Calculus Trivia: Historic Calculus Texts

- Archimedes of Syracuse (c. 287 BC - c. 212 BC) - "On the Measurement of a Circle": Archimedes shows that the value of pi (π) is greater than 223/71 and less than 22/7 using rudimentary calculus.
- Jyeshtadeva - "Yuktibhasa": Written in India in 1501, this was the world's first calculus text.
- Gottfried Leibniz - "Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas nec irrationales quantitates moratur, et singulare pro illi calculi genus": Published in 1684, this is Leibniz's first treaty on differential calculus.
- Isaac Newton - "Philosophiae Naturalis Principia Mathematica": This is a three-volume work by Isaac Newton published on 5 July 1687. Perhaps the most influential scientific book ever published.

MATH 1131Q - Calculus 1.

Álvaro Lozano-Robledo

Department of Mathematics
University of Connecticut

Day 6

Limits

Previously...

Definition (Informal Definition of Limit)

Let $f(x)$ be a function that is defined when x is near the number a (i.e., f is defined on some open interval that contains a, except possibly a itself). Then, we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and we say the limit of $f(x)$, as x approaches a, equals L, if we can make the values of $f(x)$ arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.

Also:

- Sided limits: $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$,
- Infinite limits: $\lim _{x \rightarrow a} f(x)=\infty$, and
- The Limit Laws.

The FORMAL Definition of Limit

Definition (Formal Definition of Limit)

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then, we say that the limit of $f(x)$ as x approaches a is L, and we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta, \text { then }|f(x)-L|<\varepsilon
$$

Definition (Formal Definition of Limit)

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text {, then }|f(x)-L|<\varepsilon .
$$

The FORMAL Definition of Sided Limits

Definition (Formal Definition of Sided Limit)

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then, we say that
(1) the limit of $f(x)$ as x approaches a from the left is L, and we write $\lim _{x \rightarrow a^{-}} f(x)=L$ if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } a-\delta<x<a \text {, then }|f(x)-L|<\varepsilon \text {. }
$$

(2) the limit of $f(x)$ as x approaches a from the right is L, and we write $\lim _{x \rightarrow a^{+}} f(x)=L$ if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } a<x<a+\delta \text {, then }|f(x)-L|<\varepsilon \text {. }
$$

The FORMAL Definition of Infinite Limits

Definition (Formal Definition of Infinite Limit)

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then, we say that
(1) the limit of $f(x)$ as x approaches a from the left is infinite, and we write $\lim _{x \rightarrow a} f(x)=\infty$ for every number $M>0$ there is a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta, \text { then } f(x)>M
$$

The FORMAL Definition of Infinite Limits

Definition (Formal Definition of Infinite Limit)

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then, we say that
(1) the limit of $f(x)$ as x approaches a from the left is infinite, and we write $\lim _{x \rightarrow a} f(x)=\infty$ if for every number $M>0$ there is a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta, \text { then } f(x)>M
$$

(2) the limit of $f(x)$ as x approaches a from the left is minus infinity, and we write $\lim _{x \rightarrow a} f(x)=-\infty$ if for every number $M>0$ there is a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta, \text { then } f(x)<-M
$$

The FORMAL Definition of Infinite Limits

Definition (Formal Definition of Infinite Limit)

We say that $\lim _{x \rightarrow a} f(x)=\infty$ if for svery number $M>0$ there is a number $\delta>0$ such that

Example

ie., for all $M>0$ there ir a $\delta>0$ st. if $0<x<\delta$ then $f(x)=\frac{1}{x}>M$

Proof Let $M>0$ be anbitnary.
Then let $\delta=\frac{1}{M}>0$, so
if $\alpha x<\delta=\frac{1}{m}$ then

$$
f(x)=\frac{1}{x}>\frac{1}{\delta}=\frac{1}{\frac{1}{M}}=M
$$

This slide left intentionally blank

Horizontal Asymptotes

Definition (Formal Definition of Limit at Infinity)

Let f be a function defined on some open interval (a, ∞). Then, we say that
(1) the limit of $f(x)$ as x approaches ∞ is L, and we write $\lim _{x \rightarrow \infty} f(x)=L$ if for every number $\varepsilon>0$ there is a number $M>0$ such that

$$
\text { if } x>M \text {, then }|f(x)-L|<\varepsilon \text {. }
$$

In this case, we say that the line $y=L$ is a horizontal asymptote of $f(x)$ at ∞.

Horizontal Asymptotes

Definition (Formal Definition of Limit at Infinity)

Let f be a function defined on some open interval (a, ∞). Then, we say that
(1) the limit of $f(x)$ as x approaches ∞ is L, and we write $\lim _{x \rightarrow \infty} f(x)=L$ if for every number $\varepsilon>0$ there is a number $M>0$ such that

$$
\text { if } x>M, \text { then }|f(x)-L|<\varepsilon
$$

In this case, we say that the line $y=L$ is a horizontal asymptote of $f(x)$ at ∞.
(2) the limit of $f(x)$ as x approaches $-\infty$ is L, and we write $\lim _{x \rightarrow-\infty} f(x)=L$ if for every number $\varepsilon>0$ there is a number $M>0$ such that

$$
\text { if } x<-M, \text { then }|f(x)-L|<\varepsilon
$$

Horizontal Asymptotes

Definition (Formal Definition of Limit at Infinity)

Let f be a function defined on some open interval (a, ∞). The limit of $f(x)$ as x approaches ∞ is L, and we write $\lim _{x \rightarrow \infty} f(x)=L$ if for every number $\varepsilon>0$ there is a number $M>0$ such that

$$
\text { if } x>M, \text { then }|f(x)-L|<\varepsilon
$$

Example
Prove that $\lim _{x \rightarrow \infty} \frac{1}{x}=0$.

Proof Let $\varepsilon>0$ be abiturg. Lat $M=\frac{1}{\varepsilon}>0$. Then

$$
\begin{equation*}
\text { if } x>M=\frac{1}{\varepsilon} \text { Han fax } \frac{1}{x}<\frac{1}{M}=\frac{1}{\frac{1}{\varepsilon}}=\varepsilon \tag{图}
\end{equation*}
$$

This slide left intentionally blank

Theorem
Let $r>0$ be a positive real number. Then:
(1) $\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0$,
(2) $\lim _{x \rightarrow \infty} e^{x}=\infty$,
(3) $\lim _{x \rightarrow 0^{+}} \log (x)=-\infty$.

Example
Calculate $\lim _{x \rightarrow \infty} e^{-x}$.
(A) ∞
(B) $-\infty$
(C) 0
(D) 1
(E) DNE

Suppose $p(x)$ and $q(x)$ are two polynomials. In order to calculate

$$
\lim _{x \rightarrow \infty} \frac{p(x)}{q(x)}
$$

we divide first the numerator and denominator by the highest power of x that appears in the denominator.

Suppose $p(x)$ and $q(x)$ are two polynomials. In order to calculate

$$
\lim _{x \rightarrow \infty} \frac{p(x)}{q(x)}
$$

we divide first the numerator and denominator by the highest power of x that appears in the denominator.

Example

Calculate $\lim _{x \rightarrow \infty} \frac{3 x^{3}-1}{7 x^{3}+2 x-5}=$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{3 x^{3}}{x^{3}}-\frac{1}{x^{3}}}{\frac{7 x^{3}}{x^{3}}+\frac{2 x}{x^{3}}-\frac{5}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{3-\frac{1}{x^{3}}}{7+\frac{2}{x^{2}}-\frac{5}{x^{3}}} \\
& =\frac{\lim _{x \rightarrow \infty} 3-\frac{1}{x^{3}}}{\lim _{x \rightarrow \infty} 7+x_{0}^{2}-x_{0}^{3} x_{0}}=\frac{3}{7}=3 / 7 .
\end{aligned}
$$

Suppose $p(x)$ and $q(x)$ are two polynomials. In order to calculate

$$
\lim _{x \rightarrow \infty} \frac{p(x)}{q(x)}
$$

we divide first the numerator and denominator by the highest power of x that appears in the denominator.

Example

Calculate $\lim _{x \rightarrow \infty} \frac{3 x^{3}-1}{7 x^{2}+2 x-5}$.
$=\lim _{x \rightarrow \infty}$

Suppose $p(x)$ and $q(x)$ are two polynomials. In order to calculate

$$
\lim _{x \rightarrow \infty} \frac{p(x)}{q(x)}
$$

we divide first the numerator and denominator by the highest power of x that appears in the denominator.

Example

Calculate $\lim _{x \rightarrow \infty} \frac{3 x^{2}-1}{7 x^{3}+2 x-5}$.

$$
=\lim _{x \rightarrow \infty} \frac{\frac{3}{x}^{\prime}-\frac{1}{x^{3}}}{7+\frac{2}{x^{2}}-\frac{5}{x^{3}}}=\frac{0}{7}=0 .
$$

The same trick works a little more generally, with algebraic functions.

Example

Calculate $\lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{3}-1}}{7 x^{2}+2 x-5}$.

$=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{3}{x}-\frac{1}{x^{4}}}}{7+\frac{2}{x}-\frac{5}{x^{2}}}$

$$
=\frac{\sqrt{\lim _{x \rightarrow \infty} \frac{37^{0}}{x}-\frac{y^{7}}{x^{4}}}}{\lim _{x \rightarrow \infty} 7+\frac{2}{x}-\frac{F}{x_{0}^{2}}}=\frac{0}{7}=0 .
$$

Beware of $\infty-\infty$ limits! $\quad \frac{\infty}{\infty}, \frac{0}{0}, \infty-\infty$... indutermanates.
Example
Calculate $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right)=L$

$$
\begin{align*}
& \left(\begin{array}{rl}
L^{2}=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right)^{2} & =\lim _{x \rightarrow \infty} x^{2}+1+x^{2}-2 x \sqrt{x^{2}+1} \\
& =\lim _{x \rightarrow \infty} 2 x^{2}+1-2 x \sqrt{x^{2}+1} \\
L & =\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right) \cdot \frac{\left(\sqrt{x^{2}+1}+x\right)}{\left(\sqrt{x^{2}+1}+x\right)}=\lim _{x \rightarrow \infty} \frac{x^{2}+1-x^{2}}{\sqrt{x^{2}+1}+x} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x^{2}+1}+x}=0
\end{array}\right.
\end{align*}
$$

Continuity

Continuity

Continuity

Dis-Continuity

Dis-Continuity?

Continoos?

$$
f(x)= \begin{cases}\frac{\sin (x)}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

Dis-Continuity?

$$
f(x)= \begin{cases}\frac{\sin (x)}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

Dis-Continuity?

$$
f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Dis-Continuity?

The Formal Definition of Continuity

Definition

A function $f(x)$ is continuous at a number a if
(1) $f(x)$ is defined at $x=$ a, ie., $f(a)$ is well-defined,
(2) $\lim _{x \rightarrow a} f(x)$ exists, and
(3) $\lim _{x \rightarrow a} f(x)=f(a)$.

Example

The function $f(x)=x^{2}$ is continuous at $x=2$.

$$
\begin{aligned}
& f^{f(2)}=2^{2}=4 \\
& \lim _{x \rightarrow 2} x^{2}=4 \\
& \lim _{x \rightarrow 2} x^{2}=4=2^{2}=f(2)
\end{aligned}
$$

Example
Is the following function continuous at $x=0$?

$$
\begin{aligned}
& \quad f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0, \\
0 & \text { if } x=0 .\end{cases} \\
& \text { - } f(0)=0 \\
& \text { - } \lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0 \quad-x \leqslant x \sin \left(\frac{1}{x}\right) \leqslant x \\
& \text { - } \lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0=f(0)
\end{aligned}
$$

The Formal Definition of Continuity

Definition

A function $f(x)$ is continuous at a number a if
(1) $f(x)$ is defined at $x=a$, i.e., $f(a)$ is well-defined,
(2) $\lim _{x \rightarrow a} f(x)$ exists, and
(3) $\lim _{x \rightarrow a} f(x)=f(a)$.

A function $f(x)$ is continuous from the right at $x=a$ if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a),
$$

and the function $f(x)$ is continuous from the left at $x=a$ if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a) .
$$

Example
The function $f(x)=1-\sqrt{1-x^{2}}$ is continuous on $[-1,1]$.

- it is contiwous m $(-1,1)$ which ir in the domain.

$$
\text { At } \begin{array}{r}
x=1: \lim _{x \rightarrow 1^{-}} 1-\frac{\sqrt{1-x^{2}}}{\vdots}=1 \\
f(1)=1-\sqrt{1-1}=1 \quad \text { cont at } x=1
\end{array}
$$

$$
\text { Sin:lary at } x=-1 \text {. }
$$

Theorems about Continuous Functions

Theorem

The following types of functions are continuous at every number in their domain: polynomials, rational functions, root functions, trigonometric functions, inverse trigonometric functions, exponential functions, logarithmic functions.

Theorem

If $f(x)$ and $g(x)$ are continuous functions at $x=a$, and c is a constant, then the following functions are also continuous at a:

$$
f(x)+g(x), f(x)-g(x), c f(x), f(x) g(x), \frac{f(x)}{g(x)} \text { if } g(a) \neq 0
$$

Theorems about Continuous Functions

Theorem

If f is continuous at $x=b$, and $\lim _{x \rightarrow a} g(x)=b$, then

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

Theorems about Continuous Functions
Theorem
If f is continuous at $x=b$, and $\lim _{x \rightarrow a} g(x)=b$, then

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

Example
Calculate $\lim _{x \rightarrow 3} \log \left(\frac{x+1}{x-2}\right)=\log \left(\lim _{x \rightarrow 3} \frac{x+1}{x-2}\right)=\log 4$.

$$
\begin{gathered}
\downarrow_{4} \text { and } \log \text { is } \cos t \operatorname{at} 4 \\
\lim _{x \rightarrow 0} e^{x \sin \frac{1}{x}}=e^{\ln x \sin \frac{1}{x}}=e^{0}=1
\end{gathered}
$$

Theorems about Continuous Functions

Theorem

If $g(x)$ is continuous at $x=a$, and $f(x)$ is continuous at $g(a)$, then the composite function $f(g(x))$ is continuous at $x=a$.

Theorems about Continuous Functions

Theorem

If $g(x)$ is continuous at $x=a$, and $f(x)$ is continuous at $g(a)$, then the composite function $f(g(x))$ is continuous at $x=a$.

Example

The function $\log \left(x^{2}+1\right)$ is continuous in the interval...

$$
\begin{aligned}
x^{2}+1 \text { is aluys } & >0 . \\
& \Rightarrow \log \left(x^{2}+1\right) \text { is slugs def } \\
& \rightarrow \text { contiwous on }(-\infty, \infty) .
\end{aligned}
$$

Theorems about Continuous Functions

Theorem (The Intermediate Value Theorem)

Suppose that $f(x)$ is continuous on the interval $[a, b]$, such that $f(a) \neq f(b)$, and let R be any real number between $f(a)$ and $f(b)$. Then, there is a number c in (a, b) such that $f(c)=R$.

Theorems about Continuous Functions

Theorem (The Intermediate Value Theorem)

Suppose that $f(x)$ is continuous on the interval $[a, b]$, such that $f(a) \neq f(b)$, and let R be any real number between $f(a)$ and $f(b)$. Then, there is a number c in (a, b) such that $f(c)=R$.

Example

Show that the polynomial $f(x)=x^{3}+x+1$ has a root (ie., a zero value) between -1 and 0 .

$$
\begin{array}{r}
f(x) \text { is a poly } \Rightarrow \text { continues on }(-\infty, \infty) \\
f(-1)=-1 \quad \text { B, the inter. value the : - } 1<0<1 \\
\text { there is } c \in[-1,0] \text { s.t. } \\
f(0)=1 \quad f(c)=0
\end{array}
$$

This slide left intentionally blank

