder Theorem, e.g.
solve x ≡ 1 mod 7, x ≡ 18 mod 19):

x ≡ 1, 20, 113, 132 mod 133.

• Prove that there are no solutions: x2 ≡ 2 mod 133. Suppose there is an integer x
such that x2 ≡ 2 mod 133. Then it is also true that x2 ≡ 2 mod 19. But 2 is not a
square modulo 19:

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a2 1 4 9 16 6 17 11 7 5 5 7 11 17 6 16 9 4 1

• Find (at least) one solution: x2 ≡ 93 mod 133. If there is a solution, x also satisfies
x2 ≡ 93 ≡ 2 mod 7 and x2 ≡ 17 mod 19. Notice that 32 ≡ 2 mod 7 and (by the
table above) 62 ≡ 17 mod 19. Let us solve, using the Chinese Remainder Theorem,
the system: x ≡ 3 mod 7 and x ≡ 6 mod 19. This yields: x ≡ 101 mod 133.
(There are other solutions, e.g. the congruence x ≡ 25 mod 133 is another solution
of x2 ≡ 93 mod 133.)

Question 6. Show that 37100 ≡ 13 mod 17. Hint: Use Fermat’s Little Theorem.

Solution:
First 37100 ≡ 3100 mod 17 because 37 ≡ 3 mod 17. By Fermat’s Little Theorem, and since
(37, 17) = 1, we have that 316 ≡ 1 mod 17. Moreover, 100 = 6 · 16 + 4 and so:

37100 ≡ 3100 ≡ (316)6 · 34 ≡ 1 · 34 ≡ 27 · 3 ≡ 10 · 3 ≡ 30 ≡ 13 mod 17.

Question 7. Show that if p and q are distinct primes then pq−1 + qp−1 ≡ 1 mod pq.

Solution:
Since p and q are distinct (and therefore relatively prime), it suffices separately modulo p
and modulo q. By Fermat’s Little theorem one has np−1 ≡ 1 mod p and nq−1 ≡ 1 mod q
for all n not equivalent to 0 modulo p or q respectively. Thus:

pq−1 + qp−1 ≡ 1 + 0 ≡ 1 mod q, pq−1 + qp−1 ≡ 0 + 1 ≡ 1 mod p.
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Question 8. Use Euler’s theorem to find the first digit (starting from the right-hand side of
the expansion, i.e., the units digit) of the decimal expansion of 71000.

Solution:
First, φ(10) = φ(2)φ(5) = 4. In order to find out the last digit of the decimal expansion of
a number, one needs to calculate its least non-negative residue modulo 10. Thus:

71000 ≡ (74)250 ≡ 1 mod 10

where we have used the fact that 74 ≡ 1 mod 10, by Euler’s theorem (which applies in this
case because (7, 10) = 1). Therefore the last digit is a 1.

Question 9. Prove that for any natural number n ≥ 1, 36n − 26n is never prime.

Solution:
Show that 5 and 7 are always divisors of 36n− 26n, using Fermat’s little theorem (i.e., show
that 36n − 26n ≡ 0 mod 7).

Question 10. Find as many prime factors as possible of the number N = 310! − 1.

Solution:
Clearly, N is even (so 2|N) and 3 does not divide N . By Fermat’s little theorem, if (a, p) = 1
then a(p−1)t − 1 is divisible by p, for any integer t ≥ 1 (why?). Thus, if p > 3 and p − 1
divides 10! then p divides N . Notice that:

10! = 10 · 9 · 8 · · · 3 · 2 · 1 = 2834527.

Let us make a list of primes and the value of p− 1:

p 5 11 13 17 19 23 29 31 37

p− 1 22 2 · 5 22 · 3 24 2 · 32 2 · 11 22 · 7 2 · 3 · 5 22 · 32

Hence, from the factorization of 10! and the table we see that p = 2, 5, 11, 13, 17, 19, 29, 31, 37, . . .
are all divisors of N .

Question 11. Let a, n > 0 be natural numbers. Find as many prime factors as possible of the
number N = an! − 1.

Solution:
See the solution to the previous problem. Those primes p such that p − 1 divides n!, and
(p, a) = 1, are divisors.

Question 12. Are there infinitely many primes p such that (p, p + 2, p + 4) are all primes?
Why? Are there infinitely many primes p such that (p, p+ 2, p+ 6, p+ 8, p+ 12, p+ 14) are all
primes? Why? Make a generalization of the Twin Prime conjecture for 6-tuples, i.e. make an
educated conjecture for the existence of 6-tuples of primes.
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Solution:
(p, p+ 2, p+ 4) cannot be all prime because one number is divisible by 3. Similarly, (p, p+
2, p+ 6, p+ 8, p+ 12, p+ 14) cannot be all primes because one is divisible by 5.


