Recent progress in the
classification of torsion
subgroups of elliptic ¢

1000 1500 2000

Sed |

Alvaro Lozano-Robledo
-tes| University of Connecticut




Recent progress in the classification of torsion

subgroups of elliptic curves

Alvaro Lozano-Robledo

Department of Mathematics
University of Connecticut

May 22nd
Diophantine Geometry
Géométrie diophantienne

C CENTRE INTERNATIONAL DE RENCONTRES MATHEMATIQUES
SCIENTIFIC EVENTS



Louis Mordell
1888 — 1972

Theorem (Mordell, 1922)

Let E/Q be an elliptic curve. Then, the group of Q-rational points on E,
denoted by E(Q), is a finitely generated abelian group. In particular,

E(Q) = E(Q)ors ® Zere where E(Q)qors is a finite subgroup, and




Louis Mordell André Weil
1888 — 1972 1906 — 1998

Theorem (Mordell-Weil, 1928)

Let F be a number field, and let A/ F be an abelian variety. Then, the
group of F-rational points on A, denoted by A(F), is a finitely
generated abelian group. In particular, A(F) = A(F)iors © ZF4/F where
A(F)tors is a finite subgroup, and Ra/r > 0.
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Louis Mordell André Weil André Néron
1888 — 1972 1906 — 1998 1922 — 1985

Theorem (Mordell-Weil-Néron, 1952)

Let F be a field that is finitely generated over its prime field, and let
A/F be an abelian variety. Then, the group of F-rational points on A,
denoted by A(F), is a finitely generated abelian group. In particular,
A(F) = A(F)1ors ® ZF2F where A(F)1ors Is a finite subgroup, and
Ra/F > 0.




Theorem (Mordell-Weil-Néron, 1952)

Let F be a field that is finitely generated over its prime field (e.g., a
global field), and let A/ F be an abelian variety. Then, the group of
F-rational points on A, denoted by A(F), is a finitely generated abelian
group. In particular, A(F) = A(F)rs ® ZF4/F where A(F)ors is a finite
subgroup, and Ry /r > 0.

... leads to ...

Natural Question

What finitely generated abelian groups arise from abelian varieties
over global fields?

There are a number of ways to study this question, depending on what
we allow to vary.



Natural Question

What finitely generated abelian groups arise from abelian varieties
over global fields?

Variations: Mordell-Weil groups of elliptic curves for a fixed field F

Fix a field F, and vary over 1-dimensional abelian varieties over F.

%

where £, E5, . .. . is some family of (perhaps all) elliptic curves
over a fixed field F



Natural Question

What finitely generated abelian groups arise from abelian varieties
over global fields?

Variations: Mordell-Weil groups for a fixed curve E/F and vary L/F

Fix an elliptic curve E/F, and vary over finite extensions of F.

E(Ly) E(Lz) E(Lz)

E/F

where Ly, Ly, ..., L, ... is some family of (perhaps all) finite extensions
of the base field F, contained in some fixed algebraic closure F.



What finitely generated abelian groups arise from abelian varieties
over global fields?

Variations: ranks in a family of elliptic curves over a fixed F

Rep Reyr 7
where E;, E», . . ., . is some family of (perhaps all) elliptic curves

over a fixed field F.



Natural Question

What finitely generated abelian groups arise from abelian varieties
over global fields?

Variations: ranks for a fixed curve E/F under field extensions L/F

RE/L1 RE/Lg .. RE/Lk

E/F

where Ly, Lo, ..., L, ... is some family of (perhaps all) finite extensions
of a fixed field F, contained in some fixed algebraic closure F.



Natural Question

What finitely generated abelian groups arise from abelian varieties
over global fields?

Variations: torsion subgroups in a family of curves over a fixed F

E1 (F)tors EZ(F)tors Ek(F)tors

F

where Eq, Es, ..., Eg, ... is some family of (perhaps all) elliptic curves
over a fixed field F.



Natural Question
What finitely generated abelian groups arise from abelian varieties
over global fields?

Variations: torsion for a fixed curve E/F over extensions L/F

E(L1 )tors E(L2)tors cee E(Lk)tors

E/F

where Ly, Lo, ..., Lk, ... is some family of (perhaps all) finite extensions
of a fixed field F, contained in some fixed algebraic closure F.



Torsion subgroups of elliptic curves over Q

E1 (Q)tors EZ(Q)tors e Ek(@)tors

N



Torsion subgroups of elliptic curves over Q

E1 (Q)tors E2(@)tors e Ek(@)tors

N

Barry Mazur

Theorem (Levi-Ogg Conjecture; Mazur, 1977)

Let E/Q be an elliptic curve. Then

E ~
(Qors {Z/ZZ ®7Z/2MZ  with1 < M < 4.

Z/MZ with1 <M <10orM =12, or

Moreover, each possible group appears infinitely many times.
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The elliptic curve 30030bt1 has a point of order 12.



All elliptic curves with given torsion

Define E(a,b) : y2 + (1 — a)xy — by = x® — bx®.
b

E/Q a G < E(Qiors
E(O,b) a=0 =t L/AL
E(a, a) a=t b=t Z/5%
E(a,b) a=t b=t+ 7./6Z
E(a,b) a=1—t b=1t— 12 Z./7%
E(a,b) a= &1 b= (2t —1)(t— 1) Z/8L
E(a,b) a=1(t—1) b=t —1)(—t+1) 7./9Z
E(a,b) a=1t(t—1)2t— 1)/ —3t+1) b=t —1)2t—1)/(® —3t+1)° Z/10Z
E(ab) a= %ﬁf;*f“) b— r(2r71)(212?{2;r1+)2(3r27ar+1) /122
E(0,6) a=0 b=t —1/16 Z./27 X T./AZ
E(a,b) a=(10—20)/( —9) b= —2(t— 1)3(t—5)/(2 — 9)2 Z./27. X Z/6Z
E(a, b) = @u)ERiar) p— CHNEELAT) %/27 X T./8L

2(41+1)(82 —1)t

(82 —1)2




Torsion subgroups of elliptic curves over Fq(T)
Fix a prime p, let g = p”, and K =TF4(T).

Eq (]Fq( T))tors E> (]Fq( T))tors e Ex (Fq( T))tors



Torsion subgroups of elliptic curves over Fq(T)
Fix a prime p, let g = p”, and K =TF4(T).

Eq (]Fq( T))tors E> (Fq( T))tors <o Ex (Fq( T))tors




Building on work of Cox and Parry (1980), and Levin (1968):

Theorem (McDonald, 2017)

Let K =TF4(T) for q a power of p. Let E/K be non-isotrivial.

Ifpt E(K)ors, then E(K)ors IS one of

0, Z/2Z, Z/3Z, ..., Z/10Z, Z/12Z,
(Z/27)?, Z/AZ x 7./2Z, 7./67 x Z/27Z, 7/8Z x Z./2Z,
(Z/37)?, 7./6Z x Z./3Z, (Z/4Z)?, (Z/5Z)3.

Ifp| #E(K)wors, then p < 11, and E(K ) is one of

7] pZ
7/2pZ
Z/3pZ

Z/ApZ,7/5pZ,

7/12Z,7./14Z,7,/18Z

7.)10Z x Z./57Z.
7127 x 7./27.
7./10Z x 7.,/27.




Characteristic E,p:y?+(1—axy—by=x*—bx*, fc K G

p=11 g= L2LElL0 b=altlrs VARV

p=2 a:gfﬂ)i b:afﬁgﬁ 7147

p=7 a= (M)f((f;z))z((fat))(ﬂe) b= a”ﬂ?ﬁiéf)s

b=s s lhy pmatg
pos  a-lmintn sl

p=2 a:% b:agﬁﬁ 7187

p=5 a= MR g z/102 x 2/22
p=3, (sek a=lHNEACLD g L Z/12Z x 2,/2Z
p=2 Gek a="THNELE b=a G 7102 x2/57,

Table: families of elliptic curves such that G C E; »(K)ors-



Theorem (McDonald, 2018)

Let C be a curve of genus 1 overFq, forq = p", and let K = Fq(C).
Let E/K be non-isotrivial. If p 1 #E(K)ors, then E(K)ors is one of

Z/NZ with N =1,...,12,14,15,
7/2NZ x 7./2Z. withN =1,...,6,
Z/3NZ x Z/3Z with N = 1,2,3,

ZJANZ x ZJAZ with N =1,2,
(Z/NZ)? with N = 5, 6.

Ifp | #E(K)wrs, then p <13, and E(K )ors IS one of

7/pZ

7./2pZ,7./2pT x 7./27

Z/3pZ,Z]ApZ

ifp=2,3,5,7,11,13,
ifp=3,5,7,
ifp=2,35

7/5pZ,7./6pZ,7]7pZ,7./8pZ ifp=2,3,

7./2NZ
Z/6NZ x 7.3
ZJ10Z x Z/5Z

for N =9,10,11,15, ifp =2,
forN =1,2 3, ifp=2,
ifp=2,

Z/127 x 7./27.,7,/127 x ZJAZ  ifp = 3,

(and possibly Z./11pZ,

forp=5,7,13).




Torsion subgroups of elliptic curves over quad. field K

E1(K tors EZ(K)tors Ek(K tors

~\



Torsion subgroups of elliptic curves over quad. field K

tors tors Ek(K tors

N\

Theorem (Najman, 2011)

Filip Najman

Let E/Q(i) be an elliptic curve. Then

Z/MZ with1 <M <10orM =12, or
E(Q(N))tors > Z/2Z ® Z./2MZ with1 < M < 4, or
Z/AZ © 7./AZ.

Moreover, each torsion subgroup occurs infinitely many times.




Torsion subgroups of elliptic curves over quad. fields K

E1 (K)tors tors tors . Ek(K,)tors

/N




Torsion subgroups of elliptic curves over quad. fields K

E1 (K)tors tors tors (K,)tors

VAN

Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let K/Q be a quadratic field and let E /K be an elliptic curve. Then

Z/MZ with1 <M <16 or M =18, or
7]2Z. ®Z/2MZ with1 < M < 6, or
Z/3Z®Z/3MZ withM =1 or2, or

Z/AZ @ 7./AL.

E(K)tors =

Moreover, each torsion subgroup occurs infinitely many times.




Torsion subgroups of elliptic curves over quad. fields K

=

Monsur Kenku Fumiyuki Momose Sheldon Kamienny

Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let K/Q be a quadratic field and let E/K be an elliptic curve. Then

Z/MZ with1 <M <16 or M =18, or
7/27.® 7.J2MZ  with1 < M < 6, or
Z/3Z®Z/3MZ withM =1 or2, or
Z/AZ & 7./47Z.

E(K)tors =

Moreover, each torsion subgroup occurs infinitely many times.




Example: a point of order 13 (due to Markus Reichert)

Example

Let K = Q(+/17). The elliptic curve E/K defined by

y? = x® + (—411864 + 99560v/17)x + (211240640 — 512264321/17)
has a point

P = (—474 + 118v17,-9088 + 2176\/17)

of exact order 13.




Example: a point of order 13 (due to Markus Reichert)

y? = x3 + (—411864 + 99560+/17)x + (211240640 — 51226432./17)



Example: a point of order 13 (due to Markus Reichert)

y? = x3 + (—411864 + 99560/17)x + (211240640 — 51226432./17)



Example: Another point of order 13

Example
Let E be the elliptic curve defined by

Y2+ y=x3+x%—114x + 473.

Then, E has a torsion point of order 13 defined over K/Q, a cubic
Galois extension, where K = Q(«) and

a® — 4802 + 4250 — 1009 = 0.

The point P of order 13 is (o, 7ac — 39).




Torsion subgroups of elliptic curves over cubic fields

E; (F)tors tors tors (F )tors

VAN




Torsion subgroups of elliptic curves over cubic fields

E1(F)tOI’S tOI’S tOI’S (F,)IOI’S

VAN

Theorem (Jeon, Kim, Schweizer, 2004)

Let F be a cubic number field, and let E be an elliptic curve defined over F.
The groups that appear as torsion subgroups for infinitely many
non-isomorphic elliptic curves E/F are precisely:

7/ mZ with1 <m<20,m=+#17,19, or
z/2Zae7Z/2mZ  with1 <m<7.
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Daeyeol Chang Heon Andreas
Jeon Kim Schweizer

Theorem (Jeon, Kim, Schweizer, 2004)

Let F be a cubic number field, and let E be an elliptic curve defined
over F. The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:

7/ mZ with1 < m<20,m#17,19, or
2)2Z®7/2mZ with1 <m<7.

Warning! These are not all the possible groups!



—_—

Daeyeol Chang Heon Andreas
Jeon Kim Schweizer

Theorem (Jeon, Kim, Schweizer, 2004)

Let F be a cubic number field, and let E be an elliptic curve defined
over F. The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:

7/ mZ with1 < m<20,m#17,19, or
2)2Z®7/2mZ with1 <m<7.

Warning! These are not all the possible groups! Najman has shown
that for E : 162B1/Q and F = Q(¢g)™ we have E(F)iors =2 Z/217.



Anastasia Jackson David Marteen
Etropolski Morrow Zureick-Brown Derickx

Theorem (Etropolski-Morrow—Z-B., and Derickx, 2016)

Let F be a cubic number field, and let E be an elliptic curve defined

over F. The groups that appear as torsion subgroups of E(F) are
precisely:

Z/mZ with1 <m<21,m+#17,19, or
ZJ2Z & Z/2mZ with1 < m<7.




Quartic, Quintic, Sextic, and beyond

Daeyeol Jeon Chang Heon Kim Euisung Park
Theorem (Jeon, Kim, Park, 2006)

Let F be a quartic number field, and let E be an elliptic curve defined
over F. The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:

Z/mZ with1 < m<24 m=+#19,23, or
ZJ2Z & Z/2mZ with1 <m<9, or
Z)3ZDZ/3mZ with1 <m<3, or

7.)AZ & 747, 7./AT. & 7./87, 7./57. & 7./5Z., or Z./6Z & Z./6Z.




Quartic, Quintic, Sextic, and beyond

Marteen Derickx Drew Sutherland
Theorem (Derickx, Sutherland, 2016)

Let F be a quintic number field, and let E be an elliptic curve defined
over F. The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:

7/ mZ with1 < m <25 ,m+# 23, or
Z)2Z & Z/2mZ with1 < m < 8.




Quartic, Quintic, Sextic, and beyond

Theorem (Derickx, Sutherland, 2016)

Let F be a sextic number field, and let E be an elliptic curve defined
over F. The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:

Z/mZ with1 < m < 30, m # 23,25,29 or
Z/2Z & Z/2mZ with1 < m <10, or
ZJ3ZDZ/3mZ with1 <m<4, or

747 & 7./4Z, 7.JAZ & 7./8Z, or Z./6Z. & Z./6L.




A special case: elliptic curves with CM

Let F be a number field, and let E/F be an elliptic curve with CM.



A special case: elliptic curves with CM

Let F be a number field, and let E/F be an elliptic curve with CM.

Patrick
Corn

James
Stankewicz

Theorem (Clark, Corn, Rice, Stankewicz, 2013)

Let F be a number field of degree 1 < d < 13, and let E/F be an
elliptic curve with CM. Then, the complete list of possible torsion
subgroups E(F)rs is given, and an algorithm to compute the list for
d>1.




A special case: elliptic curves with CM

Let F be a number field, and let E/F be an elliptic curve with CM.

Theorem (Clark, Corn, Rice, Stankewicz, 2013)

Let F be a number field of degree 1 < d < 13, and let E/F be an
elliptic curve with CM. Then, the complete list of possible torsion
subgroups E(F)iors is given.

For example, over Q: {O},Z/27,7/3Z,Z/47,7/6Z,7]27 & 7/ 2.

Over quadratics, not over Q:
7.)77,7./10Z,7./27. & 7./]47., 7./27. & 7./8Z, 7./ 37. & 7./ 3.

Over quartics, besides quadratics and Q:
7/57.,7./8Z,7./127,7/13Z,7./21Z,7.] 27 & 7./ 8Z,
7/27 & ZJ10Z,Z/47 ® 7./AZ,7)37 & 7 /6Z.



A special case: elliptic curves with CM

—
-

Abbey Bourdon Pet Clark

Theorem (Bourdon, Clark, 2017)

Let K be quad. imaginary, let K C F be a number field, let E/F be an
elliptic curve with CM by an order © C K, and let N > 2. There is an
explicit constant T(O, N) such that if there is a point of order N in
E(F)tors, then T(O, N) divides [F : K(j(E))]. Moreover, this bound is
best possible.

See also Davide Lombardo’s work on torsion bounds for abelian
varieties with CM.



A simpler case: base extension of E/Q

Let E/Q be an elliptic curve, and let F/Q be a finite extension. Then,
E(Q)tors - E(F)tors-

Variations: torsion for a fixed curve E/Q over extensions F/Q

E(F1 )tors E(FZ)tors cee E(Fk)tors

E/Q

where Fq, F», ..., Fk, ... is some family of (perhaps all) finite
extensions of Q, contained in some fixed algebraic closure Q.



A simpler case: base extension of E/Q

Theorem (L-R., 2011)

Let S@(d) be the set of primes such that there is an elliptic curve E/Q
with a point of order p defined in an extension F/Q of degree < d.
Then:

08(1@d

(d)=1{2,8,5,7} ford =1 and 2;

o S)(d)=1{2,8,5,7,13} ford =3 and 4;

o Sl(d)={2,8,5,7,11,13} ford = 5,6, and 7;

° S!(d) ={2.3,5.7.11,13,17} ford = 8;
(d)
(d)
(d)

o S}(d) =1{2,3,5,7,11,13,17,19} ford = 9, 10, and 11;
o S}(d) ={2,3,5,7,11,13,17,19,37} for 12 < d < 20.
o S}(d) =1{2,3,5,7,11,13,17,19,37,43} ford = 21.




A simpler case: base extension of E/Q

Theorem (L-R., 2011)

Let S@(d) be the set of primes such that there is an elliptic curve E/Q
with a point of order p defined in an extension F/Q of degree < d.
Then:

o S)(d)=1{2,8,5,7} ford =1 and 2;

o S)(d)=1{2,8,5,7,13} ford =3 and 4;

o S)(d)=1{2,8,5,7,11,13} ford = 5,6, and 7;

o Si(d)=1{2,3,5,7,11,13,17} ford = 8;

o S}(d) = {2,3,5,7,11,13,17,19} ford = 9, 10, and 11;
o Si(d) = {2,3,5,7,11,13,17,19,37} for 12 < d < 20.
o Si(d)={2,3,5,7,11,13,17,19,37,43} ford = 21.

Moreover, there is a conjectural formula for S@( d) for all d > 1, which
is valid for all 1 < d < 42, and would follow from a positive answer to
Serre’s uniformity question.




A simpler case: base extension of E/Q

Let E/Q be an elliptic curve, let p be a prime, and let T C E[p"] be a
subgroup with T = Z/pSZ @ Z./pN7Z. We studied the minimal degree
[Q(T) : Q] of definition of T.

.-
Enrique Gonzéalez-Jiménez

For example:

Theorem (Gonzalez-Jiménez, L-R., 2017)

Let E/Q be an elliptic curve defined over Q without CM, and let
P ¢ E[2N] be a point of exact order 2V, with N > 4. Then, the degree
[Q(P) : Q] is divisible by 22N=7. Moreover, this bound is best possible.




Base extension of E/Q to a quadratic field

Filip Najman

Theorem (Najman, 2015)

Let E/Q be an elliptic curve and let F be a quadratic number field.
Then

Z/MZ with1 <M <10orM =12,15,16, or
7)27. ®7Z/2MZ with1 < M <6, or

7./3Z. ® Z/3MZ with1 < M <2 and F = Q(~/-3), or
VALY REYNLYA with F = Q(v/—1).

E(F)tors =




Base extension of E/Q to a cubic field

Let E/Q be an elliptic curve, and let K/Q be a finite extension. Then,
E(Q)tors g E(K)tOI’S-

Theorem (Najman, 2015)

Let E/Q be an elliptic curve and let F be a cubic number field. Then

Z/MZ with1 < M < 10 or 12,13, 14, 18,21, or

E ( F )tors = i
7)22.&7/2MZ  with1 <M <4orM=7.

Moreover, the elliptic curve 162B1 over Q((g)™ is the unique rational

elliptic curve over a cubic field with torsion subgroup isomorphic to

Z)21Z. For all other groups T listed above there are infinitely many

Q-isomorphism classes of elliptic curves E /Q for which E(F) ~ T for
some cubic field F.




Base extension of E/Q to a quartic field

. (d
_ A
Michael Chou (and L-R.)

Theorem (Chou, 2015)

Let E/Q be an elliptic curve and let F be a Galois quartic field F with
Gal(F/Q)=Z/AZ orZ/2Z & Z/2Z. Then

7./ MZ with1 < M < 16 but M # 11,14 or
E(F)ors ~ < Z/2Z & 7Z/2MZ with1 < M <6, or M = 8,
Z)3L®Z/3MZ with1 <M <2or

747 @ 7./AZ, 7./AZ & 7.)87, 7./57. & 7./5Z, or /67 & 7.,/67.



Base extension of E/Q to a quartic field

]
Enrique Gonzélez-Jiménez

Theorem (Gonzélez-Jiménez, L-R., 2016)

We give a complete classification of torsion subgroups that appear
infinitely often for elliptic curves over Q base-extended to a quartic
number field.

Warning! The torsion group Z/15Z appears infinitely often for curves
defined over quartic fields F, but if E/Q and E(F)rs = Z/15Z, then
J(E) € {~5%/2,-5%.2413/23 _5.293/25 5.2113 215},



Base extension of E/Q to a quartic field

Enrigue Gonzélez-Jiménez Filip Najman

Theorem (Gonzalez-Jiménez, Najman, 2016)

Let E/Q be an elliptic curve and let F be a quartic field. Then

Z/MZ with1 < M < 10 or12,13,15, 16,20, 24
E(F)ors ¥ Z/2Z ®Z/2MZ with1 < M <6, or8,
Z)3Z®Z/3MZ with1 <M <2or

747 & 747, 7./AZ. & 7./8Z, 7./57. & 7./5Z, or Z./6Z & Z./6Z.




Base extension of E/Q to a quartic field

Enrique Gonzéalez-Jiménez Filip Najman

Further, they determine all the possible prime orders of a point
P € E(F)tors, Where [F : Q] = d for all d < 3342296.



Base extension of E/Q to an infinite extension

Let E/Q be an elliptic curve, and let F/Q be an infinite algebraic

extension. Then, E(Q)iors € E(F)iors- But, E(F)tors may no longer be
finite!



Base extension of E/Q to an infinite extension

Let E/Q be an elliptic curve, and let F/Q be an infinite algebraic
extension. Then, E(Q)iors € E(F)iors- But, E(F)tors may no longer be
finite! Let F{ C F, C ... C F4x C ... be a tower of finite extensions of Q.

Variations: torsion for a fixed curve E/Q over extensions F;/Q

E(Fk)tors

/

F2 tors

e

(F 1 )tors

\

E/Q



Base extension of E/Q to an infinite extension

Michael Laska Martin Lorenz Yasutsugu Fujita
Theorem (Laska, Lorenz, 1985; Fuijita, 2005)

Let E/Q be an elliptic curve and let Q(2*°) := Q({v/m: m € Z}). The
torsion subgroup E(Q(2°))wrs IS finite, and

( 7./ MZ withM € 1,3,5,7,9,15, or
Z)2Z®Z/2MZ  with1 <M <6 orM=8, or
E(Q(2%°))tors >~ § Z./3Z ® Z/3Z or

7Z)AZ ©7/4MZ with1 <M <4, or
\Z/2MZ © Z./]2MZ  with3 < M < 4.




7y

T F

Harris Danlels L-R.) (L-R. and) Fiiip Najman Drew Sutherland
Theorem (Daniels, L-R., Najman, Sutherland, 2017)

Let E/Q be an elliptic curve, and let Q(3*°) be the compositum of all
cubic fields. The torsion subgroup E(Q(3°))ors is finite, and

7)27. & 7/2MZ  withM =1,2,4,5,7.8,13, or
ZJAZ®LIAMZ  withM =1,2,4,7, or
7/6Z®Z/6MZ  withM =1,2,3,5,7, or
7)2MZ & 7.J2MZ  with M = 4,6,7,9.

E(@(Soo))tors =

All but 4 of the torsion subgroups occur infinitely often.




Base extension of E/Q to an infinite extension

New results of classification of torsion subgroups of E/Q after
base-extension to infinite extensions:

@ Daniels: classification of torsion over Q(Dy°).
o Daniels, Derickx, Hatley: classification of torsion over Q(A3°).

Jeffrey Hatley



Base extension of E/Q to an infinite abelian extension

o

Ken Ribet, (L-R.) and Michael Chou

Theorem (Ribet, 1981)

Let A/Q be an abelian variety and let Q2 be the maximal abelian
extension of Q. Then, A(Q%) s is finite.




Base extension of E/Q to an infinite abelian extension

Yurii Zarhin

Theorem (Zarhin, 1983)

Let K be a number field, let A/K be an abelian variety, and let K% be
the maximal abelian extension of K. Then, A(K ab)tors is finite if and
only if A has no abelian subvariety with CM over K.




Base extension of E/Q to an infinite abelian extension

Theorem (Gonzélez-Jiménez, L-R., 2015)

Let E/Q be an elliptic curve. If there is an integer n > 2 such that
Q(E[n]) = Q(¢n), thenn=2,3,4, or5.




Base extension of E/Q to an infinite abelian extension

Theorem (Gonzélez-Jiménez, L-R., 2015)

Let E/Q be an elliptic curve. If there is an integer n > 2 such that
Q(E[n]) = Q(¢n), thenn = 2,3,4, or 5. More generally, if Q(E[n])/Q is
abelian, thenn =2,3,4,5,6, or 8.




Base extension of E/Q to an infinite abelian extension

Theorem (Gonzélez-Jiménez, L-R., 2015)

Let E/Q be an elliptic curve. If there is an integer n > 2 such that
Q(E[n]) = Q(¢n), thenn=2,3,4, or5. More generally, if Q(E[n])/Q is
abelian, thenn = 2,3,4,5,6, or 8. Moreover, G, = Gal(Q(E[n])/Q) is

isomorphic to one of the following groups:

n 2 3 4 5 6 8
{0y | z/2z | z/2z ALY/ (z/27.)2 | (z/22)*
G || 2/22 | (/22 | (2/22) | 2/2Z x Z/4Z | (Z/22)° | (Z/22)°
"\ z/3Z (z/2z2)3 (Z/AZ)? (2/27.)®
(z/2z)*

Furthermore, each possible Galois group occurs for infinitely many

distinct j-invariants.




Base extension of E/Q to an infinite abelian extension

il

Ken Ribet, (L-R.) and Michael Chou

Theorem (Chou, 2018)

Let E/Q be an elliptic curve and let Q2 be the maximal abelian
extension of Q. Then, #E(Q®)rs < 163. This bound is sharp, as the
curve 26569a1 has a point of order 163 over Q2. Moreover, a full
classification of the possible torsion subgroups is given.




The Uniform Boundedness Conjecture

Variations: fix a degree d, and vary elliptic curves E over F of deg. d.

E1(F)tors tors F)tors s Ek(F/)tors

N




The Uniform Boundedness Conjecture

Variations: fix a degree d, and vary elliptic curves E over F of deg. d.

E1(F)tors tors F)tors s Ek(F/)tors

N

Theorem (Merel, 1996)

Let F be a number field of degree [F : Q] = d > 1. Then,

there is a number B(d) > 0 such that |E(F)rs| < B(d)
for all elliptic curves E/F.

Loic Merel



The Uniform Boundedness Conjecture Theorem

Theorem (Merel, 1996)

Let F be a number field of degree [F : Q] = d > 1. There is a number
B(d) > 0 such that |E(F)irs| < B(d) for all elliptic curves E/F.




The Uniform Boundedness Conjecture Theorem

Theorem (Merel, 1996)

Let F be a number field of degree [F : Q] = d > 1. There is a number
B(d) > 0 such that |E(F)irs| < B(d) for all elliptic curves E/F.

For instance, B(1) = 16, and B(2) = 24.



The Uniform Boundedness Conjecture Theorem

Theorem (Merel, 1996)

Let F be a number field of degree [F : Q] = d > 1. There is a number
B(d) > 0 such that |E(F)irs| < B(d) for all elliptic curves E/F.

For instance, B(1) = 16, and B(2) = 24.

Folklore Conjecture (As seen in Clark, Cook, Stankewicz)

There is a constant C > 0 such that

B(d) < C-d-loglogd forall d> 3.




Folklore Conjecture

There is a constant C > 0 such that

B(d) < C-d-loglogd forall d> 3.




Folklore Conjecture

There is a constant C > 0 such that

B(d) < C-d-loglogd forall d> 3.

N

Theorem (Hindry, Silverman, 1999)

Let F be a field of degree d > 2, and let E/F be an elliptic curve such
that j(E) is an algebraic integer. Then, we have

|E(F)tors| < 1977408 - d - log d.




Folklore Conjecture

There is a constant C > 0 such that

B(d) < C-d-loglogd forall d> 3.

A\

Theorem (Clark, Pollack, 2015)

There is an absolute, effective constant C such that for all number
fields F of degree d > 3 and all elliptic curves E/F with CM, we have

|E(F)tors| < C-d-loglogd.




Folklore Conjecture

There is a constant C > 0 such that

B(d) < C-d-loglogd forall d> 3.




Folklore Conjecture
There is a constant C > 0 such that

B(d) < C-d-loglogd forall d> 3.

Assuming the conjecture, if F/Q is of degree d > 3, and E(F)iors
contains a point of order p”, for some prime p, and n > 1, then

p" < |E(F)ors| < B(d) < C-dloglogd.



Folklore Conjecture
There is a constant C > 0 such that

B(d) < C-d-loglogd forall d> 3.

Assuming the conjecture, if F/Q is of degree d > 3, and E(F)iors
contains a point of order p”, for some prime p, and n > 1, then

p" < |E(F)ors| < B(d) < C-dloglogd.

Let F be a number field of degree [F : Q] =d > 1. IfP € E(F) isa
point of exact prime power order p", then

Q@ (Merel, 1996) p < d3%.




Folklore Conjecture
There is a constant C > 0 such that

B(d) < C-d-loglogd forall d> 3.

Assuming the conjecture, if F/Q is of degree d > 3, and E(F)iors
contains a point of order p”, for some prime p, and n > 1, then

p" < |E(F)ors| < B(d) < C-dloglogd.

Let F be a number field of degree [F : Q] =d > 1. IfP € E(F) isa
point of exact prime power order p", then

@ (Merel, 1996) p < a3,

@ (Parent, 1999) p" < 129(59 — 1)(3d)8.




Definition
Let p be a prime, and let F/L be an extension of number fields. We
define emax(p, F/L) as the largest ramification index e(3|¢) for a prime

P of Of over a prime p of O, lying above the rational prime p.




Definition

Let p be a prime, and let F/L be an extension of number fields. We
define emax(p, F/L) as the largest ramification index e(*§3| ) for a prime
B of OF over a prime g of O, lying above the rational prime p.

Theorem (L-R., 2013)

Let F be a number field with degree [F : Q] = d > 1, and suppose
there is an elliptic curve E/F with CM by a full order, with a point of
order p". Then,

So(pn) <24 - emax(p, F/Q) < 24d.




Definition

Let p be a prime, and let F/L be an extension of number fields. We
define emax(p, F/L) as the largest ramification index e(*§3| ) for a prime
B of OF over a prime g of O, lying above the rational prime p.

Theorem (L-R., 2013)

Let F be a number field with degree [F : Q] = d > 1, and suppose
there is an elliptic curve E/F with CM by a full order, with a point of
order p". Then,

So(pn) <24 - emax(p, F/Q) < 24d.

Note! The ramification index emax(p, F/Q) = 1 for all but finitely many
primes p, for a fixed field F.




We define emax(p, F/L) as the largest ramification index e(33|p) for a
prime B of O over a prime p of O, lying above the rational prime p.

Theorem (L-R., 2013)

Let F be a number field with degree [F : Q] = d > 1, and suppose
there is an elliptic curve E/F with CM by a full order, with a point of
order p". Then,

o(P") < 24 - emax(p, F/Q) < 24d.

A\




We define emax(p, F/L) as the largest ramification index e(*33|p) for a
prime B of Of over a prime p of O, lying above the rational prime p.

Theorem (L-R., 2013)

Let F be a number field with degree [F : Q] = d > 1, and suppose
there is an elliptic curve E/F with CM by a full order, with a point of
order p". Then,

90(:0”) <24 - emax(p, F/Q) < 24d.

Theorem (L-R., 2014)

Let F be a number field with degree [F : Q] = d > 1, and let p be a
prime such that there is an elliptic curve E/F with a point of order p".
Suppose that F has a prime i3 over p such that E/F has potential
good supersingular reduction at 3. Then,

p(p") < 24e(P|p) < 24emax(p, F/Q) < 24d.




There is C > 0 s.t. if there is a point of order p” in E(F) for some E/F
with [F : Q] < d, then

@(p") < C - emax(p, F/Q) < C - d.




Variations: torsion subgroups under field extensions

E(L1 )tors E(Lz)tors cee E(Lk)tors

E/F

where Ly, Lo, ..., Lk, ... is some family of (perhaps all) finite extensions
of a fixed field F.



Theorem (L-R., 2013)

If p > 2 and there is an elliptic curve E/Q with a point of order p"
defined in an extension L/Q of degree d > 2, then




Theorem (L-R., 2013)

If p > 2 and there is an elliptic curve E/Q with a point of order p"
defined in an extension L/Q of degree d > 2, then

Theorem (L-R., 2013)

Let F be a number field, and let p > 2 be a prime such that there is an
elliptic curve E/ F with a point of order p" defined in an extension L of
F, with[L: Q] = d > 2. Then, there is a constant Cr such that

p(p") < Cr - emax(p, L/Q) < CF - d.




Theorem (L-R., 2013)

If p > 2 and there is an elliptic curve E/Q with a point of order p"
defined in an extension L/Q of degree d > 2, then

Theorem (L-R., 2013)

Let F be a number field, and let p > 2 be a prime such that there is an
elliptic curve E/ F with a point of order p" defined in an extension L of
F, with[L: Q] = d > 2. Then, there is a constant Cr such that

p(p") < Cr - emax(p, L/Q) < CF - d.

Moreover, there is a computable finite set X g such that if p" is as
above and j(E) ¢ X, then

o(p") < 588 - emax(p, L/Q) < 588 - d.




David Zywina

Theorem (Hindry—Ratazzi conjecture; Zywina, 2017)

Let A be a nonzero abelian variety over a number field F for which the
Mumford-Tate conjecture holds. Let A/C ~ [/, AT such that each A,
is simple and pairwise non-isogenous, and define A; =[], A,’."" for any
subset | C {1,...,n}. Let Ga, be the Mumford-Tate group of A;. Define
YA = Maxcqy,..m 2dim A;/dimGp,. Then, ya is the smallest real value
such that for any finite extension L/K and real number ¢ > 0, we have

#A(L)tors <C- [L : K]7A+€7

where C is a constant that depends only on A and ¢.
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