Name:

Test 1 - Practice Questions - Hints and Solutions

1. Which of the following matrices are in row echelon form? Which are in reduced row echelon form?

$\begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$	${3 \atop {0}$	$\begin{bmatrix} 5\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 2 \\ 0 \end{array}$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, [$\begin{array}{c} 0 \\ 2 \\ 0 \end{array}$	$\begin{bmatrix} 0\\0\\2 \end{bmatrix}$,	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 1 \end{array}$	$2 \\ 0 \\ 2$	$\begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$egin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$\begin{bmatrix} 1\\0\\1 \end{bmatrix},$	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0 \end{array}$	
-		-	-			-	-	-		-		-			-	-			-	Lo	0	T	٥J	

Solution: The 2nd, 3rd, and 5th are in row echelon form. The 2nd is the only one in reduced row echelon form.

2. Solve the following system of equations:

Solution: Putting the coefficients into a matrix we obtain the augmented matrix:

$$\begin{bmatrix} 0 & 1 & 5 & -4 \\ 1 & 4 & 3 & -2 \\ 2 & 7 & 1 & -2 \end{bmatrix}$$

Now we put this matrix into reduced row echelon form and obtain:

$$\begin{bmatrix} 1 & 0 & -17 & 0 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

So since the last row gives the equation 0 = 1, this system is inconsistent.

3. Solve the following system of equations:

Solution: Putting the coefficients into a matrix we obtain the augmented matrix:

$$\begin{bmatrix} 2 & 0 & -6 & -8 \\ 0 & 1 & 2 & 3 \\ 3 & 6 & -2 & -4 \end{bmatrix}$$

Now we put this matrix into reduced row echelon form and obtain:

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

So we obtain the solutions $x_1 = 2, x_2 = -1, x_3 = 2$.

4. (a) Is
$$\begin{bmatrix} -1\\2\\0 \end{bmatrix}$$
 in span $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\4\\3 \end{bmatrix}, \begin{bmatrix} 0\\2\\3 \end{bmatrix} \right\}$? What about $\begin{bmatrix} \pi\\\log_2 3\\17 \end{bmatrix}$?

Solution: We can form the matrix whose columns are our vectors:

1	3	0
2	4	$\frac{2}{3}$
0	3	3
-		_
_		_
[1	0	0
	0	
0	1	0

and put this matrix into rref:

and since there is a pivot in each row, (i.e. no row of zeros), the vectors span \mathbb{R}^3 , so both vectors must be in the span.

-1	1	3	0	π	
(b) Is $\begin{bmatrix} 2\\ 0 \end{bmatrix}$ a linear combination	n of $\begin{bmatrix} 2\\ 0 \end{bmatrix}$,	$\begin{bmatrix} 4\\3 \end{bmatrix}$,	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$? Is	$\begin{bmatrix} \log_2 3 \\ 17 \end{bmatrix}$?

Solution: By the definition of span, these vectors must be linear combinations of those three vectors.

5. Let

$$A = \begin{bmatrix} 1 & 4 & -1 \\ 1 & 5 & 0 \\ 0 & 3 & 3 \end{bmatrix}.$$
(a) Is $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ in the span of the columns of A ? What about $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$?
Solution: If we put A into RREF, we see that there actually is a row of zeros, so we must check these vectors individually. First let's check $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Create the augmented matrix:

$$\begin{bmatrix} 1 & 4 & -1 & 1 \\ 1 & 5 & 0 & 2 \\ 0 & 3 & 3 & 3 \end{bmatrix}$$
Then put it into RREF to see if there is a solution to this system of equations: We obtain:

$$\begin{bmatrix} 1 & 0 & -5 & -3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
So this system is consistent, so $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ IS in the span.

Now let's check $\begin{bmatrix} 3\\2\\1 \end{bmatrix}$. Create the augmented matrix: $\begin{bmatrix} 1 & 4 & -1 & 3 \\ 1 & 5 & 0 & 2 \\ 0 & 3 & 3 & 1 \end{bmatrix}$ Then put it into RREF to see if there is a solution to this system of equations: $\begin{bmatrix} 1 & 0 & -5 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ The last row gives the equation 0=1, so this system is inconsistent. Thus, 2is **NOT** in the span. (b) Is $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ a linear combination of the columns of A? What about $\begin{bmatrix} 3\\2\\1 \end{bmatrix}$? Solution: Similar to the previous question, by the definition of span, if a vector is in the span of the columns of A if and only if is a linear combination of the columns of A. Thus, $\begin{bmatrix} 2\\ 3 \end{bmatrix}$ IS a linear combination of the columns of A, and $\begin{bmatrix} 3\\2\\1 \end{bmatrix}$ is **NOT** a linear combination of the columns of A6. Suppose $S = \left\{ \begin{array}{c} 1 \\ 2 \\ 0 \\ 3 \end{array} \right\}, \left\{ \begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{array} \right\}.$ (a) Give an example of a vector in span S but not in S.

Solution: Any linear combination of vectors in S is in span S. So for instance we can take $2 \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

3

or $\begin{bmatrix} 1\\2\\0\\3 \end{bmatrix} + \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$.	or	0	+	0 1 1 0	
--	----	---	---	------------------	--

(b) Give an example of a vector \mathbf{NOT} in span S.

Solution: If a vector \vec{v} is in span S, then

$$\vec{v} = c \begin{bmatrix} 1\\2\\0\\3 \end{bmatrix} + d \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} = \begin{bmatrix} c\\2c\\0\\3c \end{bmatrix} + \begin{bmatrix} 0\\d\\d\\0 \end{bmatrix} = \begin{bmatrix} c\\2c+d\\d\\3c \end{bmatrix}$$

In particular, notice the 4th entry must be 3 times the 1st entry. So to get a vector not in the

span of S, just give an example of a vector in \mathbb{R}^4 whose 4th entry is NOT 3 times its 1st entry. For example:

7. Find a vector \vec{x} such that

$$\begin{bmatrix} 2 & 4 & 6 \\ 4 & 6 & 2 \\ 6 & 2 & 4 \end{bmatrix} \vec{x} = \begin{bmatrix} 2 \\ 6 \\ 4 \end{bmatrix}$$

Solution: This is a matrix equation. To find the solutions, simply solve the augmented matrix:

$$\begin{bmatrix} 2 & 4 & 6 & 2 \\ 4 & 6 & 2 & 6 \\ 6 & 2 & 4 & 4 \end{bmatrix}$$

Putting it into RREF we obtain:

$$\begin{bmatrix} 1 & 0 & 0 & \frac{2}{3} \\ 0 & 1 & 0 & \frac{2}{3} \\ 0 & 0 & 1 & -\frac{1}{3} \end{bmatrix}$$

 $\vec{x} = \begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \\ -\frac{1}{3} \end{bmatrix}$

yielding solutions $x_1 = \frac{2}{3}, x_2 = \frac{2}{3}, x_3 = -\frac{1}{3}$. So our vector \vec{x} should be

(a)	$\begin{bmatrix} 1\\1\\0 \end{bmatrix}$	$ \begin{bmatrix} 0 & 2 \\ -1 & 1 \\ -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} $
(b)	$\begin{bmatrix} 2\\ 1 \end{bmatrix}$	
(c)	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 0 \end{bmatrix} $
(d)	$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$	$ \begin{array}{ccc} 2 & 0 \\ 0 & 1 \\ \end{array} \cdot \begin{bmatrix} 2 & 1 \\ 1 & -1 \\ 0 & 0 \\ \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 8 & 4 \\ \end{bmatrix} $
(e)	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$ \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix} = \text{product not defined} $
(f)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 4 & 5 \\ 7 & 13 & 4 \\ -2 & 15 & -17 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 5 \\ 7 & 13 & 4 \\ -2 & 15 & -17 \end{bmatrix}$

9. (a) Write
$$\begin{bmatrix} 2\\2\\4 \end{bmatrix}$$
 as a linear combination of the vectors $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$?

Solution: We wish to solve

$$c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + c_3 \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 2\\2\\4 \end{bmatrix}$$

This is a vector equation which we solve by making the matrix

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 4 \end{bmatrix}$$

and solving it. I leave that part to you. (Put into RREF)

(b) Is the set $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$ linearly independent?

Solution: We need to check if there are any nontrivial solutions to:

$$c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + c_3 \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

We check this by making the matrix

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

and seeing if there is a free variable. I leave that part to you. (Put into RREF, see if one column pertaining to a variable does not have a pivot). The answer is that there are no free variables, so the set is linearly independent.

(c) Do these vectors span \mathbb{R}^3 ?

Solution: We have a theorem that helps us with this. We form the matrix

[1	0	1]
1	1	0
0	1	1

and check whether there is a pivot in each row (when in REF), i.e. that there are no rows of zeros. If there are no rows of zeros, then by a theorem we have discussed in class, the columns of this matrix span \mathbb{R}^3 . Here, the columns of our matrix are exactly the vectors. The solution is YES they do span \mathbb{R}^3 .

10. Determine whether the following sets are linearly independent:

(a)
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$$

(b) $\left\{ \begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix} \right\}$
(c) $\left\{ \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\2 \end{bmatrix} \right\}$

Solution: The idea is to check if $c_1\vec{v_1} + c_2\vec{v_2} + \cdots + c_n\vec{v_n} = \vec{0}$ has any non-trivial solutions just like in the problem before. Key things to remember here are that

- if a set contains the zero vector, then the set is linearly dependent
- if a set contains more vectors than the dimension of the vectors (# of entries), then the set is linearly dependent

The answers are: yes, yes, no, no, no, no.

11. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the transformation defined by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} x+z \\ y+z \end{bmatrix}$$

(a) Show that T is a linear transformation.

Solution: We must check the two properties that define a linear transformation:

- For any $\vec{u}, \vec{v}, T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}).$
- For any \vec{u} , c, $T(c\vec{u}) = cT(\vec{u})$.

Let us define arbitrary vectors

$$ec{u} = egin{bmatrix} u_1 \ u_2 \ u_3 \end{bmatrix}, ec{v} = egin{bmatrix} v_1 \ v_2 \ v_3 \end{bmatrix}.$$

Now simply compute both sides of each equation.

$$T(\vec{u} + \vec{v}) = T\left(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix} \right) = \begin{bmatrix} (u_1 + v_1) + (u_3 + v_3) \\ (u_2 + v_2) + (u_3 + v_3) \end{bmatrix}$$
$$T(\vec{u}) + T(\vec{v}) = \begin{bmatrix} u_1 + u_3 \\ u_2 + u_3 \end{bmatrix} + \begin{bmatrix} v_1 + v_3 \\ v_2 + v_3 \end{bmatrix} = \begin{bmatrix} u_1 + u_3 + v_1 + v_3 \\ u_2 + u_3 + v_2 + v_3 \end{bmatrix}$$

and by rearranging we see that $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$. Do the same to check $T(c\vec{u}) = cT(\vec{u})$.

(b) Determine the standard matrix for T.

7

Solution: To find the standard matrix for T, we must find were T sends the standard basis of the domain of T, in this case \mathbb{R}^3 .

So, we will calculate:

$$T(\vec{e_1}) = T\left(\begin{bmatrix} 1\\0\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\0 \end{bmatrix}$$

$$T(\vec{e_2}) = T\left(\begin{bmatrix} 0\\1\\0 \end{bmatrix} \right) = \begin{bmatrix} 0\\1 \end{bmatrix}$$
$$T(\vec{e_3}) = T\left(\begin{bmatrix} 0\\0\\1 \end{bmatrix} \right) = \begin{bmatrix} 1\\1 \end{bmatrix}$$

And now we form the matrix by concatenating these vectors:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

and this matrix A is the standard matrix for T. We can double check that

$$A\vec{x} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+z \\ y+z \end{bmatrix}$$

(c) Is T onto?

Solution: There is a theorem which tells you that T is onto if and only if the columns of the standard matrix of T, that is the matrix A we just found, span the range of T, in this case \mathbb{R}^2 . So we need to check is the columns of

[1	0	1]
0	1	1

span \mathbb{R}^2 . We have a theorem that says that the columns of a matrix span \mathbb{R}^n precisely when there no row of zeros in RREF, (there is a pivot in every row). So we put A into RREF, which it conveniently already is in, and notice that A has no row of zeros, (it has a pivot in every row). Therefore, the columns of A span \mathbb{R}^2 , and therefore T is onto.

(d) Is T one-to-one?

Solution: There is a theorem which tells you that T is one-to-one if and only if the columns of the standard matrix of T, that is the matrix A we just found, are linearly independent. So we must check if the set

 $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$

is linearly independent.

For more detailed steps, see solutions to previous problems on showing sets of vectors are linearly independent.

We form the matrix

 $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

and put it into RREF. Conveniently it already is in RREF, and we see that c_3 is a free variable, and thus this set of vectors is not linearly independent, the set is linearly dependent. Thus, T is not one-to-one.

12. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation defined by

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}2x_1+x_2\\x_1-x_2\end{bmatrix}$$

(a) Show that T is a linear transformation.

Solution: See previous problem for idea.

(b) Determine the standard matrix for T.

Solution: See previous problem for idea, the answer is

$$A = \begin{bmatrix} 2 & 1\\ 1 & -1 \end{bmatrix}$$

(c) Is T onto?

Solution: See previous problem for idea, the answer is yes.

(d) Is T one-to-one?

Solution: See previous problem for idea, the answer is yes.

13. Determine if the following matrices are invertible and, if so, find the inverse matrix.

(a)	$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 2\\ 4 \end{bmatrix}$		
(b)	$\begin{bmatrix} 2\\ 1 \end{bmatrix}$	$\begin{array}{ccc} 3 & 0 \\ 0 & 3 \end{array}$		
(c)	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	$0 \\ -1 \\ -1$	$\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$	
(d)	$\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$	$\begin{array}{c} 0 \\ -1 \\ -1 \\ 0 \end{array}$	$2 \\ 1 \\ 3 \\ 0$	0 0 0 1
(e)	$\begin{bmatrix} 2\\1\\3 \end{bmatrix}$	$\begin{array}{c} 0 \\ -1 \\ 1 \end{array}$	$ \begin{array}{c} 1 \\ 3 \\ -1 \end{array} $] L]
(f)	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	$ \begin{array}{ccc} 1 & 1 \\ 2 & 4 \\ 3 & 9 \end{array} $	L 1 9	

Solution: Following the method we have seen to determine if a matrix is invertible and find the inverse matrix, you can check that (b) and (e) are NOT invertible, and:

$$\begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} -2 & 1\\ 3/2 & -1/2 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 2\\ 1 & -1 & 1\\ 0 & -1 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 1/2 & 1/2 & -1/2\\ 3/4 & -3/4 & -1/4\\ 1/4 & -1/4 & 1/4 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 2 & 0\\ 1 & -1 & 1 & 0\\ 0 & -1 & 3 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1/2 & 1/2 & -1/2 & 0\\ 3/4 & -3/4 & -1/4 & 0\\ 1/4 & -1/4 & 1/4 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 1 & 1\\ 1 & 2 & 4\\ 1 & 3 & 9 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -3 & 1\\ -5/2 & 4 & -3/2\\ 1/2 & -1 & 1/2 \end{bmatrix}$$