
Recent progress in the classification of torsion subgroups of elliptic curves

Recent progress in the classification of torsion subgroups of elliptic curves

Álvaro Lozano-Robledo

Department of Mathematics University of Connecticut

September 29th
Front Range Number Theory Day
Colorado State University

An elliptic curve E over a field F is a projective smooth curve of genus one, with at least one point defined over F.

An elliptic curve E over a field F is a projective smooth curve of genus one, with at least one point defined over F.

Every elliptic curve has a (Weierstrass) model of the form

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$
, for some $a_i \in F$.

• We are interested in determining all *F*-rational points on *E*:

$$E(F) = \{(x_0, y_0) \in E : x_0, y_0 \in F\} \cup \{\mathcal{O} = [0:1:0]\}.$$

An elliptic curve E over a field F is a projective smooth curve of genus one, with at least one point defined over F.

• Every elliptic curve has a (Weierstrass) model of the form

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$
, for some $a_i \in F$.

• We are interested in determining all *F*-rational points on *E*:

$$E(F) = \{(x_0,y_0) \in E : x_0,y_0 \in F\} \cup \{\mathcal{O} = [0:1:0]\}.$$

Example

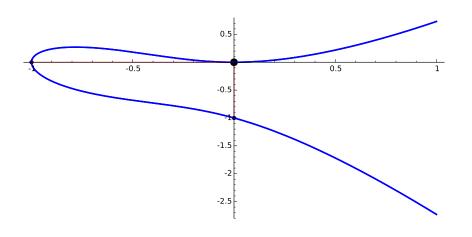
Let E/\mathbb{Q} be the curve $y^2=x^3+13x-34$, with Cremona label "40a4".

An elliptic curve E over a field F is a projective smooth curve of genus one, with at least one point defined over F.

• Every elliptic curve has a (Weierstrass) model of the form

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$
, for some $a_i \in F$.

• We are interested in determining all F-rational points on E:


$$E(F) = \{(x_0, y_0) \in E : x_0, y_0 \in F\} \cup \{\mathcal{O} = [0 : 1 : 0]\}.$$

Example

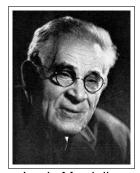
Let E/\mathbb{Q} be the curve $y^2=x^3+13x-34$, with Cremona label "40a4". Then:

$$E(\mathbb{Q}) = \{\mathcal{O}, (7, -20), (2, 0), (7, 20)\} \cong \mathbb{Z}/4\mathbb{Z},$$

where $\mathcal{O} = [0:1:0]$, in projective coordinates.

The elliptic curve E/\mathbb{Q} : $y^2 + xy + y = x^3 + x^2$ has a point P = (0,0) of order 4.

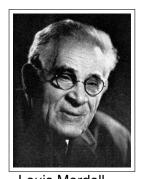
Example


Let $E/\mathbb{Q}(i)$ be the curve $y^2 = x^3 + 13x - 34$.

Example

Let $E/\mathbb{Q}(i)$ be the curve $y^2 = x^3 + 13x - 34$. Then:

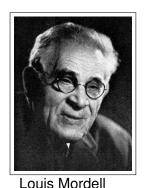
Let
$$E/\mathbb{Q}(I)$$
 be the curve $y^2 = x^3 + 13x - 34$. Then:


 $E(\mathbb{Q}(i)) = \langle (1+2i, -2-6i), (-3, -10i) \rangle \cong \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}.$

Louis Mordell 1888 – 1972

Theorem (Mordell, 1922)

Let E/\mathbb{Q} be an elliptic curve. Then, the group of \mathbb{Q} -rational points on E, denoted by $E(\mathbb{Q})$, is a finitely generated abelian group. In particular, $E(\mathbb{Q}) \cong E(\mathbb{Q})_{tors} \oplus \mathbb{Z}^{R_{E/\mathbb{Q}}}$ where $E(\mathbb{Q})_{tors}$ is a finite subgroup, and $R_{E/\mathbb{Q}} \geq 0$.


Louis Mordell 1888 – 1972

André Weil 1906 – 1998

Theorem (Mordell-Weil, 1928)

Let F be a number field, and let A/F be an abelian variety. Then, the group of F-rational points on A, denoted by A(F), is a finitely generated abelian group. In particular, $A(F) \cong A(F)_{tors} \oplus \mathbb{Z}^{R_{A/F}}$ where $A(F)_{tors}$ is a finite subgroup, and $R_{A/F} \geq 0$.

1888 – 1972

1906 – 1998

André Néron 1922 – 1985

Theorem (Mordell–Weil–Néron, 1952)

Let F be a field that is finitely generated over its prime field, and let A/F be an abelian variety. Then, the group of F-rational points on A, denoted by A(F), is a finitely generated abelian group. In particular, $A(F) \cong A(F)_{tors} \oplus \mathbb{Z}^{R_{A/F}}$ where $A(F)_{tors}$ is a finite subgroup, and $R_{A/F} \geq 0$.

Theorem (Mordell–Weil–Néron, 1952)

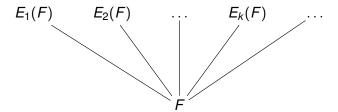
Let F be a field that is finitely generated over its prime field (e.g., a global field), and let A/F be an abelian variety. Then, the group of F-rational points on A, denoted by A(F), is a finitely generated abelian group. In particular, $A(F) \cong A(F)_{tors} \oplus \mathbb{Z}^{R_{A/F}}$ where $A(F)_{tors}$ is a finite subgroup, and $R_{A/F} \geq 0$.

... leads to ...

Theorem (Mordell–Weil–Néron, 1952)

Let F be a field that is finitely generated over its prime field (e.g., a global field), and let A/F be an abelian variety. Then, the group of F-rational points on A, denoted by A(F), is a finitely generated abelian group. In particular, $A(F) \cong A(F)_{tors} \oplus \mathbb{Z}^{R_{A/F}}$ where $A(F)_{tors}$ is a finite subgroup, and $R_{A/F} \geq 0$.

... leads to ...

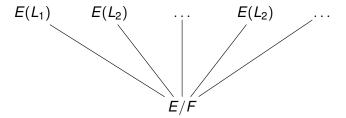

Natural Question

What finitely generated abelian groups arise from abelian varieties over global fields?

There are a number of ways to study this question, depending on what we allow to **vary**.

What finitely generated abelian groups arise from abelian varieties over global fields?

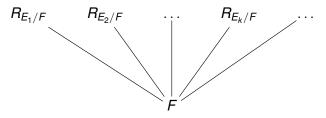
Variations: Mordell–Weil groups of elliptic curves for a fixed field FFix a field F, and vary over 1-dimensional abelian varieties over F.



where $E_1, E_2, \ldots, E_k, \ldots$ is some family of (perhaps all) elliptic curves over a fixed field F.

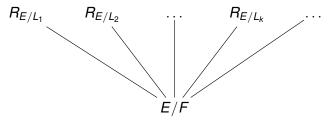
What finitely generated abelian groups arise from abelian varieties over global fields?

Variations: Mordell–Weil groups for a fixed curve E/F and vary L/F


Fix an elliptic curve E/F, and vary over finite extensions of F.

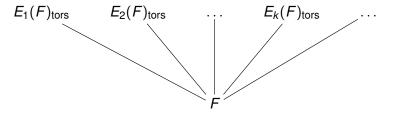
where $L_1, L_2, \dots, L_k, \dots$ is some family of (perhaps all) finite extensions of the base field F, contained in some fixed algebraic closure \overline{F} .

What finitely generated abelian groups arise from abelian varieties over global fields?


Variations: ranks in a family of elliptic curves over a fixed F

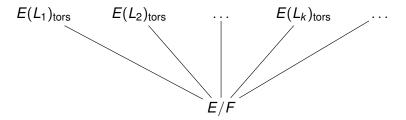
where $E_1, E_2, \ldots, E_k, \ldots$ is some family of (perhaps all) elliptic curves over a fixed field F.

What finitely generated abelian groups arise from abelian varieties over global fields?

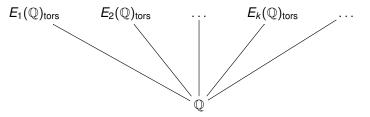

Variations: ranks for a fixed curve E/F under field extensions L/F

where $L_1, L_2, \ldots, L_k, \ldots$ is some family of (perhaps all) finite extensions of a fixed field F, contained in some fixed algebraic closure \overline{F} .

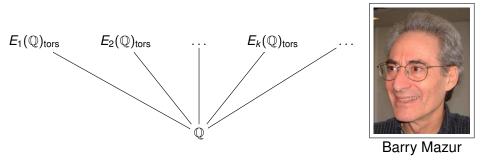
What finitely generated abelian groups arise from abelian varieties over global fields?


Variations: torsion subgroups in a family of curves over a fixed F

where $E_1, E_2, ..., E_k, ...$ is some family of (perhaps all) elliptic curves over a fixed field F.


What finitely generated abelian groups arise from abelian varieties over global fields?

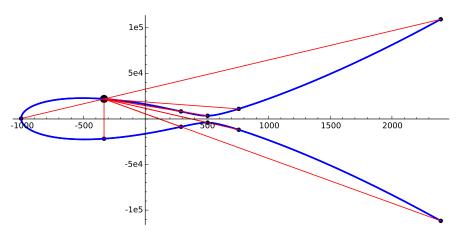
Variations: torsion for a fixed curve E/F over extensions L/F



where $L_1, L_2, \dots, L_k, \dots$ is some family of (perhaps all) finite extensions of a fixed field F, contained in some fixed algebraic closure \overline{F} .

Torsion subgroups of elliptic curves over $\ensuremath{\mathbb{Q}}$

Torsion subgroups of elliptic curves over ${\mathbb Q}$

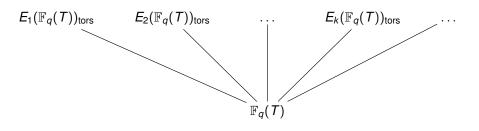


Theorem (Levi-Ogg Conjecture; Mazur, 1977)

Let E/\mathbb{Q} be an elliptic curve. Then

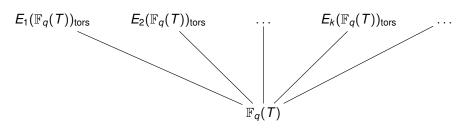
$$E(\mathbb{Q})_{tors} \simeq egin{cases} \mathbb{Z}/M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 10 \textit{ or } \textit{M} = 12, \textit{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\textit{M}\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 4. \end{cases}$$

Moreover, each possible group appears infinitely many times.


The elliptic curve 30030bt1 has a point of order 12.

All elliptic curves with given torsion

Define $E(a, b) : y^2 + (1 - a)xy - by = x^3 - bx^2$.


Torsion subgroups of elliptic curves over $\mathbb{F}_q(T)$

Fix a prime p, let $q = p^n$, and $K = \mathbb{F}_q(T)$.

Torsion subgroups of elliptic curves over $\mathbb{F}_q(T)$

Fix a prime p, let $q = p^n$, and $K = \mathbb{F}_q(T)$.

Building on work of Cox and Parry (1980), and Levin (1968):

Theorem (McDonald, 2017)

Let $K = \mathbb{F}_q(T)$ for q a power of p. Let E/K be non-isotrivial. If $p \nmid E(K)_{tors}$, then $E(K)_{tors}$ is one of

$$0, \ \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/3\mathbb{Z}, \dots, \ \mathbb{Z}/10\mathbb{Z}, \ \mathbb{Z}/12\mathbb{Z},$$

$$(\mathbb{Z}/2\mathbb{Z})^2, \ \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z},$$

$$(\mathbb{Z}/3\mathbb{Z})^2, \ \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}, \ (\mathbb{Z}/4\mathbb{Z})^2, \ (\mathbb{Z}/5\mathbb{Z})^2.$$

If $p \mid \#E(K)_{tors}$, then $p \leq 11$, and $E(K)_{tors}$ is one of

$$\begin{array}{ccc} \mathbb{Z}/p\mathbb{Z} & \text{if } p=2,3,5,7,11, \\ \mathbb{Z}/2p\mathbb{Z} & \text{if } p=2,3,5,7, \\ \mathbb{Z}/3p\mathbb{Z} & \text{if } p=2,3,5, \\ \mathbb{Z}/4p\mathbb{Z},\mathbb{Z}/5p\mathbb{Z}, & \text{if } p=2,3, \\ \mathbb{Z}/12\mathbb{Z},\mathbb{Z}/14\mathbb{Z},\mathbb{Z}/18\mathbb{Z} & \text{if } p=2, \\ \mathbb{Z}/10\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z} & \text{if } p=2, \\ \mathbb{Z}/12\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z} & \text{if } p=3, \\ \mathbb{Z}/10\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z} & \text{if } p=5. \end{array}$$

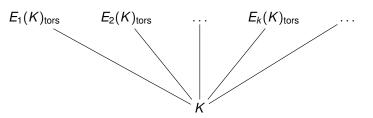
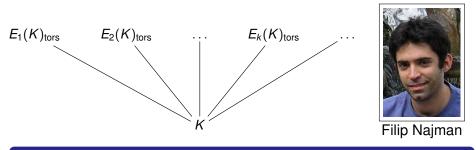

Characteristic
$$E_{a,b}: y^2 + (1-a)xy - by = x^3 - bx^2, f \in K$$
 G
 $p = 11$ $a = \frac{(f+3)(f+5)^2(f+9)^2}{3(f+1)(f+4)^4}$ $b = a\frac{(f+1)^2(f+9)}{2(f+4)^3}$ $\mathbb{Z}/11\mathbb{Z}$
 $p = 2$ $a = \frac{f(f+1)^3}{f^3+f+1}$ $b = a\frac{1}{f^3+f+1}$ $\mathbb{Z}/14\mathbb{Z}$
 $p = 7$ $a = \frac{(f+1)(f+3)^3(f+4)(f+6)}{f(f+2)^2(f+5)}$ $b = a\frac{(f+1)(f+5)^3}{4f(f+2)}$
 $p = 3$ $a = \frac{f^3(f+1)^2}{(f+2)^6}$ $b = a\frac{f(f+4)^2(f+2)^3+f+1)}{(f+2)^5}$ $\mathbb{Z}/15\mathbb{Z}$
 $p = 5$ $a = \frac{(f+1)(f+2)^2(f+4)^3(f^2+2)}{(f+3)^6(f^2+3)}$ $b = a\frac{f(f+1)^2}{f^3+f+1}$ $\mathbb{Z}/18\mathbb{Z}$
 $p = 2$ $a = \frac{f(f+1)^2(f^2+f+1)}{f^3+f+1}$ $b = a\frac{f(f+1)^2}{f^3+f+1}$ $\mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
 $p = 3, \zeta_4 \in K$ $a = \frac{f(f+1)(f+2)^2(f^2+2f+2)}{(f^2+f+1)^6}$ $b = a\frac{f^2(f^4+f^3+1)^2}{(f^2+f+1)^5}$ $\mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
 $p = 2, \zeta_4 \in K$ $a = \frac{f(f+1)(f+2)(f^2+2f+2)}{(f^2+f+1)^5}$ $b = a\frac{f^2(f^4+f^3+1)^2}{(f^2+f+1)^5}$ $\mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$

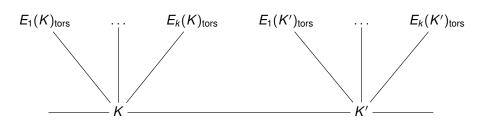
Table: families of elliptic curves such that $G \subset E_{a,b}(K)_{tors}$.


Theorem (McDonald, 2018)

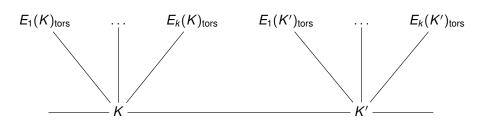
Let C be a curve of genus 1 over \mathbb{F}_q , for $q = p^n$, and let $K = \mathbb{F}_q(C)$. Let E/K be non-isotrivial. If $p \nmid \#E(K)_{tors}$, then $E(K)_{tors}$ is one of

Torsion subgroups of elliptic curves over quad. field *K*

Torsion subgroups of elliptic curves over quad. field K


Theorem (Najman, 2011)

Let $E/\mathbb{Q}(i)$ be an elliptic curve. Then


$$E(\mathbb{Q}(i))_{tors} \simeq egin{cases} \mathbb{Z}/M\mathbb{Z} & \textit{with } 1 \leq M \leq 10 \textit{ or } M = 12, \textit{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } 1 \leq M \leq 4, \textit{ or } \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}. \end{cases}$$

Moreover, each torsion subgroup occurs infinitely many times.

Torsion subgroups of elliptic curves over quad. fields *K*

Torsion subgroups of elliptic curves over quad. fields K

Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let K/\mathbb{Q} be a quadratic field and let E/K be an elliptic curve. Then

$$E(K)_{tors} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 16 \textit{ or } \textit{M} = 18, \textit{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 6, \textit{ or } \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \textit{with } \textit{M} = 1 \textit{ or } 2, \textit{ or } \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}. \end{cases}$$

Moreover, each torsion subgroup occurs infinitely many times.

Torsion subgroups of elliptic curves over quad. fields *K*

Monsur Kenku

Fumiyuki Momose

Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let K/\mathbb{Q} be a quadratic field and let E/K be an elliptic curve. Then

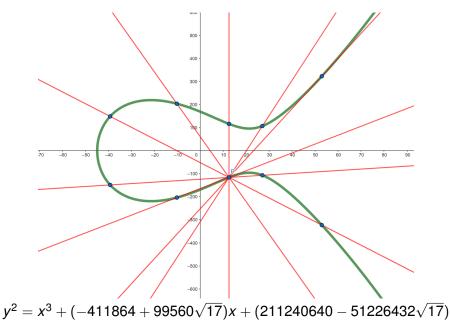
$$E(K)_{tors} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 16 \textit{ or } \textit{M} = 18, \textit{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 6, \textit{ or } \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \textit{with } \textit{M} = 1 \textit{ or } 2, \textit{ or } \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}. \end{cases}$$

Moreover, each torsion subgroup occurs infinitely many times.

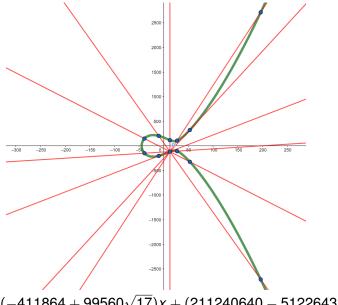
Example: a point of order 13 (due to Markus Reichert)

Example

Let $K = \mathbb{Q}(\sqrt{17})$. The elliptic curve E/K defined by


$$y^2 = x^3 + (-411864 + 99560\sqrt{17})x + (211240640 - 51226432\sqrt{17})$$

has a point


$$P = (-474 + 118\sqrt{17}, -9088 + 2176\sqrt{17})$$

of exact order 13.

Example: a point of order 13 (due to Markus Reichert)

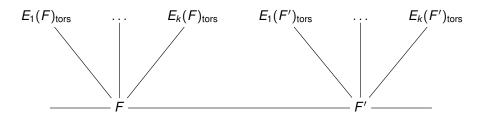
Example: a point of order 13 (due to Markus Reichert)

 $y^2 = x^3 + (-411864 + 99560\sqrt{17})x + (211240640 - 51226432\sqrt{17})$

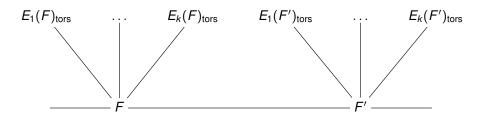
Example: Another point of order 13

Example

Let E be the elliptic curve defined by


$$y^2 + y = x^3 + x^2 - 114x + 473.$$

Then, E has a torsion point of order 13 defined over K/\mathbb{Q} , a cubic Galois extension, where $K = \mathbb{Q}(\alpha)$ and


$$\alpha^3 - 48\alpha^2 + 425\alpha - 1009 = 0.$$

The point *P* of order 13 is $(\alpha, 7\alpha - 39)$.

Torsion subgroups of elliptic curves over cubic fields

Torsion subgroups of elliptic curves over cubic fields

Theorem (Jeon, Kim, Schweizer, 2004)

Let F be a **cubic** number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for **infinitely many** non-isomorphic elliptic curves E/F are precisely:

$$\begin{cases} \mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 20, m \neq 17, 19, \text{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 7. \end{cases}$$

Daeyeol Jeon

Chang Heon Kim

Andreas Schweizer

Theorem (Jeon, Kim, Schweizer, 2004)

Let F be a **cubic** number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for **infinitely many** non-isomorphic elliptic curves E/F are precisely:

$$\begin{cases} \mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 20, m \neq 17, 19, \text{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 7. \end{cases}$$

Warning! These are not all the possible groups!

Daeyeol Jeon

Chang Heon Kim

Andreas Schweizer

Theorem (Jeon, Kim, Schweizer, 2004)

Let F be a **cubic** number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for **infinitely many** non-isomorphic elliptic curves E/F are precisely:

$$\begin{cases} \mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 20, m \neq 17, 19, \text{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 7. \end{cases}$$

Warning! These are not all the possible groups! Najman has shown that for $E: 162B1/\mathbb{Q}$ and $F = \mathbb{Q}(\zeta_9)^+$ we have $E(F)_{tors} \cong \mathbb{Z}/21\mathbb{Z}$.

Anastasia Etropolski

Jackson Morrow

David Zureick-Brown

Marteen Derickx

Theorem (Etropolski-Morrow-Z-B., and Derickx, 2016)

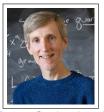
Let F be a cubic number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups of E(F) are precisely:

$$\begin{cases} \mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 21, m \neq 17, 19, \text{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 7. \end{cases}$$

Quartic, Quintic, Sextic, and beyond

Theorem (Jeon, Kim, Park, 2006)

Let F be a **quartic** number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for **infinitely many** non-isomorphic elliptic curves E/F are precisely:


 $\begin{cases} \mathbb{Z}/m\mathbb{Z} & \textit{with } 1 \leq m \leq 24, m \neq 19, 23, \textit{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \textit{with } 1 \leq m \leq 9, \textit{ or } \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3m\mathbb{Z} & \textit{with } 1 \leq m \leq 3, \textit{ or } \end{cases}$

 $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \, \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}, \, \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}, \, \text{or} \, \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.$

Quartic, Quintic, Sextic, and beyond

Drew Sutherland

Theorem (Derickx, Sutherland, 2016)

Let F be a **quintic** number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for **infinitely many** non-isomorphic elliptic curves E/F are precisely:

$$\begin{cases} \mathbb{Z}/m\mathbb{Z} & \text{with } 1 \leq m \leq 25, m \neq 23, \text{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \text{with } 1 \leq m \leq 8. \end{cases}$$

Maarten Derickx (and L-R.)

Theorem (Derickx, Sutherland, 2016)

Let F be a **sextic** number field, and let E be an elliptic curve defined over F. The groups that appear as torsion subgroups for **infinitely many** non-isomorphic elliptic curves E/F are precisely:

$$\begin{cases} \mathbb{Z}/m\mathbb{Z} & \textit{with } 1 \leq m \leq 30, m \neq 23, 25, 29 \textit{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z} & \textit{with } 1 \leq m \leq 10, \textit{ or } \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3m\mathbb{Z} & \textit{with } 1 \leq m \leq 4, \textit{ or } \end{cases}$$

 $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$, or $\mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$.

Let F be a number field, and let E/F be an elliptic curve with CM.

Let F be a number field, and let E/F be an elliptic curve with CM.

Clark

Patrick Corn

Alex Rice

James Stankewicz

Theorem (Clark, Corn, Rice, Stankewicz, 2013)

Let F be a number field of degree $1 \le d \le 13$, and let E/F be an elliptic curve with CM. Then, the complete list of possible torsion subgroups $E(F)_{tors}$ is given, and an algorithm to compute the list for d > 1.

Let F be a number field, and let E/F be an elliptic curve with CM.

Theorem (Clark, Corn, Rice, Stankewicz, 2013)

Let F be a number field of degree $1 \le d \le 13$, and let E/F be an elliptic curve with CM. Then, the complete list of possible torsion subgroups $E(F)_{tors}$ is given.

For example, over \mathbb{Q} : $\{\mathcal{O}\}, \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/6\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}.$

Over quadratics, not over \mathbb{Q} :

 $\mathbb{Z}/7\mathbb{Z}, \mathbb{Z}/10\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}, \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}.$

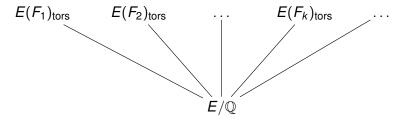
Over quartics, besides quadratics and \mathbb{Q} :

 $\mathbb{Z}/5\mathbb{Z},\mathbb{Z}/8\mathbb{Z},\mathbb{Z}/12\mathbb{Z},\mathbb{Z}/13\mathbb{Z},\mathbb{Z}/21\mathbb{Z},\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/8\mathbb{Z},$

 $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/10\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.$

Abbey Bourdon

Pete Clark


Theorem (Bourdon, Clark, 2017)

Let K be quad. imaginary, let $K \subseteq F$ be a number field, let E/F be an elliptic curve with CM by an order $\mathcal{O} \subseteq K$, and let $N \ge 2$. There is an explicit constant $T(\mathcal{O}, N)$ such that if there is a point of order N in $E(F)_{tors}$, then $T(\mathcal{O}, N)$ divides [F : K(j(E))]. Moreover, this bound is best possible.

See also **Davide Lombardo**'s work on torsion bounds for abelian varieties with CM.

Let E/\mathbb{Q} be an elliptic curve, and let F/\mathbb{Q} be a finite extension. Then, $E(\mathbb{Q})_{tors} \subseteq E(F)_{tors}$.

Variations: torsion for a fixed curve E/\mathbb{Q} over extensions F/\mathbb{Q}

where $F_1, F_2, \dots, F_k, \dots$ is some family of (perhaps all) finite extensions of \mathbb{Q} , contained in some fixed algebraic closure $\overline{\mathbb{Q}}$.

Theorem (L-R., 2011)

Let $S^1_{\mathbb{Q}}(d)$ be the set of primes such that there is an elliptic curve E/\mathbb{Q} with a point of order p defined in an extension F/\mathbb{Q} of degree $\leq d$. Then:

- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7\}$ for d = 1 and 2;
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 13\}$ for d = 3 and 4;
- $S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 11, 13\}$ for d = 5, 6, and 7;
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17\}$ for d = 8;
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17, 19\}$ for d = 9, 10, and 11;
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37\}$ for $12 \le d \le 20$.
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43\}$ for d = 21.

Theorem (L-R., 2011)

Let $S^1_{\mathbb{Q}}(d)$ be the set of primes such that there is an elliptic curve E/\mathbb{Q} with a point of order p defined in an extension F/\mathbb{Q} of degree $\leq d$. Then:

- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7\}$ for d = 1 and 2;
- $S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 13\}$ for d = 3 and 4; • $S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7, 11, 13\}$ for d = 5, 6, and 7;
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17\}$ for d = 8;
- $S_{\mathbb{D}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17, 19\}$ for d = 9, 10, and 11;
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37\}$ for $12 \le d \le 20$.
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43\}$ for d = 21.

Moreover, there is a conjectural formula for $S^1_{\mathbb{Q}}(d)$ for all $d \geq 1$, which is valid for all $1 \leq d \leq 42$, and would follow from a positive answer to Serre's uniformity question.

Let E/\mathbb{Q} be an elliptic curve, let p be a prime, and let $T \subseteq E[p^n]$ be a subgroup with $T \cong \mathbb{Z}/p^s\mathbb{Z} \oplus \mathbb{Z}/p^N\mathbb{Z}$. We studied the minimal degree $[\mathbb{Q}(T):\mathbb{Q}]$ of definition of T.

Enrique González-Jiménez (and L-R.)

For example:

Theorem (González-Jiménez, L-R., 2017)

Let E/\mathbb{Q} be an elliptic curve defined over \mathbb{Q} without CM, and let $P \in E[2^N]$ be a point of exact order 2^N , with $N \ge 4$. Then, the degree $[\mathbb{Q}(P):\mathbb{Q}]$ is divisible by 2^{2N-7} . Moreover, this bound is best possible.

Filip Najman

Theorem (Najman, 2015)

Let E/\mathbb{Q} be an elliptic curve and let F be a quadratic number field. Then

$$E(F)_{tors} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 10 \textit{ or } \textit{M} = 12,15,16, \textit{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 6, \textit{ or } \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 2 \textit{ and } F = \mathbb{Q}(\sqrt{-3}), \textit{ or } \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} & \textit{with } F = \mathbb{Q}(\sqrt{-1}). \end{cases}$$

Let E/\mathbb{Q} be an elliptic curve, and let K/\mathbb{Q} be a finite extension. Then, $E(\mathbb{Q})_{tors} \subseteq E(K)_{tors}$.

Theorem (Najman, 2015)

Let E/\mathbb{Q} be an elliptic curve and let F be a cubic number field. Then

$$E(F)_{tors} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 10 \textit{ or } 12, 13, 14, 18, 21, \textit{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 4 \textit{ or } \textit{M} = 7. \end{cases}$$

Moreover, the elliptic curve 162B1 over $\mathbb{Q}(\zeta_9)^+$ is the unique rational elliptic curve over a cubic field with torsion subgroup isomorphic to $\mathbb{Z}/21\mathbb{Z}$. For all other groups T listed above there are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of elliptic curves E/\mathbb{Q} for which $E(F) \simeq T$ for some cubic field F.

Michael Chou (and L-R.)

Theorem (Chou, 2015)

Let E/\mathbb{Q} be an elliptic curve and let F be a Galois quartic field F with $Gal(F/\mathbb{Q}) \cong \mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Then

$$E(F)_{tors} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq \textit{16 but } \textit{M} \neq \textit{11}, \textit{14 or} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\textit{M}\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq \textit{6, or } \textit{M} = \textit{8}, \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\textit{M}\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq \textit{2 or} \end{cases}$$

 $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}, \text{ or } \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.$

Enrique González-Jiménez

Theorem (González-Jiménez, L-R., 2016)

We give a complete classification of torsion subgroups that appear **infinitely often** for elliptic curves over \mathbb{Q} base-extended to a quartic number field.

Warning! The torsion group $\mathbb{Z}/15\mathbb{Z}$ appears infinitely often for curves defined over quartic fields F, but if E/\mathbb{Q} and $E(F)_{tors} \cong \mathbb{Z}/15\mathbb{Z}$, then $j(E) \in \{-5^2/2, -5^2 \cdot 241^3/2^3, -5 \cdot 29^3/2^5, 5 \cdot 211^3/2^{15}\}.$

Enrique González-Jiménez

Filip Najman

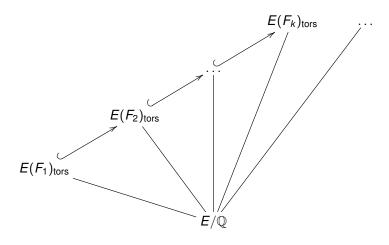
Theorem (González-Jiménez, Najman, 2016)

Let E/\mathbb{Q} be an elliptic curve and let F be a quartic field. Then

$$E(F)_{tors} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 10 \textit{ or } 12, 13, 15, 16, 20, 24 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 6, \textit{ or } 8, \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 2 \textit{ or} \end{cases}$$

 $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z},\, \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z},\, \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}, \, \textit{or} \, \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.$

Enrique González-Jiménez


Filip Najman

Further, they determine all the possible prime orders of a point $P \in E(F)_{tors}$, where $[F : \mathbb{Q}] = d$ for all $d \leq 3342296$.

Let E/\mathbb{Q} be an elliptic curve, and let F/\mathbb{Q} be an **infinite algebraic extension**. Then, $E(\mathbb{Q})_{tors} \subseteq E(F)_{tors}$. But, $E(F)_{tors}$ may no longer be finite!

Let E/\mathbb{Q} be an elliptic curve, and let F/\mathbb{Q} be an **infinite algebraic extension**. Then, $E(\mathbb{Q})_{tors} \subseteq E(F)_{tors}$. But, $E(F)_{tors}$ may no longer be finite! Let $F_1 \subseteq F_2 \subseteq \ldots \subseteq F_k \subseteq \ldots$ be a **tower** of finite extensions of \mathbb{Q} .

Variations: torsion for a fixed curve E/\mathbb{Q} over extensions F_k/\mathbb{Q}

Michael Laska

Martin Lorenz

Theorem (Laska, Lorenz, 1985; Fujita, 2005)

Let E/\mathbb{Q} be an elliptic curve and let $\mathbb{Q}(2^{\infty}) := \mathbb{Q}(\{\sqrt{m} : m \in \mathbb{Z}\})$. The torsion subgroup $E(\mathbb{Q}(2^{\infty}))_{tors}$ is finite, and

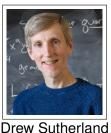
$$E(\mathbb{Q}(2^{\infty}))_{tors} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \textit{with } M \in 1,3,5,7,9,15, \textit{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } 1 \leq M \leq 6 \textit{ or } M = 8, \textit{ or } \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} & \textit{or } \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4M\mathbb{Z} & \textit{with } 1 \leq M \leq 4, \textit{ or } \\ \mathbb{Z}/2M\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } 3 \leq M \leq 4. \end{cases}$$

Özlem Ejder

Theorem (Ejder, 2017)

Let $K = \mathbb{Q}(i)$, or $\mathbb{Q}(\sqrt{-3})$, let E/K be an elliptic curve and let F be the maximal elementary 2-abelian extension of K. Then,

$$E(F)_{tors} \simeq \begin{cases} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } 2 \leq \textit{M} \leq \textit{6 or M} = \textit{8, or} \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4M\mathbb{Z} & \textit{with } 2 \leq \textit{M} \leq \textit{4, or} \\ \mathbb{Z}/M\mathbb{Z} \oplus \mathbb{Z}/M\mathbb{Z} & \textit{with } \textit{M} = \textit{2,3,4,6, or 8,} \end{cases}$$


if $K = \mathbb{Q}(i)$, and if $K = \mathbb{Q}(\sqrt{-3})$, then $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/32\mathbb{Z}$ is also possible.

(L-R. and) Filip Najman

Drew Sutherland

Theorem (Daniels, L-R., Najman, Sutherland, 2017)

Let E/\mathbb{Q} be an elliptic curve, and let $\mathbb{Q}(3^{\infty})$ be the compositum of all cubic fields. The torsion subgroup $E(\mathbb{Q}(3^{\infty}))_{tors}$ is finite, and

$$E(\mathbb{Q}(3^{\infty}))_{tors} \simeq \begin{cases} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } M = 1, 2, 4, 5, 7, 8, 13, \textit{ or } \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4M\mathbb{Z} & \textit{with } M = 1, 2, 4, 7, \textit{ or } \\ \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6M\mathbb{Z} & \textit{with } M = 1, 2, 3, 5, 7, \textit{ or } \\ \mathbb{Z}/2M\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } M = 4, 6, 7, 9. \end{cases}$$

All but 4 of the torsion subgroups occur infinitely often.

New results of classification of torsion subgroups of E/\mathbb{Q} after base-extension to infinite extensions:

- **Daniels**: classification of torsion over $\mathbb{Q}(D_4^{\infty})$.
- Daniels, Derickx, Hatley: classification of torsion over $\mathbb{Q}(A_4^{\infty})$.

Harris Daniels

Marteen Derickx

Jeffrey Hatley

Ken Ribet, (L-R.) and Michael Chou

Theorem (Ribet, 1981)

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q} . Then, $A(\mathbb{Q}^{ab})_{tors}$ is finite.

Yurii Zarhin

Theorem (Zarhin, 1983)

Let K be a number field, let A/K be an abelian variety, and let K^{ab} be the maximal abelian extension of K. Then, $A(K^{ab})_{tors}$ is finite if and only if A has no abelian subvariety with CM over K.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve. If there is an integer $n \ge 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then n = 2, 3, 4, or 5.

Theorem (González-Jiménez, L-R., 2015)

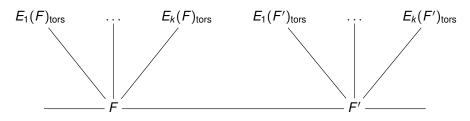
Let E/\mathbb{Q} be an elliptic curve. If there is an integer $n \ge 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then n = 2, 3, 4, or 5. More generally, if $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian, then n = 2, 3, 4, 5, 6, or 8.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve. If there is an integer $n \geq 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then n = 2, 3, 4, or 5. More generally, if $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian, then n = 2, 3, 4, 5, 6, or 8. Moreover, $G_n = \operatorname{Gal}(\mathbb{Q}(E[n])/\mathbb{Q})$ is isomorphic to one of the following groups:

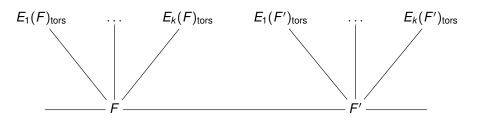
n	2	3	4	5	6	8
Gn	{0}	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/4\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^2$	$(\mathbb{Z}/2\mathbb{Z})^4$
	$\mathbb{Z}/2\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^2$	$(\mathbb{Z}/2\mathbb{Z})^2$	$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/4\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^3$	$(\mathbb{Z}/2\mathbb{Z})^5$
	$\mathbb{Z}/3\mathbb{Z}$		$(\mathbb{Z}/2\mathbb{Z})^3$	$(\mathbb{Z}/4\mathbb{Z})^2$		$(\mathbb{Z}/2\mathbb{Z})^6$
			$(\mathbb{Z}/2\mathbb{Z})^4$			

Furthermore, each possible Galois group occurs for infinitely many distinct j-invariants.


Ken Ribet, (L-R.) and Michael Chou

Theorem (Chou, 2018)

Let E/\mathbb{Q} be an elliptic curve and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q} . Then, $\#E(\mathbb{Q}^{ab})_{tors} \leq 163$. This bound is sharp, as the curve 26569a1 has a point of order 163 over \mathbb{Q}^{ab} . Moreover, a full classification of the possible torsion subgroups is given.


The Uniform Boundedness Conjecture


Variations: fix a **degree** d, and vary elliptic curves E over F of deg. d.

The Uniform Boundedness Conjecture

Variations: fix a **degree** *d*, and vary elliptic curves *E* over *F* of deg. *d*.

Loïc Merel

Theorem (Merel, 1996)

Let F be a number field of degree $[F:\mathbb{Q}]=d>1$. Then, there is a number B(d)>0 such that $|E(F)_{tors}|\leq B(d)$ for all elliptic curves E/F.

The Uniform Boundedness Conjecture Theorem

Theorem (Merel, 1996)

Let F be a number field of degree $[F:\mathbb{Q}]=d>1$. There is a number B(d)>0 such that $|E(F)_{tors}|\leq B(d)$ for all elliptic curves E/F.

The Uniform Boundedness Conjecture Theorem

Theorem (Merel, 1996)

Let F be a number field of degree $[F:\mathbb{Q}]=d>1$. There is a number B(d)>0 such that $|E(F)_{tors}|\leq B(d)$ for all elliptic curves E/F.

For instance, B(1) = 16, and B(2) = 24.

The Uniform Boundedness Conjecture Theorem

Theorem (Merel, 1996)

Let F be a number field of degree $[F:\mathbb{Q}]=d>1$. There is a number B(d)>0 such that $|E(F)_{tors}|\leq B(d)$ for all elliptic curves E/F.

For instance, B(1) = 16, and B(2) = 24.

Folklore Conjecture (As seen in Clark, Cook, Stankewicz)

There is a constant C > 0 such that

$$B(d) \leq C \cdot d \cdot \log \log d$$
 for all $d \geq 3$.

There is a constant C > 0 such that

$$B(d) \leq C \cdot d \cdot \log \log d$$
 for all $d \geq 3$.

There is a constant C > 0 such that

$$B(d) \leq C \cdot d \cdot \log \log d$$
 for all $d \geq 3$.

Theorem (Hindry, Silverman, 1999)

Let F be a field of degree $d \ge 2$, and let E/F be an elliptic curve such that j(E) is an algebraic integer. Then, we have

$$|E(F)_{tors}| \leq 1977408 \cdot d \cdot \log d.$$

There is a constant C > 0 such that

$$B(d) \leq C \cdot d \cdot \log \log d$$
 for all $d \geq 3$.

Theorem (Clark, Pollack, 2015)

There is an absolute, effective constant C such that for all number fields F of degree $d \ge 3$ and all elliptic curves E/F with CM, we have

$$|E(F)_{tors}| \leq C \cdot d \cdot \log \log d$$
.

There is a constant C > 0 such that

$$B(d) \leq C \cdot d \cdot \log \log d$$
 for all $d \geq 3$.

There is a constant C > 0 such that

$$B(d) \leq C \cdot d \cdot \log \log d$$
 for all $d \geq 3$.

Assuming the conjecture, if F/\mathbb{Q} is of degree $d \geq 3$, and $E(F)_{tors}$ contains a point of order p^n , for some prime p, and $n \geq 1$, then

$$p^n \leq |E(F)_{tors}| \leq B(d) \leq C \cdot d \log \log d$$
.

There is a constant C > 0 such that

$$B(d) \leq C \cdot d \cdot \log \log d$$
 for all $d \geq 3$.

Assuming the conjecture, if F/\mathbb{Q} is of degree $d \geq 3$, and $E(F)_{tors}$ contains a point of order p^n , for some prime p, and $n \geq 1$, then

$$p^n \le |E(F)_{tors}| \le B(d) \le C \cdot d \log \log d$$
.

Theorem

Let F be a number field of degree $[F:\mathbb{Q}]=d>1$. If $P\in E(F)$ is a point of exact prime power order p^n , then

1 (Merel, 1996) $p \le d^{3d^2}$.

There is a constant C > 0 such that

$$B(d) \leq C \cdot d \cdot \log \log d$$
 for all $d \geq 3$.

Assuming the conjecture, if F/\mathbb{Q} is of degree $d \geq 3$, and $E(F)_{tors}$ contains a point of order p^n , for some prime p, and $n \geq 1$, then

$$p^n \le |E(F)_{tors}| \le B(d) \le C \cdot d \log \log d$$
.

Theorem

Let F be a number field of degree $[F:\mathbb{Q}]=d>1$. If $P\in E(F)$ is a point of exact prime power order p^n , then

- **1** (Merel, 1996) $p \le d^{3d^2}$.
- ② (Parent, 1999) $p^n \le 129(5^d 1)(3d)^6$.

Let p be a prime, and let F/L be an extension of number fields. We define $e_{\max}(p,F/L)$ as the largest ramification index $e(\mathfrak{P}|\wp)$ for a prime \mathfrak{P} of \mathcal{O}_F over a prime \wp of \mathcal{O}_L lying above the rational prime p.

Let p be a prime, and let F/L be an extension of number fields. We define $e_{\max}(p, F/L)$ as the largest ramification index $e(\mathfrak{P}|\wp)$ for a prime \mathfrak{P} of \mathcal{O}_F over a prime \wp of \mathcal{O}_L lying above the rational prime p.

Theorem (L-R., 2013)

Let F be a number field with degree $[F:\mathbb{Q}]=d\geq 1$, and suppose there is an elliptic curve E/F with CM by a full order, with a point of order p^n . Then,

$$\varphi(p^n) \leq 24 \cdot e_{max}(p, F/\mathbb{Q}) \leq 24d.$$

Let p be a prime, and let F/L be an extension of number fields. We define $e_{\max}(p, F/L)$ as the largest ramification index $e(\mathfrak{P}|\wp)$ for a prime \mathfrak{P} of \mathcal{O}_F over a prime \wp of \mathcal{O}_L lying above the rational prime p.

Theorem (L-R., 2013)

Let F be a number field with degree $[F:\mathbb{Q}]=d\geq 1$, and suppose there is an elliptic curve E/F with CM by a full order, with a point of order p^n . Then,

$$\varphi(p^n) \leq 24 \cdot e_{max}(p, F/\mathbb{Q}) \leq 24d.$$

Note! The ramification index $e_{max}(p, F/\mathbb{Q}) = 1$ for all but finitely many primes p, for a fixed field F.

We define $e_{\max}(p, F/L)$ as the largest ramification index $e(\mathfrak{P}|\wp)$ for a prime \mathfrak{P} of \mathcal{O}_F over a prime \wp of \mathcal{O}_L lying above the rational prime p.

Theorem (L-R., 2013)

Let F be a number field with degree $[F:\mathbb{Q}]=d\geq 1$, and suppose there is an elliptic curve E/F with CM by a full order, with a point of order p^n . Then,

$$\varphi(p^n) \leq 24 \cdot e_{max}(p, F/\mathbb{Q}) \leq 24d.$$

We define $e_{\max}(p, F/L)$ as the largest ramification index $e(\mathfrak{P}|\wp)$ for a prime \mathfrak{P} of \mathcal{O}_F over a prime \wp of \mathcal{O}_L lying above the rational prime p.

Theorem (L-R., 2013)

Let F be a number field with degree $[F:\mathbb{Q}]=d\geq 1$, and suppose there is an elliptic curve E/F with CM by a full order, with a point of order p^n . Then,

$$\varphi(p^n) \leq 24 \cdot e_{max}(p, F/\mathbb{Q}) \leq 24d.$$

Theorem (L-R., 2014)

Let F be a number field with degree $[F:\mathbb{Q}]=d\geq 1$, and let p be a prime such that there is an elliptic curve E/F with a point of order p^n . Suppose that F has a prime $\mathfrak P$ over p such that E/F has potential good supersingular reduction at $\mathfrak P$. Then,

$$\varphi(p^n) \le 24e(\mathfrak{P}|p) \le 24e_{max}(p, F/\mathbb{Q}) \le 24d.$$

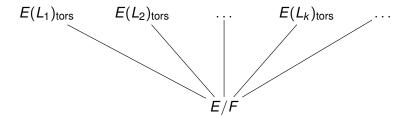
Theorem (L-R., 2014)

Let F be a number field with degree $[F:\mathbb{Q}]=d\geq 1$, and let p be a prime such that there is an elliptic curve E/F with a point of order p^n . Suppose that F has a prime $\mathfrak P$ over p such that E/F has potential good supersingular reduction at $\mathfrak P$. Then,

$$\varphi(p^n) \leq 24e(\mathfrak{P}|p) \leq 24e_{max}(p, F/\mathbb{Q}) \leq 24d.$$

Note: Hanson Smith has shown an improved version of this theorem in the case of **good** supersingular reduction, showing that $\varphi(p^n) \leq d$.

Hanson Smith


Conjecture

There is C > 0 s.t. if there is a point of order p^n in E(F) for some E/F

with
$$[F:\mathbb{Q}] \leq d$$
, then

 $\varphi(p^n) \leq C \cdot e_{\max}(p, F/\mathbb{Q}) \leq C \cdot d.$

Variations: torsion subgroups under field extensions

where $L_1, L_2, \dots, L_k, \dots$ is some family of (perhaps all) finite extensions of a fixed field F.

Theorem (L-R., 2013)

If p > 2 and there is an elliptic curve E/\mathbb{Q} with a point of order p^n defined in an extension L/\mathbb{Q} of degree $d \ge 2$, then

$$\varphi(p^n) \leq 222 \cdot e_{max}(p, L/\mathbb{Q}) \leq 222 \cdot d.$$

Theorem (L-R., 2013)

If p > 2 and there is an elliptic curve E/\mathbb{Q} with a point of order p^n defined in an extension L/\mathbb{Q} of degree $d \ge 2$, then

$$\varphi(p^n) \leq 222 \cdot e_{max}(p, L/\mathbb{Q}) \leq 222 \cdot d.$$

Theorem (L-R., 2013)

Let F be a number field, and let p > 2 be a prime such that there is an elliptic curve E/F with a point of order p^n defined in an extension L of F, with $[L:\mathbb{Q}]=d\geq 2$. Then, there is a constant C_F such that

$$\varphi(p^n) \leq C_F \cdot e_{max}(p, L/\mathbb{Q}) \leq C_F \cdot d.$$

Theorem (L-R., 2013)

If p > 2 and there is an elliptic curve E/\mathbb{Q} with a point of order p^n defined in an extension L/\mathbb{Q} of degree $d \ge 2$, then

$$\varphi(p^n) \leq 222 \cdot e_{max}(p, L/\mathbb{Q}) \leq 222 \cdot d.$$

Theorem (L-R., 2013)

Let F be a number field, and let p>2 be a prime such that there is an elliptic curve E/F with a point of order p^n defined in an extension L of F, with $[L:\mathbb{Q}]=d\geq 2$. Then, there is a constant C_F such that

$$\varphi(p^n) \leq C_F \cdot e_{max}(p, L/\mathbb{Q}) \leq C_F \cdot d.$$

Moreover, there is a computable finite set Σ_F such that if p^n is as above and $j(E) \notin \Sigma_F$, then

$$\varphi(p^n) \leq 588 \cdot e_{max}(p, L/\mathbb{Q}) \leq 588 \cdot d.$$

THANK YOU

alvaro.lozano-robledo@uconn.edu

"If by chance I have omitted anything more or less proper or necessary, I beg forgiveness, since there is no one who is without fault and circumspect in all matters."

Leonardo Pisano (Fibonacci), Liber Abaci.

David Zywina

Theorem (Hindry-Ratazzi conjecture; Zywina, 2017)

Let A be a nonzero abelian variety over a number field F for which the Mumford-Tate conjecture holds. Let $A/\mathbb{C} \sim \prod_{i=1}^n A_i^{m_i}$ such that each A_i is simple and pairwise non-isogenous, and define $A_I = \prod_{i \in I} A_i^{m_i}$ for any subset $I \subseteq \{1, \ldots, n\}$. Let G_{A_I} be the Mumford-Tate group of A_I . Define $\gamma_A = \max_{I \subseteq \{1, \ldots, n\}} 2 \dim A_I / \dim G_{A_I}$. Then, γ_A is the smallest real value such that for any finite extension L/K and real number $\varepsilon > 0$, we have

$$\#A(L)_{tors} \leq C \cdot [L:K]^{\gamma_A+\varepsilon}$$
,

where C is a constant that depends only on A and ε .