Calculus Trivia: Historic Calculus Texts

- Archimedes of Syracuse (c. 287 BC c. 212 BC) "On the Measurement of a Circle": Archimedes shows that the value of pi (π) is greater than 223/71 and less than 22/7 using rudimentary calculus.
- Jyeshtadeva "Yuktibhasa": Written in India in 1501, this was the world's first calculus text.
- Gottfried Leibniz "Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas nec irrationales quantitates moratur, et singulare pro illi calculi genus": Published in 1684, this is Leibniz's first treaty on differential calculus.
- Isaac Newton "Philosophiae Naturalis Principia Mathematica": This is a three-volume work by Isaac Newton published on 5 July 1687. Perhaps the most influential scientific book ever published.

MATH 1131Q - Calculus 1.

Álvaro Lozano-Robledo

Department of Mathematics University of Connecticut

Day 6

Álvaro Lozano-Robledo (UConn)

Limits

Definition (Informal Definition of Limit)

Let f(x) be a function that is defined when x is near the number a (i.e., f is defined on some open interval that contains a, except possibly a itself). Then, we write

$$\lim_{x\to a} f(x) = L$$

and we say the limit of f(x), as x approaches a, equals L, if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.

Also:

- Sided limits: $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$,
- Infinite limits: $\lim_{x\to a} f(x) = \infty$, and
- The Limit Laws.

Definition (Formal Definition of Limit)

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then, we say that the limit of f(x) as x approaches a is L, and we write

$$\lim_{x\to a}f(x)=L$$

if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that

if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$.

Definition (Formal Definition of Limit)

$$\lim_{x \to a} f(x) = L$$

if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that

if
$$0 < |x - a| < \delta$$
, then $|f(x) - L| < \varepsilon$.

Definition (Formal Definition of Sided Limit)

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then, we say that

 the limit of f(x) as x approaches a from the left is L, and we write lim_{x→a⁻} f(x) = L if for every number ε > 0 there is a number δ > 0 such that

if
$$a - \delta < x < a$$
, then $|f(x) - L| < \varepsilon$.

2 the limit of f(x) as x approaches a from the right is L, and we write lim_{x→a⁺} f(x) = L if for every number ε > 0 there is a number δ > 0 such that

if
$$a < x < a + \delta$$
, then $|f(x) - L| < \varepsilon$.

Definition (Formal Definition of Infinite Limit)

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then, we say that

• the limit of f(x) as x approaches a from the left is infinite, and we write $\lim_{x\to a} f(x) = \infty$ if for every number M > 0 there is a number $\delta > 0$ such that

if $0 < |x - a| < \delta$, then f(x) > M.

Definition (Formal Definition of Infinite Limit)

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then, we say that

• the limit of f(x) as x approaches a from the left is infinite, and we write $\lim_{x\to a} f(x) = \infty$ if for every number M > 0 there is a number $\delta > 0$ such that

if
$$0 < |x - a| < \delta$$
, then $f(x) > M$.

2 the limit of f(x) as *x* approaches a from the left is minus infinity, and we write $\lim_{x\to a} f(x) = -\infty$ if for every number *M* > 0 there is a number δ > 0 such that

if
$$0 < |x - a| < \delta$$
, then $f(x) < -M$.

The FORMAL Definition of Infinite Limits

Definition (Formal Definition of Infinite Limit)

We say that $\lim_{x\to a} f(x) = \infty$ if for every number M > 0 there is a number $\delta > 0$ such that

Example

This slide left intentionally blank

Definition (Formal Definition of Limit at Infinity)

Let f be a function defined on some open interval (a, ∞) . Then, we say that

 the limit of f(x) as x approaches ∞ is L, and we write lim_{x→∞} f(x) = L if for every number ε > 0 there is a number M > 0 such that

if
$$x > M$$
, then $|f(x) - L| < \varepsilon$.

In this case, we say that the line y = L is a horizontal asymptote of f(x) at ∞ .

Definition (Formal Definition of Limit at Infinity)

Let f be a function defined on some open interval (a, ∞) . Then, we say that

 the limit of f(x) as x approaches ∞ is L, and we write lim_{x→∞} f(x) = L if for every number ε > 0 there is a number M > 0 such that

if
$$x > M$$
, then $|f(x) - L| < \varepsilon$.

In this case, we say that the line y = L is a horizontal asymptote of f(x) at ∞ .

2 the limit of f(x) as x approaches −∞ is L, and we write lim_{x→−∞} f(x) = L if for every number ε > 0 there is a number M > 0 such that

if
$$x < -M$$
, then $|f(x) - L| < \varepsilon$.

Definition (Formal Definition of Limit at Infinity)

Let *f* be a function defined on some open interval (a, ∞) . The limit of f(x) as *x* approaches ∞ is *L*, and we write $\lim_{x\to\infty} f(x) = L$ if for every number $\varepsilon > 0$ there is a number M > 0 such that

if x > M, then $|f(x) - L| < \varepsilon$.

Example

This slide left intentionally blank

Theorem

$$\lim_{x \to \infty} \frac{p(x)}{q(x)}$$

we divide first the numerator and denominator by the highest power of x that appears in the denominator.

$$\lim_{x \to \infty} \frac{p(x)}{q(x)}$$

we divide first the numerator and denominator by the highest power of x that appears in the denominator.

Álvaro Lozano-Robledo (UConn)

$$\lim_{x \to \infty} \frac{p(x)}{q(x)}$$

we divide first the numerator and denominator by the highest power of *x* that appears in the denominator.

$$\lim_{x \to \infty} \frac{p(x)}{q(x)}$$

we divide first the numerator and denominator by the highest power of *x* that appears in the denominator.

The same trick works a little more generally, with algebraic functions.

Álvaro Lozano-Robledo (UConn)

Beware of $\infty - \infty$ limits!

$$\frac{10}{10}$$
, $\frac{10}{10}$, $\frac{10}{10}$, $\frac{100}{100}$, $\frac{100}{100$

Example

Calculate
$$\lim_{x \to \infty} (\sqrt{x^2 + 1} - x) = L$$

$$\begin{pmatrix} 2 & \lim_{x \to \infty} (\sqrt{x^2 + 1} - x)^2 = \lim_{x \to \infty} \chi^2 + 1 + \chi^2 - 2x\sqrt{x^2 + 1} \\ = \lim_{x \to \infty} 2x^2 + 1 - 2x\sqrt{x^2 + 1} \end{pmatrix}$$

$$L = \lim_{X \to \infty} \left(\sqrt{\chi^{2}_{+1}} - \chi \right) \cdot \frac{(\sqrt{\chi^{2}_{+1}} + \chi)}{(\sqrt{\chi^{2}_{+1}} + \chi)} = \lim_{X \to \infty} \frac{\chi^{2}_{+1} - \chi^{2}}{\sqrt{\chi^{2}_{+1}} + \chi}$$

$$= \lim_{X \neq 00} \frac{1}{\sqrt{x+1} + x} = 0$$

Álvaro Lozano-Robledo (UConn)

~/

Continuity

Continuity

$$f(x) = \begin{cases} \frac{\sin(x)}{x} & \text{if } x \neq 0, \\ 1 & \text{if } x = 0. \end{cases}$$

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

The Formal Definition of Continuity

Definition

A function f(x) is continuous at a number a if

- f(x) is defined at x = a, i.e., f(a) is well-defined,
- $\lim_{x \to a} f(x) \text{ exists, and}$

$$\lim_{x\to a}f(x)=f(a).$$

Example

The function $f(x) = x^2$ is continuous at x = 2.

•
$$f(z) = 2^{2} = 4$$

• $f(z) = 2^{2} = 4$
• $f(z) = x^{2} = 4$
• $f(z) = x^{2} = 4$
• $f(z) = 2^{2} = f(z)$

Example

Is the following function continuous at x = 0?

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

$$f(x) = 0$$

$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0 \quad -x \leq x \sin\left(\frac{1}{x}\right) \leq x$$

$$x \to 0 \quad x \to 0 \quad x = 0$$

$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0 = f(0)$$

$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0 = f(0)$$

$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0 = f(0)$$

The Formal Definition of Continuity

Definition

A function f(x) is continuous at a number a if

- f(x) is defined at x = a, i.e., f(a) is well-defined,
- $\lim_{x \to a} f(x) \text{ exists, and}$
- $\lim_{x\to a}f(x)=f(a).$

A function f(x) is continuous from the right at x = a if

$$\lim_{x\to a^+}f(x)=f(a),$$

and the function f(x) is continuous from the left at x = a if

$$\lim_{\alpha\to a^-}f(x)=f(a).$$

Example

The function
$$f(x) = 1 - \sqrt{1 - x^2}$$
 is continuous on $[-1, 1]$.
it is continuous m $(-1, 1)$ which is in the domain.
At $x = 1$: $\lim_{x \to 1^-} 1 - \sqrt{1 - x^2} = 1$
 $f(1) = 1 - \sqrt{1 - 1} = 1$ cont. at $x = 1$
Similarly at $x = -1$.

Álvaro Lozano-Robledo (UConn)

Theorem

The following types of functions are continuous at every number in their domain: polynomials, rational functions, root functions, trigonometric functions, inverse trigonometric functions, exponential functions, logarithmic functions.

Theorem

If f(x) and g(x) are continuous functions at x = a, and c is a constant, then the following functions are also continuous at a:

$$f(x) + g(x), f(x) - g(x), cf(x), f(x)g(x), \frac{f(x)}{g(x)}$$
 if $g(a) \neq 0$.

Theorem

If f is continuous at x = b, and $\lim_{x \to a} g(x) = b$, then

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$

Theorem

If f is continuous at x = b, and $\lim_{x \to a} g(x) = b$, then

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$

Example

Calculate
$$\lim_{x \to 3} \log\left(\frac{x+1}{x-2}\right)$$
. = $\log\left(\lim_{x \to 3} \frac{x+1}{x-2}\right) = \log 4$.
4 and $\log is cont at 4$
 $ex \lim_{x \to 3} e^{x \sin \frac{1}{x}} = e^{\lim_{x \to 3} x \sin \frac{1}{x}} = e^{0} = 1$

Theorem

If g(x) is continuous at x = a, and f(x) is continuous at g(a), then the composite function f(g(x)) is continuous at x = a.

Theorem

If g(x) is continuous at x = a, and f(x) is continuous at g(a), then the composite function f(g(x)) is continuous at x = a.

Example

The function $log(x^2 + 1)$ is continuous in the interval...

Theorem (The Intermediate Value Theorem)

Suppose that f(x) is continuous on the interval [a, b], such that $f(a) \neq f(b)$, and let R be any real number between f(a) and f(b). Then, there is a number c in (a, b) such that f(c) = R.

Theorem (The Intermediate Value Theorem)

Suppose that f(x) is continuous on the interval [a, b], such that $f(a) \neq f(b)$, and let R be any real number between f(a) and f(b). Then, there is a number c in (a, b) such that f(c) = R.

Example

Show that the poynomial $f(x) = x^3 + x + 1$ has a root (i.e., a zero value) between -1 and 0.

$$f(x) \quad is \quad a \quad poly \implies continous \quad on \quad (-\infty, \infty)$$

$$f(-1) = -1 \qquad B_y \quad the \quad inter. \quad value \quad thm: -1<0 < 1$$

$$f(0) = 1 \qquad there \quad is \quad c \in [-1, 0] \quad s.t.$$

$$f(c) = 0$$

This slide left intentionally blank