
UPDATES SINCE THE FIRST EDITION OF
“ELLIPTIC CURVES, MODULAR FORMS, AND THEIR L-FUNCTIONS”

Dear Readers,

Here is a list of updates (known typos, errors and omissions, expanded paragraphs, etc.),
with the text as it appeared in the first edition, followed by the corrected text (as it will/should
appear in a revised edition).

(1) Page xiv. Added my gratitude to Fernando Gouvêa who went out of his way to read
and give me great suggestions on the entire book. Also added thanks to Enis Kaya
who found a bunch of the typos listed in this document.

• (Old text) Last, but not least, I would like to express my gratitude to Keith
Conrad, David Pollack and William Stein, whose abundant comments and sug-
gestions have improved this manuscript much more than it would be safe to admit.

• (New text) Last, but not least, I would like to express my gratitude to Keith
Conrad, Eugenio Finat, Fernando Gouvêa, Enis Kaya, David Pollack and William
Stein, whose abundant comments and suggestions have improved this manuscript
much more than it would be safe to admit.

(2) Page 4. The text claimed that Fermat showed that 1 is not a congruent number in
order to prove Fermat’s last theorem for n = 4. In fact, it seems Fermat proved that
1 is not a congruent number for its own sake.

• (Old text) The proof of such a claim had to wait until Pierre de Fermat (1601-
1665) settled that the number 1 (and every square number) is not a congruent
number (a result that he showed in order to prove the case n = 4 of Fermat’s last
theorem).

• (New text) The proof of such a claim had to wait until Pierre de Fermat (1601-
1665) settled that the number 1, and every square, are not congruent numbers
(interestingly, his proof can be applied to prove the case n = 4 of Fermat’s last
theorem; see Example 1.1.5).

(3) Page 5. In the statement of Theorem 1.15 the word cardinality gives the impression
that the sets may be infinite, when of course they are finite. So we replaced the word
cardinalities by numbers:

• (Old text) If n is an odd square-free positive integer and n is the area of a right
triangle with rational sides, then the following cardinalities are equal:
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2 UPDATES SINCE FIRST EDITION

• (New text) If n is an odd square-free positive integer and n is the area of a right
triangle with rational sides, then the following numbers are equal:

(4) Page 6. We changed the word marvellous for its more common spelling, marvelous.

• (Old text) ... he had found a marvellous proof, but the margin was too small
to contain it.

• (New text) ... he had found a marvelous proof, but the margin was too small
to contain it.

(5) Page 14. This error in the revised edition was found by John Gilling and I would
like to thank him for pointing this out to me:

• (Old text) For any n > 0, the symbol
(−n) induces a Dirichlet character χn

defined by χn(a) =
(−n
a

)
, and we can define...

• (Corrected text) For any square-free n > 0, the Kronecker symbol induces
a Dirichlet character χn defined by χn(a) =

(−n
a

)
if −n ≡ 1 mod 4, and by

χn(a) =
(−4n

a

)
if −n ≡ 2 or 3 mod 4, and we can define...

The reason is that xn needs to be a primitive Dirichlet character.

(6) Page 16. In Hint (a) of Exercise 1.4.8, the expression 1
1+x

=
∑∞

k=0 x
k should read

1
1−x =

∑∞
k=0 x

k instead.

(7) Page 18. In addition to Yuri Matiyasevich, Hilary Putnam and Julia Robinson,
another mathematician, Martin Davis, should have been mentioned as one of the
contributors to the solution of Hilbert’s 10th problem.

• (Old text) Surprisingly, in 1970, Matiyasevich, Putnam and Robinson discov-
ered that there is no such general algorithm that decides whether equation ...

• (New text) Surprisingly, in 1970, Davis, Matiyasevich, Putnam, and Robinson
discovered that there is no such general algorithm that decides whether equation
...

(8) Page 20. We added the following picture of surfaces of genus 0, 1, 2, and 3, to
illustrate the last paragraph of Section 2.1, located at the end of Section 2.1, and
before Section 2.2 (the images were made by users Oleg Alexandrov and “Geek3” for
the Wikipedia page on genus of a surface):

(9) Page 22. We have added detail to Example 2.2.3. As it was written, the change of
variables ψ was unnecessarily mysterious:
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Figure 1. A surface of genus 0 (a sphere), and surfaces of genus 1, 2, and 3
(with 1, 2, and 3 holes, respectively).

• (Old text) Example 2.2.3. Let d ∈ Z, d 6= 0 and let E be the elliptic curve
given by the cubic equation

X3 + Y 3 = dZ3

with O = [1,−1, 0]. The reader should verify that E is a smooth curve. We
wish to find a Weierstrass equation for E and, indeed, one can find a change of
variables ψ : E → Ê given by

ψ([X, Y, Z]) = [12dZ, 36d(X − Y ), X + Y ] = [x, y, z]

such that zy2 = x3 − 432d2z3. The map ψ is invertible; the inverse map ψ−1 :
Ê → E is

ψ−1([x, y, z]) =

[
36dz + y

72d
,

36dz − y
72d

,
x

12d

]
.

In affine coordinates, the change of variables is going from X3 + Y 3 = d to the
curve y2 = x3 − 432d2:

ψ(X, Y ) =

(
12d

X + Y
,
36d(X − Y )

X + Y

)
,

ψ−1(x, y) =

(
36d+ y

6x
,
36d− y

6x

)
.

�
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• (New text) Example 2.2.3. Let d ∈ Z, d 6= 0 and let E be the elliptic curve
given by the cubic equation

X3 + Y 3 = dZ3

with O = [1,−1, 0]. The reader should verify that E is a smooth curve. We
wish to find a Weierstrass equation for E. Note that if we change X = U + V ,
Y = −V , Z = W , then we obtain a new equation

U3 + 3U2V + 3UV 2 = dW 3. (1)

Since this equation is quadratic in V , and cubic in W , with no other cubic
monomials that involve W , the variable W will end up playing the role of x, and
the variable V will play the role of y in our Weierstrass model. Next, we change
variables to obtain a coefficient of 1 in front of V 2 and W 3. If we multiply Eq.
(1) through by d2, we obtain

d2U3 + 3d2U2V + 3d2UV 2 = d3W 3, (2)

and now we change variables x = 3dW , y = 9dV , and z = U . Then, Eq. (2)
becomes

d2z +
dyz

3
+
y2z

27
=
x3

27
, (3)

or, equivalently, y2z+ 9dyz = x3− 27d2z, which is a Weierstrass equation. Thus,
[x, y, z] = [3dW, 9dV, U ] = [3dZ,−9dY,X + Y ] and we have found a change of
variables ψ : E → Ê given by

ψ([X, Y, Z]) = [3dZ,−9dY,X + Y ]

such that the image lands on the curve in Weierstrass equation Ê : y2z+ 9dyz =

x3 − 27d2z. The map ψ is invertible; the inverse map ψ−1 : Ê → E is

ψ−1([x, y, z]) =

[
9dz + y

9d
, − y

9d
,
x

3d

]
.

In affine coordinates, the change of variables is going from X3 + Y 3 = d to the
curve y2 + 9dy = x3 − 27d2 via the maps:

ψ(X, Y ) =

(
3d

X + Y
,− 9dY

X + Y

)
,

ψ−1(x, y) =

(
9d+ y

3x
,− y

3x

)
.

We leave it as an exercise for the reader to verify that the model can be further
simplified to the form y2 = x3 − 432d2. �

(10) Page 28. Although Poincaré’s name was Jules Henri, we know him as Henri Poincaré.

• (Old text) The next step in the study of the structure of E(Q) was conjectured
by Jules Poincaré in 1908...

http://www-history.mcs.st-and.ac.uk/Biographies/Poincare.html
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• (New text) The next step in the study of the structure of E(Q) was conjectured
by Henri Poincaré in 1908 ...

(11) Page 37. The Definition 2.6.5 needs a picture to go with it. We include this new
figure (which in the text should be Figure 6 in Chapter 2!). See Figure 6 below.

Figure 6. A node (left) with two tangent lines, and a cusp (right) with only
one tangent line.

(12) Page 47. In Example 2.7.5. I claimed that the reduction at p = 2 is multiplica-
tive, but in reality the reduction is additive. The bound on the rank then says that
RE1 ≤ 1 which is insufficient to prove that there are only finitely many points. One
has to resort to a 2-descent to conclude that the rank is 0. My thanks to Ron Burns
for pointing this out to me.

(13) Page 63. In case (11) of Example 2.10.4, a (−2, 2) should be (2, 1).
• (Old text) The other pairs correspond to (−2, 2) ·γ, with γ = (−1, 34), (−34, 2)
or (34, 17).

• (New text) The other pairs correspond to (2, 1) · γ, with γ = (−1, 34), (−34, 2)
or (34, 17).

(14) Page 69. The reasoning in Example 2.11.2 is incomplete. (Thanks to Eugenio Finat
for pointing this out to me.)
• (Old text) Moreover, we showed that the spaces [...] do not have points over
Q2.

• (New text) Moreover, we showed that the spaces [...] do not have points over
Q. In fact, in Example 2.10.4, parts (12) and (13), together with the fact that
Sel2(E/Q) is a group, show that these spaces have no points over Q2.

(15) Page 72. In the statement of Exercise 2.12.4, the projective equation for E should
be E : zy2 = x3 − 4xz2 (instead of zy2 = x3 + z3). I’d like to thank Ben Clare for
pointing this out.

http://www-history.mcs.st-and.ac.uk/Biographies/Poincare.html
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• (Old text) Next, we work in projective coordinates. Let C : W 2V 2 = U4 + W 4

and E : zy2 = x3 + z3.

• (New text) Next, we work in projective coordinates. Let C : W 2V 2 = U4 +W 4

and E : zy2 = x3 − 4xz2.

(16) Page 73. In the statement of Exercise 2.12.18, the condition on e1, e2, e3 should be
e1 − e2 = n2 and e1 − e3 = m2 (instead of e2 − e3 = m2).

• (Old text) Let E : y2 = (x− e1)(x− e2)(x− e3) with ei ∈ Q, distinct, and such
that e1 + e2 + e3 = 0. Additionally, suppose that e1 − e2 = n2 and e2 − e3 = m2

are squares.

• (New text) Let E : y2 = (x− e1)(x− e2)(x− e3) with ei ∈ Q, distinct, and such
that e1 + e2 + e3 = 0. Additionally, suppose that e1 − e2 = n2 and e1 − e3 = m2

are squares.

(17) Page 78. In Example 3.1.3, an occurrence of Z(
√

2) should be Z[
√

2] instead.

(18) Page 82. In Definition 3.2.1, it is more appropriate to write f : C→ C∪{∞} rather
than f(z) : C→ C ∪ {∞}.

(19) Page 84. The claim that ℘(z, L) is periodic is not as easy to prove as I made it seem
(Thanks to Eugenio Finat for pointing this out to me.)
• (Old text) the Weierstrass ℘-function is an elliptic function for the lattice L
since, clearly, ℘(z, L) = ℘(z + v, L) for any v ∈ L (check this!).

• (New text) the Weierstrass ℘-function is an elliptic function for the lattice L
since ℘(z, L) = ℘(z+v, L) for any v ∈ L (to see this, check that ℘′(z) is periodic,
and then integrate it; see [Sil86], Ch. VI, Theorem 3.1).

(20) Page 85. In Example 3.3.3, the displayed equation Mz = M(1+ i) = . . . should read
instead M ′z = M ′(1+ i) = . . .. Similarly, the equation z′′ = Mz should be z′′ = M ′′z.

(21) Page 86. The fundamental region that appears in Figure 3 on p. 86 is not the
correct region, and needs to be replaced by the Figure 3 that appears here.

(22) Page 86. In Definition 3.3.4, the elements of F(1) should be picked from H instead
of all of C, otherwise it would contain elements in the lower half plane.

(23) Page 91. In Example 3.6.1, the number p should be prime.

(24) Page 95. Exercise 3.7.4 refers to part (a) of Theorem 3.2.4. We have changed that
to “the first part of Theorem 3.2.4”.

(25) Page 101. The expression “analytic everywhere” should be changed by “holomorphic
everywhere”.
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Figure 3. The fundamental domain F(1) for the quotient H/Γ(1).

• (Old text) f is a modular form of weight k for SL(2,Z) if f is a modular function
of weight k and it is analytic everywhere on H and at the cusp ∞ of X(1).

• (New text) f is a modular form of weight k for SL(2,Z) if f is a modular func-
tion of weight k and it is holomorphic everywhere on H and at the cusp∞ ofX(1).

(26) Page 101. In Proposition 4.1.5, “a function of τ ∈ H” should be “a function of z ∈ H”
instead.

(27) Page 104. In Example 4.1.13, “both f1(z) and f2(Z)” should be “both f1(z) and
f2(z)”.

(28) Page 107. The text states that “X(Γ) only has a finite number of cusps” without
proof. We have reworded this:

Notice also that X(Γ) only has a finite number of cusps (the number of cusps
is at most the number of cosets of the form Γ · α in SL(2,Z), which is finite
since the index [SL(2,Z) : Γ] is finite), say...

(29) Page 108. The definition 4.2.6 of old form and Mold
k (Γ(N)) is not complete. In

Remark 4.2.5 (see also Exercise 4.5.9), we learned of two ways that one form can be
“old”, but only one way is listed in Definition 4.2.6. The definition should be, instead,
this one:

Definition 4.2.6. Let N , k ≥ 1 be integers. A modular form f(z) of weight k for
Γ(N) is said to be an old form if one of the following holds:
(a) there is a divisor M ≥ 1 of N such that f(z) is a modular form in the space

Mk(Γ(M)), or
(b) there is a divisor d ≥ 1 of N and a modular form g(z) ∈ Mk(Γ(N/d)) such that

f(z) = g(dz), or
(c) f(z) is a C-linear combination of modular forms as in (a) or (b).
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The C-linear subspace of all old forms of Mk(Γ(N)) is denoted by Mold
k (Γ(N)). We

also define
Sold
k (Γ(N)) := Mold

k (Γ(N)) ∩ Sk(Γ(N)).

For instance, if N = pq, where p, q are distinct primes, then Mold
k (Γ(N)) is the

C-linear space of all modular forms

f(z) + g(pz) + h(qz) + k(pqz)

where f ∈ Mk(Γ(1)) + Mk(Γ(p)) + Mk(Γ(q)), g ∈ Mk(Γ(q)), h ∈ Mk(Γ(p)) and
k ∈Mk(Γ(1)).

(30) Page 109. The text of Remark 4.2.9 is incorrect. It should say that the spaces of
modular forms Mk(Γ1(N)) and Mk(Γ0(N)) have a basis formed by Eisenstein series
and cusp forms, and not just Eisenstein series.

• (Old text)

Remark 4.2.9. The Eisenstein series are very useful because most of the spaces
we are discussing in this book have a basis formed by Eisenstein series, and we
can calculate their q-expansions. For precise statements see [?], Chapter 7, or
[?], Chapter 5 (in particular, see Section 5.3).

Remark 4.2.10. Let k ≥ 1 and let Γ be a congruence subgroup. Then Mk(Γ)
is a finite-dimensional C-vector space. The formulas for the dimension of the
spaces of modular forms Mk(Γ) and Sk(Γ) can be found by calculating the genus
and the number of cusps of the modular curve X(Γ). Since we will not use these
formulas here, we simply refer the reader to [?], Theorem 3.5.1 and Figure 3.3
(page 108).

Example 4.2.11. Let N = 11 and let the weight be 2. The spaceM2(Γ0(11)) is a
2-dimensional C-vector space with basis elements {f, g} given by the q-expansions

f(q) = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 +O(q11)

g(q) = 1 +
12

5
q +

36

5
q2 +

48

5
q3 +

84

5
q4 +

72

5
q5 +

144

5
q6 +O(q7),

where q = e2πiz. Thus, we deduce that S2(Γ0(11)) is 1-dimensional, generated by
f(q).

Example 4.2.12. Let N = 37 and let the weight be 2. The space M2(Γ0(37))
is a 3-dimensional C-vector space with basis elements {f, g, h} given by the q-
expansions:

f(q) = q + q3 − 2q4 − q7 − 2q9 + 3q11 − 2q12 − 4q13 +O(q16)

g(q) = q2 + 2q3 − 2q4 + q5 − 3q6 − 4q9 − 2q10 + 4q11 +O(q12)

h(q) = 1 +
2

3
q + 2q2 +

8

3
q3 +

14

3
q4 + 4q5 + 8q6 +

16

3
q7 +O(q8),

where, once again, q = e2πiz. Thus, we deduce that S2(Γ0(37)) is 2-dimensional,
generated by f(q) and g(q).

• (New text)
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Remark 4.2.9. The Eisenstein series are very useful because the spaces of mod-
ular forms Mk(Γ1(N)) and Mk(Γ0(N)) have a basis formed by Eisenstein series
and cusp forms, and we can easily calculate the q-expansions of the Eisenstein
series. For precise statements see [?], Chapter 7, or [?], Chapter 5.

Remark 4.2.10. Let k ≥ 1 and let Γ be a congruence subgroup. Then Mk(Γ)
is a finite-dimensional C-vector space. The formulas for the dimension of the
spaces of modular forms Mk(Γ) and Sk(Γ) can be found by calculating the genus
and the number of cusps of the modular curve X(Γ). Since we will not use these
formulas here, we simply refer the reader to [?], Theorem 3.5.1 and Figure 3.3
(page 108).

Example 4.2.11. Let N = 11 and let the weight be 2. The spaceM2(Γ0(11)) is a
2-dimensional C-vector space with basis elements {f, g} given by the q-expansions

f(q) = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 +O(q11)

g(q) = 1 +
12

5
q +

36

5
q2 +

48

5
q3 +

84

5
q4 +

72

5
q5 +

144

5
q6 +O(q7),

where q = e2πiz. Here f is a cusp form and g is an Eisenstein series. Thus,
we deduce that S2(Γ0(11)) is 1-dimensional, generated by f(q), and M2(Γ0(11))
is generated by a cusp form and an Eisenstein series (as mentioned in Remark
4.2.9).

Example 4.2.12. Let N = 37 and let the weight be 2. The space M2(Γ0(37))
is a 3-dimensional C-vector space with basis elements {f, g, h} given by the q-
expansions:

f(q) = q + q3 − 2q4 − q7 − 2q9 + 3q11 − 2q12 − 4q13 +O(q16)

g(q) = q2 + 2q3 − 2q4 + q5 − 3q6 − 4q9 − 2q10 + 4q11 +O(q12)

h(q) = 1 +
2

3
q + 2q2 +

8

3
q3 +

14

3
q4 + 4q5 + 8q6 +

16

3
q7 +O(q8),

where, once again, q = e2πiz. Here f and g are cusp forms, while h is an Eisenstein
series. Thus, we deduce that S2(Γ0(37)) is 2-dimensional, generated by f(q) and
g(q).

(31) Pages 112-113. In the discussion of diamond operators we allowed δ ∈ Z but those
δ with gcd(δ,N) > 1 are not used elsewhere (and, in fact, would bring about unneces-
sary complications), so we restrict the definition to δ ∈ (Z/NZ)× from the beginning
instead. So we replace every instance of δ ∈ Z by δ ∈ (Z/NZ)×.

• (Old text)
Let δ ∈ Z and N, k ≥ 1. The diamond operator 〈δ〉 is a linear map from
Mk(Γ1(N)) to itself, defined as follows.

Definition 4.4.3. Let δ ∈ Z be fixed. Let M = (a, b; c, d) be a matrix in
Γ0(N) such that d ≡ δ mod N . The diamond operator 〈δ〉 is a linear map
〈δ〉 : Mk(Γ1(N))→Mk(Γ1(N)) defined by

(〈δ〉f)(z) = (cz + d)−kf(Mz) = (cz + d)−kf

(
az + b

cz + d

)
.
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Exercise ?? shows that the definition of 〈δ〉 does not depend on the choice of
a matrix M . Thus, 〈δ〉 is determined by the value of δ mod N , so there are
N distinct diamond operators, one for each value 0, 1, . . . , N − 1. Notice that
〈1〉f = f is the identity operator, because we can pick M = Id in the definition
of the diamond operator. Moreover, the following proposition shows that the
diamond operators with (δ,N) = 1 form a group under multiplication.

Proposition 4.4.4. Let N, k ≥ 1 be fixed and let δ, δ′ ∈ Z with (δδ′, N) = 1.
Then 〈δ′〉(〈δ〉f) = 〈δ〉(〈δ′〉f) = 〈δ′δ〉f . In particular, 〈δ〉ϕ(N) = 〈1〉 = Id and the
eigenvalues of 〈δ〉 must be roots of unity of order dividing ϕ(N), where ϕ is the
Euler phi function.

The proof of this proposition is left to the reader: Exercise ??.
Let µϕ(N) be the set of all roots of unity of order dividing ϕ(N). Then, for each
δ ∈ Z and every ζ ∈ µϕ(N), there is an eigenspace of Mk(Γ1(N)) formed by
eigenvectors with eigenvalue ζ. More concretely, let δ ∈ Z be fixed. Then, for
each ζ ∈ µϕ(N), the set

Mk(Γ1(N), 〈δ〉, ζ) = {f(z) ∈Mk(Γ1(N)) : (〈δ〉f)(z) = ζ · f(z)}

is a linear subspace of Mk(Γ1(N)), which is the eigenspace for 〈δ〉 formed by all
eigenvectors with eigenvalue ζ. Furthermore, for each δ ∈ Z, the space of modular
forms Mk(Γ1(N)) can be decomposed as a direct sum of eigenspaces:

Mk(Γ1(N)) =
⊕

ζ∈µϕ(N)

Mk(Γ1(N), 〈δ〉, ζ).

• (New text)

Let N, k ≥ 1 and δ ∈ (Z/NZ)×. The diamond operator 〈δ〉 is a linear map from
Mk(Γ1(N)) to itself, defined as follows.

Definition 4.4.3. Let δ ∈ (Z/NZ)× be fixed. Let M = (a, b; c, d) be a matrix
in Γ0(N) such that d ≡ δ mod N . The diamond operator 〈δ〉 is a linear map
〈δ〉 : Mk(Γ1(N))→Mk(Γ1(N)) defined by

(〈δ〉f)(z) = (cz + d)−kf(Mz) = (cz + d)−kf

(
az + b

cz + d

)
.

Exercise ?? shows that the definition of 〈δ〉 does not depend on the choice of a
matrix M . Thus, 〈δ〉 is determined by the value of δ ∈ (Z/NZ)×, so there are
ϕ(N) distinct diamond operators, one for each value in (Z/NZ)×. Notice that
〈1〉f = f is the identity operator, because we can pick M = Id in the definition
of the diamond operator. Moreover, the following proposition shows that the
diamond operators form a group under multiplication.

Proposition 4.4.4. Let N, k ≥ 1 be fixed and let δ, δ′ ∈ (Z/NZ)×. Then,
〈δ′〉(〈δ〉f) = 〈δ〉(〈δ′〉f) = 〈δ′δ〉f . In particular, 〈δ〉ϕ(N) = 〈1〉 = Id and the
eigenvalues of 〈δ〉 must be roots of unity of order dividing ϕ(N), where ϕ is the
Euler phi function.
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The proof of this proposition is left to the reader: Exercise ??.
Let µϕ(N) be the set of all roots of unity of order dividing ϕ(N). Then, for each
δ ∈ (Z/NZ)× and every ζ ∈ µϕ(N), there is an eigenspace of Mk(Γ1(N)) formed
by eigenvectors with eigenvalue ζ. More concretely, let δ ∈ (Z/NZ)× be fixed.
Then, for each ζ ∈ µϕ(N), the set

Mk(Γ1(N), 〈δ〉, ζ) = {f(z) ∈Mk(Γ1(N)) : (〈δ〉f)(z) = ζ · f(z)}
is a linear subspace of Mk(Γ1(N)), which is the eigenspace for 〈δ〉 formed by all
eigenvectors with eigenvalue ζ. Furthermore, for each δ ∈ (Z/NZ)×, the space of
modular forms Mk(Γ1(N)) can be decomposed as a direct sum of eigenspaces:

Mk(Γ1(N)) =
⊕

ζ∈µϕ(N)

Mk(Γ1(N), 〈δ〉, ζ).

(32) Pages 114-115. The text was a bit vague about the domain and codomain of the
operators Um and Vm, so we added a few words to clarify. In addition, the definition
of Tp when χ0 is trivial, needed fixing when p|N .

• (Old text)
Before we define the Hecke operators Tn, we need to define the auxiliary operators
Um and Vm.

Definition 4.4.6. Let m ≥ 1 and let f ∈ Mk(Γ1(N)). We define operators Vm
and Um by

(Vm(f))(z) = f(mz) and (Um(f))(z) =
1

m

m−1∑
j=0

f

(
z + j

m

)
.

If f is given by a q-expansion f(z) =
∑

n≥0 anq
n, then

Vm(f) =
∑
n≥0

anq
mn and Um(f) =

∑
n≡0 mod m

anq
n/m.

Recall that in Prop. ?? we defined spaces Mk(N,χ) by

Mk(N,χ) = {f ∈Mk(Γ1(N)) : 〈δ〉f = χ(δ)f for all δ ∈ (Z/NZ)×}.

Definition 4.4.7. Let f(z) ∈ Mk(N,χ) and suppose f(z) is given by a q-
expansion f(z) =

∑
n≥0 anq

n. Let p ≥ 2 be a prime. We define an operator
Tp by

Tp(f) = Up(f) + χ(p)pk−1Vp(f),

where χ(p) = 0 if N ≡ 0 mod p. Equivalently,

Tp(f(z)) =
∑
n≥0

bnq
n, such that bn = apn + χ(p)pk−1an/p

and an/p = 0 if n 6≡ 0 mod p. In particular, if χ0 is trivial and f ∈Mk(N,χ0) =
Mk(Γ0(N)), then

Tp(f) = Up(f) + pk−1Vp(f).

Next, we define Hecke operators Tn for all n ≥ 1.

Definition 4.4.8. Let f ∈Mk(N,χ). We define Hecke operators Tn for all n ≥ 1
as follows:
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– If n = p ≥ 2 is a prime, then Tp(f) = Up(f) + χ(p)pk−1Vp(f) as before;
– If n = pr and p|N , then Tpr = (Tp)

r, i.e., Tp composed r times with itself;
– If n = pr and p - N , then Tpr can be calculated using the following recurrence
relation:

Tp · Tpr = Tpr+1 + pk−1〈p〉Tpr−1 .

– If (n,m) = 1, then Tnm(f) = (Tn · Tm)(f) = (Tm · Tn)(f) = Tm(Tn(f)).

Remark 4.4.9. There are several equivalent ways to define Hecke operators. Tn
can be defined as above, or as a function on lattices, or as a double coset operator.
See [?], [?] or [?] for alternative definitions.

• (New text)

Before we define the Hecke operators Tn, we need to define the auxiliary operators
Um and Vm. We remark here that while Um and Vm are just given as operators
on functions given by power series, i.e., C[[q]] → C[[q]], the Hecke operators are
defined so that they preserve the space of modular forms Mk(N,χ).

Definition 4.4.6. Let m ≥ 1 and let f ∈ Mk(Γ1(N)). We define operators Vm
and Um : C[[q]]→ C[[q]] by

(Vm(f))(z) = f(mz) and (Um(f))(z) =
1

m

m−1∑
j=0

f

(
z + j

m

)
.

If f is given by a q-expansion f(z) =
∑

n≥0 anq
n, then

Vm(f) =
∑
n≥0

anq
mn and Um(f) =

∑
n≡0 mod m

anq
n/m.

Recall that in Prop. ?? we defined spaces Mk(N,χ) by

Mk(N,χ) = {f ∈Mk(Γ1(N)) : 〈δ〉f = χ(δ)f for all δ ∈ (Z/NZ)×}.

Definition 4.4.7. Let f(z) ∈ Mk(N,χ) and suppose f(z) is given by a q-
expansion f(z) =

∑
n≥0 anq

n. Let p ≥ 2 be a prime. We define an operator
Tp : Mk(N,χ)→Mk(N,χ) by

Tp(f) = Up(f) + χ(p)pk−1Vp(f),

where χ(p) = 0 if N ≡ 0 mod p. Equivalently,

Tp(f(z)) =
∑
n≥0

bnq
n, such that bn = apn + χ(p)pk−1an/p

and an/p = 0 if n 6≡ 0 mod p. In particular, if χ0 is trivial and f ∈Mk(N,χ0) =
Mk(Γ0(N)), then

Tp(f) =

{
Up(f) + pk−1Vp(f) , if p - N,
Up(f) , if p | N.

Next, we define Hecke operators Tn : Mk(N,χ)→Mk(N,χ) for all n ≥ 1.

Definition 4.4.8. Let f ∈Mk(N,χ). We define Hecke operators Tn for all n ≥ 1
as follows:

– If n = p ≥ 2 is a prime, then Tp(f) = Up(f) + χ(p)pk−1Vp(f) as before;
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– If n = pr and p|N , then Tpr = (Tp)
r, i.e., Tp composed r times with itself;

– If n = pr and p 6| N , then Tpr can be calculated using the following recurrence
relation:

Tp · Tpr = Tpr+1 + pk−1〈p〉Tpr−1 .

– If (n,m) = 1, then Tnm(f) = (Tn · Tm)(f) = (Tm · Tn)(f) = Tm(Tn(f)).
Remark 4.4.9. There are several equivalent ways to define Hecke operators. Tn
can be defined as above, or as a function on lattices, or as a double coset operator.
See [?], [?] or [?] for alternative definitions. The reader can also find in these
references a proof of the fact that the Hecke operators indeed preserve the space
Mk(N,χ), a fact that we will not show here.
• Page 116. The wording in Example 4.4.10 makes it sound as if E2k(z) was an
eigenform at any level, but the point here is that E2k(z) is an eigenform at level
1. Also, a0 = −B2k/4k.

– (Old text)
Example 4.4.12. Let k ≥ 2 and let

E2k(z) =
1

2ζ(2k)
G2k(z) = 1− 4k

B2k

∑
n≥1

σ2k−1(n)qn

be the (normalized) Eisenstein series of weight 2k for SL(2,Z), as in Propo-
sition ??. We can write

Ê2k(z) = −B2k

4k
E2k(z) = −B2k

4k
+
∑
n≥1

σ2k−1(n)qn.

Therefore, a1 = 1 and an = σ2k−1(n) =
∑

0<d|n d
2k−1. Since Ê2k is a

modular form for SL(2,Z), it may also be considered as a form for Γ0(N)

for any N ≥ 1. Hence, Ê2k ∈ M2k(N,χ0) = M2k(Γ0(N)), where χ0 is the
trivial character of (Z/NZ)×, and so

an =
∑
0<d|n

χ0(d)d2k−1

since χ0(d) = 1. Also notice that a0 = B2k/4k 6= 0, so Ê2k is not a cusp
form. Hence, Hecke’s theorem ?? suggests that E2k may be an eigenform;
that is, it suggests that E2k is an eigenvector for all Tn, with n ≥ 1, with
eigenvalue an. In other words, Tn(E2k) = σ2k−1(n)E2k for all n ≥ 1. This
equality is left as an exercise for the reader (see Exercise ??). �

– (New text)
Example 4.4.12. Let k ≥ 2 and let

E2k(z) =
1

2ζ(2k)
G2k(z) = 1− 4k

B2k

∑
n≥1

σ2k−1(n)qn

be the (normalized) Eisenstein series of weight 2k for SL(2,Z), as in Propo-
sition ??. We can write

Ê2k(z) = −B2k

4k
E2k(z) = −B2k

4k
+
∑
n≥1

σ2k−1(n)qn.
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Therefore, a1 = 1 and an = σ2k−1(n) =
∑

0<d|n d
2k−1. Since Ê2k is a

modular form for SL(2,Z) = Γ0(1), it may also be considered as a form
Ê2k ∈M2k(1, χ0) = M2k(Γ0(1)), where χ0 is the trivial character modulo 1,
i.e., χ0(d) = 1 for all d ≥ 1. Thus,

an = σ2k−1(n)
∑
0<d|n

d2k−1 =
∑
0<d|n

χ0(d)d2k−1

since χ0(d) = 1. Also notice that a0 = −B2k/4k 6= 0, so Ê2k is not a cusp
form. Hence, Hecke’s Theorem ?? suggests that E2k may be an eigenform;
that is, it suggests that E2k is an eigenvector for all Tn, with n ≥ 1, with
eigenvalue an. In other words, Tn(E2k) = σ2k−1(n)E2k for all n ≥ 1. This
equality is left as an exercise for the reader (see Exercise ??). �

(33) Page 117. Remark 4.4.16 says that Hecke’s theorem implies that there is a unique
normalized eigenform of M2k(Γ0(N)) that is not a cusp form, but what Hecke’s the-
orem truly implies is that there is a unique normalized eigenform of Mk(Γ0(N), χ)
that is not a cusp form. We fix this, and add a note about the first coefficient of such
Eisenstein series.

• (Old text)

Example 4.4.16. It follows from Hecke’s theorem that, if k ≥ 2, there is a
unique normalized eigenform of M2k(Γ0(N)) that is not a cusp form, and it is
precisely the Eisenstein series Ê2k, by Example 4.4.12 (and Exercise ??). �

• (New text)

Example 4.4.16. It follows from Hecke’s theorem that, if k ≥ 2 and χ :
(Z/NZ)× → C× is a character modulo N , there is a unique normalized eigenform
of Mk(N,χ) that is not a cusp form. This eigenform is precisely the Eisenstein
series Êk,χ given by

Êk,χ(z) = −Bk,χ

2k
+
∑
n≥1

∑
0<d|n

χ(d)dk−1

 qn,

where Bk,χ is a generalized Bernoulli number, defined by the following identity:
N∑
d=1

χ(d) · x · edx

eNx − 1
=
∞∑
k=0

Bk,χ

k!
· xk.

When N = 1, and χ is the trivial character modulo 1, i.e., χ(d) = 1 for all d ≥ 1,
then Bk,χ = Bk is the usual Bernoulli number (except B1,χ = −B1 = 1/2), and
Ê2k,χ(z) = Ê2k(z) as in Example 4.4.12. �

(34) Page 136. Towards the end of Example 5.3.3., the expression for (f − 2g)(q) should
begin with q and not with 1, i.e., it should be

(f − 2g)(q) = q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 − q7 + 6q9 + 4q10 − 5q11 +O(q12)


