Recent progress in the classification of torsion subgroups of elliptic curves

Álvaro Lozano-Robledo
University of Connecticut
Recent progress in the classification of torsion subgroups of elliptic curves

Álvaro Lozano-Robledo
Department of Mathematics
University of Connecticut

May 22nd
Diophantine Geometry
Géométrie diophantienne
Let E/\mathbb{Q} be an elliptic curve. Then, the group of \mathbb{Q}-rational points on E, denoted by $E(\mathbb{Q})$, is a finitely generated abelian group. In particular, $E(\mathbb{Q}) \cong E(\mathbb{Q})_{\text{tors}} \oplus \mathbb{Z}^{R_{E/\mathbb{Q}}}$ where $E(\mathbb{Q})_{\text{tors}}$ is a finite subgroup, and $R_{E/\mathbb{Q}} \geq 0$.
Theorem (Mordell–Weil, 1928)

Let F be a number field, and let A/F be an abelian variety. Then, the group of F-rational points on A, denoted by $A(F)$, is a finitely generated abelian group. In particular, $A(F) \cong A(F)_{\text{tors}} \oplus \mathbb{Z}^{R_{A/F}}$ where $A(F)_{\text{tors}}$ is a finite subgroup, and $R_{A/F} \geq 0$.
Theorem (Mordell–Weil–Néron, 1952)

Let F be a field that is finitely generated over its prime field, and let A/F be an abelian variety. Then, the group of F-rational points on A, denoted by $A(F)$, is a finitely generated abelian group. In particular, $A(F) \cong A(F)_{\text{tors}} \oplus \mathbb{Z}^{R_{A/F}}$ where $A(F)_{\text{tors}}$ is a finite subgroup, and $R_{A/F} \geq 0$.
Theorem (Mordell–Weil–Néron, 1952)

Let F be a field that is finitely generated over its prime field (e.g., a global field), and let A/F be an abelian variety. Then, the group of F-rational points on A, denoted by $A(F)$, is a finitely generated abelian group. In particular, $A(F) \cong A(F)_{\text{tors}} \oplus \mathbb{Z}^{R_{A/F}}$ where $A(F)_{\text{tors}}$ is a finite subgroup, and $R_{A/F} \geq 0$.

... leads to ...

Natural Question

What finitely generated abelian groups arise from abelian varieties over global fields?

There are a number of ways to study this question, depending on what we allow to vary.
What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: **Mordell–Weil groups of elliptic curves for a fixed field** F

Fix a field F, and vary over 1-dimensional abelian varieties over F.

\[E_1(F) \quad E_2(F) \quad \ldots \quad E_k(F) \quad \ldots \]

where $E_1, E_2, \ldots, E_k, \ldots$ is some family of (perhaps all) elliptic curves over a fixed field F.
Natural Question

What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: **Mordell–Weil groups for a fixed curve** E/F and vary L/F

Fix an elliptic curve E/F, and vary over finite extensions of F.

$$
\begin{align*}
E(L_1) & \quad E(L_2) & \quad \ldots & \quad E(L_2) & \quad \ldots \\
 & \quad & \quad & \quad & \\
E/F & \\
\end{align*}
$$

where $L_1, L_2, \ldots, L_k, \ldots$ is some family of (perhaps all) finite extensions of the base field F, contained in some fixed algebraic closure \overline{F}.
Natural Question

What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: ranks in a family of elliptic curves over a fixed F

where $E_1, E_2, \ldots, E_k, \ldots$ is some family of (perhaps all) elliptic curves over a fixed field F.
Natural Question

What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: **ranks for a fixed curve** E/F **under field extensions** L/F

$$R_{E/L_1} \quad R_{E/L_2} \quad \ldots \quad R_{E/L_{k}} \quad \ldots$$

where $L_1, L_2, \ldots, L_k, \ldots$ is some family of (perhaps all) finite extensions of a fixed field F, contained in some fixed algebraic closure \overline{F}.
Natural Question
What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: **torsion subgroups in a family of curves over a fixed** F

$E_1(F)_{\text{tors}} \quad E_2(F)_{\text{tors}} \quad \ldots \quad E_k(F)_{\text{tors}} \quad \ldots$

where $E_1, E_2, \ldots, E_k, \ldots$ is some family of (perhaps all) elliptic curves over a fixed field F.
Natural Question

What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: torsion for a fixed curve E/F over extensions L/F

\[E(L_1)_{\text{tors}} \quad E(L_2)_{\text{tors}} \quad \cdots \quad E(L_k)_{\text{tors}} \quad \cdots \]

where $L_1, L_2, \ldots, L_k, \ldots$ is some family of (perhaps all) finite extensions of a fixed field F, contained in some fixed algebraic closure \overline{F}.
Torsion subgroups of elliptic curves over \mathbb{Q}

Let E/\mathbb{Q} be an elliptic curve. Then

$$E(\mathbb{Q})_{\text{tors}} \cong \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 10 \text{ or } M = 12, \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 4. \end{cases}$$

Moreover, each possible group appears infinitely many times.
Torsion subgroups of elliptic curves over \mathbb{Q}

Let E/\mathbb{Q} be an elliptic curve. Then

$$E(\mathbb{Q})_{\text{tors}} \sim \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 10 \text{ or } M = 12, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 4. \end{cases}$$

Moreover, each possible group appears infinitely many times.
The elliptic curve 30030bt1 has a point of order 12.
All elliptic curves with given torsion

Define $E(a, b) : y^2 + (1 - a)xy - by = x^3 - bx^2$.

<table>
<thead>
<tr>
<th>E/\mathbb{Q}</th>
<th>a</th>
<th>b</th>
<th>$G \leq E(\mathbb{Q})_{tors}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(0, b)$</td>
<td>$a = 0$</td>
<td>$b = t$</td>
<td>$\mathbb{Z}/4\mathbb{Z}$</td>
</tr>
<tr>
<td>$E(a, a)$</td>
<td>$a = t$</td>
<td>$b = t$</td>
<td>$\mathbb{Z}/5\mathbb{Z}$</td>
</tr>
<tr>
<td>$E(a, b)$</td>
<td>$a = t$</td>
<td>$b = t + t^2$</td>
<td>$\mathbb{Z}/6\mathbb{Z}$</td>
</tr>
<tr>
<td>$E(a, b)$</td>
<td>$a = t^2 - t$</td>
<td>$b = t^3 - t^2$</td>
<td>$\mathbb{Z}/7\mathbb{Z}$</td>
</tr>
<tr>
<td>$E(a, b)$</td>
<td>$a = \frac{(2t-1)(t-1)}{t}$</td>
<td>$b = (2t - 1)(t - 1)$</td>
<td>$\mathbb{Z}/8\mathbb{Z}$</td>
</tr>
<tr>
<td>$E(a, b)$</td>
<td>$a = t^2(t - 1)$</td>
<td>$b = t^2(t - 1)(t^2 - t + 1)$</td>
<td>$\mathbb{Z}/9\mathbb{Z}$</td>
</tr>
<tr>
<td>$E(a, b)$</td>
<td>$a = t(t - 1)(2t - 1)/(t^2 - 3t + 1)$</td>
<td>$b = t^3(t - 1)(2t - 1)/(t^2 - 3t + 1)^2$</td>
<td>$\mathbb{Z}/10\mathbb{Z}$</td>
</tr>
<tr>
<td>$E(a, b)$</td>
<td>$a = \frac{-t(2t-1)(3t^2-3t+1)}{(t-1)^3}$</td>
<td>$b = \frac{t(2t-1)(2t^2-2t+1)(3t^2-3t+1)}{(t-1)^4}$</td>
<td>$\mathbb{Z}/12\mathbb{Z}$</td>
</tr>
<tr>
<td>$E(0, b)$</td>
<td>$a = 0$</td>
<td>$b = t^2 - 1/16$</td>
<td>$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$</td>
</tr>
<tr>
<td>$E(a, b)$</td>
<td>$a = (10 - 2t)/(t^2 - 9)$</td>
<td>$b = -2(t - 1)^2(t - 5)/(t^2 - 9)^2$</td>
<td>$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$</td>
</tr>
<tr>
<td>$E(a, b)$</td>
<td>$a = \frac{(2t+1)(8t^2+4t+1)}{2(4t+1)(8t^2-1)t}$</td>
<td>$b = \frac{(2t+1)(8t^2+4t+1)}{(8t^2-1)^2}$</td>
<td>$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$</td>
</tr>
</tbody>
</table>
Torsion subgroups of elliptic curves over $\mathbb{F}_q(T)$

Fix a prime p, let $q = p^n$, and $K = \mathbb{F}_q(T)$.

$E_1(\mathbb{F}_q(T))_{\text{tors}}$ $E_2(\mathbb{F}_q(T))_{\text{tors}}$ \ldots $E_k(\mathbb{F}_q(T))_{\text{tors}}$ \ldots
Torsion subgroups of elliptic curves over $\mathbb{F}_q(T)$

Fix a prime p, let $q = p^n$, and $K = \mathbb{F}_q(T)$.

$E_1(\mathbb{F}_q(T))_{\text{tors}}$ $E_2(\mathbb{F}_q(T))_{\text{tors}}$ \ldots $E_k(\mathbb{F}_q(T))_{\text{tors}}$ \ldots

$\mathbb{F}_q(T)$
Building on work of Cox and Parry (1980), and Levin (1968):

Theorem (McDonald, 2017)

Let $K = \mathbb{F}_q(T)$ for q a power of p. Let E/K be non-isotrivial.

If $p \nmid \# E(K)_{\text{tors}}$, then $E(K)_{\text{tors}}$ is one of

$$0, \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/3\mathbb{Z}, \ldots, \mathbb{Z}/10\mathbb{Z}, \mathbb{Z}/12\mathbb{Z},$$

$$(\mathbb{Z}/2\mathbb{Z})^2, \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z},$$

$$(\mathbb{Z}/3\mathbb{Z})^2, \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}, (\mathbb{Z}/4\mathbb{Z})^2, (\mathbb{Z}/5\mathbb{Z})^2.$$

If $p \mid \# E(K)_{\text{tors}}$, then $p \leq 11$, and $E(K)_{\text{tors}}$ is one of

$$\mathbb{Z}/p\mathbb{Z} \quad \text{if } p = 2, 3, 5, 7, 11,$$

$$\mathbb{Z}/2p\mathbb{Z} \quad \text{if } p = 2, 3, 5, 7,$$

$$\mathbb{Z}/3p\mathbb{Z} \quad \text{if } p = 2, 3, 5,$$

$$\mathbb{Z}/4p\mathbb{Z}, \mathbb{Z}/5p\mathbb{Z}, \quad \text{if } p = 2, 3,$$

$$\mathbb{Z}/12\mathbb{Z}, \mathbb{Z}/14\mathbb{Z}, \mathbb{Z}/18\mathbb{Z} \quad \text{if } p = 2,$$

$$\mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \quad \text{if } p = 2,$$

$$\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \quad \text{if } p = 3,$$

$$\mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \quad \text{if } p = 5.$$
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>$E_{a,b} : y^2 + (1 - a)xy - by = x^3 - bx^2, \ f \in K$</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 11$</td>
<td>$a = \frac{(f+3)(f+5)^2(f+9)^2}{3(f+1)(f+4)^4}$</td>
<td>$b = a\frac{(f+1)^2(f+9)}{2(f+4)^3}$ $\mathbb{Z}/11\mathbb{Z}$</td>
</tr>
<tr>
<td>$p = 2$</td>
<td>$a = \frac{f(f+1)^3}{f^3+f+1}$</td>
<td>$b = a\frac{1}{f^3+f+1}$ $\mathbb{Z}/14\mathbb{Z}$</td>
</tr>
<tr>
<td>$p = 7$</td>
<td>$a = \frac{f(f+1)(f+3)^2(f+4)(f+6)}{f(f+2)^2(f+5)}$</td>
<td>$b = a\frac{(f+1)(f+5)^3}{4f(f+2)}$ $\mathbb{Z}/14\mathbb{Z}$</td>
</tr>
<tr>
<td>$p = 3$</td>
<td>$a = \frac{f^3(f+1)^2}{(f+2)^6}$</td>
<td>$b = a\frac{f(f^4+2f^3+f+1)}{(f+2)^5}$ $\mathbb{Z}/15\mathbb{Z}$</td>
</tr>
<tr>
<td>$p = 5$</td>
<td>$a = \frac{(f+1)(f+2)^2(f+4)^3(f^2+2)}{(f+3)^6(f^2+3)}$</td>
<td>$b = a\frac{f(f+4)}{(f+3)^5}$ $\mathbb{Z}/15\mathbb{Z}$</td>
</tr>
<tr>
<td>$p = 2$</td>
<td>$a = \frac{f(f+1)^2(f^2+f+1)}{f^3+f+1}$</td>
<td>$b = a\frac{(f+1)^2}{f^3+f+1}$ $\mathbb{Z}/18\mathbb{Z}$</td>
</tr>
<tr>
<td>$p = 5$</td>
<td>$a = \frac{f(f+1)(f+2)^2(f+3)(f+4)}{(f^2+4f+1)^2}$</td>
<td>$b = a\frac{(f+1)^2(f+3)^2}{4(f^2+4f+1)^2}$ $\mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$</td>
</tr>
<tr>
<td>$p = 3, \ \zeta_4 \in k$</td>
<td>$a = \frac{f(f+1)(f+2)(f^2+2f+2)}{(f^2+f+2)^3}$</td>
<td>$b = a\frac{(f^2+1)^2}{f(f^2+f+2)}$ $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$</td>
</tr>
<tr>
<td>$p = 2, \ \zeta_4 \in k$</td>
<td>$a = \frac{f(f^4+f+1)(f^4+f^3+1)}{(f^2+f+1)^5}$</td>
<td>$b = a\frac{f^2(f^4+f^3+1)^2}{(f^2+f+1)^5}$ $\mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$</td>
</tr>
</tbody>
</table>

Table: families of elliptic curves such that $G \subset E_{a,b}(K)_{\text{tors}}$.
Theorem (McDonald, 2018)

Let C be a curve of genus 1 over \mathbb{F}_q, for $q = p^n$, and let $K = \mathbb{F}_q(C)$. Let E/K be non-isotrivial. If $p \nmid \#E(K)_{\text{tors}}$, then $E(K)_{\text{tors}}$ is one of

\[
\begin{align*}
\mathbb{Z}/N\mathbb{Z} & \quad \text{with } N = 1, \ldots, 12, 14, 15, \\
\mathbb{Z}/2N\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & \quad \text{with } N = 1, \ldots, 6, \\
\mathbb{Z}/3N\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} & \quad \text{with } N = 1, 2, 3, \\
\mathbb{Z}/4N\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} & \quad \text{with } N = 1, 2, \\
(\mathbb{Z}/N\mathbb{Z})^2 & \quad \text{with } N = 5, 6.
\end{align*}
\]

If $p \mid \#E(K)_{\text{tors}}$, then $p \leq 13$, and $E(K)_{\text{tors}}$ is one of

\[
\begin{align*}
\mathbb{Z}/p\mathbb{Z} & \quad \text{if } p = 2, 3, 5, 7, 11, 13, \\
\mathbb{Z}/2p\mathbb{Z}, \mathbb{Z}/2p\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & \quad \text{if } p = 3, 5, 7, \\
\mathbb{Z}/3p\mathbb{Z}, \mathbb{Z}/4p\mathbb{Z} & \quad \text{if } p = 2, 3, 5, \\
\mathbb{Z}/5p\mathbb{Z}, \mathbb{Z}/6p\mathbb{Z}, \mathbb{Z}/7p\mathbb{Z}, \mathbb{Z}/8p\mathbb{Z} & \quad \text{if } p = 2, 3, \\
\mathbb{Z}/2N\mathbb{Z} & \quad \text{for } N = 9, 10, 11, 15, \text{ if } p = 2, \\
\mathbb{Z}/6N\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} & \quad \text{for } N = 1, 2, 3, \text{ if } p = 2, \\
\mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} & \quad \text{if } p = 2, \\
\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} & \quad \text{if } p = 3, \\
(\text{and possibly } \mathbb{Z}/11p\mathbb{Z}) & \quad \text{for } p = 5, 7, 13).
\end{align*}
\]
Torsion subgroups of elliptic curves over quad. field K

Let E/K be an elliptic curve. Then

$$E(K)_{\text{tors}} \cong \begin{cases}
\mathbb{Z}/M\mathbb{Z} & \text{if } 1 \leq M \leq 10 \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{if } 1 \leq M \leq 4 \\
\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} &
\end{cases}$$

Moreover, each torsion subgroup occurs infinitely many times.
Torsion subgroups of elliptic curves over quad. field K

$E_1(K)_{\text{tors}} \quad E_2(K)_{\text{tors}} \quad \ldots \quad E_k(K)_{\text{tors}} \quad \ldots$

Filip Najman

Theorem (Najman, 2011)

Let $E/\mathbb{Q}(i)$ be an elliptic curve. Then

$$E(\mathbb{Q}(i))_{\text{tors}} \simeq \begin{cases}
\mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 10 \text{ or } M = 12, \text{ or} \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 4, \text{ or} \\
\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}. &
\end{cases}$$

Moreover, each torsion subgroup occurs infinitely many times.
Let K/\mathbb{Q} be a quadratic field and let E/K be an elliptic curve. Then

$$E(K)_{\text{tors}} \cong \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 16 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 6 \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \text{with } M = 1 \text{ or } 2 \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \end{cases}$$

Moreover, each torsion subgroup occurs infinitely many times.
Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let K/\mathbb{Q} be a quadratic field and let E/K be an elliptic curve. Then

$$E(K)_{\text{tors}} \simeq \begin{cases}
\mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 16 \text{ or } M = 18, \text{ or} \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 6, \text{ or} \\
\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \text{with } M = 1 \text{ or } 2, \text{ or} \\
\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}.
\end{cases}$$

Moreover, each torsion subgroup occurs infinitely many times.
Let K/\mathbb{Q} be a quadratic field and let E/K be an elliptic curve. Then

$$E(K)_{\text{tors}} \cong \begin{cases}
\mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 16 \text{ or } M = 18, \text{ or} \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 6, \text{ or} \\
\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \text{with } M = 1 \text{ or } 2, \text{ or} \\
\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}.
\end{cases}$$

Moreover, each torsion subgroup occurs infinitely many times.
Let $K = \mathbb{Q}(\sqrt{17})$. The elliptic curve E/K defined by

$$y^2 = x^3 + (-411864 + 99560\sqrt{17})x + (211240640 - 51226432\sqrt{17})$$

has a point

$$P = (-474 + 118\sqrt{17}, -9088 + 2176\sqrt{17})$$

of exact order 13.
Example: a point of order 13 (due to Markus Reichert)

\[y^2 = x^3 + (-411864 + 99560\sqrt{17})x + (211240640 - 51226432\sqrt{17}) \]
Example: a point of order 13 (due to Markus Reichert)

\[y^2 = x^3 + \left(-411864 + 99560\sqrt{17}\right)x + \left(211240640 - 51226432\sqrt{17}\right) \]
Example: Another point of order 13

Let E be the elliptic curve defined by

$$y^2 + y = x^3 + x^2 - 114x + 473.$$

Then, E has a torsion point of order 13 defined over K/Q, a cubic Galois extension, where $K = Q(\alpha)$ and

$$\alpha^3 - 48\alpha^2 + 425\alpha - 1009 = 0.$$

The point P of order 13 is $(\alpha, 7\alpha - 39)$.
Theorem (Jeon, Kim, Schweizer, 2004)

Let F be a cubic number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for infinitely many non-isomorphic elliptic curves E/F are precisely:

- $\mathbb{Z}/m\mathbb{Z}$ with $1 \leq m \leq 20$,
- $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z}$ with $1 \leq m \leq 7$.

Note: $E_1(F)_{\text{tors}} \ldots E_k(F)_{\text{tors}}$ and $E_1(F')_{\text{tors}} \ldots E_k(F')_{\text{tors}}$ are depicted as the torsion subgroups for each elliptic curve over F and F', respectively.
Theorem (Jeon, Kim, Schweizer, 2004)

Let F be a cubic number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for infinitely many non-isomorphic elliptic curves E/F are precisely:

\[
\begin{cases}
\mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 20, m \neq 17, 19, \text{ or} \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 7.
\end{cases}
\]
Theorem (Jeon, Kim, Schweizer, 2004)

Let F be a cubic number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for infinitely many non-isomorphic elliptic curves E/F are precisely:

$$\begin{cases}
\mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 20, m \neq 17, 19, \text{ or} \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 7.
\end{cases}$$

Warning! These are not all the possible groups!
Theorem (Jeon, Kim, Schweizer, 2004)

Let F be a cubic number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for infinitely many non-isomorphic elliptic curves E/F are precisely:

$$\begin{cases}
\mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 20, m \neq 17, 19, \text{ or} \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 7.
\end{cases}$$

Warning! These are not all the possible groups! Najman has shown that for $E : 162B1/\mathbb{Q}$ and $F = \mathbb{Q}(\zeta_9)^+$ we have $E(F)_{\text{tors}} \cong \mathbb{Z}/21\mathbb{Z}$.
Let F be a cubic number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups of $E(F)$ are precisely:

$$\begin{cases}
\mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 21, m \neq 17, 19, \text{ or} \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 7.
\end{cases}$$
Theorem (Jeon, Kim, Park, 2006)

Let F be a quartic number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for infinitely many non-isomorphic elliptic curves E/F are precisely:

\[
\begin{align*}
Z/mZ & \quad \text{with } 1 \leq m \leq 24, m \neq 19, 23, \text{ or} \\
Z/2Z \oplus Z/2mZ & \quad \text{with } 1 \leq m \leq 9, \text{ or} \\
Z/3Z \oplus Z/3mZ & \quad \text{with } 1 \leq m \leq 3, \text{ or}
\end{align*}
\]

$Z/4Z \oplus Z/4Z, Z/4Z \oplus Z/8Z, Z/5Z \oplus Z/5Z, \text{ or } Z/6Z \oplus Z/6Z$.
Let F be a quintic number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for infinitely many non-isomorphic elliptic curves E/F are precisely:

\[
\begin{align*}
\mathbb{Z}/m\mathbb{Z} & \quad \text{with } 1 \leq m \leq 25, m \neq 23, \text{ or} \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \quad \text{with } 1 \leq m \leq 8.
\end{align*}
\]
Let F be a sextic number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for infinitely many non-isomorphic elliptic curves E/F are precisely:

\[
\begin{cases}
\mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 30, m \neq 23, 25, 29 \text{ or } \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 10, \text{ or } \\
\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3m\mathbb{Z} & \text{with } 1 \leq m \leq 4, \text{ or } \\
\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}, \text{ or } \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.
\end{cases}
\]
A special case: elliptic curves with CM

Let F be a number field, and let E/F be an elliptic curve with CM.
A special case: elliptic curves with CM

Let F be a number field, and let E/F be an elliptic curve with CM.

Theorem (Clark, Corn, Rice, Stankewicz, 2013)

Let F be a number field of degree $1 \leq d \leq 13$, and let E/F be an elliptic curve with CM. Then, the complete list of possible torsion subgroups $E(F)_{\text{tors}}$ is given, and an algorithm to compute the list for $d \geq 1$.
A special case: elliptic curves with CM

Let F be a number field, and let E/F be an elliptic curve with CM.

Theorem (Clark, Corn, Rice, Stankewicz, 2013)

Let F be a number field of degree $1 \leq d \leq 13$, and let E/F be an elliptic curve with CM. Then, the complete list of possible torsion subgroups $E(F)_{tors}$ is given.

For example, over \mathbb{Q}: $\{O\}, \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/6\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Over quadratics, not over \mathbb{Q}:
$\mathbb{Z}/7\mathbb{Z}, \mathbb{Z}/10\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}, \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$.

Over quartics, besides quadratics and \mathbb{Q}:
$\mathbb{Z}/5\mathbb{Z}, \mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/12\mathbb{Z}, \mathbb{Z}/13\mathbb{Z}, \mathbb{Z}/21\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z},$
$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/10\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$.
A special case: elliptic curves with CM

Abbey Bourdon

Pete Clark

Theorem (Bourdon, Clark, 2017)

Let K be quad. imaginary, let $K \subseteq F$ be a number field, let E/F be an elliptic curve with CM by an order $\mathcal{O} \subseteq K$, and let $N \geq 2$. There is an explicit constant $T(\mathcal{O}, N)$ such that if there is a point of order N in $E(F)_{\text{tors}}$, then $T(\mathcal{O}, N)$ divides $[F : K(j(E))]$. Moreover, this bound is best possible.

See also Davide Lombardo’s work on torsion bounds for abelian varieties with CM.
A simpler case: base extension of E/\mathbb{Q}

Let E/\mathbb{Q} be an elliptic curve, and let F/\mathbb{Q} be a finite extension. Then, $E(\mathbb{Q})_{\text{tors}} \subseteq E(F)_{\text{tors}}$.

Variations: **torsion for a fixed curve E/\mathbb{Q} over extensions F/\mathbb{Q}**

where $F_1, F_2, \ldots, F_k, \ldots$ is some family of (perhaps all) finite extensions of \mathbb{Q}, contained in some fixed algebraic closure $\overline{\mathbb{Q}}$.
A simpler case: base extension of E/\mathbb{Q}

Theorem (L-R., 2011)

Let $S_1^1(d)$ be the set of primes such that there is an elliptic curve E/\mathbb{Q} with a point of order p defined in an extension F/\mathbb{Q} of degree $\leq d$. Then:

- $S_1^1(d) = \{2, 3, 5, 7\}$ for $d = 1$ and 2;
- $S_1^1(d) = \{2, 3, 5, 7, 13\}$ for $d = 3$ and 4;
- $S_1^1(d) = \{2, 3, 5, 7, 11, 13\}$ for $d = 5, 6,$ and 7;
- $S_1^1(d) = \{2, 3, 5, 7, 11, 13, 17\}$ for $d = 8$;
- $S_1^1(d) = \{2, 3, 5, 7, 11, 13, 17, 19\}$ for $d = 9, 10,$ and 11;
- $S_1^1(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37\}$ for $12 \leq d \leq 20$;
- $S_1^1(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43\}$ for $d = 21$.

Moreover, there is a conjectural formula for $S_1^1(d)$ for all $d \geq 1$, which is valid for all $1 \leq d \leq 42$, and would follow from a positive answer to Serre's uniformity question.
A simpler case: base extension of E/\mathbb{Q}

Theorem (L-R., 2011)

Let $S^1_{\mathbb{Q}}(d)$ be the set of primes such that there is an elliptic curve E/\mathbb{Q} with a point of order p defined in an extension F/\mathbb{Q} of degree $\leq d$. Then:

- $S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7\}$ for $d = 1$ and 2;
- $S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 13\}$ for $d = 3$ and 4;
- $S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 11, 13\}$ for $d = 5$, 6, and 7;
- $S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 11, 13, 17\}$ for $d = 8$;
- $S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 11, 13, 17, 19\}$ for $d = 9$, 10, and 11;
- $S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37\}$ for $12 \leq d \leq 20$.
- $S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43\}$ for $d = 21$.

Moreover, there is a conjectural formula for $S^1_{\mathbb{Q}}(d)$ for all $d \geq 1$, which is valid for all $1 \leq d \leq 42$, and would follow from a positive answer to Serre’s uniformity question.
A simpler case: base extension of E/\mathbb{Q}

Let E/\mathbb{Q} be an elliptic curve, let p be a prime, and let $T \subseteq E[p^n]$ be a subgroup with $T \cong \mathbb{Z}/p^s\mathbb{Z} \oplus \mathbb{Z}/p^N\mathbb{Z}$. We studied the minimal degree $[\mathbb{Q}(T) : \mathbb{Q}]$ of definition of T.

For example:

Theorem (González-Jiménez, L-R., 2017)

Let E/\mathbb{Q} be an elliptic curve defined over \mathbb{Q} without CM, and let $P \in E[2^N]$ be a point of exact order 2^N, with $N \geq 4$. Then, the degree $[\mathbb{Q}(P) : \mathbb{Q}]$ is divisible by 2^{2N-7}. Moreover, this bound is best possible.
Base extension of E/\mathbb{Q} to a quadratic field

Filip Najman

Theorem (Najman, 2015)

Let E/\mathbb{Q} be an elliptic curve and let F be a quadratic number field. Then

$$E(F)_{\text{tors}} \cong \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 10 \text{ or } M = 12, 15, 16, \text{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 6, \text{ or } \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \text{with } 1 \leq M \leq 2 \text{ and } F = \mathbb{Q}(\sqrt{-3}), \text{ or } \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} & \text{with } F = \mathbb{Q}(\sqrt{-1}). \end{cases}$$
Base extension of E/\mathbb{Q} to a cubic field

Let E/\mathbb{Q} be an elliptic curve, and let K/\mathbb{Q} be a finite extension. Then, $E(\mathbb{Q})_{\text{tors}} \subseteq E(K)_{\text{tors}}$.

Theorem (Najman, 2015)

Let E/\mathbb{Q} be an elliptic curve and let F be a cubic number field. Then

$$E(F)_{\text{tors}} \cong \begin{cases} \mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 10 \text{ or } 12, 13, 14, 18, 21, \text{ or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 4 \text{ or } M = 7. \end{cases}$$

Moreover, the elliptic curve $162B1$ over $\mathbb{Q}(\zeta_9)^+$ is the unique rational elliptic curve over a cubic field with torsion subgroup isomorphic to $\mathbb{Z}/21\mathbb{Z}$. For all other groups T listed above there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves E/\mathbb{Q} for which $E(F) \cong T$ for some cubic field F.
Theorem (Chou, 2015)

Let E/\mathbb{Q} be an elliptic curve and let F be a Galois quartic field F with $\text{Gal}(F/\mathbb{Q}) \cong \mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Then

$$E(F)_{\text{tors}} \cong \begin{cases}
\mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 16 \text{ but } M \neq 11, 14 \text{ or } \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 6, \text{ or } M = 8, \\
\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \text{with } 1 \leq M \leq 2 \text{ or } \\
\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}, \text{ or } \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.
\end{cases}$$
Theorem (González-Jiménez, L-R., 2016)

We give a complete classification of torsion subgroups that appear infinitely often for elliptic curves over \mathbb{Q} base-extended to a quartic number field.

Warning! The torsion group $\mathbb{Z}/15\mathbb{Z}$ appears infinitely often for curves defined over quartic fields F, but if E/\mathbb{Q} and $E(F)_{\text{tors}} \cong \mathbb{Z}/15\mathbb{Z}$, then $j(E) \in \{-5^2/2, -5^2 \cdot 241^3/2^3, -5 \cdot 29^3/2^2, 5 \cdot 211^3/2^15\}$.
Base extension of E/\mathbb{Q} to a quartic field

Theorem (González-Jiménez, Najman, 2016)

Let E/\mathbb{Q} be an elliptic curve and let F be a quartic field. Then

$$E(F)_{\text{tors}} \cong \begin{cases}
\mathbb{Z}/M\mathbb{Z} & \text{with } 1 \leq M \leq 10 \text{ or } 12, 13, 15, 16, 20, 24 \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 6, \text{ or } 8, \\
\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \text{with } 1 \leq M \leq 2 \text{ or}
\end{cases}$$

$$\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}, \text{ or } \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.$$
Further, they determine all the possible prime orders of a point $P \in E(F)_{\text{tors}}$, where $[F : \mathbb{Q}] = d$ for all $d \leq 3342296$.
Let E/\mathbb{Q} be an elliptic curve, and let F/\mathbb{Q} be an infinite algebraic extension. Then, $E(\mathbb{Q})_{\text{tors}} \subseteq E(F)_{\text{tors}}$. But, $E(F)_{\text{tors}}$ may no longer be finite!
Base extension of E/\mathbb{Q} to an infinite extension

Let E/\mathbb{Q} be an elliptic curve, and let F/\mathbb{Q} be an infinite algebraic extension. Then, $E(\mathbb{Q})_{\text{tors}} \subseteq E(F)_{\text{tors}}$. But, $E(F)_{\text{tors}}$ may no longer be finite! Let $F_1 \subseteq F_2 \subseteq \ldots \subseteq F_k \subseteq \ldots$ be a tower of finite extensions of \mathbb{Q}.

Variations: torsion for a fixed curve E/\mathbb{Q} over extensions F_k/\mathbb{Q}
Base extension of E/\mathbb{Q} to an infinite extension

Theorem (Laska, Lorenz, 1985; Fujita, 2005)

Let E/\mathbb{Q} be an elliptic curve and let $\mathbb{Q}(2^\infty) := \mathbb{Q}(\{\sqrt{m} : m \in \mathbb{Z}\})$. The torsion subgroup $E(\mathbb{Q}(2^\infty))_{\text{tors}}$ is finite, and

$$E(\mathbb{Q}(2^\infty))_{\text{tors}} \cong \begin{cases}
\mathbb{Z}/M\mathbb{Z} & \text{with } M \in 1, 3, 5, 7, 9, 15, \text{ or} \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 1 \leq M \leq 6 \text{ or } M = 8, \text{ or} \\
\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} & \text{or} \\
\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4M\mathbb{Z} & \text{with } 1 \leq M \leq 4, \text{ or} \\
\mathbb{Z}/2M\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } 3 \leq M \leq 4.
\end{cases}$$
Let E/\mathbb{Q} be an elliptic curve, and let $\mathbb{Q}(3^\infty)$ be the compositum of all cubic fields. The torsion subgroup $E(\mathbb{Q}(3^\infty))_{\text{tors}}$ is finite, and

$$E(\mathbb{Q}(3^\infty))_{\text{tors}} \simeq \begin{cases} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } M = 1, 2, 4, 5, 7, 8, 13, \text{ or} \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4M\mathbb{Z} & \text{with } M = 1, 2, 4, 7, \text{ or} \\ \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6M\mathbb{Z} & \text{with } M = 1, 2, 3, 5, 7, \text{ or} \\ \mathbb{Z}/2M\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \text{with } M = 4, 6, 7, 9. \end{cases}$$

All but 4 of the torsion subgroups occur infinitely often.
Base extension of E/\mathbb{Q} to an infinite extension

New results of classification of torsion subgroups of E/\mathbb{Q} after base-extension to infinite extensions:

- **Daniels**: classification of torsion over $\mathbb{Q}(D_4^\infty)$.
- **Daniels, Derickx, Hatley**: classification of torsion over $\mathbb{Q}(A_4^\infty)$.
Theorem (Ribet, 1981)

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q}. Then, $A(\mathbb{Q}^{ab})_{\text{tors}}$ is finite.
Theorem (Zarhin, 1983)

Let K be a number field, let A/K be an abelian variety, and let K^{ab} be the maximal abelian extension of K. Then, $A(K^{ab})_{\text{tors}}$ is finite if and only if A has no abelian subvariety with CM over K.

Yurii Zarhin
Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve. If there is an integer $n \geq 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then $n = 2, 3, 4, \text{ or } 5$. Furthermore, each possible Galois group occurs for infinitely many distinct j-invariants.
Let E/\mathbb{Q} be an elliptic curve. If there is an integer $n \geq 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then $n = 2, 3, 4,$ or 5. More generally, if $\mathbb{Q}(E[n] \mathbb{Q})$ is abelian, then $n = 2, 3, 4, 5, 6,$ or 8. Additionally, each possible Galois group occurs for infinitely many distinct j-invariants.
Base extension of E/\mathbb{Q} to an infinite abelian extension

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve. If there is an integer $n \geq 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then $n = 2, 3, 4,$ or 5. More generally, if $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian, then $n = 2, 3, 4, 5, 6,$ or 8. Moreover, $G_n = \text{Gal}(\mathbb{Q}(E[n])/\mathbb{Q})$ is isomorphic to one of the following groups:

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_n</td>
<td>${0}$, $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$</td>
<td>$\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$</td>
<td>$(\mathbb{Z}/2\mathbb{Z})^2$, $(\mathbb{Z}/2\mathbb{Z})^3$</td>
<td>$(\mathbb{Z}/2\mathbb{Z})^4$, $(\mathbb{Z}/2\mathbb{Z})^5$, $(\mathbb{Z}/2\mathbb{Z})^6$</td>
</tr>
</tbody>
</table>

Furthermore, each possible Galois group occurs for infinitely many distinct j-invariants.
Theorem (Chou, 2018)

Let E/\mathbb{Q} be an elliptic curve and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q}. Then, $\#E(\mathbb{Q}^{ab})_{\text{tors}} \leq 163$. This bound is sharp, as the curve $26569a1$ has a point of order 163 over \mathbb{Q}^{ab}. Moreover, a full classification of the possible torsion subgroups is given.
The Uniform Boundedness Conjecture

Variations: fix a **degree** d, and vary elliptic curves E over F of deg. d.

$$E_1(F)_{\text{tors}} \quad \ldots \quad E_k(F)_{\text{tors}} \quad E_1(F')_{\text{tors}} \quad \ldots \quad E_k(F')_{\text{tors}}$$

Loïc Merel

Theorem (Merel, 1996)

Let F be a number field of degree $[F:Q] = d > 1$. Then, there is a number $B(d) > 0$ such that $|E(F)_{\text{tors}}| \leq B(d)$ for all elliptic curves E/F.
The Uniform Boundedness Conjecture

Variations: fix a degree d, and vary elliptic curves E over F of deg. d.

Theorem (Merel, 1996)

Let F be a number field of degree $[F : \mathbb{Q}] = d > 1$. Then, there is a number $B(d) > 0$ such that $|E(F)_{\text{tors}}| \leq B(d)$ for all elliptic curves E/F.

Loïc Merel
The Uniform Boundedness Conjecture Theorem

Theorem (Merel, 1996)

Let F be a number field of degree $[F : \mathbb{Q}] = d > 1$. There is a number $B(d) > 0$ such that $|E(F)_{\text{tors}}| \leq B(d)$ for all elliptic curves E/F. For instance, $B(1) = 16$, and $B(2) = 24$. The Folklore Conjecture (As seen in Clark, Cook, Stankewicz) There is a constant $C > 0$ such that $B(d) \leq C \cdot d \cdot \log \log d$ for all $d \geq 3$.
The Uniform Boundedness Conjecture Theorem

Theorem (Merel, 1996)

Let F be a number field of degree $[F : \mathbb{Q}] = d > 1$. There is a number $B(d) > 0$ such that $|E(F)_{\text{tors}}| \leq B(d)$ for all elliptic curves E/F.

For instance, $B(1) = 16$, and $B(2) = 24$.
The Uniform Boundedness Conjecture Theorem

Theorem (Merel, 1996)

Let F be a number field of degree $[F : \mathbb{Q}] = d > 1$. There is a number $B(d) > 0$ such that $|E(F)_{tors}| \leq B(d)$ for all elliptic curves E/F.

For instance, $B(1) = 16$, and $B(2) = 24$.

Folklore Conjecture (As seen in Clark, Cook, Stankewicz)

There is a constant $C > 0$ such that

$$B(d) \leq C \cdot d \cdot \log \log d \text{ for all } d \geq 3.$$
Folklore Conjecture

There is a constant $C > 0$ such that

$$B(d) \leq C \cdot d \cdot \log \log d \text{ for all } d \geq 3.$$
Folklore Conjecture

There is a constant $C > 0$ such that

$$B(d) \leq C \cdot d \cdot \log \log d \text{ for all } d \geq 3.$$

Theorem (Hindry, Silverman, 1999)

Let F be a field of degree $d \geq 2$, and let E/F be an elliptic curve such that $j(E)$ is an algebraic integer. Then, we have

$$|E(F)_{\text{tors}}| \leq 1977408 \cdot d \cdot \log d.$$
Folklore Conjecture

There is a constant $C > 0$ such that

$$B(d) \leq C \cdot d \cdot \log \log d$$

for all $d \geq 3$.

Theorem (Clark, Pollack, 2015)

There is an absolute, effective constant C such that for all number fields F of degree $d \geq 3$ and all elliptic curves E/F with CM, we have

$$|E(F)_{\text{tors}}| \leq C \cdot d \cdot \log \log d.$$
Folklore Conjecture

There is a constant $C > 0$ such that

$$B(d) \leq C \cdot d \cdot \log \log d \text{ for all } d \geq 3.$$
Folklore Conjecture

There is a constant $C > 0$ such that

$$B(d) \leq C \cdot d \cdot \log \log d \text{ for all } d \geq 3.$$

Assuming the conjecture, if F/\mathbb{Q} is of degree $d \geq 3$, and $E(F)_{\text{tors}}$ contains a point of order p^n, for some prime p, and $n \geq 1$, then

$$p^n \leq |E(F)_{\text{tors}}| \leq B(d) \leq C \cdot d \log \log d.$$
Folklore Conjecture

There is a constant $C > 0$ such that

$$B(d) \leq C \cdot d \cdot \log \log d \text{ for all } d \geq 3.$$

Assuming the conjecture, if F/\mathbb{Q} is of degree $d \geq 3$, and $E(F)_{\text{tors}}$ contains a point of order p^n, for some prime p, and $n \geq 1$, then

$$p^n \leq |E(F)_{\text{tors}}| \leq B(d) \leq C \cdot d \log \log d.$$

Theorem

Let F be a number field of degree $[F : \mathbb{Q}] = d > 1$. If $P \in E(F)$ is a point of exact prime power order p^n, then

1. (Merel, 1996) $p \leq d^{3d^2}$.
Folklore Conjecture

There is a constant $C > 0$ such that

$$B(d) \leq C \cdot d \cdot \log \log d \text{ for all } d \geq 3.$$

Assuming the conjecture, if F/\mathbb{Q} is of degree $d \geq 3$, and $E(F)_{\text{tors}}$ contains a point of order p^n, for some prime p, and $n \geq 1$, then

$$p^n \leq |E(F)_{\text{tors}}| \leq B(d) \leq C \cdot d \log \log d.$$

Theorem

Let F be a number field of degree $[F : \mathbb{Q}] = d > 1$. If $P \in E(F)$ is a point of exact prime power order p^n, then

1. (Merel, 1996) $p \leq d^{3d^2}$.
Definition

Let p be a prime, and let F/L be an extension of number fields. We define $e\max(p, F/L)$ as the largest ramification index $e(\mathfrak{p}|\mathfrak{c})$ for a prime \mathfrak{p} of \mathcal{O}_F over a prime \mathfrak{c} of \mathcal{O}_L lying above the rational prime p.

Theorem (L-R., 2013)

Let F be a number field with degree $[F:Q]=d \geq 1$, and suppose there is an elliptic curve E/F with CM by a full order, with a point of order p^n. Then, $\phi(p^n) \leq 24 \cdot e\max(p, F/Q) \leq 24d$.

Note! The ramification index $e\max(p, F/Q) = 1$ for all but finitely many primes p, for a fixed field F.
Definition

Let p be a prime, and let F/L be an extension of number fields. We define $e_{\text{max}}(p, F/L)$ as the largest ramification index $e(\mathfrak{p}|\mathfrak{q})$ for a prime \mathfrak{p} of \mathcal{O}_F over a prime \mathfrak{q} of \mathcal{O}_L lying above the rational prime p.

Theorem (L-R., 2013)

Let F be a number field with degree $[F : \mathbb{Q}] = d \geq 1$, and suppose there is an elliptic curve E/F with CM by a full order, with a point of order p^n. Then,

$$\varphi(p^n) \leq 24 \cdot e_{\text{max}}(p, F/\mathbb{Q}) \leq 24d.$$
Definition

Let \(p \) be a prime, and let \(F/L \) be an extension of number fields. We define \(e_{\text{max}}(p, F/L) \) as the largest ramification index \(e(\mathfrak{p}|\mathfrak{q}) \) for a prime \(\mathfrak{p} \) of \(\mathcal{O}_F \) over a prime \(\mathfrak{q} \) of \(\mathcal{O}_L \) lying above the rational prime \(p \).

Theorem (L-R., 2013)

Let \(F \) be a number field with degree \([F : \mathbb{Q}] = d \geq 1 \), and suppose there is an elliptic curve \(E/F \) with CM by a full order, with a point of order \(p^n \). Then,

\[
\varphi(p^n) \leq 24 \cdot e_{\text{max}}(p, F/\mathbb{Q}) \leq 24d.
\]

Note! The ramification index \(e_{\text{max}}(p, F/\mathbb{Q}) = 1 \) for all but finitely many primes \(p \), for a fixed field \(F \).
Definition

We define \(e_{\text{max}}(p, F/L) \) as the largest ramification index \(e(\mathfrak{p} | \wp) \) for a prime \(\mathfrak{p} \) of \(\mathcal{O}_F \) over a prime \(\wp \) of \(\mathcal{O}_L \) lying above the rational prime \(p \).

Theorem (L-R., 2013)

Let \(F \) be a number field with degree \([F : \mathbb{Q}] = d \geq 1 \), and suppose there is an elliptic curve \(E/F \) with CM by a full order, with a point of order \(p^n \). Then,

\[
\varphi(p^n) \leq 24 \cdot e_{\text{max}}(p, F/\mathbb{Q}) \leq 24d.
\]
Definition
We define $e_{\text{max}}(p, F/L)$ as the largest ramification index $e(\mathfrak{p}|\wp)$ for a prime \mathfrak{p} of O_F over a prime \wp of O_L lying above the rational prime p.

Theorem (L-R., 2013)
Let F be a number field with degree $[F : \mathbb{Q}] = d \geq 1$, and suppose there is an elliptic curve E/F with CM by a full order, with a point of order p^n. Then,

$$\varphi(p^n) \leq 24 \cdot e_{\text{max}}(p, F/\mathbb{Q}) \leq 24d.$$

Theorem (L-R., 2014)
Let F be a number field with degree $[F : \mathbb{Q}] = d \geq 1$, and let p be a prime such that there is an elliptic curve E/F with a point of order p^n. Suppose that F has a prime \mathfrak{P} over p such that E/F has potential good supersingular reduction at \mathfrak{P}. Then,

$$\varphi(p^n) \leq 24e(\mathfrak{P}|p) \leq 24e_{\text{max}}(p, F/\mathbb{Q}) \leq 24d.$$
Conjecture

There is $C > 0$ s.t. if there is a point of order p^n in $E(F)$ for some E/F with $[F : \mathbb{Q}] \leq d$, then

$$\varphi(p^n) \leq C \cdot e_{\text{max}}(p, F/\mathbb{Q}) \leq C \cdot d.$$
Variations: **torsion subgroups under field extensions**

\[E(L_1)_{\text{tors}} \quad E(L_2)_{\text{tors}} \quad \ldots \quad E(L_k)_{\text{tors}} \quad \ldots \]

where \(L_1, L_2, \ldots, L_k, \ldots \) is some family of (perhaps all) finite extensions of a fixed field \(F \).
Theorem (L-R., 2013)

If \(p > 2 \) and there is an elliptic curve \(E/\mathbb{Q} \) with a point of order \(p^n \) defined in an extension \(L/\mathbb{Q} \) of degree \(d \geq 2 \), then

\[
\varphi(p^n) \leq 222 \cdot e_{\text{max}}(p, L/\mathbb{Q}) \leq 222 \cdot d.
\]
Theorem (L-R., 2013)

If \(p > 2 \) and there is an elliptic curve \(E/\mathbb{Q} \) with a point of order \(p^n \) defined in an extension \(L/\mathbb{Q} \) of degree \(d \geq 2 \), then

\[
\varphi(p^n) \leq 222 \cdot e_{\max}(p, L/\mathbb{Q}) \leq 222 \cdot d.
\]

Theorem (L-R., 2013)

Let \(F \) be a number field, and let \(p > 2 \) be a prime such that there is an elliptic curve \(E/F \) with a point of order \(p^n \) defined in an extension \(L \) of \(F \), with \([L : \mathbb{Q}] = d \geq 2 \). Then, there is a constant \(C_F \) such that

\[
\varphi(p^n) \leq C_F \cdot e_{\max}(p, L/\mathbb{Q}) \leq C_F \cdot d.
\]
Theorem (L-R., 2013)

If $p > 2$ and there is an elliptic curve E/\mathbb{Q} with a point of order p^n defined in an extension L/\mathbb{Q} of degree $d \geq 2$, then

$$\varphi(p^n) \leq 222 \cdot e_{\max}(p, L/\mathbb{Q}) \leq 222 \cdot d.$$

Theorem (L-R., 2013)

Let F be a number field, and let $p > 2$ be a prime such that there is an elliptic curve E/F with a point of order p^n defined in an extension L of F, with $[L : \mathbb{Q}] = d \geq 2$. Then, there is a constant C_F such that

$$\varphi(p^n) \leq C_F \cdot e_{\max}(p, L/\mathbb{Q}) \leq C_F \cdot d.$$

Moreover, there is a computable finite set Σ_F such that if p^n is as above and $j(E) \notin \Sigma_F$, then

$$\varphi(p^n) \leq 588 \cdot e_{\max}(p, L/\mathbb{Q}) \leq 588 \cdot d.$$
Theorem (Hindry–Ratazzi conjecture; Zywina, 2017)

Let A be a nonzero abelian variety over a number field F for which the Mumford-Tate conjecture holds. Let $A/\mathbb{C} \sim \prod_{i=1}^{n} A_{i}^{m_{i}}$ such that each A_{i} is simple and pairwise non-isogenous, and define $A_{I} = \prod_{i \in I} A_{i}^{m_{i}}$ for any subset $I \subseteq \{1, \ldots, n\}$. Let $G_{A_{I}}$ be the Mumford-Tate group of A_{I}. Define $\gamma_{A} = \max_{I \subseteq \{1, \ldots, n\}} 2 \dim A_{I}/\dim G_{A_{I}}$. Then, γ_{A} is the smallest real value such that for any finite extension L/K and real number $\varepsilon > 0$, we have

$$\#A(L)_{\text{tors}} \leq C \cdot [L : K]^{\gamma_{A} + \varepsilon},$$

where C is a constant that depends only on A and ε.
THANK YOU

alvaro.lozano-robledo@uconn.edu

http://alozano.clas.uconn.edu/

“If by chance I have omitted anything more or less proper or necessary, I beg forgiveness, since there is no one who is without fault and circumspect in all matters.”

Leonardo Pisano (Fibonacci), Liber Abaci.