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Louis Mordell
1888− 1972

Theorem (Mordell, 1922)
Let E/Q be an elliptic curve. Then, the group of Q-rational points on E,
denoted by E(Q), is a finitely generated abelian group. In particular,
E(Q) ∼= E(Q)tors ⊕ ZRE/Q where E(Q)tors is a finite subgroup, and
RE/Q ≥ 0.



Louis Mordell
1888− 1972

André Weil
1906− 1998

Theorem (Mordell–Weil, 1928)
Let F be a number field, and let A/F be an abelian variety. Then, the
group of F-rational points on A, denoted by A(F ), is a finitely
generated abelian group. In particular, A(F ) ∼= A(F )tors ⊕ ZRA/F where
A(F )tors is a finite subgroup, and RA/F ≥ 0.



Louis Mordell
1888− 1972

André Weil
1906− 1998

André Néron
1922− 1985

Theorem (Mordell–Weil–Néron, 1952)
Let F be a field that is finitely generated over its prime field, and let
A/F be an abelian variety. Then, the group of F-rational points on A,
denoted by A(F ), is a finitely generated abelian group. In particular,
A(F ) ∼= A(F )tors ⊕ ZRA/F where A(F )tors is a finite subgroup, and
RA/F ≥ 0.



Theorem (Mordell–Weil–Néron, 1952)
Let F be a field that is finitely generated over its prime field (e.g., a
global field), and let A/F be an abelian variety. Then, the group of
F-rational points on A, denoted by A(F ), is a finitely generated abelian
group. In particular, A(F ) ∼= A(F )tors ⊕ ZRA/F where A(F )tors is a finite
subgroup, and RA/F ≥ 0.

... leads to ...

Natural Question
What finitely generated abelian groups arise from abelian varieties
over global fields?

There are a number of ways to study this question, depending on what
we allow to vary.



Natural Question
What finitely generated abelian groups arise from abelian varieties
over global fields?

Variations: Mordell–Weil groups of elliptic curves for a fixed field F

Fix a field F , and vary over 1-dimensional abelian varieties over F .

E1(F ) E2(F ) . . . Ek (F ) . . .

F

where E1,E2, . . . ,Ek , . . . is some family of (perhaps all) elliptic curves
over a fixed field F .



Natural Question
What finitely generated abelian groups arise from abelian varieties
over global fields?

Variations: Mordell–Weil groups for a fixed curve E/F and vary L/F

Fix an elliptic curve E/F , and vary over finite extensions of F .

E(L1) E(L2) . . . E(L2) . . .

E/F

where L1,L2, . . . ,Lk , . . . is some family of (perhaps all) finite extensions
of the base field F , contained in some fixed algebraic closure F .



Natural Question
What finitely generated abelian groups arise from abelian varieties
over global fields?

Variations: ranks in a family of elliptic curves over a fixed F

RE1/F RE2/F . . . REk/F . . .

F

where E1,E2, . . . ,Ek , . . . is some family of (perhaps all) elliptic curves
over a fixed field F .



Natural Question
What finitely generated abelian groups arise from abelian varieties
over global fields?

Variations: ranks for a fixed curve E/F under field extensions L/F

RE/L1
RE/L2

. . . RE/Lk
. . .

E/F

where L1,L2, . . . ,Lk , . . . is some family of (perhaps all) finite extensions
of a fixed field F , contained in some fixed algebraic closure F .



Natural Question
What finitely generated abelian groups arise from abelian varieties
over global fields?

Variations: torsion subgroups in a family of curves over a fixed F

E1(F )tors E2(F )tors . . . Ek (F )tors . . .

F

where E1,E2, . . . ,Ek , . . . is some family of (perhaps all) elliptic curves
over a fixed field F .



Natural Question
What finitely generated abelian groups arise from abelian varieties
over global fields?

Variations: torsion for a fixed curve E/F over extensions L/F

E(L1)tors E(L2)tors . . . E(Lk )tors . . .

E/F

where L1,L2, . . . ,Lk , . . . is some family of (perhaps all) finite extensions
of a fixed field F , contained in some fixed algebraic closure F .



Torsion subgroups of elliptic curves over Q

E1(Q)tors E2(Q)tors . . . Ek (Q)tors . . .

Q

Barry Mazur

Theorem (Levi–Ogg Conjecture; Mazur, 1977)

Let E/Q be an elliptic curve. Then

E(Q)tors '

{
Z/MZ with 1 ≤ M ≤ 10 or M = 12, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4.

Moreover, each possible group appears infinitely many times.



Torsion subgroups of elliptic curves over Q

E1(Q)tors E2(Q)tors . . . Ek (Q)tors . . .

Q
Barry Mazur

Theorem (Levi–Ogg Conjecture; Mazur, 1977)

Let E/Q be an elliptic curve. Then

E(Q)tors '

{
Z/MZ with 1 ≤ M ≤ 10 or M = 12, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4.

Moreover, each possible group appears infinitely many times.
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The elliptic curve 30030bt1 has a point of order 12.



All elliptic curves with given torsion



Torsion subgroups of elliptic curves over Fq(T )
Fix a prime p, let q = pn, and K = Fq(T ).

E1(Fq(T ))tors E2(Fq(T ))tors . . . Ek (Fq(T ))tors . . .

Fq(T )



Torsion subgroups of elliptic curves over Fq(T )
Fix a prime p, let q = pn, and K = Fq(T ).

E1(Fq(T ))tors E2(Fq(T ))tors . . . Ek (Fq(T ))tors . . .

Fq(T )



Building on work of Cox and Parry (1980), and Levin (1968):

Theorem (McDonald, 2017)
Let K = Fq(T ) for q a power of p. Let E/K be non-isotrivial.
If p - E(K )tors, then E(K )tors is one of

0, Z/2Z, Z/3Z, . . . , Z/10Z, Z/12Z,
(Z/2Z)2, Z/4Z× Z/2Z, Z/6Z× Z/2Z, Z/8Z× Z/2Z,

(Z/3Z)2, Z/6Z× Z/3Z, (Z/4Z)2, (Z/5Z)2.

If p | #E(K )tors, then p ≤ 11, and E(K )tors is one of

Z/pZ if p = 2,3,5,7,11,
Z/2pZ if p = 2,3,5,7,
Z/3pZ if p = 2,3,5,

Z/4pZ,Z/5pZ, if p = 2,3,
Z/12Z,Z/14Z,Z/18Z if p = 2,

Z/10Z× Z/5Z if p = 2,
Z/12Z× Z/2Z if p = 3,
Z/10Z× Z/2Z if p = 5.



Characteristic Ea,b : y2 + (1− a)xy − by = x3 − bx2, f ∈ K G

p = 11 a = (f+3)(f+5)2(f+9)2

3(f+1)(f+4)4 b = a (f+1)2(f+9)
2(f+4)3 Z/11Z

p = 2 a = f (f+1)3

f 3+f+1 b = a 1
f 3+f+1 Z/14Z

p = 7 a = (f+1)(f+3)3(f+4)(f+6)
f (f+2)2(f+5) b = a (f+1)(f+5)3

4f (f+2)

p = 3 a = f 3(f+1)2

(f+2)6 b = a f (f 4+2f 3+f+1)
(f+2)5 Z/15Z

p = 5 a = (f+1)(f+2)2(f+4)3(f 2+2)
(f+3)6(f 2+3) b = a f (f+4)

(f+3)5

p = 2 a = f (f+1)2(f 2+f+1)
f 3+f+1 b = a (f+1)2

f 3+f+1 Z/18Z

p = 5 a = f (f+1)(f+2)2(f+3)(f+4)
(f 2+4f+1)2 b = a (f+1)2(f+3)2

4(f 2+4f+1)2 Z/10Z× Z/2Z

p = 3, ζ4 ∈ k a = f (f+1)(f+2)(f 2+2f+2)
(f 2+f+2)3 b = a (f 2+1)2

f (f 2+f+2) Z/12Z× Z/2Z

p = 2, ζ4 ∈ k a = f (f 4+f+1)(f 4+f 3+1)
(f 2+f+1)5 b = a f 2(f 4+f 3+1)2

(f 2+f+1)5 Z/10Z× Z/5Z

Table: families of elliptic curves such that G ⊂ Ea,b(K )tors.



Theorem (McDonald, 2018)
Let C be a curve of genus 1 over Fq, for q = pn, and let K = Fq(C).
Let E/K be non-isotrivial. If p - #E(K )tors, then E(K )tors is one of

Z/NZ with N = 1, . . . ,12,14,15,
Z/2NZ× Z/2Z with N = 1, . . . ,6,
Z/3NZ× Z/3Z with N = 1,2,3,
Z/4NZ× Z/4Z with N = 1,2,

(Z/NZ)2 with N = 5,6.

If p | #E(K )tors, then p ≤ 13, and E(K )tors is one of

Z/pZ if p = 2,3,5,7,11,13,
Z/2pZ,Z/2pZ× Z/2Z if p = 3,5,7,

Z/3pZ,Z/4pZ if p = 2,3,5
Z/5pZ,Z/6pZ,Z/7pZ,Z/8pZ if p = 2,3,

Z/2NZ for N = 9,10,11,15, if p = 2,
Z/6NZ× Z/3Z for N = 1,2,3, if p = 2,
Z/10Z× Z/5Z if p = 2,

Z/12Z× Z/2Z,Z/12Z× Z/4Z if p = 3,
(and possibly Z/11pZ, for p = 5,7,13).



Torsion subgroups of elliptic curves over quad. field K

E1(K )tors E2(K )tors . . . Ek (K )tors . . .

K

Filip Najman

Theorem (Najman, 2011)

Let E/Q(i) be an elliptic curve. Then

E(Q(i))tors '


Z/MZ with 1 ≤ M ≤ 10 or M = 12, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4, or
Z/4Z⊕ Z/4Z.

Moreover, each torsion subgroup occurs infinitely many times.



Torsion subgroups of elliptic curves over quad. field K

E1(K )tors E2(K )tors . . . Ek (K )tors . . .

K Filip Najman

Theorem (Najman, 2011)

Let E/Q(i) be an elliptic curve. Then

E(Q(i))tors '


Z/MZ with 1 ≤ M ≤ 10 or M = 12, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4, or
Z/4Z⊕ Z/4Z.

Moreover, each torsion subgroup occurs infinitely many times.



Torsion subgroups of elliptic curves over quad. fields K

E1(K )tors . . . Ek (K )tors E1(K ′)tors . . . Ek (K ′)tors

K K ′

Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let K/Q be a quadratic field and let E/K be an elliptic curve. Then

E(K )tors '


Z/MZ with 1 ≤ M ≤ 16 or M = 18, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or
Z/3Z⊕ Z/3MZ with M = 1 or 2, or
Z/4Z⊕ Z/4Z.

Moreover, each torsion subgroup occurs infinitely many times.



Torsion subgroups of elliptic curves over quad. fields K

E1(K )tors . . . Ek (K )tors E1(K ′)tors . . . Ek (K ′)tors

K K ′

Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let K/Q be a quadratic field and let E/K be an elliptic curve. Then

E(K )tors '


Z/MZ with 1 ≤ M ≤ 16 or M = 18, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or
Z/3Z⊕ Z/3MZ with M = 1 or 2, or
Z/4Z⊕ Z/4Z.

Moreover, each torsion subgroup occurs infinitely many times.



Torsion subgroups of elliptic curves over quad. fields K

Monsur Kenku Fumiyuki Momose Sheldon Kamienny

Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let K/Q be a quadratic field and let E/K be an elliptic curve. Then

E(K )tors '


Z/MZ with 1 ≤ M ≤ 16 or M = 18, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or
Z/3Z⊕ Z/3MZ with M = 1 or 2, or
Z/4Z⊕ Z/4Z.

Moreover, each torsion subgroup occurs infinitely many times.



Example: a point of order 13 (due to Markus Reichert)

Example

Let K = Q(
√

17). The elliptic curve E/K defined by

y2 = x3 + (−411864 + 99560
√

17)x + (211240640− 51226432
√

17)

has a point

P = (−474 + 118
√

17,−9088 + 2176
√

17)

of exact order 13.



Example: a point of order 13 (due to Markus Reichert)
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√
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√

17)



Example: a point of order 13 (due to Markus Reichert)

y2 = x3 + (−411864 + 99560
√

17)x + (211240640− 51226432
√

17)



Example: Another point of order 13

Example
Let E be the elliptic curve defined by

y2 + y = x3 + x2 − 114x + 473.

Then, E has a torsion point of order 13 defined over K/Q, a cubic
Galois extension, where K = Q(α) and

α3 − 48α2 + 425α− 1009 = 0.

The point P of order 13 is (α,7α− 39).



Torsion subgroups of elliptic curves over cubic fields

E1(F )tors . . . Ek (F )tors E1(F ′)tors . . . Ek (F ′)tors

F F ′

Theorem (Jeon, Kim, Schweizer, 2004)
Let F be a cubic number field, and let E be an elliptic curve defined over F .
The groups that appear as torsion subgroups for infinitely many
non-isomorphic elliptic curves E/F are precisely:{

Z/mZ with 1 ≤ m ≤ 20,m 6= 17,19, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 7.



Torsion subgroups of elliptic curves over cubic fields

E1(F )tors . . . Ek (F )tors E1(F ′)tors . . . Ek (F ′)tors

F F ′

Theorem (Jeon, Kim, Schweizer, 2004)
Let F be a cubic number field, and let E be an elliptic curve defined over F .
The groups that appear as torsion subgroups for infinitely many
non-isomorphic elliptic curves E/F are precisely:{

Z/mZ with 1 ≤ m ≤ 20,m 6= 17,19, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 7.



Daeyeol
Jeon

Chang Heon
Kim

Andreas
Schweizer

Theorem (Jeon, Kim, Schweizer, 2004)
Let F be a cubic number field, and let E be an elliptic curve defined
over F . The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:{

Z/mZ with 1 ≤ m ≤ 20,m 6= 17,19, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 7.

Warning! These are not all the possible groups!

Najman has shown
that for E : 162B1/Q and F = Q(ζ9)+ we have E(F )tors ∼= Z/21Z.



Daeyeol
Jeon

Chang Heon
Kim

Andreas
Schweizer

Theorem (Jeon, Kim, Schweizer, 2004)
Let F be a cubic number field, and let E be an elliptic curve defined
over F . The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:{

Z/mZ with 1 ≤ m ≤ 20,m 6= 17,19, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 7.

Warning! These are not all the possible groups! Najman has shown
that for E : 162B1/Q and F = Q(ζ9)+ we have E(F )tors ∼= Z/21Z.



Anastasia
Etropolski

Jackson
Morrow

David
Zureick-Brown

Marteen
Derickx

Theorem (Etropolski–Morrow–Z-B., and Derickx, 2016)
Let F be a cubic number field, and let E be an elliptic curve defined
over F . The groups that appear as torsion subgroups of E(F ) are
precisely:{

Z/mZ with 1 ≤ m ≤ 21,m 6= 17,19, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 7.



Quartic, Quintic, Sextic, and beyond

Daeyeol Jeon Chang Heon Kim Euisung Park

Theorem (Jeon, Kim, Park, 2006)
Let F be a quartic number field, and let E be an elliptic curve defined
over F . The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:

Z/mZ with 1 ≤ m ≤ 24,m 6= 19,23, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 9, or
Z/3Z⊕ Z/3mZ with 1 ≤ m ≤ 3, or

Z/4Z⊕ Z/4Z, Z/4Z⊕ Z/8Z, Z/5Z⊕ Z/5Z, or Z/6Z⊕ Z/6Z.



Quartic, Quintic, Sextic, and beyond

Marteen Derickx Drew Sutherland

Theorem (Derickx, Sutherland, 2016)
Let F be a quintic number field, and let E be an elliptic curve defined
over F . The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:{

Z/mZ with 1 ≤ m ≤ 25,m 6= 23, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 8.



Quartic, Quintic, Sextic, and beyond

Theorem (Derickx, Sutherland, 2016)
Let F be a sextic number field, and let E be an elliptic curve defined
over F . The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:

Z/mZ with 1 ≤ m ≤ 30,m 6= 23,25,29 or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 10, or
Z/3Z⊕ Z/3mZ with 1 ≤ m ≤ 4, or

Z/4Z⊕ Z/4Z, Z/4Z⊕ Z/8Z, or Z/6Z⊕ Z/6Z.



A special case: elliptic curves with CM

Let F be a number field, and let E/F be an elliptic curve with CM.

Pete
Clark

Patrick
Corn

Alex
Rice

James
Stankewicz

Theorem (Clark, Corn, Rice, Stankewicz, 2013)
Let F be a number field of degree 1 ≤ d ≤ 13, and let E/F be an
elliptic curve with CM. Then, the complete list of possible torsion
subgroups E(F )tors is given, and an algorithm to compute the list for
d ≥ 1.
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Theorem (Clark, Corn, Rice, Stankewicz, 2013)
Let F be a number field of degree 1 ≤ d ≤ 13, and let E/F be an
elliptic curve with CM. Then, the complete list of possible torsion
subgroups E(F )tors is given, and an algorithm to compute the list for
d ≥ 1.



A special case: elliptic curves with CM

Let F be a number field, and let E/F be an elliptic curve with CM.

Theorem (Clark, Corn, Rice, Stankewicz, 2013)
Let F be a number field of degree 1 ≤ d ≤ 13, and let E/F be an
elliptic curve with CM. Then, the complete list of possible torsion
subgroups E(F )tors is given.

For example, over Q: {O},Z/2Z,Z/3Z,Z/4Z,Z/6Z,Z/2Z⊕ Z/2Z.

Over quadratics, not over Q:
Z/7Z,Z/10Z,Z/2Z⊕ Z/4Z,Z/2Z⊕ Z/6Z,Z/3Z⊕ Z/3Z.

Over quartics, besides quadratics and Q:
Z/5Z,Z/8Z,Z/12Z,Z/13Z,Z/21Z,Z/2Z⊕ Z/8Z,
Z/2Z⊕ Z/10Z,Z/4Z⊕ Z/4Z,Z/3Z⊕ Z/6Z.



A special case: elliptic curves with CM

Abbey Bourdon Pete Clark

Theorem (Bourdon, Clark, 2017)
Let K be quad. imaginary, let K ⊆ F be a number field, let E/F be an
elliptic curve with CM by an order O ⊆ K , and let N ≥ 2. There is an
explicit constant T (O,N) such that if there is a point of order N in
E(F )tors, then T (O,N) divides [F : K (j(E))]. Moreover, this bound is
best possible.

See also Davide Lombardo’s work on torsion bounds for abelian
varieties with CM.



A simpler case: base extension of E/Q

Let E/Q be an elliptic curve, and let F/Q be a finite extension. Then,
E(Q)tors ⊆ E(F )tors.

Variations: torsion for a fixed curve E/Q over extensions F/Q

E(F1)tors E(F2)tors . . . E(Fk )tors . . .

E/Q

where F1,F2, . . . ,Fk , . . . is some family of (perhaps all) finite
extensions of Q, contained in some fixed algebraic closure Q.



A simpler case: base extension of E/Q

Theorem (L-R., 2011)

Let S1
Q(d) be the set of primes such that there is an elliptic curve E/Q

with a point of order p defined in an extension F/Q of degree ≤ d.
Then:

S1
Q(d) = {2,3,5,7} for d = 1 and 2;

S1
Q(d) = {2,3,5,7,13} for d = 3 and 4;

S1
Q(d) = {2,3,5,7,11,13} for d = 5, 6, and 7;

S1
Q(d) = {2,3,5,7,11,13,17} for d = 8;

S1
Q(d) = {2,3,5,7,11,13,17,19} for d = 9, 10, and 11;

S1
Q(d) = {2,3,5,7,11,13,17,19,37} for 12 ≤ d ≤ 20.

S1
Q(d) = {2,3,5,7,11,13,17,19,37,43} for d = 21.

Moreover, there is a conjectural formula for S1
Q(d) for all d ≥ 1, which

is valid for all 1 ≤ d ≤ 42, and would follow from a positive answer to
Serre’s uniformity question.



A simpler case: base extension of E/Q

Theorem (L-R., 2011)

Let S1
Q(d) be the set of primes such that there is an elliptic curve E/Q

with a point of order p defined in an extension F/Q of degree ≤ d.
Then:

S1
Q(d) = {2,3,5,7} for d = 1 and 2;

S1
Q(d) = {2,3,5,7,13} for d = 3 and 4;

S1
Q(d) = {2,3,5,7,11,13} for d = 5, 6, and 7;

S1
Q(d) = {2,3,5,7,11,13,17} for d = 8;

S1
Q(d) = {2,3,5,7,11,13,17,19} for d = 9, 10, and 11;

S1
Q(d) = {2,3,5,7,11,13,17,19,37} for 12 ≤ d ≤ 20.

S1
Q(d) = {2,3,5,7,11,13,17,19,37,43} for d = 21.

Moreover, there is a conjectural formula for S1
Q(d) for all d ≥ 1, which

is valid for all 1 ≤ d ≤ 42, and would follow from a positive answer to
Serre’s uniformity question.



A simpler case: base extension of E/Q
Let E/Q be an elliptic curve, let p be a prime, and let T ⊆ E [pn] be a
subgroup with T ∼= Z/psZ⊕ Z/pNZ. We studied the minimal degree
[Q(T ) : Q] of definition of T .

Enrique González-Jiménez

For example:

Theorem (González-Jiménez, L-R., 2017)
Let E/Q be an elliptic curve defined over Q without CM, and let
P ∈ E [2N ] be a point of exact order 2N , with N ≥ 4. Then, the degree
[Q(P) : Q] is divisible by 22N−7. Moreover, this bound is best possible.



Base extension of E/Q to a quadratic field

Filip Najman

Theorem (Najman, 2015)

Let E/Q be an elliptic curve and let F be a quadratic number field.
Then

E(F )tors '


Z/MZ with 1 ≤ M ≤ 10 or M = 12,15,16, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or
Z/3Z⊕ Z/3MZ with 1 ≤ M ≤ 2 and F = Q(

√
−3), or

Z/4Z⊕ Z/4Z with F = Q(
√
−1).



Base extension of E/Q to a cubic field

Let E/Q be an elliptic curve, and let K/Q be a finite extension. Then,
E(Q)tors ⊆ E(K )tors.

Theorem (Najman, 2015)

Let E/Q be an elliptic curve and let F be a cubic number field. Then

E(F )tors '

{
Z/MZ with 1 ≤ M ≤ 10 or 12,13,14,18,21, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4 or M = 7.

Moreover, the elliptic curve 162B1 over Q(ζ9)+ is the unique rational
elliptic curve over a cubic field with torsion subgroup isomorphic to
Z/21Z. For all other groups T listed above there are infinitely many
Q-isomorphism classes of elliptic curves E/Q for which E(F ) ' T for
some cubic field F .



Base extension of E/Q to a quartic field

Michael Chou (and L-R.)

Theorem (Chou, 2015)

Let E/Q be an elliptic curve and let F be a Galois quartic field F with
Gal(F/Q) ∼= Z/4Z or Z/2Z⊕ Z/2Z. Then

E(F )tors '


Z/MZ with 1 ≤ M ≤ 16 but M 6= 11,14 or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or M = 8,
Z/3Z⊕ Z/3MZ with 1 ≤ M ≤ 2 or

Z/4Z⊕ Z/4Z, Z/4Z⊕ Z/8Z, Z/5Z⊕ Z/5Z, or Z/6Z⊕ Z/6Z.



Base extension of E/Q to a quartic field

Enrique González-Jiménez

Theorem (González-Jiménez, L-R., 2016)
We give a complete classification of torsion subgroups that appear
infinitely often for elliptic curves over Q base-extended to a quartic
number field.

Warning! The torsion group Z/15Z appears infinitely often for curves
defined over quartic fields F , but if E/Q and E(F )tors ∼= Z/15Z, then
j(E) ∈ {−52/2,−52 · 2413/23,−5 · 293/25,5 · 2113/215}.



Base extension of E/Q to a quartic field

Enrique González-Jiménez Filip Najman

Theorem (González-Jiménez, Najman, 2016)

Let E/Q be an elliptic curve and let F be a quartic field. Then

E(F )tors '


Z/MZ with 1 ≤ M ≤ 10 or 12,13,15,16,20,24
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or 8,
Z/3Z⊕ Z/3MZ with 1 ≤ M ≤ 2 or

Z/4Z⊕ Z/4Z, Z/4Z⊕ Z/8Z, Z/5Z⊕ Z/5Z, or Z/6Z⊕ Z/6Z.



Base extension of E/Q to a quartic field

Enrique González-Jiménez Filip Najman

Further, they determine all the possible prime orders of a point
P ∈ E(F )tors, where [F : Q] = d for all d ≤ 3342296.



Base extension of E/Q to an infinite extension
Let E/Q be an elliptic curve, and let F/Q be an infinite algebraic
extension. Then, E(Q)tors ⊆ E(F )tors. But, E(F )tors may no longer be
finite!

Let F1 ⊆ F2 ⊆ . . . ⊆ Fk ⊆ . . . be a tower of finite extensions of Q.

Variations: torsion for a fixed curve E/Q over extensions Fk/Q
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Base extension of E/Q to an infinite extension

Michael Laska Martin Lorenz Yasutsugu Fujita

Theorem (Laska, Lorenz, 1985; Fujita, 2005)
Let E/Q be an elliptic curve and let Q(2∞) := Q

(
{
√

m : m ∈ Z}
)
. The

torsion subgroup E(Q(2∞))tors is finite, and

E(Q(2∞))tors '



Z/MZ with M ∈ 1,3,5,7,9,15, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6 or M = 8, or
Z/3Z⊕ Z/3Z or
Z/4Z⊕ Z/4MZ with 1 ≤ M ≤ 4, or
Z/2MZ⊕ Z/2MZ with 3 ≤ M ≤ 4.



Harris Daniels (and L-R.) (L-R. and) Filip Najman Drew Sutherland

Theorem (Daniels, L-R., Najman, Sutherland, 2017)
Let E/Q be an elliptic curve, and let Q(3∞) be the compositum of all
cubic fields. The torsion subgroup E(Q(3∞))tors is finite, and

E(Q(3∞))tors '


Z/2Z⊕ Z/2MZ with M = 1,2,4,5,7,8,13, or
Z/4Z⊕ Z/4MZ with M = 1,2,4,7, or
Z/6Z⊕ Z/6MZ with M = 1,2,3,5,7, or
Z/2MZ⊕ Z/2MZ with M = 4,6,7,9.

All but 4 of the torsion subgroups occur infinitely often.



Base extension of E/Q to an infinite extension

New results of classification of torsion subgroups of E/Q after
base-extension to infinite extensions:

Daniels: classification of torsion over Q(D∞4 ).
Daniels, Derickx, Hatley: classification of torsion over Q(A∞4 ).

Harris Daniels Marteen Derickx Jeffrey Hatley



Base extension of E/Q to an infinite abelian extension

Ken Ribet, (L-R.) and Michael Chou

Theorem (Ribet, 1981)

Let A/Q be an abelian variety and let Qab be the maximal abelian
extension of Q. Then, A(Qab)tors is finite.



Base extension of E/Q to an infinite abelian extension

Yurii Zarhin

Theorem (Zarhin, 1983)

Let K be a number field, let A/K be an abelian variety, and let K ab be
the maximal abelian extension of K . Then, A(K ab)tors is finite if and
only if A has no abelian subvariety with CM over K .



Base extension of E/Q to an infinite abelian extension

Theorem (González-Jiménez, L-R., 2015)
Let E/Q be an elliptic curve. If there is an integer n ≥ 2 such that
Q(E [n]) = Q(ζn), then n = 2,3,4, or 5.

More generally, if Q(E [n])/Q is
abelian, then n = 2,3,4,5,6, or 8. Moreover, Gn = Gal(Q(E [n])/Q) is
isomorphic to one of the following groups:

n 2 3 4 5 6 8

Gn

{0} Z/2Z Z/2Z Z/4Z (Z/2Z)2 (Z/2Z)4

Z/2Z (Z/2Z)2 (Z/2Z)2 Z/2Z× Z/4Z (Z/2Z)3 (Z/2Z)5

Z/3Z (Z/2Z)3 (Z/4Z)2 (Z/2Z)6

(Z/2Z)4

Furthermore, each possible Galois group occurs for infinitely many
distinct j-invariants.
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Base extension of E/Q to an infinite abelian extension

Ken Ribet, (L-R.) and Michael Chou

Theorem (Chou, 2018)

Let E/Q be an elliptic curve and let Qab be the maximal abelian
extension of Q. Then, #E(Qab)tors ≤ 163. This bound is sharp, as the
curve 26569a1 has a point of order 163 over Qab. Moreover, a full
classification of the possible torsion subgroups is given.



The Uniform Boundedness Conjecture
Variations: fix a degree d , and vary elliptic curves E over F of deg. d .

E1(F )tors . . . Ek (F )tors E1(F ′)tors . . . Ek (F ′)tors

F F ′

Loïc Merel

Theorem (Merel, 1996)
Let F be a number field of degree [F : Q] = d > 1. Then,
there is a number B(d) > 0 such that |E(F )tors| ≤ B(d)
for all elliptic curves E/F.
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B(d) ≤ C · d · log log d for all d ≥ 3.
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Folklore Conjecture
There is a constant C > 0 such that

B(d) ≤ C · d · log log d for all d ≥ 3.

Theorem (Hindry, Silverman, 1999)
Let F be a field of degree d ≥ 2, and let E/F be an elliptic curve such
that j(E) is an algebraic integer. Then, we have

|E(F )tors| ≤ 1977408 · d · log d .
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Folklore Conjecture
There is a constant C > 0 such that

B(d) ≤ C · d · log log d for all d ≥ 3.

Theorem (Clark, Pollack, 2015)
There is an absolute, effective constant C such that for all number
fields F of degree d ≥ 3 and all elliptic curves E/F with CM, we have

|E(F )tors| ≤ C · d · log log d .



Folklore Conjecture
There is a constant C > 0 such that

B(d) ≤ C · d · log log d for all d ≥ 3.

Assuming the conjecture, if F/Q is of degree d ≥ 3, and E(F )tors
contains a point of order pn, for some prime p, and n ≥ 1, then

pn ≤ |E(F )tors| ≤ B(d) ≤ C · d log log d .

Theorem
Let F be a number field of degree [F : Q] = d > 1. If P ∈ E(F ) is a
point of exact prime power order pn, then

1 (Merel,1996) p ≤ d3d2
.

2 (Parent, 1999) pn ≤ 129(5d − 1)(3d)6.



Folklore Conjecture
There is a constant C > 0 such that

B(d) ≤ C · d · log log d for all d ≥ 3.

Assuming the conjecture, if F/Q is of degree d ≥ 3, and E(F )tors
contains a point of order pn, for some prime p, and n ≥ 1, then

pn ≤ |E(F )tors| ≤ B(d) ≤ C · d log log d .

Theorem
Let F be a number field of degree [F : Q] = d > 1. If P ∈ E(F ) is a
point of exact prime power order pn, then

1 (Merel,1996) p ≤ d3d2
.

2 (Parent, 1999) pn ≤ 129(5d − 1)(3d)6.



Folklore Conjecture
There is a constant C > 0 such that

B(d) ≤ C · d · log log d for all d ≥ 3.

Assuming the conjecture, if F/Q is of degree d ≥ 3, and E(F )tors
contains a point of order pn, for some prime p, and n ≥ 1, then

pn ≤ |E(F )tors| ≤ B(d) ≤ C · d log log d .

Theorem
Let F be a number field of degree [F : Q] = d > 1. If P ∈ E(F ) is a
point of exact prime power order pn, then

1 (Merel,1996) p ≤ d3d2
.

2 (Parent, 1999) pn ≤ 129(5d − 1)(3d)6.



Folklore Conjecture
There is a constant C > 0 such that

B(d) ≤ C · d · log log d for all d ≥ 3.

Assuming the conjecture, if F/Q is of degree d ≥ 3, and E(F )tors
contains a point of order pn, for some prime p, and n ≥ 1, then

pn ≤ |E(F )tors| ≤ B(d) ≤ C · d log log d .

Theorem
Let F be a number field of degree [F : Q] = d > 1. If P ∈ E(F ) is a
point of exact prime power order pn, then

1 (Merel,1996) p ≤ d3d2
.

2 (Parent, 1999) pn ≤ 129(5d − 1)(3d)6.



Definition
Let p be a prime, and let F/L be an extension of number fields. We
define emax(p,F/L) as the largest ramification index e(P|℘) for a prime
P of OF over a prime ℘ of OL lying above the rational prime p.

Theorem (L-R., 2013)
Let F be a number field with degree [F : Q] = d ≥ 1, and suppose
there is an elliptic curve E/F with CM by a full order, with a point of
order pn. Then,

ϕ(pn) ≤ 24 · emax(p,F/Q) ≤ 24d .

Note! The ramification index emax(p,F/Q) = 1 for all but finitely many
primes p, for a fixed field F .
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Theorem (L-R., 2014)
Let F be a number field with degree [F : Q] = d ≥ 1, and let p be a
prime such that there is an elliptic curve E/F with a point of order pn.
Suppose that F has a prime P over p such that E/F has potential
good supersingular reduction at P. Then,

ϕ(pn) ≤ 24e(P|p) ≤ 24emax(p,F/Q) ≤ 24d .
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Conjecture
There is C > 0 s.t. if there is a point of order pn in E(F ) for some E/F
with [F : Q] ≤ d , then

ϕ(pn) ≤ C · emax(p,F/Q) ≤ C · d .



Variations: torsion subgroups under field extensions

E(L1)tors E(L2)tors . . . E(Lk )tors . . .

E/F

where L1,L2, . . . ,Lk , . . . is some family of (perhaps all) finite extensions
of a fixed field F .



Theorem (L-R., 2013)
If p > 2 and there is an elliptic curve E/Q with a point of order pn

defined in an extension L/Q of degree d ≥ 2, then

ϕ(pn) ≤ 222 · emax(p,L/Q) ≤ 222 · d .

Theorem (L-R., 2013)
Let F be a number field, and let p > 2 be a prime such that there is an
elliptic curve E/F with a point of order pn defined in an extension L of
F , with [L : Q] = d ≥ 2. Then, there is a constant CF such that

ϕ(pn) ≤ CF · emax(p,L/Q) ≤ CF · d .

Moreover, there is a computable finite set ΣF such that if pn is as
above and j(E) 6∈ ΣF , then

ϕ(pn) ≤ 588 · emax(p,L/Q) ≤ 588 · d .
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David Zywina

Theorem (Hindry–Ratazzi conjecture; Zywina, 2017)
Let A be a nonzero abelian variety over a number field F for which the
Mumford-Tate conjecture holds. Let A/C ∼

∏n
i=1 Ami

i such that each Ai
is simple and pairwise non-isogenous, and define AI =

∏
i∈I Ami

i for any
subset I ⊆ {1, . . . ,n}. Let GAI be the Mumford-Tate group of AI . Define
γA = maxI⊆{1,...,n} 2 dim AI/dimGAI . Then, γA is the smallest real value
such that for any finite extension L/K and real number ε > 0, we have

#A(L)tors ≤ C · [L : K ]γA+ε,

where C is a constant that depends only on A and ε.
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“If by chance I have omitted anything
more or less proper or necessary,

I beg forgiveness,
since there is no one who is without fault

and circumspect in all matters.”

Leonardo Pisano (Fibonacci), Liber Abaci.
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