Recent progress in the classification of torsion subgroups of elliptic curves 5e4 -500 -10001000 1500 2000 -5e4 Álvaro Lozano-Robledo **University of Connecticut** -1e5

Recent progress in the classification of torsion subgroups of elliptic curves

Álvaro Lozano-Robledo

Department of Mathematics University of Connecticut

May 22nd **Diophantine Geometry** Géométrie diophantienne

CIRM CENTRE INTERNATIONAL DE RENCONTRES MATHÉMATIQUES SCIENTIFIC EVENTS

Louis Mordell 1888 – 1972

Theorem (Mordell, 1922)

Let E/\mathbb{Q} be an elliptic curve. Then, the group of \mathbb{Q} -rational points on E, denoted by $E(\mathbb{Q})$, is a finitely generated abelian group. In particular, $E(\mathbb{Q}) \cong E(\mathbb{Q})_{tors} \oplus \mathbb{Z}^{R_{E/\mathbb{Q}}}$ where $E(\mathbb{Q})_{tors}$ is a finite subgroup, and $R_{E/\mathbb{Q}} \ge 0$.

Louis Mordell 1888 – 1972

André Weil 1906 – 1998

Theorem (Mordell-Weil, 1928)

Let *F* be a number field, and let A/F be an abelian variety. Then, the group of *F*-rational points on *A*, denoted by A(F), is a finitely generated abelian group. In particular, $A(F) \cong A(F)_{tors} \oplus \mathbb{Z}^{R_{A/F}}$ where $A(F)_{tors}$ is a finite subgroup, and $R_{A/F} \ge 0$.

Louis Mordell 1888 – 1972

André Weil 1906 – 1998

André Néron 1922 – 1985

Theorem (Mordell–Weil–Néron, 1952)

Let *F* be a field that is finitely generated over its prime field, and let A/F be an abelian variety. Then, the group of *F*-rational points on *A*, denoted by A(F), is a finitely generated abelian group. In particular, $A(F) \cong A(F)_{tors} \oplus \mathbb{Z}^{R_{A/F}}$ where $A(F)_{tors}$ is a finite subgroup, and $R_{A/F} \ge 0$.

Theorem (Mordell–Weil–Néron, 1952)

Let *F* be a field that is finitely generated over its prime field (e.g., a global field), and let A/F be an abelian variety. Then, the group of *F*-rational points on *A*, denoted by A(F), is a finitely generated abelian group. In particular, $A(F) \cong A(F)_{tors} \oplus \mathbb{Z}^{R_{A/F}}$ where $A(F)_{tors}$ is a finite subgroup, and $R_{A/F} \ge 0$.

... leads to ...

Natural Question

What finitely generated abelian groups arise from abelian varieties over global fields?

There are a number of ways to study this question, depending on what we allow to **vary**.

What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: Mordell–Weil groups of elliptic curves for a fixed field F

Fix a field F, and vary over 1-dimensional abelian varieties over F.

where $E_1, E_2, \ldots, E_k, \ldots$ is some family of (perhaps all) elliptic curves over a fixed field *F*.

What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: Mordell–Weil groups for a fixed curve E/F and vary L/F

Fix an elliptic curve E/F, and vary over finite extensions of *F*.

where $L_1, L_2, \ldots, L_k, \ldots$ is some family of (perhaps all) finite extensions of the base field *F*, contained in some fixed algebraic closure \overline{F} .

What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: ranks in a family of elliptic curves over a fixed F

where $E_1, E_2, \ldots, E_k, \ldots$ is some family of (perhaps all) elliptic curves over a fixed field *F*.

What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: ranks for a fixed curve E/F under field extensions L/F

where $L_1, L_2, \ldots, L_k, \ldots$ is some family of (perhaps all) finite extensions of a fixed field *F*, contained in some fixed algebraic closure \overline{F} .

What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: torsion subgroups in a family of curves over a fixed F

where $E_1, E_2, \ldots, E_k, \ldots$ is some family of (perhaps all) elliptic curves over a fixed field *F*.

What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: torsion for a fixed curve E/F over extensions L/F

where $L_1, L_2, \ldots, L_k, \ldots$ is some family of (perhaps all) finite extensions of a fixed field *F*, contained in some fixed algebraic closure \overline{F} .

Torsion subgroups of elliptic curves over \mathbb{Q}

Torsion subgroups of elliptic curves over \mathbb{Q}

Barry Mazur

Theorem (Levi–Ogg Conjecture; Mazur, 1977)

Let E/\mathbb{Q} be an elliptic curve. Then

 $E(\mathbb{Q})_{tors} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 10 \text{ or } M = 12, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 4. \end{cases}$

Moreover, each possible group appears infinitely many times.

The elliptic curve 30030bt1 has a point of order 12.

All elliptic curves with given torsion

	Define $E(a, b) : y^2 + (1 - a)xy - by = x^3 - bx^2$.			
E/\mathbb{Q}	а	b	$G \leq E(\mathbb{Q})_{tors}$	
E(0, b)	a = 0	b = t	$\mathbb{Z}/4\mathbb{Z}$	
E(a, a)	a = t	b = t	$\mathbb{Z}/5\mathbb{Z}$	
E(a, b)	a = t	$b = t + t^2$	$\mathbb{Z}/6\mathbb{Z}$	
E(a, b)	$a=t^2-t$	$b = t^3 - t^2$	$\mathbb{Z}/7\mathbb{Z}$	
E(a, b)	$a=\frac{(2t-1)(t-1)}{t}$	b = (2t - 1)(t - 1)	$\mathbb{Z}/8\mathbb{Z}$	
E(a, b)	$a=t^2(t-1)$	$b = t^2(t-1)(t^2-t+1)$	$\mathbb{Z}/9\mathbb{Z}$	
E(a, b)	$a = t(t-1)(2t-1)/(t^2 - 3t + 1)$	$b = t^3(t-1)(2t-1)/(t^2-3t+1)^2$	$\mathbb{Z}/10\mathbb{Z}$	
E(a, b)	$a = \frac{-t(2t-1)(3t^2 - 3t+1)}{(t-1)^3}$	$b = \frac{t(2t-1)(2t^2-2t+1)(3t^2-3t+1)}{(t-1)^4}$	$\mathbb{Z}/12\mathbb{Z}$	
E(0, b)	<i>a</i> = 0	$b = t^2 - 1/16$	$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/4\mathbb{Z}$	
E(a, b)	$a = (10 - 2t)/(t^2 - 9)$	$b = -2(t-1)^2(t-5)/(t^2-9)^2$	$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/6\mathbb{Z}$	
E(a, b)	$a = \frac{(2t+1)(8t^2+4t+1)}{2(4t+1)(8t^2-1)t}$	$b = \frac{(2t+1)(8t^2+4t+1)}{(8t^2-1)^2}$	$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/8\mathbb{Z}$	

Torsion subgroups of elliptic curves over $\mathbb{F}_q(T)$

Fix a prime p, let $q = p^n$, and $K = \mathbb{F}_q(T)$.

Torsion subgroups of elliptic curves over $\mathbb{F}_q(T)$

Fix a prime p, let $q = p^n$, and $K = \mathbb{F}_q(T)$.

Building on work of Cox and Parry (1980), and Levin (1968):

Theorem (McDonald, 2017)

Let $K = \mathbb{F}_q(T)$ for q a power of p. Let E/K be non-isotrivial. If $p \nmid E(K)_{tors}$, then $E(K)_{tors}$ is one of

 $\begin{array}{c} 0, \ \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/3\mathbb{Z}, \ \dots, \ \mathbb{Z}/10\mathbb{Z}, \ \mathbb{Z}/12\mathbb{Z}, \\ (\mathbb{Z}/2\mathbb{Z})^2, \ \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \\ (\mathbb{Z}/3\mathbb{Z})^2, \ \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}, \ (\mathbb{Z}/4\mathbb{Z})^2, \ (\mathbb{Z}/5\mathbb{Z})^2. \end{array}$

If $p \mid \#E(K)_{tors}$, then $p \leq 11$, and $E(K)_{tors}$ is one of

 $\begin{array}{ll} \mathbb{Z}/p\mathbb{Z} & \mbox{if } p = 2,3,5,7,11, \\ \mathbb{Z}/2p\mathbb{Z} & \mbox{if } p = 2,3,5,7, \\ \mathbb{Z}/3p\mathbb{Z} & \mbox{if } p = 2,3,5, \\ \mathbb{Z}/4p\mathbb{Z}, \mathbb{Z}/5p\mathbb{Z}, & \mbox{if } p = 2,3, \\ \mathbb{Z}/12\mathbb{Z}, \mathbb{Z}/14\mathbb{Z}, \mathbb{Z}/18\mathbb{Z} & \mbox{if } p = 2, \\ \mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} & \mbox{if } p = 2, \\ \mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & \mbox{if } p = 3, \\ \mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & \mbox{if } p = 5. \end{array}$

Characteristic	$E_{a,b}: y^2 + (1-a)xy - b$	$y = x^3 - bx^2, f \in K$	G
<i>p</i> = 11	$a = \frac{(f+3)(f+5)^2(f+9)^2}{3(f+1)(f+4)^4}$	$b=arac{(f+1)^2(f+9)}{2(f+4)^3}$	$\mathbb{Z}/11\mathbb{Z}$
<i>p</i> = 2	$a = \frac{f(f+1)^3}{f^3+f+1}$	$b=arac{1}{f^3+f+1}$	7./147.
<i>p</i> = 7	$a = \frac{(f+1)(f+3)^3(f+4)(f+6)}{f(f+2)^2(f+5)}$	$b = a rac{(f+1)(f+5)^3}{4f(f+2)}$	
<i>p</i> = 3	$a = rac{f^3(f+1)^2}{(f+2)^6}$	$b = a rac{f(f^4 + 2f^3 + f + 1)}{(f+2)^5}$	ℤ./15ℤ.
<i>p</i> = 5	$a = \frac{(f+1)(f+2)^2(f+4)^3(f^2+2)}{(f+3)^6(f^2+3)}$	$b=arac{f(f+4)}{(f+3)^5}$	
<i>p</i> = 2	$a = \frac{f(f+1)^2(f^2+f+1)}{f^3+f+1}$	$b = a rac{(f+1)^2}{f^3+f+1}$	$\mathbb{Z}/18\mathbb{Z}$
<i>p</i> = 5	$a = \frac{f(f+1)(f+2)^2(f+3)(f+4)}{(f^2+4f+1)^2}$	$b = a rac{(f+1)^2(f+3)^2}{4(f^2+4f+1)^2}$	$\mathbb{Z}/10\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$
$p=3, \ \zeta_4\in k$	$a = \frac{f(f+1)(f+2)(f^2+2f+2)}{(f^2+f+2)^3}$	$b = a rac{(f^2+1)^2}{f(f^2+f+2)}$	$\mathbb{Z}/12\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$
$p=2, \ \zeta_4 \in k$	$a = \frac{f(f^4 + f + 1)(f^4 + f^3 + 1)}{(f^2 + f + 1)^5}$	$b = a rac{f^2 (f^4 + f^3 + 1)^2}{(f^2 + f + 1)^5}$	$\mathbb{Z}/10\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$

Table: families of elliptic curves such that $G \subset E_{a,b}(K)_{\text{tors}}$.

Theorem (McDonald, 2018)

Let *C* be a curve of genus 1 over \mathbb{F}_q , for $q = p^n$, and let $K = \mathbb{F}_q(C)$. Let E/K be non-isotrivial. If $p \nmid \#E(K)_{tors}$, then $E(K)_{tors}$ is one of

> $\mathbb{Z}/N\mathbb{Z}$ with N = 1, ..., 12, 14, 15, $\mathbb{Z}/2N\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$ with $N=1,\ldots,6$, $\mathbb{Z}/3N\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ with N = 1, 2, 3, $\mathbb{Z}/4N\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ with N = 1, 2, $(\mathbb{Z}/N\mathbb{Z})^2$ with N = 5, 6.

If $p \mid \#E(K)_{\text{tors}}$, then $p \leq 13$, and $E(K)_{\text{tors}}$ is one of

 $\mathbb{Z}/p\mathbb{Z}$ $\mathbb{Z}/2p\mathbb{Z}, \mathbb{Z}/2p\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ $\mathbb{Z}/3p\mathbb{Z},\mathbb{Z}/4p\mathbb{Z}$ $\mathbb{Z}/5p\mathbb{Z},\mathbb{Z}/6p\mathbb{Z},\mathbb{Z}/7p\mathbb{Z},\mathbb{Z}/8p\mathbb{Z}$ $\mathbb{Z}/2N\mathbb{Z}$ $\mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ (and possibly $\mathbb{Z}/11p\mathbb{Z}$,

if p = 2, 3, 5, 7, 11, 13. *if* p = 3, 5, 7,if p = 2, 3, 5*if* p = 2, 3. for N = 9, 10, 11, 15, if p = 2, $\mathbb{Z}/6N\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ for N = 1, 2, 3, if p = 2, if p=2, if p = 3, for p = 5, 7, 13).

Torsion subgroups of elliptic curves over quad. field K

Torsion subgroups of elliptic curves over quad. field K

Filip Najman

Theorem (Najman, 2011)

Let $E/\mathbb{Q}(i)$ be an elliptic curve. Then

 $E(\mathbb{Q}(i))_{tors} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 10 \text{ or } M = 12, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 4, \text{ or} \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}. \end{cases}$

Moreover, each torsion subgroup occurs infinitely many times.

Torsion subgroups of elliptic curves over quad. fields K

Torsion subgroups of elliptic curves over quad. fields K

Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let K/\mathbb{Q} be a quadratic field and let E/K be an elliptic curve. Then

$$E(\mathcal{K})_{tors} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 16 \text{ or } M = 18, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 6, \text{ or} \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \text{with } M = 1 \text{ or } 2, \text{ or} \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}. \end{cases}$$

Moreover, each torsion subgroup occurs infinitely many times.

Torsion subgroups of elliptic curves over quad. fields K

Monsur Kenku

Fumiyuki Momose

Sheldon Kamienny

Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let K/\mathbb{Q} be a quadratic field and let E/K be an elliptic curve. Then

$$E(\mathcal{K})_{tors} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 16 \text{ or } M = 18, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 6, \text{ or} \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \text{with } M = 1 \text{ or } 2, \text{ or} \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}. \end{cases}$$

Moreover, each torsion subgroup occurs infinitely many times.

Example

Let $K = \mathbb{Q}(\sqrt{17})$. The elliptic curve E/K defined by

$$y^2 = x^3 + (-411864 + 99560\sqrt{17})x + (211240640 - 51226432\sqrt{17})$$

has a point

$$P = (-474 + 118\sqrt{17}, -9088 + 2176\sqrt{17})$$

of exact order 13.

Example: a point of order 13 (due to Markus Reichert)

Example: a point of order 13 (due to Markus Reichert)

Example

Let E be the elliptic curve defined by

$$y^2 + y = x^3 + x^2 - 114x + 473.$$

Then, *E* has a torsion point of order 13 defined over K/\mathbb{Q} , a cubic Galois extension, where $K = \mathbb{Q}(\alpha)$ and

$$\alpha^3 - 48\alpha^2 + 425\alpha - 1009 = 0.$$

The point *P* of order 13 is $(\alpha, 7\alpha - 39)$.

Torsion subgroups of elliptic curves over cubic fields

Torsion subgroups of elliptic curves over cubic fields

Theorem (Jeon, Kim, Schweizer, 2004)

Let F be a **cubic** number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for **infinitely many** non-isomorphic elliptic curves E/F are precisely:

 $\begin{cases} \mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 20, m \neq 17, 19, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 7. \end{cases}$

Theorem (Jeon, Kim, Schweizer, 2004)

Let *F* be a **cubic** number field, and let *E* be an elliptic curve defined over *F*. The groups that appear as torsion subgroups for **infinitely many** non-isomorphic elliptic curves E/F are precisely:

 $\begin{cases} \mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 20, m \neq 17, 19, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 7. \end{cases}$

Warning! These are not all the possible groups!

Theorem (Jeon, Kim, Schweizer, 2004)

Let *F* be a **cubic** number field, and let *E* be an elliptic curve defined over *F*. The groups that appear as torsion subgroups for **infinitely many** non-isomorphic elliptic curves E/F are precisely:

 $\begin{cases} \mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 20, m \neq 17, 19, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 7. \end{cases}$

Warning! These are not all the possible groups! Najman has shown that for $E : 162B1/\mathbb{Q}$ and $F = \mathbb{Q}(\zeta_9)^+$ we have $E(F)_{\text{tors}} \cong \mathbb{Z}/21\mathbb{Z}$.

over F. The groups that appear as torsion subgroups of E(F) are precisely:

 $\begin{cases} \mathbb{Z}/m\mathbb{Z} & \text{with } 1 \le m \le 21, m \ne 17, 19, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \le m \le 7. \end{cases}$

Quartic, Quintic, Sextic, and beyond

Daeyeol Jeon

Chang Heon Kim

Euisung Park

Theorem (Jeon, Kim, Park, 2006)

Let F be a quartic number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for infinitely many non-isomorphic elliptic curves E/F are precisely:

 $\begin{cases} \mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 24, m \neq 19, 23, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 9, \text{ or} \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3m\mathbb{Z} & \text{with } 1 \leq m \leq 3, \text{ or} \end{cases}$

 $\mathbb{Z}/4\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z},\,\mathbb{Z}/4\mathbb{Z}\oplus\mathbb{Z}/8\mathbb{Z},\,\mathbb{Z}/5\mathbb{Z}\oplus\mathbb{Z}/5\mathbb{Z},\,\text{or}\,\mathbb{Z}/6\mathbb{Z}\oplus\mathbb{Z}/6\mathbb{Z}.$
Quartic, Quintic, Sextic, and beyond

Let F be a quintic number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for infinitely many non-isomorphic elliptic curves E/F are precisely:

 $\begin{cases} \mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 25, m \neq 23, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 8. \end{cases}$

Theorem (Derickx, Sutherland, 2016)

Let *F* be a **sextic** number field, and let *E* be an elliptic curve defined over *F*. The groups that appear as torsion subgroups for **infinitely many** non-isomorphic elliptic curves E/F are precisely:

 $\begin{cases} \mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 30, m \neq 23, 25, 29 \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 10, \text{ or} \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3m\mathbb{Z} & \text{with } 1 \leq m \leq 4, \text{ or} \end{cases}$

 $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$, or $\mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$.

A special case: elliptic curves with CM

Let *F* be a number field, and let E/F be an elliptic curve with CM.

A special case: elliptic curves with CM

Let *F* be a number field, and let E/F be an elliptic curve with CM.

Theorem (Clark, Corn, Rice, Stankewicz, 2013)

Let F be a number field of degree $1 \le d \le 13$, and let E/F be an elliptic curve with CM. Then, the complete list of possible torsion subgroups $E(F)_{tors}$ is given, and an algorithm to compute the list for $d \ge 1$.

Let *F* be a number field, and let E/F be an elliptic curve with CM.

Theorem (Clark, Corn, Rice, Stankewicz, 2013)

Let F be a number field of degree $1 \le d \le 13$, and let E/F be an elliptic curve with CM. Then, the complete list of possible torsion subgroups $E(F)_{tors}$ is given.

For example, over \mathbb{Q} : $\{\mathcal{O}\}, \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/6\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Over quadratics, not over \mathbb{Q} : $\mathbb{Z}/7\mathbb{Z}, \mathbb{Z}/10\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}, \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}.$

Over quartics, besides quadratics and \mathbb{Q} : $\mathbb{Z}/5\mathbb{Z}, \mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/12\mathbb{Z}, \mathbb{Z}/13\mathbb{Z}, \mathbb{Z}/21\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/10\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.$

A special case: elliptic curves with CM

Abbey Bourdon

Pete Clark

Theorem (Bourdon, Clark, 2017)

Let K be quad. imaginary, let $K \subseteq F$ be a number field, let E/F be an elliptic curve with CM by an order $\mathcal{O} \subseteq K$, and let $N \ge 2$. There is an explicit constant $T(\mathcal{O}, N)$ such that if there is a point of order N in $E(F)_{tors}$, then $T(\mathcal{O}, N)$ divides [F : K(j(E))]. Moreover, this bound is best possible.

See also **Davide Lombardo**'s work on torsion bounds for abelian varieties with CM.

Let E/\mathbb{Q} be an elliptic curve, and let F/\mathbb{Q} be a finite extension. Then, $E(\mathbb{Q})_{tors} \subseteq E(F)_{tors}$.

Variations: torsion for a fixed curve E/\mathbb{Q} over extensions F/\mathbb{Q}

where $F_1, F_2, \ldots, F_k, \ldots$ is some family of (perhaps all) finite extensions of \mathbb{Q} , contained in some fixed algebraic closure $\overline{\mathbb{Q}}$.

Theorem (L-R., 2011)

Let $S^1_{\mathbb{Q}}(d)$ be the set of primes such that there is an elliptic curve E/\mathbb{Q} with a point of order p defined in an extension F/\mathbb{Q} of degree $\leq d$. Then:

• $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7\}$ for d = 1 and 2;

•
$$S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 13\}$$
 for $d = 3$ and 4;

- $S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 11, 13\}$ for d = 5, 6, and 7;
- $S^1_{\mathbb{O}}(d) = \{2, 3, 5, 7, 11, 13, 17\}$ for d = 8;
- $S^1_{\mathbb{O}}(d) = \{2, 3, 5, 7, 11, 13, 17, 19\}$ for d = 9, 10, and 11;
- $S^1_{\mathbb{O}}(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37\}$ for $12 \le d \le 20$.
- $S^1_{\mathbb{O}}(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43\}$ for d = 21.

Theorem (L-R., 2011)

Let $S^1_{\mathbb{Q}}(d)$ be the set of primes such that there is an elliptic curve E/\mathbb{Q} with a point of order p defined in an extension F/\mathbb{Q} of degree $\leq d$. Then:

•
$$S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7\}$$
 for $d = 1$ and 2;

•
$$S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 13\}$$
 for $d = 3$ and 4;

•
$$S^{1}_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 11, 13\}$$
 for $d = 5, 6$, and 7;

•
$$S^1_{\mathbb{O}}(d) = \{2, 3, 5, 7, 11, 13, 17\}$$
 for $d = 8$;

•
$$S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 11, 13, 17, 19\}$$
 for $d = 9$, 10, and 11;

•
$$S^1_{\mathbb{O}}(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37\}$$
 for $12 \le d \le 20$.

•
$$S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43\}$$
 for $d = 21$.

Moreover, there is a conjectural formula for $S^1_{\mathbb{Q}}(d)$ for all $d \ge 1$, which is valid for all $1 \le d \le 42$, and would follow from a positive answer to Serre's uniformity question.

A simpler case: base extension of E/\mathbb{Q}

Let E/\mathbb{Q} be an elliptic curve, let p be a prime, and let $T \subseteq E[p^n]$ be a subgroup with $T \cong \mathbb{Z}/p^s\mathbb{Z} \oplus \mathbb{Z}/p^N\mathbb{Z}$. We studied the minimal degree $[\mathbb{Q}(T):\mathbb{Q}]$ of definition of T.

Enrique González-Jiménez

For example:

Theorem (González-Jiménez, L-R., 2017)

Let E/\mathbb{Q} be an elliptic curve defined over \mathbb{Q} without CM, and let $P \in E[2^N]$ be a point of exact order 2^N , with $N \ge 4$. Then, the degree $[\mathbb{Q}(P) : \mathbb{Q}]$ is divisible by 2^{2N-7} . Moreover, this bound is best possible.

Filip Najman

Theorem (Najman, 2015)

Let E/\mathbb{Q} be an elliptic curve and let F be a quadratic number field. Then

 $E(F)_{\text{tors}} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 10 \text{ or } M = 12, 15, 16, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 6, \text{ or} \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \text{with } 1 \leq M \leq 2 \text{ and } F = \mathbb{Q}(\sqrt{-3}), \text{ or} \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} & \text{with } F = \mathbb{Q}(\sqrt{-1}). \end{cases}$

Let E/\mathbb{Q} be an elliptic curve, and let K/\mathbb{Q} be a finite extension. Then, $E(\mathbb{Q})_{tors} \subseteq E(K)_{tors}$.

Theorem (Najman, 2015)

Let E/\mathbb{Q} be an elliptic curve and let F be a cubic number field. Then

 $E(F)_{\text{tors}} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 10 \text{ or } 12, 13, 14, 18, 21, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 4 \text{ or } M = 7. \end{cases}$

Moreover, the elliptic curve 162B1 over $\mathbb{Q}(\zeta_9)^+$ is the unique rational elliptic curve over a cubic field with torsion subgroup isomorphic to $\mathbb{Z}/21\mathbb{Z}$. For all other groups T listed above there are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of elliptic curves E/\mathbb{Q} for which $E(F) \simeq T$ for some cubic field F.

Michael Chou (and L-R.)

Theorem (Chou, 2015)

Let E/\mathbb{Q} be an elliptic curve and let F be a Galois quartic field F with $Gal(F/\mathbb{Q}) \cong \mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Then

 $E(F)_{\text{tors}} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 16 \text{ but } M \neq 11, 14 \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 6, \text{ or } M = 8, \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \text{with } 1 \leq M \leq 2 \text{ or} \end{cases}$

 $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}, \text{ or } \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.$

Enrique González-Jiménez

Theorem (González-Jiménez, L-R., 2016)

We give a complete classification of torsion subgroups that appear **infinitely often** for elliptic curves over \mathbb{Q} base-extended to a quartic number field.

Warning! The torsion group $\mathbb{Z}/15\mathbb{Z}$ appears infinitely often for curves *defined* over quartic fields *F*, but if E/\mathbb{Q} and $E(F)_{\text{tors}} \cong \mathbb{Z}/15\mathbb{Z}$, then $j(E) \in \{-5^2/2, -5^2 \cdot 241^3/2^3, -5 \cdot 29^3/2^5, 5 \cdot 211^3/2^{15}\}.$

Enrique González-Jiménez

Filip Najman

Theorem (González-Jiménez, Najman, 2016)

Let E/\mathbb{Q} be an elliptic curve and let F be a quartic field. Then

 $E(F)_{\text{tors}} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 10 \text{ or } 12, 13, 15, 16, 20, 24 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 6, \text{ or } 8, \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \text{with } 1 \leq M \leq 2 \text{ or} \end{cases}$

 $\mathbb{Z}/4\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z},\,\mathbb{Z}/4\mathbb{Z}\oplus\mathbb{Z}/8\mathbb{Z},\,\mathbb{Z}/5\mathbb{Z}\oplus\mathbb{Z}/5\mathbb{Z},\,\text{or}\,\mathbb{Z}/6\mathbb{Z}\oplus\mathbb{Z}/6\mathbb{Z}.$

Enrique González-Jiménez

Filip Najman

Further, they determine all the possible prime orders of a point $P \in E(F)_{tors}$, where $[F : \mathbb{Q}] = d$ for all $d \leq 3342296$.

Let E/\mathbb{Q} be an elliptic curve, and let F/\mathbb{Q} be an **infinite algebraic** extension. Then, $E(\mathbb{Q})_{tors} \subseteq E(F)_{tors}$. But, $E(F)_{tors}$ may no longer be finite!

Let E/\mathbb{Q} be an elliptic curve, and let F/\mathbb{Q} be an **infinite algebraic extension**. Then, $E(\mathbb{Q})_{tors} \subseteq E(F)_{tors}$. But, $E(F)_{tors}$ may no longer be finite! Let $F_1 \subseteq F_2 \subseteq \ldots \subseteq F_k \subseteq \ldots$ be a **tower** of finite extensions of \mathbb{Q} .

Variations: torsion for a fixed curve E/\mathbb{Q} over extensions F_k/\mathbb{Q}

Michael Laska

Martin Lorenz

Yasutsugu Fujita

Theorem (Laska, Lorenz, 1985; Fujita, 2005)

Let E/\mathbb{Q} be an elliptic curve and let $\mathbb{Q}(2^{\infty}) := \mathbb{Q}(\{\sqrt{m} : m \in \mathbb{Z}\})$. The torsion subgroup $E(\mathbb{Q}(2^{\infty}))_{tors}$ is finite, and

	$\left(\mathbb{Z}/M\mathbb{Z}\right)$	with $M \in 1, 3, 5, 7, 9, 15$, or		
	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2M\mathbb{Z}$	with $1 \le M \le 6$ or $M = 8$, or		
$E(\mathbb{Q}(2^\infty))_{\mathrm{tors}}\simeq \langle$	$\mathbb{Z}/3\mathbb{Z}\oplus\mathbb{Z}/3\mathbb{Z}$	or		
	$\mathbb{Z}/4\mathbb{Z}\oplus\mathbb{Z}/4M\mathbb{Z}$	with $1 \le M \le 4$, or		
	$\mathbb{Z}/2M\mathbb{Z}\oplus\mathbb{Z}/2M\mathbb{Z}$	with $3 \le M \le 4$.		

Harris Daniels (and L-R.) (L-R. and) Filip Najman

Drew Sutherland

Theorem (Daniels, L-R., Najman, Sutherland, 2017)

Let E/\mathbb{Q} be an elliptic curve, and let $\mathbb{Q}(3^{\infty})$ be the compositum of all cubic fields. The torsion subgroup $E(\mathbb{Q}(3^{\infty}))_{tors}$ is finite, and

$$E(\mathbb{Q}(3^{\infty}))_{\text{tors}} \simeq \begin{cases} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } M = 1, 2, 4, 5, 7, 8, 13, \text{ or} \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4M\mathbb{Z} & \text{with } M = 1, 2, 4, 7, \text{ or} \\ \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6M\mathbb{Z} & \text{with } M = 1, 2, 3, 5, 7, \text{ or} \\ \mathbb{Z}/2M\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } M = 4, 6, 7, 9. \end{cases}$$

All but 4 of the torsion subgroups occur infinitely often.

New results of classification of torsion subgroups of E/\mathbb{Q} after base-extension to infinite extensions:

- **Daniels**: classification of torsion over $\mathbb{Q}(D_4^{\infty})$.
- Daniels, Derickx, Hatley: classification of torsion over Q(A₄[∞]).

Harris Daniels

Marteen Derickx

Jeffrey Hatley

Ken Ribet, (L-R.) and Michael Chou

Theorem (Ribet, 1981)

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q} . Then, $A(\mathbb{Q}^{ab})_{tors}$ is finite.

Yurii Zarhin

Theorem (Zarhin, 1983)

Let K be a number field, let A/K be an abelian variety, and let K^{ab} be the maximal abelian extension of K. Then, $A(K^{ab})_{tors}$ is finite if and only if A has no abelian subvariety with CM over K.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve. If there is an integer $n \ge 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then n = 2, 3, 4, or 5.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve. If there is an integer $n \ge 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then n = 2, 3, 4, or 5. More generally, if $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian, then n = 2, 3, 4, 5, 6, or 8.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve. If there is an integer $n \ge 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then n = 2, 3, 4, or 5. More generally, if $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian, then n = 2, 3, 4, 5, 6, or 8. Moreover, $G_n = \text{Gal}(\mathbb{Q}(E[n])/\mathbb{Q})$ is isomorphic to one of the following groups:

n	2	3	4	5	6	8
	{0} ℤ/2ℤ	$\mathbb{Z}/2\mathbb{Z}$ $(\mathbb{Z}/2\mathbb{Z})^2$	$\mathbb{Z}/2\mathbb{Z}$ $(\mathbb{Z}/2\mathbb{Z})^2$	$\mathbb{Z}/4\mathbb{Z}$ $\mathbb{Z}/2\mathbb{Z} imes\mathbb{Z}/4\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^2$ $(\mathbb{Z}/2\mathbb{Z})^3$	$(\mathbb{Z}/2\mathbb{Z})^4$ $(\mathbb{Z}/2\mathbb{Z})^5$
G _n	_/ ℤ/3ℤ	(-,,	$(\mathbb{Z}/2\mathbb{Z})^3$ $(\mathbb{Z}/2\mathbb{Z})^4$	$(\mathbb{Z}/4\mathbb{Z})^2$	(-,,	$(\mathbb{Z}/2\mathbb{Z})^6$

Furthermore, each possible Galois group occurs for infinitely many distinct j-invariants.

Ken Ribet, (L-R.) and Michael Chou

Theorem (Chou, 2018)

Let E/\mathbb{Q} be an elliptic curve and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q} . Then, $\#E(\mathbb{Q}^{ab})_{tors} \leq 163$. This bound is sharp, as the curve 26569a1 has a point of order 163 over \mathbb{Q}^{ab} . Moreover, a full classification of the possible torsion subgroups is given.

The Uniform Boundedness Conjecture

Variations: fix a **degree** *d*, and vary elliptic curves *E* over *F* of deg. *d*.

The Uniform Boundedness Conjecture

Variations: fix a **degree** *d*, and vary elliptic curves *E* over *F* of deg. *d*.

Loïc Merel

Theorem (Merel, 1996)

Let F be a number field of degree $[F : \mathbb{Q}] = d > 1$. Then, there is a number B(d) > 0 such that $|E(F)_{tors}| \le B(d)$ for all elliptic curves E/F.

Theorem (Merel, 1996)

Let F be a number field of degree $[F : \mathbb{Q}] = d > 1$. There is a number B(d) > 0 such that $|E(F)_{tors}| \le B(d)$ for all elliptic curves E/F.

Theorem (Merel, 1996)

Let F be a number field of degree $[F : \mathbb{Q}] = d > 1$. There is a number B(d) > 0 such that $|E(F)_{tors}| \le B(d)$ for all elliptic curves E/F.

For instance, B(1) = 16, and B(2) = 24.

Theorem (Merel, 1996)

Let F be a number field of degree $[F : \mathbb{Q}] = d > 1$. There is a number B(d) > 0 such that $|E(F)_{tors}| \le B(d)$ for all elliptic curves E/F.

For instance, B(1) = 16, and B(2) = 24.

Folklore Conjecture (As seen in Clark, Cook, Stankewicz)

There is a constant C > 0 such that

 $B(d) \leq C \cdot d \cdot \log \log d$ for all $d \geq 3$.

There is a constant C > 0 such that

 $B(d) \leq C \cdot d \cdot \log \log d$ for all $d \geq 3$.

There is a constant C > 0 such that

 $B(d) \leq C \cdot d \cdot \log \log d$ for all $d \geq 3$.

Theorem (Hindry, Silverman, 1999)

Let F be a field of degree $d \ge 2$, and let E/F be an elliptic curve such that j(E) is an algebraic integer. Then, we have

 $|E(F)_{tors}| \leq 1977408 \cdot d \cdot \log d.$

There is a constant C > 0 such that

 $B(d) \leq C \cdot d \cdot \log \log d$ for all $d \geq 3$.

Theorem (Clark, Pollack, 2015)

There is an absolute, effective constant C such that for all number fields F of degree $d \ge 3$ and all elliptic curves E/F with CM, we have

 $|E(F)_{tors}| \leq C \cdot d \cdot \log \log d.$

There is a constant C > 0 such that

$$B(d) \leq C \cdot d \cdot \log \log d$$
 for all $d \geq 3$.
Folklore Conjecture

There is a constant C > 0 such that

 $B(d) \leq C \cdot d \cdot \log \log d$ for all $d \geq 3$.

Assuming the conjecture, if F/\mathbb{Q} is of degree $d \ge 3$, and $E(F)_{\text{tors}}$ contains a point of order p^n , for some prime p, and $n \ge 1$, then

$$p^n \leq |E(F)_{tors}| \leq B(d) \leq C \cdot d \log \log d.$$

Folklore Conjecture

There is a constant C > 0 such that

 $B(d) \leq C \cdot d \cdot \log \log d$ for all $d \geq 3$.

Assuming the conjecture, if F/\mathbb{Q} is of degree $d \ge 3$, and $E(F)_{\text{tors}}$ contains a point of order p^n , for some prime p, and $n \ge 1$, then

$$p^n \leq |E(F)_{tors}| \leq B(d) \leq C \cdot d \log \log d.$$

Theorem

Let F be a number field of degree $[F : \mathbb{Q}] = d > 1$. If $P \in E(F)$ is a point of exact prime power order p^n , then

Folklore Conjecture

There is a constant C > 0 such that

 $B(d) \leq C \cdot d \cdot \log \log d$ for all $d \geq 3$.

Assuming the conjecture, if F/\mathbb{Q} is of degree $d \ge 3$, and $E(F)_{\text{tors}}$ contains a point of order p^n , for some prime p, and $n \ge 1$, then

$$p^n \leq |E(F)_{tors}| \leq B(d) \leq C \cdot d \log \log d.$$

Theorem

Let F be a number field of degree $[F : \mathbb{Q}] = d > 1$. If $P \in E(F)$ is a point of exact prime power order p^n , then

1 (Merel, 1996) p
$$\leq$$
 d $^{3d^2}$

2 (Parent, 1999) $p^n \le 129(5^d - 1)(3d)^6$.

Let *p* be a prime, and let F/L be an extension of number fields. We define $e_{\max}(p, F/L)$ as the largest ramification index $e(\mathfrak{P}|_{\wp})$ for a prime \mathfrak{P} of \mathcal{O}_F over a prime \wp of \mathcal{O}_L lying above the rational prime *p*.

Let *p* be a prime, and let F/L be an extension of number fields. We define $e_{\max}(p, F/L)$ as the largest ramification index $e(\mathfrak{P}|_{\wp})$ for a prime \mathfrak{P} of \mathcal{O}_F over a prime \wp of \mathcal{O}_L lying above the rational prime *p*.

Theorem (L-R., 2013)

Let F be a number field with degree $[F : \mathbb{Q}] = d \ge 1$, and suppose there is an elliptic curve E/F with CM by a full order, with a point of order p^n . Then,

$$\varphi(p^n) \leq 24 \cdot e_{max}(p, F/\mathbb{Q}) \leq 24d.$$

Let *p* be a prime, and let F/L be an extension of number fields. We define $e_{\max}(p, F/L)$ as the largest ramification index $e(\mathfrak{P}|_{\wp})$ for a prime \mathfrak{P} of \mathcal{O}_F over a prime \wp of \mathcal{O}_L lying above the rational prime *p*.

Theorem (L-R., 2013)

Let F be a number field with degree $[F : \mathbb{Q}] = d \ge 1$, and suppose there is an elliptic curve E/F with CM by a full order, with a point of order p^n . Then,

$$\varphi(p^n) \leq 24 \cdot e_{max}(p, F/\mathbb{Q}) \leq 24d.$$

Note! The ramification index $e_{max}(p, F/\mathbb{Q}) = 1$ for all but finitely many primes p, for a fixed field F.

We define $e_{\max}(p, F/L)$ as the largest ramification index $e(\mathfrak{P}|_{\mathscr{D}})$ for a prime \mathfrak{P} of \mathcal{O}_F over a prime \wp of \mathcal{O}_L lying above the rational prime p.

Theorem (L-R., 2013)

Let F be a number field with degree $[F : \mathbb{Q}] = d \ge 1$, and suppose there is an elliptic curve E/F with CM by a full order, with a point of order p^n . Then,

 $\varphi(p^n) \leq 24 \cdot e_{max}(p, F/\mathbb{Q}) \leq 24d.$

We define $e_{\max}(p, F/L)$ as the largest ramification index $e(\mathfrak{P}|_{\mathscr{D}})$ for a prime \mathfrak{P} of \mathcal{O}_F over a prime \wp of \mathcal{O}_L lying above the rational prime p.

Theorem (L-R., 2013)

Let F be a number field with degree $[F : \mathbb{Q}] = d \ge 1$, and suppose there is an elliptic curve E/F with CM by a full order, with a point of order p^n . Then,

$$\varphi(p^n) \leq 24 \cdot e_{max}(p, F/\mathbb{Q}) \leq 24d.$$

Theorem (L-R., 2014)

Let F be a number field with degree $[F : \mathbb{Q}] = d \ge 1$, and let p be a prime such that there is an elliptic curve E/F with a point of order p^n . Suppose that F has a prime \mathfrak{P} over p such that E/F has potential good supersingular reduction at \mathfrak{P} . Then,

 $\varphi(p^n) \leq 24e(\mathfrak{P}|p) \leq 24e_{max}(p, F/\mathbb{Q}) \leq 24d.$

Conjecture

There is C > 0 s.t. if there is a point of order p^n in E(F) for some E/F with $[F : \mathbb{Q}] \leq d$, then

$$\varphi(p^n) \leq C \cdot e_{\max}(p, F/\mathbb{Q}) \leq C \cdot d.$$

Variations: torsion subgroups under field extensions

where $L_1, L_2, \ldots, L_k, \ldots$ is some family of (perhaps all) finite extensions of a fixed field *F*.

Theorem (L-R., 2013)

If p > 2 and there is an elliptic curve E/\mathbb{Q} with a point of order p^n defined in an extension L/\mathbb{Q} of degree $d \ge 2$, then

 $\varphi(p^n) \leq 222 \cdot e_{max}(p, L/\mathbb{Q}) \leq 222 \cdot d.$

Theorem (L-R., 2013)

If p > 2 and there is an elliptic curve E/\mathbb{Q} with a point of order p^n defined in an extension L/\mathbb{Q} of degree $d \ge 2$, then

 $\varphi(p^n) \leq 222 \cdot e_{max}(p, L/\mathbb{Q}) \leq 222 \cdot d.$

Theorem (L-R., 2013)

Let F be a number field, and let p > 2 be a prime such that there is an elliptic curve E/F with a point of order p^n defined in an extension L of F, with $[L : \mathbb{Q}] = d \ge 2$. Then, there is a constant C_F such that

 $\varphi(p^n) \leq C_F \cdot e_{max}(p, L/\mathbb{Q}) \leq C_F \cdot d.$

Theorem (L-R., 2013)

If p > 2 and there is an elliptic curve E/\mathbb{Q} with a point of order p^n defined in an extension L/\mathbb{Q} of degree $d \ge 2$, then

$$\varphi(p^n) \leq 222 \cdot e_{max}(p, L/\mathbb{Q}) \leq 222 \cdot d.$$

Theorem (L-R., 2013)

Let F be a number field, and let p > 2 be a prime such that there is an elliptic curve E/F with a point of order p^n defined in an extension L of F, with $[L : \mathbb{Q}] = d \ge 2$. Then, there is a constant C_F such that

$$\varphi(p^n) \leq C_F \cdot e_{max}(p, L/\mathbb{Q}) \leq C_F \cdot d.$$

Moreover, there is a computable finite set Σ_F such that if p^n is as above and $j(E) \notin \Sigma_F$, then

$$\varphi(p^n) \leq 588 \cdot e_{max}(p, L/\mathbb{Q}) \leq 588 \cdot d.$$

Theorem (Hindry-Ratazzi conjecture; Zywina, 2017)

Let A be a nonzero abelian variety over a number field F for which the Mumford-Tate conjecture holds. Let $A/\mathbb{C} \sim \prod_{i=1}^{n} A_i^{m_i}$ such that each A_i is simple and pairwise non-isogenous, and define $A_I = \prod_{i \in I} A_i^{m_i}$ for any subset $I \subseteq \{1, \ldots, n\}$. Let G_{A_I} be the Mumford-Tate group of A_I . Define $\gamma_A = \max_{I \subseteq \{1, \ldots, n\}} 2 \dim A_I / \dim G_{A_I}$. Then, γ_A is the smallest real value such that for any finite extension L/K and real number $\varepsilon > 0$, we have

 $#A(L)_{tors} \leq C \cdot [L:K]^{\gamma_A + \varepsilon},$

where C is a constant that depends only on A and ε .

THANK YOU

alvaro.lozano-robledo@uconn.edu http://alozano.clas.uconn.edu/

"If by chance I have omitted anything more or less proper or necessary, I beg forgiveness, since there is no one who is without fault and circumspect in all matters."

Leonardo Pisano (Fibonacci), Liber Abaci.