Name:

Test 1 - Practice Questions - Hints and Solutions

1. Which of the following matrices are in row echelon form? Which are in reduced row echelon form?

$$
\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 3 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
0 & 1 & 0 & 1 \\
0 & 1 & 2 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Solution: The 2 nd, 3 rd, and 5 th are in row echelon form. The 2 nd is the only one in reduced row echelon form.
2. Solve the following system of equations:

$$
\begin{aligned}
& \begin{aligned}
x_{2}+5 x_{3} & =-4 \\
x_{1}+4 x_{2}+3 x_{3} & =-2
\end{aligned} \\
& 2 x_{1}+7 x_{2}+x_{3}=-2
\end{aligned}
$$

Solution: Putting the coefficients into a matrix we obtain the augmented matrix:

$$
\left[\begin{array}{llll}
0 & 1 & 5 & -4 \\
1 & 4 & 3 & -2 \\
2 & 7 & 1 & -2
\end{array}\right]
$$

Now we put this matrix into reduced row echelon form and obtain:

$$
\left[\begin{array}{cccc}
1 & 0 & -17 & 0 \\
0 & 1 & 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

So since the last row gives the equation $0=1$, this system is inconsistent.
3. Solve the following system of equations:

$$
\begin{aligned}
& 2 x_{1} \quad-6 x_{3}=-8 \\
& x_{2}+2 x_{3}=3 \\
& 3 x_{1}+6 x_{2}-2 x_{3}=-4
\end{aligned}
$$

Solution: Putting the coefficients into a matrix we obtain the augmented matrix:

$$
\left[\begin{array}{cccc}
2 & 0 & -6 & -8 \\
0 & 1 & 2 & 3 \\
3 & 6 & -2 & -4
\end{array}\right]
$$

Now we put this matrix into reduced row echelon form and obtain:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

So we obtain the solutions $x_{1}=2, x_{2}=-1, x_{3}=2$.
4. (a) Is $\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$ in $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right]\right\}$? What about $\left[\begin{array}{c}\pi \\ \log _{2} 3 \\ 17\end{array}\right]$?

Solution: We can form the matrix whose columns are our vectors:

$$
\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 4 & 2 \\
0 & 3 & 3
\end{array}\right]
$$

and put this matrix into rref:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and since there is a pivot in each row, (i.e. no row of zeros), the vectors span \mathbb{R}^{3}, so both vectors must be in the span.
(b) Is $\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$ a linear combination of $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right] ?$ Is $\left[\begin{array}{c}\pi \\ \log _{2} 3 \\ 17\end{array}\right]$?

Solution: By the definition of span, these vectors must be linear combinations of those three vectors.
5. Let

$$
A=\left[\begin{array}{ccc}
1 & 4 & -1 \\
1 & 5 & 0 \\
0 & 3 & 3
\end{array}\right]
$$

(a) Is $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ in the span of the columns of A ? What about $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$?

Solution: If we put A into RREF, we see that there actually is a row of zeros, so we must check these vectors individually. First let's check $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Create the augmented matrix:

$$
\left[\begin{array}{cccc}
1 & 4 & -1 & 1 \\
1 & 5 & 0 & 2 \\
0 & 3 & 3 & 3
\end{array}\right]
$$

Then put it into RREF to see if there is a solution to this system of equations: We obtain:
$\left[\begin{array}{cccc}1 & 0 & -5 & -3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$

So this system is consistent, so $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ IS in the span.

Now let's check $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$. Create the augmented matrix:

$$
\left[\begin{array}{cccc}
1 & 4 & -1 & 3 \\
1 & 5 & 0 & 2 \\
0 & 3 & 3 & 1
\end{array}\right]
$$

Then put it into RREF to see if there is a solution to this system of equations:

$$
\left[\begin{array}{cccc}
1 & 0 & -5 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The last row gives the equation $0=1$, so this system is inconsistent. Thus, $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ is NOT in the span.
(b) Is $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ a linear combination of the columns of A ? What about $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$?

Solution: Similar to the previous question, by the definition of span, if a vector is in the span of the columns of A if and only if is a linear combination of the columns of A. Thus, $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ IS a linear combination of the columns of A, and $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ is NOT a linear combination of the columns of A
6. Suppose $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$.
(a) Give an example of a vector in span S but not in S.

Solution: Any linear combination of vectors in S is in span S. So for instance we can take $2\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right]$
or $\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right]+\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$.
(b) Give an example of a vector NOT in span S.

Solution: If a vector \vec{v} is in span S, then

$$
\vec{v}=c\left[\begin{array}{l}
1 \\
2 \\
0 \\
3
\end{array}\right]+d\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
c \\
2 c \\
0 \\
3 c
\end{array}\right]+\left[\begin{array}{l}
0 \\
d \\
d \\
0
\end{array}\right]=\left[\begin{array}{c}
c \\
2 c+d \\
d \\
3 c
\end{array}\right]
$$

In particular, notice the 4 th entry must be 3 times the 1 st entry. So to get a vector not in the
span of S, just give an example of a vector in \mathbb{R}^{4} whose 4 th entry is NOT 3 times its 1 st entry. For example:
7. Find a vector \vec{x} such that

$$
\left[\begin{array}{lll}
2 & 4 & 6 \\
4 & 6 & 2 \\
6 & 2 & 4
\end{array}\right] \vec{x}=\left[\begin{array}{l}
2 \\
6 \\
4
\end{array}\right]
$$

Solution: This is a matrix equation. To find the solutions, simply solve the augmented matrix:

$$
\left[\begin{array}{llll}
2 & 4 & 6 & 2 \\
4 & 6 & 2 & 6 \\
6 & 2 & 4 & 4
\end{array}\right]
$$

Putting it into RREF we obtain:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & \frac{2}{3} \\
0 & 1 & 0 & \frac{2}{3} \\
0 & 0 & 1 & -\frac{1}{3}
\end{array}\right]
$$

yielding solutions $x_{1}=\frac{2}{3}, x_{2}=\frac{2}{3}, x_{3}=-\frac{1}{3}$. So our vector \vec{x} should be

$$
\vec{x}=\left[\begin{array}{c}
\frac{2}{3} \\
\frac{2}{3} \\
-\frac{1}{3}
\end{array}\right]
$$

8. Calculate the following matrix products if they are defined, otherwise state they are undefined.
(a) $\left[\begin{array}{ccc}1 & 0 & 2 \\ 1 & -1 & 1 \\ 0 & -1 & 3\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$
(b) $\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right] \cdot\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 1 & 0\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 2 & 0 \\ 4 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{cc}2 & 1 \\ 1 & -1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}4 & -1 \\ 8 & 4\end{array}\right]$
(e) $\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & -1 & 0\end{array}\right] \cdot\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]=$ product not defined
(f) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{ccc}2 & 4 & 5 \\ 7 & 13 & 4 \\ -2 & 15 & -17\end{array}\right]=\left[\begin{array}{ccc}2 & 4 & 5 \\ 7 & 13 & 4 \\ -2 & 15 & -17\end{array}\right]$
9. (a) Write $\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]$ as a linear combination of the vectors $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$?

Solution: We wish to solve

$$
c_{1}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]
$$

This is a vector equation which we solve by making the matrix

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
1 & 1 & 0 & 2 \\
0 & 1 & 1 & 4
\end{array}\right]
$$

and solving it. I leave that part to you. (Put into RREF)
(b) Is the set $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ linearly independent?

Solution: We need to check if there are any nontrivial solutions to:

$$
c_{1}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We check this by making the matrix

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

and seeing if there is a free variable. I leave that part to you. (Put into RREF, see if one column pertaining to a variable does not have a pivot). The answer is that there are no free variables, so the set is linearly independent.
(c) Do these vectors span \mathbb{R}^{3} ?

Solution: We have a theorem that helps us with this. We form the matrix

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

and check whether there is a pivot in each row (when in REF), i.e. that there are no rows of zeros. If there are no rows of zeros, then by a theorem we have discussed in class, the columns of this matrix span \mathbb{R}^{3}. Here, the columns of our matrix are exactly the vectors.
The solution is YES they do span \mathbb{R}^{3}.
10. Determine whether the following sets are linearly independent:
(a) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
(e) $\left\{\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right]\right\}$
(f) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$

Solution: The idea is to check if $c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\cdots+c_{n} \overrightarrow{v_{n}}=\overrightarrow{0}$ has any non-trivial solutions just like in the problem before. Key things to remember here are that

- if a set contains the zero vector, then the set is linearly dependent
- if a set contains more vectors than the dimension of the vectors (\# of entries), then the set is linearly dependent

The answers are: yes, yes, no, no, no, no.
11. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the transformation defined by

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \mapsto\left[\begin{array}{l}
x+z \\
y+z
\end{array}\right]
$$

(a) Show that T is a linear transformation.

Solution: We must check the two properties that define a linear transformation:

- For any $\vec{u}, \vec{v}, T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$.
- For any $\vec{u}, c, T(c \vec{u})=c T(\vec{u})$.

Let us define arbitrary vectors

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right], \vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] .
$$

Now simply compute both sides of each equation.

$$
\begin{aligned}
& T(\vec{u}+\vec{v})=T\left(\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
u_{3}+v_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
\left(u_{1}+v_{1}\right)+\left(u_{3}+v_{3}\right) \\
\left(u_{2}+v_{2}\right)+\left(u_{3}+v_{3}\right)
\end{array}\right] \\
& T(\vec{u})+T(\vec{v})=\left[\begin{array}{l}
u_{1}+u_{3} \\
u_{2}+u_{3}
\end{array}\right]+\left[\begin{array}{l}
v_{1}+v_{3} \\
v_{2}+v_{3}
\end{array}\right]=\left[\begin{array}{l}
u_{1}+u_{3}+v_{1}+v_{3} \\
u_{2}+u_{3}+v_{2}+v_{3}
\end{array}\right]
\end{aligned}
$$

and by rearranging we see that $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$.
Do the same to check $T(c \vec{u})=c T(\vec{u})$.
(b) Determine the standard matrix for T.

Solution: To find the standard matrix for T, we must find were T sends the standard basis of the domain of T, in this case \mathbb{R}^{3}.
So, we will calculate:

$$
T\left(\overrightarrow{e_{1}}\right)=T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& T\left(\overrightarrow{e_{2}}\right)=T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& T\left(\overrightarrow{e_{3}}\right)=T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

And now we form the matrix by concatenating these vectors:

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

and this matrix A is the standard matrix for T. We can double check that

$$
A \vec{x}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x+z \\
y+z
\end{array}\right]
$$

(c) Is T onto?

Solution: There is a theorem which tells you that T is onto if and only if the columns of the standard matrix of T, that is the matrix A we just found, span the range of T, in this case \mathbb{R}^{2}. So we need to check is the columns of

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

span \mathbb{R}^{2}. We have a theorem that says that the columns of a matrix span \mathbb{R}^{n} precisely when there no row of zeros in RREF, (there is a pivot in every row). So we put A into RREF, which it conveniently already is in, and notice that A has no row of zeros, (it has a pivot in every row). Therefore, the columns of A span \mathbb{R}^{2}, and therefore T is onto.
(d) Is T one-to-one?

Solution: There is a theorem which tells you that T is one-to-one if and only if the columns of the standard matrix of T, that is the matrix A we just found, are linearly independent. So we must check if the set

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

is linearly independent.
For more detailed steps, see solutions to previous problems on showing sets of vectors are linearly independent.

We form the matrix

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

and put it into RREF. Conveniently it already is in RREF, and we see that c_{3} is a free variable, and thus this set of vectors is not linearly independent, the set is linearly dependent. Thus, T is not one-to-one.
12. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}+x_{2} \\
x_{1}-x_{2}
\end{array}\right]
$$

(a) Show that T is a linear transformation.

Solution: See previous problem for idea.
(b) Determine the standard matrix for T.

Solution: See previous problem for idea, the answer is

$$
A=\left[\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right]
$$

(c) Is T onto?

Solution: See previous problem for idea, the answer is yes.
(d) Is T one-to-one?

Solution: See previous problem for idea, the answer is yes.
13. Determine if the following matrices are invertible and, if so, find the inverse matrix.
(a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(b) $\left[\begin{array}{lll}2 & 3 & 0 \\ 1 & 0 & 3\end{array}\right]$
(c) $\left[\begin{array}{ccc}1 & 0 & 2 \\ 1 & -1 & 1 \\ 0 & -1 & 3\end{array}\right]$
(d) $\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(e) $\left[\begin{array}{ccc}2 & 0 & 1 \\ 1 & -1 & 3 \\ 3 & 1 & -1\end{array}\right]$
(f) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right]$

Solution: Following the method we have seen to determine if a matrix is invertible and find the inverse matrix, you can check that (b) and (e) are NOT invertible, and:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
3 / 2 & -1 / 2
\end{array}\right], \quad\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & -1 & 1 \\
0 & -1 & 3
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & -1 / 2 \\
3 / 4 & -3 / 4 & -1 / 4 \\
1 / 4 & -1 / 4 & 1 / 4
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
1 & -1 & 1 & 0 \\
0 & -1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & -1 / 2 & 0 \\
3 / 4 & -3 / 4 & -1 / 4 & 0 \\
1 / 4 & -1 / 4 & 1 / 4 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
3 & -3 & 1 \\
-5 / 2 & 4 & -3 / 2 \\
1 / 2 & -1 & 1 / 2
\end{array}\right]}
\end{aligned}
$$

