Torsion Subgroups of Elliptic Curves over
Function Fields

Robert J.S. McDonald, Ph.D.

University of Connecticut, 2019

ABSTRACT

Let F be a finite field of characteristic p, and C/F be a smooth, projective, abso-
lutely irreducible curve. Let K = F(C) be the function field of C. When the genus
of C is 0, and p # 2,3, Cox and Parry provide a minimal list of prime-to-p torsion
subgroups that can appear for an elliptic curve E/K. In this thesis, we extend this
result by determining the complete list of full torsion subgroups possible for an elliptic

curve F/K for any prime p when the genus of C is 0 or 1.
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Chapter 1

Introduction

1.1 Introduction: Elliptic Curves over Q

Many interesting problems in number theory arise from questions which are quite easy
to state, but very hard to solve. One such famous result is Fermat’s Last Theorem,
first written down in the margins of Pierre de Fermat’s copy of Diophantus’ Arith-
metica around 1637. Here, Fermat claimed that the following polynomial equation

has no solution in positive integers x, y, and z, for any n > 3:
"4yt ="

Although Fermat claimed to have a “truly remarkable proof” of this fact, the margins
were “too small to contain it,” and the world would have to wait around 350 years
before the matter was finally settled by Andrew Wiles and Richard Taylor in 1995.

Wiles’ proof of Fermat’s Last Theorem used a special case of certain conjectures



about another type of diophantine equation, an elliptic curve, and used a variety of
techniques from algebraic geometry and number theory. Over the rational numbers,

@, an elliptic curve is the set of solutions to a diophantine equation of the form

E:y* =2+ Az + B, where A, B € Z, and 44% — 27B* £ 0.

Given such a curve, a natural questions is: can we determine its solutions over Z or
Q7 So far, in the general case, this question leads to many unanswered problems.
The Q-rational points on F will be denoted by E(Q). The most interesting aspect
of elliptic curves is the fact that they can be given a group structure, placing them
squarely at the crossroads between algebra and geometry. We define elliptic curve
addition by “chord and tangent addition:” to add points P and @), we draw a line ¢
through P and @) and find the third point of intersection with E, which we call R.
The point P + @ is then the reflection of R about the z-axis. To add P to itself, we
consider the tangent to E at P as intersecting F twice at P, and reflect the third point
of intersection about the z-axis. Finally, in the case where ¢ is vertical, we imagine a
point of intersection with £ “at infinity,” and call this point O, which we use as the

identity of this operation. See Figure 1.1 for some examples of this addition.

Remark 1.1.1. More precisely, an elliptic curve E/Q is a projective curve

E:Y?Z7 =X+ AXZ2+ BZ3, where A, B € Z, and 44% — 2782 £ 0.

Two points are equal if [X, Y, Z] = [AX, AY, \Z] for some A # 0. In our model above,
we are considering the affine chart corresponding to Z = 1. The “missing” point in

this affine chart is O = [0, 1, 0], the “point at infinity” in this projectivization.



® 4P=0 (point at infinity)

1
1
1
I
1 P+2Q
I
I
1
I
1

3P = (15,-108)

E:y?=x*-27x + 8694

Addition when P # Q. Doubling a point.

[
O (point at infinity)

2P = (-21,0)

1 3P = (15, -108)
E:y?=x- 27x + 8694 4\

]

1

O, the additive identity.

Figure 1.1: Defining addition on E(Q).



P+Q=(1,0)

Figure 1.2: The elliptic curve E : y?2 = 23 — 2 = x(x + 1)(z — 1).

Example 1.1.2. The curve E : y> = 23 — 2 = z(x + 1)(z — 1), in Figure 1.2, has
only four integral points (0,0), (£1,0), and the point O. Here, if P = (0,0) and
Q = (—1,0), then 2P = 2Q) = O, and the point (1,0) = P + @ has order two as well.
It turns out that £ has no other Q-rational points, and hence E(Q) is isomorphic to
7.)27 x 7.J]27.

The Mordell-Weil theorem describes the structure of F(Q) as a group:

Theorem 1.1.3 (Mordell-Weil). Let E be an elliptic curve over Q. The group of

Q-rational points, E(Q), is a finitely generated abelian group.

The fundamental theorem of finitely generated abelian groups and Theorem 1.1.3

tell us

E(@) = E(@)tors X ZTE/Q:

where E(Q)iors, the points of finite order, make up what is called the “torsion sub-
group” of E(Q), and the linearly independent points of infinite order provide rp/q
copies of Z. Here 7/q is called the “rank” of £(Q). While rg/q is rather difficult to
compute, E(Q)ios is very well understood. For example, Mazur proved the following

result:



Theorem 1.1.4 (Mazur [16, p. 242]). Let E/Q be an elliptic curve. Then E(Q)iors

is isomorphic to one of the following groups:

7/NZ, with N = 1,...,10,12,

7)2NZ x 7.J27, with 1 < N < 4.

Moreover, each of these groups appears as E(Q)iors for infinitely many (non-isomorphic)

elliptic curves F.

Remark 1.1.5. We refer the interested reader to [17] for a lecture series on the
proof of Mazur’s Theorem 1.1.4 for elliptic curves over Q. Shown there, is the general
philosophy of turning questions about torsion points on elliptic curves of order N into
moduli problems: finding Q-rational points on the modular curve X;(N). The hard
part of Mazur’s theorem amounts to showing that the modular curve X;(N)(Q) is
empty for any prime N > 7 [17, Lecture 1]. See also [22], for an interesting discussion
of moduli spaces with the example of using points on the modular curves X;(11) and

Xo(11) to rule out points of order 11 appearing in E(Q).

Theorem 1.1.4 is a complete classification of the types of torsion subgroups that
occur for an elliptic curve over Q. What about over extensions of QQ such as Q(¢) or

Q(v—3) (c.f. [10])? What about over function fields?

1.2 Elliptic Curves over Global Fields K

For a general field K, an elliptic curve over K is a non-singular projective curve of

genus one with a point defined over K, and can always be written using the affine



model

E:y? + a1zy + asy = 2° + aox® + aux + ag, with a; € K.

Provided the characteristic of K is not 2 or 3, every elliptic curve over K has a model

of the form

E:y? =2+ Az + B, with A, B € K such that 443 — 27B% #£ 0.

If K is a global field, that is, a number field or a function field over a finite field, then

we have an analogue of Theorem 1.1.4.

Theorem 1.2.1 (Lang—Néron). Let E be an elliptic curve over a global field K. The

group of K-rational points, E(K), is a finitely generated abelian group.

Thus, again, we can say

E(K) 2 E(K ) X ZVE/%.

In Chapters 2 and 3, we will develop a similar strategy to that in Remark 1.1.5,
by using invariants of an elliptic curve over a function field K to construct Xi(n,m)
modulo p. We will see that finding the torsion structure Z/mZ x Z/nZ for an elliptic
curve over K essentially amounts to determining whether or not Xj(n,m)(K) has
any points.

When K is a number field, rg/k is just as mysterious as when K = Q. Similar
classifications to that of Theorem 1.1.4 for F(K)ios have been determined by Kami-
enny, Kenku, and Momose (see [9] and [11]) when K is a quadratic number field, and

Derickx, Etropolski, Morrow, and Zureick-Brown have announced a similar result



when K is a cubic number field (see [4]). What happens when K is a function field?

What types of groups can appear as the torsion subgroup of F(K)?

1.3 Elliptic Curves over Genus 0 Function Fields

Given a smooth curve C over a finite field F of characteristic p, we look at the function
field K = F(C). In this section, we are primarily interested in the case where C has
genus 0, so that K = F(P') = F(T), the field of rational functions in one indeterminate

over F.

1.3.1 Previously known results

In this setting, there are strong results for prime-to-p, and p-primary torsion struc-
tures, but there seems to be no marriage between the results in the literature. Levin,

for example, was able to provide bounds on the size of both components:

Corollary 1.3.1 (Levin [13]). Let F be a finite field of characteristic p, K = F(T),

and E/K a non-isotrivial' elliptic curve. Suppose (¢ | #E(K )os for some prime (.

Then
4 ife=2 3 ifl=2
(<Tande< {2 ¢=35 ifl#p, and (<1lande< {9 f¢=3 if £ = p.
1 ife=1 1 ifl=5711

\

In [2], for all characteristics p # 2,3 (in fact, for characteristic zero as well), Cox

and Parry provide the following result for prime-to-p torsion subgroups possible over

1See Definition 1.3.3 below.



the function field K.

Theorem 1.3.2 (Cox, Parry, [2]). Let F be a finite field of characteristic p > 5.

Let m and n be positive integers with nlm, and set G = Z/mZ x Z/nZ. Then the

following are equivalent:

!/

(1) There is a non-isotrivial elliptic curve E over F(T) such that G = E(K){, .,
the rational points of finite order not divisible by p.

(2) p does not divide n, the field F contains a primitive n-th root of unity, and G
1s one of the following 19 groups:
0, Z/2Z, Z/3Z, ..., ZJ10Z, Z/127Z,
(Z.)27.)2, 7.JAZ x 727, 7.)67 x 7|27, 7./]87 x 7|27,
(Z)37)?, 7J67 x Z)3Z, (ZJAZ)?, (Z/5Z)*.
Non-isotriviality will be a common restriction on the curves that we consider in
this thesis, and amounts, essentially, to the curve F not being a base extension of a

curve over a finite field.

Definition 1.3.3. Let C/F be a smooth curve (of arbitrary genus), K = F(C) and

E/K be an elliptic curve.

1. E'is constant if there is an elliptic curve Ey/F such that F = FEy xp K.
2. FE is isotrivial if there is a finite extension K’ of K such that F/K' is constant.

3. F is non-isotrivial if it is not isotrivial, and non-constant if it is not constant.

All elliptic curves with each of the torsion subgroups in Cox and Parry’s theorem

can be parameterized using the Tate normal form:

E.p:9y*+ (1 —a)ry —by =a° —br* for a,b € K,a # 1,b # 0.



Cox and Parry’s theorem deals only with prime-to-p torsion. From this, some
natural questions arise: which structures from Theorem 1.3.2 can appear alongside a
point of order p? What is the full list of torsion subgroups possible for an elliptic curve
E/K? Which appear infinitely often? The following theorem will be paramount in

answering these questions.

Theorem 1.3.4 (21, p. 17]). Let C/F be a smooth curve (of arbitrary genus) and
suppose that E is a non-isotrivial elliptic curve over K = F(C), where F has charac-
teristic p. Then E(K) has a point of order p if and only if j(E) € K?, and the Hasse

invariant is a (p — 1)st power in K*.

The j-invariant and Hasse invariant of an elliptic curve over K are quite simple

to compute. See [21, p. 14], for example, for a formula for each of them.

1.3.2 Summary of results

In this section, we summarize the results of Chapter 2. Cox and Parry’s theorem
was not considered in the cases p = 2,3, so we begin by developing the analogous
statements for these two primes. It can be shown that Cox and Parry’s theorem holds
even when p is 2 or 3. Then for each p and each group G from Theorem 1.3.2, we
write a curve in Tate normal form for (G. Using Theorem 1.3.4, or in some cases a
division polynomial, we then construct a curve D/F, parameterizing elliptic curves
over F(T') with torsion subgroup H = G x Z/p°Z. 1t can be shown that the torsion
structure H induces a separable map from C = P! to D. Then using the Hurwitz
formula, if the genus of D is greater than 0, we obtain a contradiction. We arrive at

the following result.
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Theorem 1.3.5 (M). Let F be a finite field of characteristic p. Set K = F(T), and
let E/K be a non-isotrivial elliptic curve. If p 4 #E(K )iors, then E(K)ios S as in
Theorem 2.1.4 (even if p = 2,3). If p < 11, and p | #E(K)iors, then E(K )i 1S

isomorphic to one of the following groups:

Z/pZ

7,207 ifp=2,351,

7.)3p7 ifp=23.5
Z7]4pZ,7./5pZ, if p=2,3,

ZJ12Z,7/147, /187 if p = 2,

ZJ10Z x Z/5Z if p=2, and F contains a primitive 5th root of unity,
ZJ127 x 1]27 if p=3, and F contains a primitive 4th root of unity,
7/10Z x 7,27 ifp=5.

Further, if G = Z/mZ x Z/nZ is in this list with n | m, and F contains a primitive
nth root of unity (or 4th in the case of G = Z /127 x Z/2Z), then there are infinitely
many non-isomorphic, non-isotrivial elliptic curves with E(K )is = G. If p > 13,

then Theorem 2.1.4 is a complete list of possible subgroups E(K )iors-

For example, when we specialize to p = 5, the theorem takes the following form:

Corollary 1.3.6 (M). Let F be a finite field of characteristic 5, K = F(T), and
E/K be a non-isotrivial elliptic curve. The torsion subgroup E(K )ios of E(K) is
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isomorphic to one of the following groups:

Z/NT. with 1 < N <10 or N = 12,15,
ZJ)2NZ x )27 with 1 < N <5,
7.)A7 x 7.]AZ,

Z/3NZ x 7./3Z, with N = 1,2,

Further, if G = Z/mZ x Z/nZ is in this list with n | m, and F contains a primitive
nth root of unity, then there are infinitely many non-isomorphic, non-isotrivial elliptic

curves with E(K )ors =

In fact, we can parameterize all of the elliptic curves having each of the indicated
torsion subgroups in Theorem 1.3.5. For example, when p = 5, a non-isotrivial E/K
has a point of order fifteen if and only if it can be written in the Tate normal form
with

Lo UV 22+ 42 +2)

(f +3)°(f2+3)

fF+4)

(F +3) for some f € F(T') such that f ¢ FF.

Here the point (0,0) is a point of order fifteen. In Table 2.14 the reader can find
parameterizations of all elliptic curves over F(7") with the torsion structures appearing

in Theorem 1.3.5.

1.4 Elliptic Curves over Genus 1 Function Fields

In this section, we are primarily interested in the case where C is a smooth curve of
genus 1. By the Hasse bound for curves of genus 1 over a finite field we see that C

automatically has a point, and is therefore an elliptic curve over F (see [7]). In this
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setting, [13] provides us with the following corollary.

Corollary 1.4.1 (Levin, [13]). Let F be a finite field of characteristic p, C/F be a
smooth, projective, absolutely irreducible curve, K = F(C), and E/K a non-isotrivial

elliptic curve. Suppose L€ | #E (K )ors for some prime {. Then

4 ifr=2 4 ift=2
(<1lande<<2 jf¢=35 fl#p, and (<1lande< {2 f¢=3 if £ =p.
1 ife=1711 1 f¢=5,711,13

1.4.1 Summary of results

We begin by finding an analogue of Cox and Parry’s theorem in Section 1.3.1.

Theorem 1.4.2 (M). Let C be a curve of genus 1 over a finite field F of characteristic
p, and let K =TF(C). Let E/K be non-isotrivial. Then E(K),., the rational points

tors’

of finite order prime to p, is one of the following groups:

Z/NT. with N =1,...,12,14,15,
7)2N7 x 7.)27. with N =1,...,6,
ZJ3NZ x 7.J3Z with N =1,2,3,
7JANZ x ZJAZ, with N = 1,2,

(Z/NZ)®  with N = 5,6.

Further, if G = Z/mZ x Z/nZ is in this list with n | m, and F contains a primitive
nth root of unity, then there are infinitely many non-isomorphic, non-isotrivial elliptic

curves with E(K )yops =

We can provide parameterizations for all elliptic curves £ with torsion subgroup
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appearing in this theorem which also appeared in Theorem 1.3.2, and these torsion
subgroups appear infinitely often as E(K ) for some non-isotrivial £/ K regardless
of the base curve C. All the other subgroups, however, are restricted by C. In
each case, if a group G from Theorem 1.4.2 does not appear in Theorem 1.3.2, then
infinitely many elliptic curves E/K can be found with E(K) . = G = Z/mZxZ/nZ
only if C is isogenous to the modular curve X;(n,m). For example, if p # 11, E(K)
has a point of order 11 only if C is isogenous to D : u? + u = t3 — 2.

Next, fixing p, we begin with an elliptic curve in the Tate normal form over K for
a torsion subgroup G appearing in Theorem 1.4.2. Then, using the Hasse invariant
and division polynomials of the curve, we again construct a curve D /F parameterizing

elliptic curves with G x Z/p°Z torsion. This time, we arrive at a contradiction if the

genus of D is greater than one. We arrive at the following result.

Theorem 1.4.3 (M). Let C be a curve of genus 1 over IF, for F of characteristic p,
and let K =TF(C). Let E/K be non-isotrivial. If pt #E(K )iors, then E(K )iors is as
in Theorem 1.4.2. If p | #E(K )ors, then p < 13, and E(K )ors i one of

Z/pZ ifp=2,3,5711,13,
7.)2pZ,7.)2p7 x 7./27. ifp=3,5,7,
Z/3pZ,7,)4pZ ifp=2,3,5,

Z7./5pZ,7]6pZ, 7] TpZ,7./8pZ  if p = 2,3,

ZJ2NZ for N =9,10,11,15, if p = 2,
ZJ6NZ x 7/3Z for N =1,2,3, ifp=2,
7)10Z x Z./57. ifp=2,

ZJ127. x 7.)27,7.)12Z x ZJAZ  if p = 3.

Further, if G = Z/mZ x Z/nZ is in this list with n | m, and F contains a primitive



14

nth root of unity, then there are infinitely many non-isomorphic, non-isotrivial elliptic
curves with E(K )ors = G. If p > 17, then Theorem 1.4.2 is a complete list of possible

subgroups E(K )ors-
For example, when p = 5 we obtain the following result.

Corollary 1.4.4. Let C be a curve of genus 1 over a finite field F of characteristic 5,
and let K =TF(C). Let E/K be non-isotrivial. Then E(K )ios s one of the following

groups:

Z/NZ with N =1,...,12,14,15, 20,
7J)2NZ x 7.J27. with N =1,...,6,
ZJ3NZ x 7J3Z with N =1,2,3,
ZJANZ x 7.JAZ with N = 1,2,

(Z./67)>.

Further, if G = Z/mZ x Z/nZ is in this list with n | m, and F contains a primitive
nth root of unity, then there are infinitely many non-isomorphic, non-isotrivial elliptic

curves with E(K )iors =

In Corollary 1.4.4, again, if G is already a group that appears in Corollary 1.3.6,
that is, one that already appeared over function fields of genus 0, then we can find
infinitely many non-isomorphic, non-isotrivial F/K with torsion subgroup G, regard-
less of the base curve. If GG does not appear in Corollary 1.3.6, however, then infinitely
many curves F/K can be found with torsion subgroup G only if the base curve is
in a specific isogeny class. For example, E(K) has a point of order 20 only if C is

isogenous to D : 12 +t + 1 = u?.



Chapter 2

Genus 0 Function Fields

2.1 Introduction

In what follows, let p be a prime and F be a finite field of characteristic p. Let C
be a smooth, projective, absolutely irreducible curve over I, and write K = [F(C) for
its function field. In this chapter, we will primarily be interested in the case when
C = P!, so that K = F(P') = F(T) is the rational function field of F. An elliptic
curve F/K is a smooth, projective, absolutely irreducible curve of genus 1 over K,
with at least one K-rational point. The curve E can always be written as an affine

cubic in long Weierstrass form:
E:y* +airvy + azy = 2° + apx® + ayx + ag for a; € K,

and when p > 3, we can write £ : y> = 23 + Azv + B for A,B € K.

We have the usual definitions for the invariants associated to E (for example in

15
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[16]), including the discriminant, A, and the j-invariant, all of which are elements

in K. In addition, we will consider the Hasse invariant of E, which we will denote

H(E). When p = 2, for a curve written in long Weierstrass form, the Hasse invariant

is the coefficient a;. When p > 2, we may choose an equation with a; = a3 = 0,

in which case the Hasse invariant of E is the coefficient of 2P~! in the expansion of
p=1

(23 + agx® + agxr + ag) = (see [21, p. 18]).

The following is a more precise statement of Definition 1.3.3 from Chapter 1.

Definition 2.1.1. Assume that K = F(C) is the function field of a smooth curve C
over a finite field F, and let F be an elliptic curve over K.

Y

1. E is constant if there is an elliptic curve Ey defined over F such that £ =
FEy xp K, where “Ey xg K7 is the fiber product of Ey and K. Equivalently, £
is a base extension of Ey/F to K it is constant if and only if it can be defined
by a Weierstrass cubic with coefficients in F.

2. E is isotrivial if there exists a finite extension K’ of K such that E becomes
constant over K'. Equivalently, j(E) € I, where j(F) is the j-invariant of E.

3. F is non-isotrivial if it is not isotrivial, and non-constant if it is not constant.

As in the case of elliptic curves over number fields, we have the following descrip-

tion of the structure of F(K), the set of K-rational points of E.

Theorem 2.1.2 (Mordell-Weil-Lang—Néron [12]). Assume that K = F(C) is the
function field of a curve over a finite field F, and let E be an elliptic curve over K.

Then E(K) is a finitely generated abelian group.

As an immediate corollary, we have that F(K )y is finite. In fact, we have

E(K)wors = Z/mTZ x 7,)n7Z.
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where n divides m, and p does not divide n, and every such group appears for some
K (of some genus) and E (see [21, p. 16]). The following proposition tells us that for
any fixed genus g of C and characteristic p, there are only finitely many possibilities

for m and n.

Proposition 2.1.3 (Ulmer, [21, Proposition 7.1]). Let g be the genus of C. Then
there is a finite (and effectively calculable) list of groups depending only on g and p,
such that for any non-isotrivial elliptic curve E over K, the group E(K ) appears

on the list.

Following the proof of Proposition 2.1.3 in [21, Theorem 5.1], if G = Z/mZ < Z/nZ
is the prime-to-p torsion subgroup of E(K), a crude list (at least for the prime-to-p
part of £(K )s) can be found by using the Hurwitz formula on the induced morphism
from C to the modular curve X;(n, m), though one may have to work harder to further
refine the list to be minimal for K. For example, when g = 0, so that F(C) = F(T),
and p > 5 we have the following restatement of Cox an Parry’s minimal list for

prime-to-p torsion in Theorem 1.3.2.

Theorem 2.1.4 (Cox, Parry [2]). Let K = F(T) where F is a finite field of char-
acteristic p # 2,3. Let E/K be non-isotrivial. Then E(K)i.., the rational points of

tors’

finite order prime to p, is one of the following groups:

0, Z/2Z, Z)3Z, ..., 7J10Z, 7./12Z,
(Z)22)2, 7.JAT x 7,)2Z, T./67 x 7./27., T./ST. x 7./,
(Z/37)%, ZJ6Z x 7/3Z, (ZJAZ)?, (Z/5Z)>.
Further, if G = Z/mZ x Z/nZ is in this list with n | m and p ¥ n, such that F
contains a primitive nth root of unity, then there are infinitely many non-isomorphic,

Y

non-isotrivial elliptic curves with E(K )iors =
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Remark 2.1.5. In fact, Cox and Parry’s theorem, as stated in [2], is valid for arbi-

trary fields (i.e. not necessarily finite) of characteristic p > 0, with p # 2, 3.

Remark 2.1.6. Throughout the paper, it is essential that F is a non-isotrivial elliptic
curve. For example, over K = Fy;(T), for any non-zero f € K, the curve E; : y? =
3 + f2z? + f'r has the point (0,0) of order sixteen, which does not appear in
Cox and Parry’s list. However, E is constant, because it is isomorphic to the curve

E :y? = 23 + 22 4+ 2 under the change of variables z — fx.

As for p-primary torsion, in order for E(K) to have a point of order p, we have

the following requirements on the Hasse and j-invariants of E.

Theorem 2.1.7 (Ulmer, [21, p. 17]). Suppose that E is a non-isotrivial elliptic curve
over K = TF(C), where F has characteristic p. Then E(K) has a point of order p if

and only if j(E) € K?, and the Hasse invariant is a (p — 1)st power in K*.

Remark 2.1.8. When C = P!, since o + P is an automorphism of F, we have
KP = (F(T))p = F(T?). That is, an element of K is in K? if and only if it is a
rational expression in 7P. With this, it is also not hard to show that if f,g € K, then

foge KPif and only if at least one of f or g is in KP.

Finally, the following result proves very useful in trying to calculate the list referred

to in Proposition 2.1.3, though, again, some work is required to minimize it.

Theorem 2.1.9 (Levin, [13]). Let K be a function field in one variable over a finite
field of characteristic p, and E/K be an elliptic curve. The order of E(K)ios 1S

universally bounded, depending only on g(K), the genus of K. In particular if we
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have (¢ | #E(K )ors for e > 1, then if £ # p,

[

<64+ (1+24-9(K))2,
(

logy(3+ (1+8-g(K)2)+2  ift=2,

[N

logs (14 g(K)2) +2 if = 3,

N|—=

logs(3+ (4+5-g(K))z)+1 if ¢ =5,

N

\b&WB+%aH+7-MKD)D if =7

On the other hand, if (¢ | #E(K )ios for e > 1, and ¢ = p, then we have

NI

C<T7T+4(1+3-g(K))

e < 1og,(6+ (36 — £+ 24 £(( — 1)7Y(2- g(K) — 2+ h))?),

where hy is found in [13, pp. 460-461].

Since we are primarily interested in K = F(T'), where we already know the list of
possible prime-to-p torsion, and have g(K) = 0, we provide the following special case

of Theorem 2.1.9.
Corollary 2.1.10. Let F be a finite field of characteristic p, K = F(T), and E/K

an elliptic curve. Suppose p° | #E(K )iors- Then we have

3 ifp=2

psl1l,e<q2 ifp=3

1 ifp=5,711
\
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Remark 2.1.11. Note that Corollary 2.1.10 also tells us that for characteristic p >
13, Cox and Parry’s list in Theorem 2.1.4 is a complete list of torsion structures one

can expect to encounter.
For convenience, we make the following non-standard definitions.

Definition 2.1.12. Let C and D be curves over F, with C smooth, and set K = F(C).
We will call any point in D(F) a constant point, and any point in D(K) non-constant
if it is not a constant point. As in Definition 2.1.1, we will also call the curve D/K

constant, if it is written in a form with coefficients in F.

Finally, we will make use of the following useful fact, which is stated in more
generality for function fields with base curves of higher genus. The proposition will
be adapted in this chapter to fit the case when C = P! has genus zero, and in Chapter

3 to address the case where C has genus 1.

Proposition 2.1.13. Let F be a finite field of characteristic p, C/F and D/F be
projective, absolutely irreducible curves, with C smooth, and let K = F(C). If the

genus of D is greater than that of C, then every point in D(K) is constant.

Proof. Let m : D — D be the normalization map associated to D, which is a birational
morphism on the irreducible components of D (see [15, p. 128]). D is irreducible, so
themapm=!: D — D is a non-constant rational map (if D is smooth, it is the identity
map). Suppose that there is a non-constant point P € D(K). Since K = F(C), and

D is written with coefficients in [F, we obtain the rational map

p:C/F— D/F byt P.
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Since C is smooth, p is a morphism, and because P is non-constant, p is non-constant,

and therefore surjective, hence dominant, so that defining p: C — D by p= 7" o p,

we obtain a non-constant rational map (see [16, Proposition 2.1 and Theorem 2.3]).

D
s

Now, p: C — D is a map of smooth curves, so that by [16, Corollary 2.12] we can

factor the map p as

c—<.cL. D,

where « is the ¢-th power Frobenius map (g the cardinality of IF), and f is separable,
and non-constant by assumption. Since « is an automorphism of C, we may assume

p is separable, and apply the Hurwitz formula:

29(C) —2 > (deg p)(29(D) = 2) + Y _ (ezp) — 1) > 29(D) — 2.

But this means g(C) > g(D), which is a contradiction. Thus p, and therefore p, must

be constant, and no such point P can exist. O
When we specialize to the case of C = P!, we obtain the following useful corollary.

Corollary 2.1.14. For F of characteristic p, and K = F(T), if D/F is an irreducible

curve of positive genus, then there are no non-constant points in D(K).

Proof. When K = (T, the base curve is isomorphic to P!. Proposition 2.1.13 shows

that if D(K) has a non-constant point, then D must have genus zero. O
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Remark 2.1.15. The conclusion of Corollary 2.1.14 is certainly not the case if D/F

has genus zero because maps P' — D exists as long as D has a point.

In the sections to follow, we will prove, and provide parameterizations for, the

following result.

Theorem 2.1.16 (M). Let F be a finite field of characteristic p. Set K =F(T), and
let E/K be a non-isotrivial elliptic curve. If p 4 #E(K)iors, then E(K )i s one of

the following groups.

Z/NZ with N =1,...,10,12,
7)2NZ x 7.)27, with N =1,... .4,
Z/3NZ x 7./3Z with N = 1,2,

(Z/NZ)?2  with N = 4,5,

Otherwise, if p | #E(K )iors, then p < 13, and E(K)iors is one of

Z/pZ,

7.)2p7Z, ifp=2,3,5,7,

7./3pZ, ifp=2,3,5,
7./4pZ., 7./5pZ, ifp=23,

7)127,7,/147, 7187, if p =2,

ZJ10Z x Z/5Z, if p=2, and F contains a primitive 5th root of unity,
7)127 x L] 2Z, if p=3, and F contains a primitive 4th root of unity,
7)10Z x Z./2Z, if p=5.

Further, if G = Z/mZ x Z/nZ is in this list with n | m, and F contains a primitive
nth root of unity, then there are infinitely many non-isomorphic, non-isotrivial elliptic

curves with E(K )gors =
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In Section 2.2, we will parameterize all of the torsion subgroups referred to in
Cox and Parry’s list in Theorem 2.1.4 explicitly, regardless of the characteristic of K.
Then, starting with characteristic p > 5, in Section 2.3, we will use Theorem 2.1.7
and the parameterizations from Section 2.2, to obtain the conditions necessary for a
point of order p to appear with a subgroup from Cox and Parry’s list. In each case, we
will find that such torsion structures correspond to points on certain constant curves,
which we will either parameterize, or attempt to apply Corollary 2.1.14. Finally, in
Section 2.4, we look at characteristics p = 2,3. After proving a version of Theorem
2.1.4 for each of these characteristics, we will again determine when points of order
p can appear. Explicit parameterizations of all exotic torsion, along with generators,

for all exotic torsion structures are provided in Section 2.5.

2.2 Explicit Parameterizations of Torsion Struc-
tures in Theorem 2.1.4

In this section, having fixed a characteristic p > 2, we parameterize all elliptic curves
with each torsion structure from Cox and Parry’s list in Theorem 2.1.4. Let F be a
finite field of characteristic p, let K = F(T'), and let E/K be a non-isotrivial elliptic
curve (so that not all of its coefficients are constant). Suppose that there exists a
Q = (zo,y0) € E(K) not equal to O. Then with the change of variables z — = + z,

Yy — Yy + Yo, we can move () to the origin and write

E :y? + a1y + asy = 2° + asx® + asx, with a; € K not all constant. (2.1)
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If @ has exact order two, then by [16, Theorem 2.3] we have (0,0) = —Q = (0, —as3),

so that az = 0. If, additionally, p # 2, the change of variables y — y — % allows us

to write £ as an equation with a; = 0. Thus, for p # 2, the point (0,0) € E(K) has

exact order two if and only if we can write

E.p: y? = 23 + ax® 4 bx for some a,b € K, with at least one of a or b non-constant.

By using the group law algorithms in [16, Theorem 2.3], it is easy to show that when
E : y* = f(z), then any point of order two takes the form («,0) where « is a root of

f. Hence, for p # 2, any curve with (Z/27Z)? torsion may be written in the form

E.p:y* =z(xr —a)(x —b) for a,b € K, with at least one of a or b non-constant.

Returning to (2.1), if @ has order greater than two, then (0,0) # —Q = (0, —a3),
so that ag # 0. Then, the change of variables y — y + (a4/a3)x (and some renaming

of coefficients) allows us to write £ as an equation with a, = 0 as well:

E vy +ayzy + asy = 2 + ax2®, with a; € K not all constant. (2.2)

If @ has exact order three, then (0, —a3) = —Q = 2Q = (—ag, a3 — a3) shows that
as = 0 as well, and thus, for general p, the point (0,0) € E(K) has exact order three

if and only if we can write

E :y?* +axy + by = 2° for a,b € K, with at least one of a or b non-constant.

In [14, 1.1], for f € Q(¢3), we find the family X? + Y3 + Z3 = 3fXY Z param-
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eterizes all elliptic curves with (Z/3Z)? torsion over Q((3). By looking at the affine
chart corresponding to Z = 1 after the change of variables

(XY, Z) = [-3(F+ f+ D)X +Y + 2,9+ P+ HX+Y + 2), X + fY + Z],
for the same f € Q((3), we see that this family is isomorphic to the affine model

v+ 3(f +2)zy +9(f+ f + Dy = 2°.

Thus, if p # 3, and F contains a primitive 3rd root of unity, for non-constant f € K,
we will see (Z/3Z)? torsion using this family.

Collecting our results, we have Table 3.6, with two-parameter families for Z/nZ
and (Z/nZ)? for n = 2, 3. Here, with a,b € K (or f € K), at least one non-constant,

as long as A, # 0, we get a non-isotrivial elliptic curve E,, with G C E, (K )tors-

Characteristic E, /K G

p 2 y* = 2® + ax® + bx Z/27

p#2 2=x(x —a)(z—D) 7.)27 x 7.]27.
general p y? +axy + by = 23 737

p#3, GEF V*+3(f+2ay+ (fP+f+1)y=a% 7Z/37 x 7/3Z

Table 2.1: Two-parameter familes of elliptic curves E, ;/K such that G C E, ,(K)tors-

On the other hand, if ) has order greater than three, then (0, —a3) = —Q #
2Q = (—az, ajas — ag) shows that ay # 0, since —Q # 2Q). The change of variables
z — (az/ag)*z, y v (az/az)y in (2.2) gives

10 3 3

a a
2 3 2,2
Y+ 5y ="+ —Sx°.

E:y’+
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Setting b = —a3/a2 and a = 1 — (ajas)/as, we find that for general p, the point
(0,0) € E(K) has order greater than three (possibly infinite) if and only if we can

write E in Tate normal form:

E.p:y*+ (1 —a)xy — by = 2° — bx? for a,b € K, at least one non-constant.

In this form, we can obtain parameterizations for Z/nZ for n = 4,...,10,12 and
Z7.]2nZ. X7/ 27, for n = 2,3, 4. For fields of characteristic zero, these parameterizations
can be found in the literature, for example in [6, p. 188]. We need only validate these
parameterizations for arbitrary characteristic.

By the calculations for a and b in [8, 4.6], the Tate normal form for elliptic curves
with torsion structures Z/nZ for n = 4,...9, can be computed explicitly by start-
ing with @ = (0,0), computing [£m]|Q for m = 2,3,4, and comparing coefficients.
Husemoller’s argument holds regardless of characteristic, using only the order of a
point to draw conclusions, so we may use these parameterizations (isomorphic to
those in [6]) of Z/nZ for n =4,...9, for E over any K.

Recall that for a field K and an elliptic curve E/K with a point P € E, we have

2([m]P) = ¢um(P)/tm(P)?,

where ¢, and v, are division polynomials as defined in [16, p. 105]. This relationship,
and the fact that ¢, and 2 are coprime, is valid in any characteristic (see, for

example, [5, Section 3.6], or [3]). Thus, we have

(m]P = (0,0) <= a([m]P) = ¢u(P)/bn(P)* =0 <= ¢u(P)=0.
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This means that, regardless of the characteristic of K, if (0,0) is a point of order n,
we can solve ¢,,(P) = 0 to find @ and b such that there is a point P with [mn|P = O.
Using the characterizations in [6], we can easily calculate the a and b necessary for
Z/10Z and Z /127 by solving ¢o(P) = 0 when (0, 0) has order five and six respectively.
So far, with a change of variables, all of our parameterizations are isomorphic to curves
of the desired form in [6, p. 188]. Thus, for general p, we get the families in Table

2.2, parameterizing elliptic curves with torsion structures Z/nZ for n = 4,...10, 12.

Characteristic ~ F,p:y*+ (1 —a)zy —by =2* —b2* G

general p a=0 b=f Z7.]A7
general p a=f b=f Z7./57
general p a=f b=f+ f? 767
general p a=f*—f b=af 777
general p a= W;}(f_l) b=af 7./87
general p a= f3(f-1) b=a(f’—f+1) Z/9Z
general p a= —% b= —a- ﬁzf“ Z/10Z
general p a= f(1_2f()}£i€2)3_3f+1) b= —a- 2’62;# Z7/127

Table 2.2: One-parameter familes of elliptic curves E, /K such that G C E, (K )tors-

When p # 2, we can obtain a parameterization for Z /47 x 7./27 by starting
with the parameterization of elliptic curves with Z/4Z torsion, and rewriting it as
E :y* = 2* + (2f + )2 + f?x. The associated change of variables is valid when
p # 2. In this form, (0,0) is a point of order 2, so there must be a,b € K such
that a +b = 2f 4+ 1, and ab = f2. This is true if and only if f = g* — 55 for some

g € K. Using our new found parameterization for Z /47 x 7Z./27, a parameterization

of elliptic curves with Z/8Z x Z/2Z (see Table 3.7, line 3) can then be found by
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solving ¢o(P) = 0, as above.
In the same way, for p # 2, we can obtain a parameterization elliptic curves
with Z/6Z x 7 /2Z by starting with the parameterization of elliptic curves with Z/6Z

torsion, and rewriting it in the form E : y? = 23 + (%F — %f — }L)ﬁ + f3x. This

_3r_1
2 4

time, we need a 4+ b = 3 f? and ab = f3, which albeit more complicated,
can be parameterized using Magma (see [1]), with f = (39> — 99 + 16)/(g* — 3g) for
some g € K. Changing variables, regardless of characteristic of K, this gives families
isomorphic to the remaining curves in [6, p. 188|, which we collect in Table 3.7.
It remains to find parameterizations for elliptic curves with the torsion subgroups

7.)67 x 7./3Z and (Z/nZ)* when n = 4,5.

Characteristic ~ E,p:y*+ (1 —a)zy —by =a* —b2x* G

p#2 a=0 b=f*— 1% )47 x 7./ 27
_ _ —1)2(f—
D2 o= b= W 7./67 x 7./27.
_(2f+1)(8f24+4F+1) _(2f+1)(8f244f+1)
p#2 0 = I EEDF b= L Z7)87 x 7./27

Table 2.3: One-parameter familes of elliptic curves E, ;/K such that G C Eq ,(K)tors-

2.2.1 7/67Z x 7Z/37Z torsion

Here, p # 3 and F contains a primitive 3rd root of unity. Using our parameterization
of elliptic curves with (Z/3Z)?, if a non-isotrivial elliptic curve E over K has torsion
subgroup Z/67Z x 7. /37, then without loss of generality, we have a point P such that
2P = (0,0). Looking at ¢o(P) = 0, we can use Magma to find the following genus

zero curve over K:

C:X37 —21XY3 - 81XY?2Z —81XY Z? — 54X 73 — 162Y* — 324Y37 — 486Y 222 — 324Y 73 — 1622*.
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For a point [X,Y, Z] on C, the following elliptic curve has torsion structure containing
Z/67 x 7] 3Z.:

E:y?+3(f+2)zy+9(f*+ f+1)y=2" with f=Y/Z € K.

Using Magma to parameterize C' about the point [1,0, 0], we find all points on C' are
of the form

| = shat + S0 — a2 4 54ab® — 324", sa®h — 2% + dab® — 180, ab® — 18b1)

for a,b € K. If we set x = X/Z, f =Y /Z, then [z, f, 1] is a point on the curve, and
making the substitution ¢t = a/b (the choice b = 0 only gives the point [1,0, 0], which

we already knew) we get

1 2
f:§ﬁﬁ—§ﬁ+4ﬁ—m
t—18

Finally, making the change of variables ¢ — %(t*1 +2), we conclude that if F contains
a primitive 3rd root of unity, and E is a non-isotrivial elliptic curve over K with

Z/6Z x Z/3Z torsion, then E is isomorphic to the curve

213 + 1

372 for some non-constant ¢t € K.

E oy +3(f+2)ay+9(f2 4+ f+1)y = 2®, with f =

2.2.2 (Z/AZ)? torsion

Here, p # 2 and F contains a primitive 4th root of unity. Starting with our parame-

terization of Z/47Z x 7 /27 torsion, we can move the generator of the torsion subgroup
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with order two to the origin and solve ¢o(P) = (0,0) to find a new point of order

four. Again, using Magma, we find the curve
C:X*Z+Y3— %YzZ—i— %6}/22, with X,Y, 7 € K.

Parameterizing C' about the point [1,0,0] and making a change of variables, we find
that any non-isotrivial elliptic curve with torsion subgroup (Z/4Z)? is isomorphic to

E:y?+ay— (f*— %)y =a*— (f* — 15)z?, for some non-constant f € K.

2.2.3 (Z/57)? torsion

Here, we assume p # 5 and F contains a primitive 5th root of unity. In [6, §6.4],
we find a parameterization of all curves with (Z/5Z)? torsion structure over Q((s),
where (5 is a primitive fifth root of unity. By moving the point of order five defined
over Q to the origin, and changing variables to write the curve in Tate normal form
(using the procedure at the beginning of the section), we arrive at a parameterization

of (Z/5Z)* torsion over Q((5) with a and b given by

24424341

S e VIR T

for f e F(T).

Thus, if F is of characteristic p # 5, F contains a primitive 4th root of unity, and

f € K is non-constant, we will see (Z/5Z)* torsion with this parameterization.
Finally, rewriting our parameterization of Z/6Z x Z/3Z torsion in Tate normal

form, we can collect the remaining parameterizations of torsion structures from The-

orem 2.1.4 into Table 2.4.
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Characteristic  Eup: y*+ (1 —a)ay — by = 2° — bz? G

p#3, GEF a=-LLHLD b=—al=2E 7)67 x L3
p#4, i€F a=0 b=fi-L  ZALXZ/AT
p#£5, GEF a=fZLHIBEL [—g 7.)57 x 7./57.

Table 2.4: One-parameter familes of elliptic curves E, /K such that G C E, p(K)tors.

2.3 Torsion Structures with p | E(K )iy, for Char-
acteristic p > 5.

Since Theorem 2.1.4 only refers to function fields of characteristic p # 2,3, we will
start by assuming that p > 5. In this section, it will be our goal to determine when
the torsion structures appearing in Cox and Parry’s list can be combined with a point

of order p. When possible, we try to develop a strategy that will work for general p.

2.3.1 Characteristic 5

Let us fix a finite field F of characteristic 5, and K = F(T). Let E/K be a non-
isotrivial elliptic curve given by y* = 2® + Az + B for A, B € K. By Theorem 2.1.4,

the following prime-to-5 torsion is guaranteed to appear for general ¢ and suitable E:

0, Z/2Z, 7./3Z, 7.JAZ, 7./6Z, 7./7Z., 7./8Z, 7./9Z, 7./12Z
(Z)27)?, 7JAZ x 727, 7./67 x 7./2Z, 7./87 x 7./2Z.
(Z/AZ)2.

If, in addition, F contains a primitive 3rd root of unity (e.g., if |F| = 5?), we can add

the following torsion subgroups to our list:

(Z/3Z)%, Z/6Z x Z/3L.
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All of these torsion structures can be realized over K as prime-to-5 torsion sub-
groups by using the families of curves in Section 2.2. It remains to consider points
whose order is a power of five. If we use Tate normal form, we see that all non-
isotrivial curves with Z/5Z and Z/10Z torsion are still parameterized by E,; :
y?+ (1 —a)zy — by = 2® — baz? with a and b given in Section 2.2. Theorem 2.1.7 gives
another way of constructing curves with points of order five by playing with the Hasse
and j invariants. When p = 5, the Hasse invariant of any curve can be computed by

looking at the coefficients of the curve written in short Weierstrass form:

(z° + Az + B)? = 25 + 242* + 2B2® + A%® + 2ABz + B? = H(E) = 2A.

Thus, for the hypotheses on the Hasse invariant in Theorem 2.1.7 to be satisfied, we
need 24 = u* for some v € K*. We use this to see if any of the torsion structures from
Cox and Parry’s list can appear in combination with a point of order five. Remember
that by Corollary 2.1.10 we can have a point of 5-primary order of at most 5, so the

possible torsion structures to confirm or rule out are

Z/5NZ for N =3,4,6...,10,12,
ZJ10NZ x 7Z./2Z. for N =1,... 4, (2.3)
Z/5NZ x ZJNZ, for N =3, 4.

If, for example, we suppose that /K is a non-isotrivial elliptic curve with a point
of order 4, then E can be written in Tate normal form as F, : y*+xy— fy = 23— fa?.

Since p = 5, we can write F in short Weierstrass form:

E oy =2 +3(fP+f+ Do +4(f°+4f +1).
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If in addition we assume that E has a point of order five, then by Theorem 2.1.7, we

must have
H(E)=2A= f*+ f+1=u" for someuc K*.

Since f2+ f+1 € K|[f] is non-constant and separable, the element u* — (f2+ f+1) €
(K[f])[u] is irreducible by Eisenstein’s criterion'. Hence, the equation above gives
an absolutely irreducible constant curve Cy; : 24+ f+1=u* over K. Each point

(fo,uo) € Co1(K), fo # 0,—1, gives an elliptic curve,
Eo:y® =2 +3(fg + fo+ D +4(f5 +4fo+ 1)

whose Hasse invariant is a fourth power in K*. The curve Ej is non-isotrivial if and

only if its j-invariant,

O SSHBfHfe 28+ fE+3fo+1

j(EO) fg I fé )

is non-constant. Observe that if two rational functions g(7') and h(T") are non-
constant, then g(h(7)) is non-constant. Conversely, if h(7") is non-constant, then
g(T) is non-constant if and only if A(T") is non-constant. In our case, we see that

T 3T+ T 2T° + 1% + 3T + 1

(T :
J(T) 5 7

¢ T

Thus j(Ep) is non-constant if and only if fy is non-constant, and therefore, Fy is

non-isotrivial if and only if (fy,ug) is a non-constant point. That is, a point of order

!Throughout, absolute irreducibility of curves of the form u?~! = H(f) has been verified using
Eisenstein’s criterion, using the fact that in each case, H(f) is separable.
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20 over K implies the existence of a non-constant point on the irreducible constant
curve Cy 1. But Cy 1 has genus one?, so by Corollary 2.1.14, all points on Co1/K

are constant. Hence 7 /207 torsion is impossible over K.

Remark 2.3.1. Not surprisingly, our curve Cyg; is isomorphic over F;(7') to the
modular curve X (20, 1) considered over Q(7") and reduced modulo 5, see, for example
[18]. This suggests a different method for finding a curve to parameterize curves with
points of order 20. Our method for constructing this curve avoids the subtleties of

reducing X;(N) at the prime p (the characteristic of K) when p divides N.

We can adapt this argument to rule out points of larger order. By using Tate
normal form, we may begin by supposing that E is an elliptic curve with a point of
order m for m = 6,7,8,9,12. Then, by the above argument, bringing £ to short
Weierstrass form, £ can be written as y? = 23 + A,,,(f)z + By, (f) for non-constant
f € K. For each m, an additional point of order five will again imply the existence

of a non-constant point on the (possibly singular) constant curve

C5m,1 : H(E) = 2Am(f) = u4.

In each case, A,,(f) is separable, so that Cj,, ; is irreducible by Eisenstein’s argument
above. Thus, if the genus of C,, ; is positive, then by Corollary 2.1.14 this is enough

to show that 5m-torsion is impossible over K.

Example 2.3.2. Over K, a non-isotrivial elliptic curve with a point of order 30
implies a non-constant point on Cg; : 4f* +2f% +2f +1 = u*, and a point of order

35 gives a non-constant point on the curve Css 1 : f8+3f7+2f0+4f°+ f2+4f = u™.

2In this case, Coq is hyperelliptic, so that its genus is g = % = 1. Throughout the rest of the
paper, however, all genus calculations have been done using Magma [1].
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Using Magma, we compute the genera of these curves to be 3 and 9 respectively, and

thus, see that Z/30Z and Z/35Z are impossible over K.

By using Corollary 2.1.14, we have already shown that Z/207Z, Z/30Z, and Z /357
torsion structures are impossible for elliptic curves defined over K. In Table 2.5, we
let G = Z/5mZ for m > 4, and Cs,, 1 : H(E) = 2A,,(f) = u* be the curve obtained
by bringing the Tate normal form to short Weierstrass form. In particular, combining
genus calculations with Corollary 2.1.14, the table rules out any torsion structures

from (2.3) with a point of order greater than 15.

m G Curve Csp. 1 genus of Cs,,
4 | Z/207Z PP+f+l=ut 1

6 | Z/30Z 4ft 23 +2f+1=0ut 3

7 | Z/35Z FEA3fTH2f +afS+ 2 Haf+1 =0t 9

8 | Z/40Z (ruled out by Cy) n/a

9 | Z/ASZ | f243f1 +4f0 429 +4f8 +4f0 +4f5+2f1 + 33 +3f2+1 =t 15

12 | Z/60Z (ruled out by Cy) n/a

Table 2.5: Ruling out G = Z/5mZ torsion over K for m > 4.

Continuing with this strategy, we combine the Tate normal forms parameterizing
curves with Z/3Z and (Z/27)* torsion structures with the hypotheses of Theorem
2.1.7 to look for subgroups Z/15Z and 7Z/10Z x Z/2Z. This time, we have two-
parameter families with elements a,b € K (at least one of which is non-constant),
that when written in short Weierstrass form and combined with the Hasse invariant

give surfaces Sy, @ H(E) = 2A(a,b) = u* with a,b,u € K.

Z/5mZ X Z/nZ Ssmon Change of Variables Csmmn genus of Csy,p
Z/15Z a4+ ab = u* a— aju, b bju at+ab=1 0
ZJW0Z X ZJ27 | a* +4ab+V* =u* | a— a/u?, b bj/u* | a® +4ab+b* =1 0

Table 2.6: Curves parameterizing elliptic curves with G = Z/15Z and Z/10Z X Z/27Z torsion over K.
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In Table 2.6, if the torsion subgroup G = Z/5mZ x Z/nZ exists in a non-isotrivial
elliptic curve over K, it implies there is a point (a,b, u) on S5, ,, with at least one of
a or b non-constant. Note, however, that in the case of Z/157Z, we are looking at the
curve E : y* + axy + by = 2. If H(F) = u*, then by the change of variables in [16,

p. 45], E is isomorphic to the curve

E oy +au oy + bu3y = 2°,

which has Hasse invariant one. Similarly, in the case of Z/10Z x Z /27, we are looking
at the curve E : y* = 23+ (a+b)x?+abx, with H(E) = u°®, which is in turn isomorphic
to the curve E' : y* = 2® + (a + b)u2z% + abu~*z, again, with Hasse invariant one. In
both cases, a,b € K are arbitrary parameters, so we can swallow u into them (as in
Table 2.6) and fully parameterize elliptic curves with H(E) = u® (up to isomorphism)
by constant curves, call them Cj,, ,, which are also given in Table 2.6.

Note, especially, that under our isomorphism, a constant point on Cj,,, corre-
sponds, by definition, to a constant elliptic curve. Thus, since we are interested in
non-isotrivial elliptic curves, we are still looking for non-constant points on Cj,, .
For example, we can parameterize C5; by

1—a*

adtab=1 <= b= ,
a

and thus, every non-isotrivial elliptic curve E/K with a point of order three and a

fourth-power Hasse invariant is isomorphic to a curve of the form

4
a
Y = :E3, for some non-constant a € K.

E:y* +avy +
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If, in addition, j(E) € K®, then we will obtain a curve with a point of order 15. We

have
3at

al® 4 3a'? + 2a* 4+ 4

J(E) =

Since j(F) = j(a) is not trivially a fifth power (i.e., j(a) is not a fifth power when we
choose a = T), then by Remark 2.1.8, we see that j(a) € K* if and only if a € K°,
so that setting a = f°, we obtain the following parameterization of all elliptic curves

over K with a point of order fifteen:

_£20
— Y= 23 for some non-constant f € K.

E:y*+ oy + 7

Notice that the equation for Cjp 2 is a conic in the variables a and b, with trivial

solution (a,b) = (1,0). Thus, we can parameterize all solutions over K by

g —1

a = prp b=gla—1), for non-constant g € K
g g

Then, by taking ¢ € K, with g non-constant, we can obtain a non-isotrivial curve
whose Hasse invariant is a fourth power in K*. Again, the j-invariant of E is not
trivially a fifth power, so j(FE) € K® if and only if g = f° for some non-constant f in
K. Thus, if F is a non-isotrivial elliptic curve with torsion subgroup Z/10Z x Z /27,

if and only if £/ can be written in the following form:

21 +3f° +4 S 3fE HAf 27
L2 03 2
E:y —m+f10+4f5+1x+f20+3f15+3f10+3f5+1xfornon—constantfEK.

It is left to determine whether or not Z/15Z x Z/3Z can occur over K when F

contains a primitive 3rd root of unity. For this, we return to Section 2.2 to find curves
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with (Z/3Z)* torsion given by the parameterization

y? +3(f +2)zy + 4(f* + f + 1)y = 2® for non-constant f € K.

If a point of order five exists, we must have H(E) = f* + 3f = u* for some u € K*.
Since f* 4 3f = u* defines an absolutely irreducible constant curve over K of genus
3, it can have no non-constant points, and thus Z /157 x 7 /37 is impossible over K.

We collect all of our results from this section into the following theorem.

Theorem 2.3.3. Let F be a finite field of characteristic 5, K = F(T), and E/K be
a non-isotrivial elliptic curve. The torsion subgroup E(K )os of E(K) is isomorphic

to one of the following

7Z/NZ. with 1 < N <10 or N = 12, 15,
ZJ2NZ x 7.J27,  with 1 < N <5, for general F.
Z.JAZ x 7./AZ.
Z/3NZ x 7./3Z, with N = 1,2, if (3 €T,

Further, each of these groups occurs infinitely often as E(K )iors for some elliptic curve

E/K.

2.3.2 Characteristic 7

Now we consider a finite field F with of characteristic 7, and K = F(T). Let E/K be
a non-isotrivial elliptic curve given by y? = 23 + Az + B for A, B € K. By Theorem

2.1.4, the following prime-to-p torsion groups appear for suitable E:

0, Z)2Z, ..., 7J6Z, 7./8Z, 7./9Z, 7./]10Z, 7./12Z,
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(Z)27)%, ZJAZ x ZJ2Z., T./6Z x 727, 7./8Z x 7.)2Z.,
(Z/3Z)%, Z./6Z x /3.

If, in addition, a primitive 4th or 5th root of unity are in F, we may obtain (Z/4Z)*
or (Z/5Z)* respectively, again, both of which will also appear for suitable E. As in
the previous section, all of these torsion subgroups, and the subgroup Z/7Z, can be
seen using the parameterizations from Section 2.2.

As before, we will use Theorem 2.1.7 to try and force a point of order seven to
appear along with any of the torsion structures from Cox and Parry’s list. Again, by
Corollary 2.1.10, we can have a point of 7-primary order of at most 7, so the torsion

structures to consider are

Z)TNZ. for N=2,...,6,8,9,10,12,
ZJIANZ x Z./2Z. for N =1,... 4,
(2.4)
ZJ)TNZ x ZJNZ, for N = 3,4,5,

7./427. x 7./31.

We begin by supposing that E is an elliptic curve with Z/mZ torsion for m =
4,5,6,8,9,10,12. Then E is isomorphic to a curve E : y? = 23+ A,,(f)x + B,(f) for
some non-constant f € K, where A(f) and B(f) are again non-constant functions
of f found by converting Tate normal form into short Weierstrass form. This time,
for each m, to discover an additional point of order seven, we will need the Hasse
invariant to be a sixth power. Expanding (z® + A,,(f)x + Bn(f))? and keeping the

coefficient of 23, we obtain the following revision of our method from Section 2.3.1:

H(E) =3B,,(f) =u° forue K*.
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In Table 2.7, we let G = Z/TmZ, and Cy,,1 : 3B, (f) = u®. As above, in each case,
By, (f) is separable, and we can use Eisenstein’s criterion to show that C7,, 1, therefore,
defines an irreducible constant curve over K. Thus, any non-isotrivial elliptic curve
with a point of order 7m implies the existence of a non-constant point on C7,, 1, and

again, Corollary 2.1.14 shows that G cannot exist for m > 4.

m G Crm,1 genus of Crp,q
4 | 7)287 63+ f2+3f+1=u’ 4

5 | Z/35Z fO+3f+5f+5f2+4f +1=ub 10

6 | Z/A27 | fO+2f° +2f1 +5f3+ f2+4f +1=ub 10

8 | Z/56Z (ruled out by Css 1) n/a

9 | Z/63Z (to be ruled out by Cs; 1 below) n/a

10 | Z/70Z (ruled out by Css 1) n/a

12 | Z/84Z (ruled out by Cas 1) n/a

Table 2.7: Ruling out G = Z/7mZ torsion over K for m > 4.

Next, we suppose that F is an elliptic curve with torsion subgroup Z/2Z, 7Z./3Z,
or (Z/2Z)?, and combine Tate normal forms with the hypotheses of Theorem 2.1.7.
Again, torsion structures Z /147, Z/217Z, and Z /147 x 7./ 27, give points (a, b, u) with
a,b,u € K and at least one of a or b non-constant on surfaces Sz, : 3B(a,b) = u®,

as in Table 2.8. Again, a change of variables shows that non-constant points on the

G Sa change of variables Ca genus
7147 a® + 6ab = u® a— a/u?, b bjut a®+6ab =1 0
7217 a® + 6a®b + 6b* = u® av afu, b bjud a® + 6a3b + 60> = 1 2

ZJ1AZ X Z)27 | a® 4 2a*b+ 2ab*> + b* = ub | a — a/u?, b b/u* | a® 4+ 2a%b+ 2ab® + b* =1 1

Table 2.8: Curves parameterizing elliptic curves with G = Z/14Z, Z/217Z and Z/14Z x Z/2Z torsion over K.

curves Cr,,, in Table 2.8, correspond (up to isomorphism) to non-isotrivial elliptic
curves whose Hasse invariant is a sixth power in K. Immediately, we find the existence

of torsion structures Z/217 or Z/14Z x Z/27Z over K implies non-constant points
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on constant curves of positive genus. Using Magma, we find that these curves are
absolutely irreducible®, hence irreducible regardless of the cardinality of F. Thus,
using Corollary 2.1.14, we find that these torsion structures are impossible. The
curve Ch4 1, however, can be parameterized easily by

1—a?

a>+6ab=1 < b=
6a

Again, we can compute j(E) and see that j(E) € K7 if and only if a = f7 for some
non-constant f in K. Thus, if E is a non-isotrivial elliptic curve over K with a point

of order 14, it can be written in the following form:

21

E =23+ 2 + 6—fj:x for some non-constant f € K.

We have, in fact, ruled out any torsion structures from (2.4) with a point of order
greater than 14, and the torsion structure Z/147Z x Z/27. We can collect all of this

into the following theorem.

Theorem 2.3.4. Let F be a finite field of characteristic 7, K = F(T), and E/K be

a non-isotrivial elliptic curve. The torsion subgroup E(K ) of E(K) is isomorphic

3In the cases where H(FE) was a function of two parameters, rather than using Eisenstein’s
criterion, Magma was used to determine irreducibility.
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to one of the following

Z/NZ, with 1 < N <10 or N = 12,14,
Z/2N7 x 7.J2Z, with1 < N <4, for general IF.
Z/3NZ x 7.J3Z, with N = 1,2,

(Z/nZ)?, if ¢ € F, where n =4,5.

Further, each of these groups occurs infinitely often as E(K )i for some elliptic curve

E/K.

2.3.3 Characteristic 11

Now we let F be a finite field of characteristic 11, and K = F(T'). Let E/K be a
non-isotrivial elliptic curve given by 3% = 2® + Az + B for A, B € K. By Theorem

2.1.4, the following prime-to-p torsion subgroups appear for suitable F:

0, Z)2Z, Z/3Z, ... , ZJ10Z, Z/12Z,
(Z)27)?, ZJAZ x 7.)27., T./67. x 7./2Z, 7./8Z x 7./2Z, (Z./5Z)?.

If, in addition, F contains a primitive 3rd or 4th root of unity (e.g., if |F| = 11?),
we may obtain (Z/3Z)* and Z/6Z x 7./3Z or (Z/4Z)* respectively, again, both of
which will also appear for suitable E. As in both the cases above, all of these torsion
subgroups can be realized using parameterizations from Section 2.2.

It is not immediately clear whether a curve with a point of order eleven even exists,
since this is not a torsion structure we have parameterized (since it does not occur
over Q). This time, the Hasse invariant of any curve written in short Weierstrass

form is H(E) = 9AB, and by Theorem 2.1.7, we must have 9AB = u'° for some
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u € K* and j(F) € K". With this information have the following parameterization.

Theorem 2.3.5. Let F be a finite field of characteristic 11, and K = F(T). The
one-parameter family E; : y* = 2® + fY'a + 571 for non-constant f € K is a

parameterization of all non-isotrivial curves with a K-rational 11-torsion point.

Proof. Let E : y* = 2° + Az + B be a non-isotrivial elliptic curve over K with a K-
rational point of order 11. By Theorem 2.1.7, it must be that the Hasse invariant of £
is a tenth power in K, so that for some u € K*, we must have H(E) = 9AB = u'".
In particular, this means that A and B are both non-zero. Also by Theorem 2.1.7,

we have

—1728(4A)3 B?
728(44) K122 VE c k1 22 g2 A%g'" for some non-zero g € K.

() =
1) = 6045 1 2757
Combining these two restrictions on A and B, we obtain

9AB = u!® == 4APB2 = u® = 4A2A%gM = = A5 =39 1.

Clearly, u?° is a fifth power in K*, so that comparing each side of the equation, 3¢g—*!

must be a fifth power. In fact, 3¢~ must be a fifth power, so that setting A% = 3¢71,

we obtain
A® =3¢ Hu® = (3gH)Mu® = hPu? = A = (h'u?, with (5 € Fyp such that ¢ = 1.
But (sh't = ((h)Y, so setting f = (5h, we obtain A = f1lu*. We can find B using

9AB =u'? <= B =5A""u"" =5(f Mu ' =5’
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Thus, we have

E:y?* =2+ flulz + 57,

which, after a change of variables, is isomorphic to E : y? = 23 + fHa +5f711. O

Remark 2.3.6. An identical procedure shows that E; : y* = 2 + 3z + f° pa-
rameterizes all curves with a point of order 5 over F(7T) of characteristic 5, and
E;:y* =12®+ fTz + 5 parameterizes all curves with a point of order 7 over F(T) of
characteristic 7. In both cases, however, it is not hard to show that these families are

equivalent to the ones given by Tate normal form, and no new information is gained.

Now, we will try to combine a point of order eleven with torsion structures from
Theorem 2.1.4. This time, Corollary 2.1.10 tells us that we can have a point of 11-
primary torsion of at most 11, so the combined torsion structures we would like to

consider are

7J11NZ for N =2,...,10,12,
ZJIINZ x Z)2Z.  for N =1,... 4,
(2.5)
ZJ1INZ x Z/NZ, for N = 3,4,5,

7./66Z x /3.

This time, we begin by supposing that E has torsion structures Z/2Z, 7Z/37 or
(Z/27,)*. By working with the two-parameter families for these torsion structures and
the Hasse invariant, we again arrive at surfaces Sy, : 94(a,b)B(a,b) = u'?. Since
u € K, under the same change of variables as in Section 2.3.2, we see that non-

isotrivial elliptic curves over K whose Hasse invariant is a tenth power correspond,
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up to isomorphism, to non-constant points on curves, Ciipmn @ 9A(a,b)B(a,b) = 1,
given in Table 3.4. Magma again reveals these curves to be absolutely irreducible. In
particular, since each of the C4y,,, are constant curves of positive genus, we find that
all of the torsion subgroups Z /227, 7./33Z and Z /227 x 7./27 are impossible over K

by Corollary 2.1.14.

G change of variables Ca genus
7./227. aw aju?, b bju a® + 9a3b + 8ab® = 1 2
Z]33Z aw afu, b bju a'® + 6a’b + 2a*b* + 8ab® =1 9

Z7)227. X )27 | a — a/u?, b— b/u?® | a® + 3a*b + a®b® + a®b® + 3ab* + b° =1 6

Table 2.9: Curves parameterizing elliptic curves with G = Z/227Z, Z/33Z and Z/227 x Z/2Z torsion over K.

If we suppose that E has Z/mZ torsion for m = 4, ...,10, 12, then, E is isomorphic
to a curve E : y* = 23 + A, (f)x + Bn(f), where A,,(f) and B,,(f) are found as

above, and
Ciimi s H(E) = 9A,,(f)Bm(f) = u'°, for non-constant f € K,u € K*.

This equation is still just an irreducible constant curve over K. In Table 2.10, we
let G = Z/11mZ, and Ciyp,;1 be the curve above. Again, we see that such torsion
subgroups G cannot exist for m > 4.

We have ruled out any torsion structures from (2.5) with a point of order greater
than 12. In fact, we have ruled out the possibility of combining a point of order
eleven with any of the torsion structures from Cox and Parry’s list. Thus, we have

the following theorem.

Theorem 2.3.7. Let F be a finite field of characteristic 11, K = TF(T), and E/K be

a non-isotrivial elliptic curve. The torsion subgroup E(K )s of E(K) is isomorphic
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m G Ciima genus of Ciyp,1
4 | Z/447 (ruled out by Caa1) n/a

5 | Z/55Z | fPO4+3f7 +8f8 +4fT +8f0 + 81+ Tf3+8f2+8f +1=u' 36

6 | Z/66Z (ruled out by Cs2 1 and Css 1) n/a

- Z/77Z FRO+3f+ [ af T4 6f 10+ 55 + 61 + 513+ 912+ 7f 4+ 81

50+ 80+ 8f +5fT +2f0 + T +4f + 82 +6f2+10f + 1 =ul’

8 | Z/88Z (ruled out by Caa1) n/a

9 | Z/99Z (ruled out by Cs31) n/a

10 | Z/110Z (ruled out by Caa1) n/a

12 | Z/132Z (ruled out by Cs31) n/a

Table 2.10: Ruling out G = Z/11mZ torsion over K for m > 4.

to one of the following:

7/NZ, with1 < N < 12,
ZJ)2NZ x 7.J]27Z., with1 < N <4, for general IF.
Z/5Z x T./5Z
7/3NZ x 7/37, with N = 1,2, if G5 € .
ZJAZ x ZJAZ, if G4 € F.

Further, each of these groups occurs infinitely often as E(K )ios for some elliptic curve

E/K.

2.4 Torsion Structures for Characteristic p = 2, 3.

Unfortunately, in Theorem 2.1.4, Cox and Parry make the assumption that the char-

acteristic of IF is not 2 or 3. In order to proceed, we need to come up with a similar

statement for these characteristics. We will use the following result to extend Cox

and Parry’s list to one for all primes p.
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Proposition 2.4.1 ([2, Proposition 3.7]). The modular curve® X(n,m) has genus 0

if and only if (m,n) is one of the following 18 ordered pairs:

(2,1), (3,1), ..., (10,1), (12,1),
(2,2), (4,2), (6,2), (8,2),
(3,3), (6,3), (4,4), (5,5).

Cox and Parry use this proposition to provide a list of all possible prime-to-p
torsion in Theorem 2.1.4, then show that it is, in fact, minimal. In what remains of
this section, for F a finite field of characteristic p = 2 or 3, and K = F(T'), we will
show what prime-to-p torsion subgroups can appear, and as in Section 2.3, determine

when and in what ways points of order p can be combined with them.

2.4.1 Characteristic 2

We start with F of characteristic 2, and K = F(T"). Given an elliptic curve E over K,
written in long Weierstrass form, E has Hasse invariant H(E) = ay [21, p. 14]. We
have the following theorem about the prime-to-2 torsion structures we should expect

over K.

Theorem 2.4.2. Let F be a finite field of characteristic 2, K =F(T), and E/K be a

/
tors

non-isotrivial elliptic curve. Let G = E(K);,, be the group of rational points of finite

order not divisible by 2. Then G is isomorphic to one of the following:

Z/NZ, with1 <N =1,35,7,09,
(Z/NZ)?, with N =3,5.

4For m | n and p {m, X;(n,m) is a coarse moduli space for elliptic curves with torsion subgroup
containing a subgroup isomorphic to Z/n x Z/mZ. See Definition 2.1.1 for a precise definition.



48

/

tors for some elliptic

Further, each of these groups appears infinitely often as E(K)
curve E/K.

Proof. Our proof follows that of Proposition 2.1.3 in [21, Proposition 7.1], using
the Hurwitz formula to bound the genera of modular curves, a method dating at
least back to Levin (see [13]). If G = Z/mZ x Z/nZ for 2 1 m,n, then there is a
modular curve X;(n, m) defined over Fy(1u,,) that is a coarse moduli space for elliptic
curves with torsion structure isomorphic to GG. Since E is non-isotrivial, we obtain
a non-constant morphism P* — X;(n,m) which, by the Hurwitz formula, implies
that if G C E(K ), then the genus of Xj(n,m) must be zero. Thus, G must be
given by one of the pairs (m,n) in Proposition 2.4.1 such that 2 ¥ m,n. Using the
parameterizations from Section 2.2, it is easy to show that all of the groups in this

list appear infinitely often when F contains the necessary roots of unity. O]

We will have a point of order 2 if and only if H(E) € (K*)*™! = K*, that is, if
a; # 0, and j(E) € K. By Levin’s bounds, we see that the 2-primary component can
have at most order 8. By using parameterizations from Section 2.2, we immediately
see infinitely many elliptic curves can have torsion subgroups Z/2nZ for 1 < n < 6,
and Z/6Z x Z/3Z if F contains a 3rd root of unity. Thus, for e = 1,2, 3, we only need
to confirm or rule out the following torsion structures over K:

Z/2°NZ for N = 7,9, 10, 12,
(2.6)

ZJ2°NZ x Z/NZ for N = 3,5.

To see Z/14Z, recall that Tate normal form with a = ¢*> — g, b = ag, for non-
constant g € K gives a non-isotrivial elliptic curve with (0,0) a point of order seven.

Again we find j(F) € K? if and only if ¢ = f?, for some f € K. Hence, any
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non-isotrivial curve with a point of order 14 is isomorhic to
E oy + (4 A+ Doy + (fC+ fHy = 23+ (f° + f*)2? for some non-constant f € K.

The same argument shows that any non-isotrivial curve with a point of order 18 is

isomorphic to
E:y* +(fC+ A Day+ (4 fHy = 23+ (f1°+ f*)2? for some non-constant f € K.

Unfortunately, the same type of argument will not work in determining existence
of Z/20Z or Z /247, since in each of these cases, a point of order two already exists.
That is, any curve F with these torsion subgroups has invariants which already satisfy
the hypotheses of Theorem 2.1.7. Instead, we try a different strategy, using division
polynomials. Suppose that F is a non-isotrivial elliptic curve with a point of order

ten (respectively twelve), so that E can be written as
E:y’+(1—a)zy —by® = 2% — bz with a,b € K,

where the formulas for a and b are as in Section 2.2. Here, (0,0) is a point of order

10. Thus, without loss of generality, if £ has a point of order 20, we must have
0 =z(2]P) = ¢o(P)/12(P)? <> ¢2(P) =0 < z' + (ab+b)2*> + b’ = 0.

Combining this with the formulas in Section 2.2 we obtain

f4+f3 x2 f12+f11+f10+f9
HP++f+1 R oL il

¢o(P) =z + =0forz, f € K.
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Finally, we can clear denominators to obtain

(f12+f10+f6+f2+1)l‘4+(f10+f8+f7+f6+f5+f3)l‘2+f12+f11+f10+f920-

Once again, this is a constant curve over K, which Magma reveals is absolutely
irreducible, and has genus one. Note that by hypothesis, E is isotrivial if f € [,
so we are looking for solutions (z, f) with f non-constant, and hence (z, f) is non-
constant. Thus, by Corollary 2.1.14, no such solution exists. Points of order 20 are
therefore impossible over K. In Table 2.11, we use the same strategy to eliminate
points of order 24.

To rule out points of order 28, we start with a curve with the point (0,0) of order

7. We have

2([4P) =0 <= ¢4(P) = (z + 2+ ) (@® + 2+ f)*das(z, f) = 0,

where Aog(x,t) is an absolutely irreducible polynomial. The first factor gives the
point of order seven, P = (f3 + f2,0). If f = ¢* for some g € K*, then the second
factor gives a point P of order fourteen (see above) such that z(P) = ¢*> +g. The
equation Ag9g = 0, however, defines an irreducible curve of genus 3, which by the above
argument, shows that a point of order 28 is impossible over K. In Table 2.11, we use
an analogous construction for Asg, and rule out points of order 36. Note that we have
now ruled out any torsion from (2.6) with a point of order greater than 18.

If F contains a primitive fifth root of unity, then curves with (Z/5Z)? torsion over
K are parameterized by E, : y? + (1 —a)zy — by = x® — br with a and b functions of

some non-constant g € K, given in Section 2.2. Here, H(E) =a; =1 —a € K*, and
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G Eu.p Order of (0,0) Ca genus of Cg
Z/20Z | a= ;2(_{;?17 b= aﬁ 10 ¢2(P) =0 (of degree 16) 1
2 1 w
Z)247 a= f((fff{)i ) b= 5 12 ¢2(P) =0 (of degree 16) 2
Z/28Z a=f>+f b=af 7 Aog(P) = 0 (of degree 18) 3
Z)36Z | a= f2(f+1), b=a(f+1)? 9 A36(P) = 0 (of degree 30) 5

Table 2.11: Using division polynomials to rule out Z/4mZ for m = 5,6,7,9.

j(E) € K?if and only if g = f? for some f € K. Hence, any curve with Z/10Z x Z/5Z
torsion is isomorphic to a curve of the form E,; with

AR A

R

for some non-constantf € K.

Finally, recall, if F contains a primitive third root of unity, then any elliptic curve
with (Z/3Z)? torsion can be written in the form E; : y* + fzy + (f2+ f+ 1)y = a?
for some non-constant f € K, with (0,0) as a point of order three. Without loss of
generality if £, has torsion subgroup Z/127Z x Z/37Z, then there is a point P, of order
twelve, such that 4P = (0,0). Thus, we have 0 = ¢4(P) = 2 (2? + 3 + > +t)*\(z, f).
As above, we find that the first two factors correspond to a point of order 3 and 6
(if f = g¢* for some g € K*) respectively. However, A = 0 defines an absolutely
irreducible curve of genus 1, showing that Z/127Z x Z/3Z is impossible over K.

We can collect all of this into the following theorem.

Theorem 2.4.3. Let F be a finite field of characteristic 2, K = F(T), and E/K
be a non-isotrivial elliptic curve. Then the torsion subgroup E(K )i of E(K) is

isomorphic to one of the following

Z/NZ, with 1 < N <10 or N =12,14,18, for general IF,
(Z/NZ)?,Z/2NZ x Z./NZ, with N = 3,5, if (v € F.
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Further, each of these groups occurs infinitely often as E(K )5 for some elliptic curve

E/K.

2.4.2 Characteristic 3

Next, we suppose that F is a finite field of characteristic 3, and again, K = F(T).
Given an elliptic curve E in long Weierstrass form, under the change of variables
in [16, p. 42|, for p = 3, we can write F : y*> = f(x) for a (monic!) degree three
polynomial f, and thus, our normal calculation for the Hasse invariant of E shows
H(FE) = ay, when written in this form. We can say the following about prime-to-3
torsion structures appearing over K.

Theorem 2.4.4. Let F be a finite field of characteristic 3, K = F(T'), and E/K be a

/
tors

non-isotrivial elliptic curve. Let G = E(K);,,, be the group of rational points of finite

order not divisible by 3. Then G is isomorphic to one of the following:

Z/NZ, with1 < N =1,2,4,5,7,8, 10,
Z/2NZ x )27, with N =1,2,4,
(Z/NZ)?, with N = 4, 5.

/

tors for some elliptic

Further, each of these groups appears infinitely often as E(K)
curve E/K.

Proof. As in the proof of Theorem 2.4.2, if Z/mZ x Z/nZ C E(K)ios for 3 1 m,n,
then the genus of X;(n, m) defined over Fs(u,) must be zero. Therefore, pairs from
Proposition 2.4.1 with 3 1 m,n give a list of possible prime-to-3 torsion subgroups.
Again, all of the groups in this list appear infinitely often by using the parameteriza-

tions from Section 2.2. O



23

Remark 2.4.5. Together, Theorems 2.4.2 and 2.4.4 imply that Cox and Parry’s list

in Theorem 2.1.4 remains valid after we remove the assumption that p is not 2 or 3.

We will have a point of order 3 if and only if ay € (K*)? and j(E) € K®. This
time, by Levin’s bounds, we see that the 3-primary component can have at most order
9. Again, using parameterizations from Section 2.2, we see that the torsion subgroups
Z/3NZ for N = 1,2,3 and Z/6Z x Z/2Z appear infinitely often over K. Thus, for

e = 1,2, we need to confirm or rule out the following torsion structures over K:

Z./3*NZ for N =5,...,8,10,12,
Z)3°2N7 x 7.)27. for N =1,...,4, (2.7)
ZJ3*NZ x Z/NZ for N = 4,5.

Using the change of variables y — 1(y — a1z — a3) from [16, p. 42], any curve

starting in Tate normal form can be written as

y? =2 + (a® +a+2b+ 1)z? + (2ab + b)x + b2
Thus, over K, any curve written in Tate normal form E,; has Hasse invariant as =
a’ +a+ 20+ 1. Note that this change of variables has the effect of moving (0, 0) to
(0, —b).

For example, for Z/15Z to appear, we may start with Tate normal form for a
curve with Z/57Z torsion, where a = b = g for some non-constant g € K. Thus, the

Hasse invariant of F is

HE)=¢+g+29+1=¢*+1.
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We need H(E) = u? for some u € K*, thus, we are looking for K solutions to the
conic

g+ 1=u’

A quick check reveals (g, u) = (0,1) is a solution, so we can parameterize all solutions

by

2h
g= T2 u=hg+1, for non-constant h € K.
Thus, we obtain a family of elliptic curves over K with H(F) € K* equal to a
square. Again, j(E) € K? if and only if h = f? for some f € K, so that if E/K is a
non-isotrivial elliptic curve with a point of order 15, it can be written as
o fOH2f7+2 2f?

E =13
Yo+ f6+2 xy+f6+2y x° +

2f3
Foia

z? for some non-constant f € K.

Using our strategy in Section 2.3, if E has a point of order m = 7,8, 10, then we
can write it in Tate normal form. If in addition, £ has a point of order three, then

we must have

H(E) = am(f)*+am(f)+2bm(f)+1 = u* for some u € K*, and non-constant f € K.

In each case, clearing denominators when necessary, a point of order 3m on an elliptic
curve I/ over K implies the existence of a non-constant point on one of the curves in
Table 2.12. Again, since each of the (s, ; in this table are irreducible and constant,
we know that all of the points in Cs,, 1 (/) are constant. Thus, points of order 21, 24

or 30, and hence 63, 72, and 90, are impossible over K.
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m G Cam genus of Cs,, 1

7 | Z)21Z fA42f+1=u? 1
7.]247. 2f* + 23+ 2+ f+1=1? 1

10 | Z/30Z | fO+2f°+2f* +2f3+2f +1=1u? 2

Table 2.12: Ruling out G = Z/3mZ torsion over K for m = 7,8, 10.

As in the case when p = 2, unfortunately, the same strategy cannot be applied to
rule out points of order 18 or 45, since here we need to start with curves which already
have invariants satisfying our hypotheses. In the same way we did above, however,
we can start with a curve written in Tate normal form to get a point of specified
order, then use division polynomials to obtain the necessary conditions. The results

are irreducible constant curves, collected in Table 2.13. Here, the polynomial A5 is

G Ea.p order of (0,0) Cammn genus of Cs,,
7./187 a=f, b=f?+f 6 ¢3(P) =0 (of degree 13) 1
ZJASZ | a= f>(f —1), b=a(f +1)? 9 Ai5(P) = 0 (of degree 89) 16

Table 2.13: Using division polynomials to rule out Z/9mZ for m = 2,5.

the irreducible factor of ¢5(P) = (z + 2f° + 2f* + f3 + f?)\45 that corresponds to a
point of order 45 (as above). The table shows that points of order 18, 36 and 45 are
impossible over K. Note, we have also ruled out any torsion structures from (2.7)
with a point of order greater than 15.

To see Z/127 x 7Z/2Z torsion, we may start with a curve F/K with torsion
structure Z/47 x Z/2Z, and force the conditions for a point of order three. We can

write F in the Tate normal form with ¢ = 0 and b = ¢% — g?> — 1 for some

1 =
16 —

non-constant g € K, and thus, the Hasse invariant of F is

HE)=ad*+a+20+1=2(g>—1)+1=2(g* +1).
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Thus, we need 2(g? + 1) = u? for some v € K*. This shows that Z/12Z x Z/27Z is
impossible over K unless F contains i, where ¢ is a primitive 4th root of unity. If it

does, then H(E) = u? if and only if

h?2+2

u=h(g —1),

for some h € K*. Again, j(E) € K? if and only if h = f3 for some f € K. Thus,
if F contains a primitive 4th root of unity, and E/K is a non-isotrivial elliptic curve

with Z /127 x 7 /27 torsion, it can be written as

2f24_|_2 3 2f24_|_2

[y Y= + YN 1x2 for some non-constant f € K.

y2+xy+

We continue supposing F contains a primitive 4th root of unity, and recall that a
non-isotrivial F/K has (Z/47)? torsion if and only if it can be written in the Tate
normal form with @ = 0 and b = f*— - = f*—1. As above, using the Hasse invariant
of E, we find Z/127Z x Z/4Z torsion structure implies a non-constant point on the

irreducible, constant, genus one curve

C:2(f*+1) =’

Hence, this torsion structure is impossible over K by Corollary 2.1.14.
Finally, if F contains a primitive fifth root of unity, then any curve with (Z/5Z)?
torsion can be written as E(a,b) : y* + (1 — a)zy — by = 2* — bx? with

2 P4
PP S

for some non-constant f € K.
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Here, if an additional point of order three exists, then the Hasse invariant is

fP+1
(fo+ 2+ +)

H(E)=ad*+a+2b+1 = 5 € (K*)? <= fY41=u?foruc K~

Therefore, if Z/15Z x Z/5Z exists over K, it gives a non-constant point on the

2

irreducible constant curve C' : f1% + 1 = 42 But C is hyperelliptic, so its genus

is positive (g = % = 4), and therefore C' has no non-constant points. Thus,

Z.J157 x Z./5Z is impossible over K.

We collect this all into the following theorem.

Theorem 2.4.6. Let F be a finite field of characteristic 3, K = F(T'), and E/K
be a non-isotrivial elliptic curve. Then the torsion subgroup E(K ) of E(K) is

isomorphic to one of the following

Z/NZ, with 1 < N <10, or N = 12,15,
for general IF.
Z/2NZ x 7./2Z, with 1 < N < 4,
ZJ127 x 7.)2Z, (7] AZ)?, if (4 €F.
(Z/52)?, if ¢ € F.

Further, each of these groups occurs infinitely often as E(K )iors for some elliptic curve

E/K.

2.5 Explicit Parameterizations of Exotic Torsion

Let F be a finite field of characteristic p, and set K = F(T"). In this final section,

we give explicit parameterizations of elliptic curves with new torsion structures found
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possible over K. In Table 2.14, for non-constant f € K, if A,;, # 0, then E,; is a

non-isotrivial elliptic curve over K such that E, (K )i has subgroup G. Each family

in Table 2.14 comes as a parameterization from Sections 2.3 and 2.4, brought to Tate

normal form, so that (0,0) is a point of maximal order in the group.

Characteristic Eup:y*+ (1 —a)zy — by = 2® — ba® G
_ (f+3)(f+5)2(f+9)? _ (fHDAf+9)
p=1 = TR b=y 217
_ fUF+1)3 _ 1
SO i /O e L
_ 1) (f+3)3(F+4) (f+ _ DU
p=T a EDEED b= a5y
_3 q = £2U+D? b= qlUH2LP 4 +1)
’ (J(”f—;?(); 2)2(f+4)3(f%42) f(f (4J;+2)5 Z/15Z
_ +D(f+2)2(f+ + _ +
pP=>5 a (FH3°(°+3) b= atp
_ SUFD2 (24 1+1) _ (12
_ S22 (f43) (f+4) _(f+DA(f+3)?
P=95 “ GEETE b=ianyr 202X Z)2%
_ FUE+DF+2) (2 427+2) _ (2412
p—3,2€F a (f2+f12)3 b—am Z/lQZXZ/2Z
p=2i€F a=ITE0Dl) = (LULE 7102 x Z/52

Table 2.14: One-parameter families of elliptic curves E, j/K such that E, j(K)tors has a subgroup G.

Remark 2.5.1. In the table, for Z/10Z x Z/27, a generator of order two has the

z-coordinate © =

z-coordinate x =

ff+2)%(f+3)°
(f2+4f+1)3 -

For Z/12Z x 7Z/27Z, a generator of order two has

(f+i+2)(f+2i+2)0

erator of order five has the z-coordinate

AE)U+DUHD (A2 (4207 (f+2i41) Finally, for Z/10Z x Z/5Z, a gen-

— P2UHEHGHD UGG DG (TG D (f G+ (FHEHEHG)?

T

(FHE+HE)B(f+CE+C2+1)8



Chapter 3

Genus 1 Function Fields

3.1 Introduction

Again, let F be a finite field of characteristic p, let C be a smooth projective curve
of genus 1 over F, and K = F(C). Less is known about the torsion subgroup in
this setting. One useful result is the bounds on the order of a point in E(K), given
by Theorem 2.1.9, where Levin gives bounds for arbitrary genus. As for p-primary

torsion, when ¢(C) = 1, Theorem 2.1.9 leads to the the following useful corollary.

Corollary 3.1.1 (Levin, [13]). Let C be a smooth, projective curve of genus one over

F, a finite field of characteristic p. Let K = F(C). and E/K be an elliptic curve.

29



Suppose p¢ | #E(K )tors- Then

p<13, e<

(

\
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4 ifp=2,

2 ifp=3,

1 ifp=5,7,11,13.

We will also make use of Proposition 2.1.13, and an analogous result to that of

Theorem 2.1.4 proven for genus 1. In what follows, we will prove the following result.

Theorem 3.1.2 (M). Let C be a curve of genus 1 over F, a finite field of characteristic
p, and let K =TF(C). Let E/K be non-isotrivial. If pt #E(K )iors, then E(K)iors 1S

one of the following groups

7Z/NT.
7.)2N7 x 7./27.
Z/3NZ x 7./3T.
7JANZ x 7.JAZ.
(Z/NZ)?

with N =1,...,12,14,15,
with N=1,...,6,

with N =1,2,3,
with N = 1,2,
with N = 5, 6.

Otherwise, if p | #E(K)iors, then p < 13, and E(K )i is one of

Z/pZ

7.)2p7, 7./ 2pT x T.)2T.

Z/3pZ, 7./ ApZ

Z/5pZ,7./6pZ, 2] TpZ,7/8pZ

Z/2NZ
Z/6NZ x 7./3Z.
Z)10Z x Z./5Z

ZJ12Z x 7./2Z, 7127 x /A

ifp=2,3,5711,13,
ifp=3,5,7,

ifp=2,3,5

ifp=2,3,

for N =9,10,11,15, if p = 2,
for N=1,2/3, ifp=2,
ifp=2,

ifp=3.



61

Further, if G = Z/mZ x Z/nZ is in this list with n | m, and F contains a primitive
nth root of unity, then there are infinitely many non-isomorphic, non-isotrivial elliptic

curves with E(K )gors =

In Section 3.2 we will start by proving Theorem 3.2.3, which is an analogue of
Cox and Parry’s Theorem 2.1.4 when the genus of C is one. Then as in Chapter
2, starting with characteristic p > 5, we will use this result and Theorem 2.1.7 to
obtain a curve D which parameterizes non-isotrivial elliptic curves which in addition
to having a torsion structure GG found in Theorem 3.2.3, also have a point of order p.
In each case, D will be irreducible with coefficients in F. If D has genus one, then
it will turn out that there are elliptic curves with torsion structure G x Z/pZ only
if the base curve of K is isogenous to D. If D has genus greater than one, then we
will use Proposition 2.1.13 to conclude that this torsion structure is impossible over
K. Finally, in Section 3, we include parameterizations of elliptic curves with torsion
subgroups that appear over K for any C, and the isogenies required for any torsion

subgroups which appear only for specific C.

3.2 Genus one

Let F be a finite field of characteristic p. By Proposition 2.1.13, given two curves, D /F
and a smooth C/F, and K = F(C), we know that D(K’) has no non-constant points if
g(D) > ¢g(C). What if they are equal? Certainly, in this case, no contradiction comes
from the Hurwitz formula. When ¢(C) = g(D) = 1, in fact, the Hurwitz formula, and

the proof of Proposition 2.1.13 yield the following useful corollary.
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Corollary 3.2.1. Let C and D be irreducible curves over F, a finite field of charac-

teristic p. Suppose C is smooth of genus 1, and set K = F(C).
1. If g(D) > 1, then D(K) has no non-constant points.

2. If g(D) = 1, and D(K) contains a non-constant point, then C and D, the

normalization of D, are isogenous over IF.

Proof. As in the proof of Proposition 2.1.13, a non-constant point P on D induces a

non-constant, separable morphism between curves

p:C — D, defined over F

where D is the normalization of D, by composing the map ¢ — P, on D, with the
normalization map. Since C and D are smooth curves of genus one over a finite field,
they have a point, and therefore are elliptic curves. Without loss of generality (by
composing with the translation map P +— P + )) we may assume that p(O) = O,

and the map p is an isogeny. O

3.2.1 Prime-to-p torsion

We start with a statement about modular curves of genus one.

Proposition 3.2.2 (Sutherland, [18] and [19]). For a finite field F of characteristic
p 1 n, the modular curve X;(n,m) has genus one if and only if (m,n) is one of the

following pairs.

(11,1), (14,1), (15,1), (10,2), (12,2), (9,3), (8,4), or (6,6). (3.1)
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Next, we prove an analogue of Cox and Parry’s theorem for genus 1.

Theorem 3.2.3. Let C be a curve of genus 1 over IF, a finite field of characteristic
p, and let K =F(C). Let E/K be non-isotrivial. Then E(K)i, (the rational points

tors

of finite order prime to p) is one of

7/NZ. with N =1,...,12,14,15,
ZJ2N7 x 7.)27. with N =1,...,6,
ZJ3NZ x Z/3Z with N =1,2,3,
ZJANZ x 7JAZ, with N = 1,2,
(Z/NZ)®  with N =5,6.

Further, let G = Z/mZ x Z./nZ be in this list with n | m and p { n, and such that F
contains a primitive nth root of unity. Then there are infinitely many non-isomorphic,

non-isotrivial elliptic curves with E(K )iors = G only if

C is isogenous to X1(n,m) if (m,n) is in (3.1),

C is any smooth curve otherwise.

Proof. Following the proof of [21, Proposition 7.1], suppose E(K); . has the form
G =7Z/mZ x Z/nZ where n | m and p { n. Then, since the modular curve X;(n, m),
defined over IF,(u,), is a coarse moduli space for elliptic curves with G C E(K)f, .

this induces a non-constant map C — Xj(n,m). By the Riemann-Hurwitz formula,

since g(C) = 1, we must have g(X(n,m)) < 1. Thus, by Propositions 2.4.1 and 3.2.2,
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(m,n) is one of the pairs

(N,1) with N =1,...,12,14, 15,

(2N,2) with N =1,...,6,
(3N,3) with N =1,2,3,
(4N,4) with N = 1,2,
(N,N) with N = 5,6.

The torsion subgroups corresponding to Proposition 2.4.1 have already been shown
to appear infinitely often in Section 2.2. The only new subgroups are those that
correspond to a pair in (3.1), namely, Z/NZ with N = 11,14,15, Z/12Z x Z/2Z,
ZJ10Z x ZJ2Z, 7.]97 x Z)3Z, Z)8Z x Z/AZ, and (Z/6Z)*. We need only show
examples of elliptic curves with these new torsion subgroups appearing over F(C) for
some base curve C.

If £ has a point of order N, and X;(NN) := X;(1, N) has genus one, then by
Corollary 3.2.1, C must be isogenous to Xi(N). In this case, we can use the opti-
mized equations in [18] to construct examples of elliptic curves with torsion subgroup
corresponding to a pair in (3.1). For example, suppose p # 11, and let F be a finite
field of characteristic p. If E/K has a point of order 11, then there is an isogeny
C— X1(11) : u? + (t* + D)u+t = 0 over F. If we take the case where C = X;(11),
for example, then K = F(X;(11)) = F(¢,u), and using [18], we can construct the

following infinite family of elliptic curves with a point of order 11:

E,:2+ (1 —a)f vy —0"y =% — 0" 2%

witha = —(u+ 1)t —u®> —u+1, b=a(ut +1), n > 0.
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On the other hand, if C is only isogenous (but not isomorphic) to X;(11), and
K =T(C). Then we can use the induced map ¢ : F(X;(11)) = K by u — u, € K
and ¢t — t, € K and obtain the following infinite family of elliptic curves with a point

of order 11:

E. /K :y*+ (1 —a)f vy — 0"y =a2> - "2

with a = —(u, + 1)t, — ui —u, + 1, b=a(uyt, +1), n>0.

Similarly, we can use [18] to construct infinite families of elliptic curves with points
of order 14 and 15 (as long as p # 2,7 or p # 3,5 respectively) when C is isogenous
to X1(14) and X;(15).

Finally, if Z/mZ x Z/nZ C E(K), and and X;(n,m) has genus one, then by
Corollary 3.2.1, C must be isogenous to Xi(n,m). This time, we can use [19] to
construct examples. For example, suppose p # 2,5, and let F be a finite field of
characteristic p. If G = Z/10Z x Z/27Z C E(K), then C is isogenous to X;(2,10) :
u? =3 — t* + t. For example, if C = X;(2,10), and K = F(X;(2,10)) = F(¢,u), then

using [19], for all n > 0, the following elliptic curve E, has G C E,(K):

Ey:y? =2+ (s —2rs)a? — (s — 1)(rs + 1)z,

with 7 = (t/u)?", s = (4tu/(tu® — 13 — 3t — u?))?".

Again, infinite families of elliptic curves containing the remaining groups from
the theorem can be realized when C is isogenous to X;(n,m) by using a similar

strategy. O

In the rest of this section, we will follow the strategies of Chapter 2 to determine
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what combinations of p-primary torsion can appear with the subgroups from Theorem

3.2.3. We will start with p = 5, then work case-by-case for primes p = 2,3,7,11,13.

3.2.2 Characteristic p = 5.

In the spirit of Section 2.3.1, we begin with the prime p = 5, to get an idea of how
things work when K = F(C) is a genus one function field. For p = 5, Theorem
3.2.3 can be easily restated, giving the full picture of prime-to-5 torsion over F(C) of

characteristic 5.

Corollary 3.2.4. Let C be a curve of genus 1 over F, a finite field of characteristic
5, and let K =F(C). Let E/K be non-isotrivial. Then E(K);,. is one of

tors

Z/NZ with N =1,...,4,6,...9,11,12, 14,
Z/2NZ x 7.)2Z. with N =1,... 4,6,
7J3NZ x 7./37. with N =1,2,3,
ZJANZ x ZJAZ with N = 1,2,

(Z/6)?

Further, let G = Z/mZ x Z/nZ be in this list with n | m and p 1 n, and such that F
contains a primitive nth root of unity. Then there are infinitely many non-isomorphic,

non-isotrivial elliptic curves with E(K )yors = G only if

C is isogenous to X1(n,m) if (m,n) is in (3.1),

C is any smooth curve otherwise.

Below, we will follow the strategy used in Section 2.3.1: starting with a group
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in Corollary 3.2.4, when possible, we write a curve in the Tate normal form FEy
parameterizing the torsion structure Z/mZ x Z/nZ for some f € K (otherwise we
use division polynomials). Then, we write the curve in short Weierstrass form Ey :
y? =23+ A(f)x + B(f). If we assume that G = Z/5mZ x Z/nZ C E;(K), that is,

if it has an additional point of order 5, then we can use Theorem 2.1.7 to say

H(E4p) = 2A(f) = g* for some g € K*.

Now, defining the curve Cs,,,, : 2A(t) = u?, we see that non-isotrivial elliptic curves
with G torsion give non-constant points on Cs,, . We need only compute the genus
of Cs,.n, to determine if torsion subgroup G is possible for E;(K). By Corollary 3.2.1,
if g(Csm.n) > g(C) = 1, G is impossible. Otherwise, if g(Cs,.n) = 1, then G is possible
only when C is isogenous to Cs,, ,, and if g(Cspn) = 0, then G already occurs over

function fields of genus zero, and appears in Theorem 2.3.3.

Theorem 3.2.5. Let C be a curve of genus 1 over F, a finite field of characteristic
5, and let K =F(C). Let E/K be non-isotrivial. Then E(K )i i one of

Z/NZ. with N = 1,...,12,14,15, 20,
Z/2NZ x Z.J2Z with N =1,...,6,
Z/3NZ x ZJ3Z with N = 1,2,3,
ZJANZ x 7.JAZ. with N = 1,2,
(Z/6Z)2.

Further, let G = Z/mZ x 7/nZ be in this list with n | m, and such that F contains

a primitive nth root of unity. Then there are infinitely many non-isomorphic, non-
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isotrivial elliptic curves with E(K )i = G only if

)
C is isogenous to Xi(n,m) if (m,n) is in (3.1) with 51 m,

C is isogenous to Cog 1 :ut =2+t +1 if (m,n) = (20, 1),

C 1s any smooth curve otherwise.
\

Proof. Using Corollary 3.2.4, and the fact that by Levin, F can have a point of 5-
primary order at most 5, we need to rule out or confirm the existence of Z/5mZxZ/nZ

with (5m,n) coming from

(5N,1)  with N =3,4,6,7,8,9,11,12, 14,

(10N,2) with N =1,2,3,4,6,

(156N,3) with N =1,2,3, (3.2)
(20N,4) with N = 1,2,

(30N,6) with N = 1.

We have already seen above that the torsion structures Z/5Z, Z/15Z and Z/10Z x
7./27, can appear infinitely often regardless of the base curve, C. We rule out the rest
of the torsion structures by using the strategy outlined above. For example, if E(K)
has a point of order 30, then we can write it in the Tate normal form for elliptic

curves with a point of order 6:

E o+ (1= fay — (f*+ fly = 2> — (f* + f)2?, for some non-constant f € K.
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Since E¢(K) has a point of order 5, by Theorem 2.1.7 we must have

gt = H(E)=4f*4+2f*+2f + 1, for some g € K*.

Since g and f are both in K, and f is non-constant, we see that an elliptic curve over
K with a point of order 30 would imply the existence of a non-constant point on the
curve Csg ;1 @ 4t*+2t3+2t+1 = u* over K. The curve C'is irreducible, has coefficients
in IF, and has genus 3. However, by Corollary 3.2.1, we see that a non-constant point
on C3p; would induce a map C — C5g 1, which is impossible. Thus, no non-isotrivial
elliptic curve E/K can have a point of order 30. Results for other torsion structures
are collected in Table 3.1, wherein each curve Cs,,,, is irreducible by the Eisenstein
criterion. With the exception of Z/55Z, this table rules out any torsion structure G

from (3.2) #G > 40 or a point of order > 30.

G=7/5mZ x Z/nZ Curve Cspp, genus
7./207 t2+t4+1=u 1
7./30Z M 283+ 2t + 1=t 3
7./357 B3 2 A+ 2 A+ 1 =t 9
7./407 B8 tT At 265 283 12 At + 1 = ot 9
7./457, 12 43 44110 4200 488 A A 2t 33 32 1 =t | 15

ZJ20Z x 7./ 27 th+ 4t + 1 =t 3
ZJ15Z x Z./3Z th+ 3t =ut

Table 3.1: Ruling out G = Z/5mZ torsion over K for m > 4.

As for points of order 55, using a similar strategy, we can start with £/K in the
form £ : y* + (1 — flay — fy = 23 — fx3. Solutions, (z, f), to ¥11(F) = 0 give a-
coordinates of points, P,, such that 55P, = O. Unfortunately, however, 111 defines a
degree 72 curve, Css 1, whose genus and irreducibility were quite difficult to compute.

Magma outputs that Css; has genus 11 after a 100 hour computation, and after 468
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hours', that Css 1 is absolutely irreducible. Thus, by Corollary 3.2.1, no such points
exist, and points of order 55 are impossible for an elliptic curve over K.

With the exception of Z/20Z, we have already seen from Theorem 3.2.3 and the
parameterizations in Section 2.2, that all groups in the theorem appear infinitely
often as the torsion subgroup of an elliptic curve E/K (in the case for Theorem
3.2.3 this is as long as C is in the right isogeny class). We also find that because
9(Ca,1) =1, in order for an elliptic curve E/K to have a point of order 20, we must
have that C is isogenous to the normalization of Cyy; by Corollary 3.2.1. In this
case, Uy is already non-singular. Thus, we may take, for example, the case when
C=Cyy:t?+t+1=u' and F(C) = F(Cy,) = F(t,u). In this case, the following

family gives elliptic curves with a point of order 20 for all n:
E, vy +ay—t>" =a% —t"2? for n > 1,

since H(E,) = (u*)” = (u*")* € K* and j(F) € K® for all n. Thus, we find infinitely
many curves over K with a point of order 20. If we suppose that C is isogenous to
Cy,1, then we can use the induced map ¢ : F(Cy1) — K with ¢t — ¢, € K and

u +— u, € K, to construct
E,, : y: 4+ xy — tf;n = — tf’;:r;Q forn > 1,

which is an infinite family of elliptic curves over F(C) = F(¢,u), for F a finite field
of characteristic, with a point of order 20. Here H(E,,) = (u}’)* € K*. Sece the

example below for a deeper discussion. O

'Magma V2.20-10 was used for both computations. The irreducibility test was run on a 2013
Mac Pro with a 3.5 GHz 6-Core Intel Xeon E5 processor.
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Example 3.2.6. Over K = F(C), non-isotrivial elliptic curves with points of order
4 can be written in the form E; : y* + 2y — fy = 2® — fa? for some non-constant
f € K. From Section 2.3.1, if in addition, E has a point of order 5, then we must
have a point on the curve

D:?+t+1=u"

The curve D is a base extension of a curve over F5. It is already smooth, but to
simplify our calculations, we can write it in short Weierstrass form Dy : u? = 3 + 3t,

with the isomorphism 7 : Dy — D given by

[T,U, V] — [AT* + 20V + 3V2 YV, TV].

Let t =T/V and v = U/V, and we have

[t,u, 1] = [4t +2+ 3t 71, 1.

If F = 5, then since Dy is the only curve up to isomorphism in its isogeny class
over 5, the base curve C must be isomorphic to Dy. If C = Dy for example, then
defining F(t,u) = F(Dy), the following is an infinite family of elliptic curves with a

point of order 20:

E,: vy +aoy— fy=a®— 2% with f =4t +2+ 3t foralln > 1.

For example, E; has the following point of order 20:

<u(u + 128+ tu® + 2t +2) (u+1)5(u+4)(#* + tu?® + 2u® + 3))
t2u? + 4t + 2u? ’ t2u? + 4tut + 2t + u? '
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Over Fa5, the curve Dy has three other curves in its isogeny class. For example,

Dy is isogenous to the curve Dy : u? = t3 + 3t + /3 via the isogeny:

¢ : Dy — Dy by [t,u,1] —

243t +2 2 4+2V3t+1 1]
b u) .
t+v3 T2+ 2V3t+3

Thus, if p(t) = t,, then we can construct an infinite family of elliptic curves over
K =T(t,u) = F(D;) with a point of order 20 by using the same family above with
f=4t,+2+ 3t;1. In particular, for all n > 1, the following is an elliptic curve over
K =T(D,) with a point of order 20:

n n . 4444 (3/34-2)t3 4+ (4v/3+1)t24+2v/3t+43
B,y +ay— [Ty =2 — [Va?, with [ = LGSO 0515

Note that this is an example of an infinite family of elliptic curves with a point of

order 20 over a function field whose base curve is not isomorphic to Dj.

3.2.3 Characteristic p = 2

By specializing to p = 2, we may state the following corollary to Theorem 3.2.3,
which tells us what prime-to-2 torsion to expect over F(C), with I a finite field of

characteristic 2.

Corollary 3.2.7. Let C be a curve of genus 1 over I, a finite field of characteristic 2,
and let K =F(C). Let E/K be non-isotrivial. Then E(K); . is one of the following.

tors

Z/NT. with N = 1,3,5,7,9,11, 15,
Z/3NZ x ZJ3Z with N = 1,3,
(Z/5Z)?.



73

Further, let G = Z/mZ x Z/nZ be in this list with n | m, and such that F contains
a primitive nth root of unity. Then there are infinitely many non-isomorphic, non-

isotrivial elliptic curves with E(K )ios = G only if

C is isogenous to X1(n,m) if (m,n) is in (3.1),

C is any smooth curve otherwise.

Again, we will start with a group in Corollary 3.2.7 and write a curve in the Tate
normal form parameterizing the torsion structure G = Z/mZ x Z/nZ. Recall, our
Hasse invariant strategy does not distinguish between points of order p or p® for e > 1.
Thus, since in characteristic 2 we may find points of order 2¢ for e = 1,2, 3,4, it may
not be possible to use the Hasse invariant. Instead, we use division polynomials to
define curves Cae,, , parameterizing elliptic curves with torsion structure G x Z/2"Z.
Recall, if g(Caeyn) = 0, then G already occurs over function fields of genus zero, and
appears in Theorem 2.3.3.

Throughout, we will attempt to provide infinite families of examples when a tor-

sion structure appears for elliptic curves over K.

Theorem 3.2.8. Let C be a curve of genus 1 over F, a finite field of characteristic

2, and let K =F(C). Let E/K be non-isotrivial. Then E(K ) is one of

Z/NZ with N = 1,...,12, 14,15, 16, 18, 20, 22, 30
ZJ)3NZ x ZJ3Z with N =1,2,3,4,6,
Z/5NZ x Z/5Z with N = 1,2.

Further, let G = Z/mZ x Z/nZ be in this list with n | m, and such that F contains

a primitive nth root of unity. Then there are infinitely many non-isomorphic, non-
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isotrivial elliptic curves with E(K )i = G only if

(

C is isogenous to Xy(n,m) if (m,n) is in (3.1) with 2t m,

C is isogenous to a curve in Table 3.9 if G appears in Table 3.9,

C is any smooth curve otherwise.
\

Proof. We need to rule or confirm the existence of Z/mZ x 7. /nZ with (m,n) coming

from

(2N, 1), (4N, 1), (8N, 1), (16N,1)  with N =1,3,5,7,9,11, 15,
(6N,3), (12N, 3), (24N, 3), (48N,3)  with N = 1,3, (3.3)
(10,5), (20, 5), (40, 5), (80, 5).

From Chapter 2, we recall Caq1, Cag 1, and Css; all have genus greater than one,
ruling out these torsion structures, and those containing them, from (3.3). To show
that no groups appear other than those in the theorem, we need only rule out the
pairs (40,1), (44,1), (60, 1), (30,3), and (20, 5).

We begin with a curve written in the Tate normal form for points of order ten, and
look at ¢4(x) = 0. We set Ay to be the numerator of ¢4(x), and define Cyp 1 : Ayo = 0.
The curve Cyg; is irreducible of genus 9, and has coefficients in F. By Corollary 3.2.1,
this shows that Cj; has no non-constant points, and thus points of order 40 are
impossible for non-isotrivial elliptic curves over K.

Starting with a curve written the Tate normal form for a curve with a point of
order four, and looking at ¢11(x) = 0, we see that ¢11(E,p) = @ - Ayg, where Ay is an
irreducible polynomial of degree 120. We define Cus 1 : Mg = 0, and after a 5.5 hour

calculation find that Cly4 is irreducible of genus 11. Again, since Cy; has coefficients
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in K, this shows that there are no points of order 44 for elliptic curves over K.
Next, beginning with the Tate normal form for points of order 12, and look at
¢5(x) = 0. The numerator factors into a genus 0 curve corresponding to points of
order 20, and a degree 96 curve we call Agy. We define Cgo1 : Ao = 0, and find that
Ceo,1 is irreducible of genus 17, with coefficients in [F, again showing that points of
order 60 are impossible.
From Section 2.2, we see £/ K has Z/67Z x 7Z/3Z torsion if and only if (3 € K and

E can be written in the Tate normal form for points of order 6 with

f(fP+f+1) 4f2 —2f +1

= 7 7 b=—-a——"—, f € K non-constant,

(f —1)° (f —1)

where (0,0) is a point of order 6. Again, we look at ¢s5(x) = 0. The numerator
factors as xA303, where Agg 3 is an irreducible polynomial of degree 132. This time,
C30,3 : A30,3 = 0 is absolutely irreducible of genus 9, showing that the torsion subgroup
7./30Z x Z./6Z is impossible for a non-isotrivial elliptic curve over K.

Finally, again from Section 2.2, we see that F/K has (Z/5Z)? torsion if and only
if (s € K and E can be written in the Tate normal form for this torsion structure

with
[t 442431+ 1

B VI VT

This time, the numerator of ¢5(z) = 0 factors as - g- Ay 5 where g defines a genus 0
curve corresponding to Z/10Z x Z/5Z. We define Cyg 5 : Ay 5 = 0, and find that Cyg 5
has coefficients in F and is irreducible of genus 9, showing that this torsion structure
is impossible over K.

We have ruled out every torsion structure from (3.3) not appearing in the theorem,
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and, with the exception of (16,1), (20,1), (22,1), (30,1), (12,3) and (18, 3), we have
seen that each torsion structure in the theorem appears infinitely often. What is left

is to show that each of these pairs appears infinitely often. In what follows, define
EX '+ (1—a oy — by =a° — b*" 2 for some a,b € K and n € Zs,.
Che.1 is isomorphic to Chgq @ u? +u = t* 4t with 7w : Cigy — Cley sending t to
(2 + 1>+t + 14 u)/t". Let K = F(Cig,1) = F(t,u), and set

3 2 — —
:t+t+t;f+1+u7 e 1}(f D, b o

f

Then, Egz is an infinite family of curves with a point of order 16. As will be the case
in every example bellow, trivially, H(Ep) is a first power in K*. Thus, we only need
J(E) € K?, which we can ensure by making sure the coefficients of E are all squares.

The normalization of Uy, is 6'2071 : u? 4+ u = t? + t with normalization map

T 02071 — 02071 sending

tr++t+u+1
— .
tt+1

Thus, for example, if K := F(C’Qogl) = F(t,u), and we set

P tttudtl __f-vefr-ny o, F

11 S Y 2_3f+1

f

then E7) is an infinite family of elliptic curves with a point of order 20 over K.

Recall, F/K has a point of order 11 only if C is isogenous to the modular curve
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Xi1(11) s u? + (2 4+ Du + ¢t = 0. If we consider K = F(X;(11)) = F(¢,u) and set
a=(u+Dt+u®+u, b= (u®+u)t+u®+u?

then elliptic curve E} , : 4> + (1 — a)xy — by = 2° — ba® has a point of order 11. Thus,
Egz is an infinite family of elliptic curves with a point of order 22.
The normalization of Csg is 6’30,1 cultu4u =3+ 12 with 7 C~’3071 — U501 by

‘s tu+tu+ 12 +1
B+t + 341241

Let K = F(Cs4) = F(t,u), and set

tu+tlu+t2+1 _ f(f-DEf-1 - f?

f:t8+t7+t5+t4+t3+t2+1’ “= f-sf+1 T Y ospen

Then E?, is an infinite family of curves with a point of order 30.
Recall, E/K has torsion structure Z/6Z x 7Z/3Z if and only if (3 € K and F can

be written in the Tate normal form for this torsion structure with

Ok )] _

4f2 —2f +1
(f—=1) '

(f =1)°

Here, E,; has (0,0) as a point of order 6. By looking at the numerator of the
division polynomial ¢o(E, ), we determine that the torsion structure Z/12Z x Z/37Z

corresponds to points on the curve

Chros : t"u + %! + 120 + P + 0 + P+ 0 + "+t + 2+ Put + e +ut = 0.
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Here, over Fy, the normalization of Cg 3 is C~’1273 cul4u =341 with 7 01273 — Cla3

sending
P +12+u
tt+1
Thus, E/K has torsion structure Z/12Z x Z/3Z only if C is isogenous to Cys5. For

example, if K = F(C‘lﬁ,l) = F(t,u), then setting

B4+t +u (P o Afr-2f+1
= —F a=——"""5" b= —a

f=—=ra G-1p T

makes £, an infinite family of elliptic curves with torsion structure Z/127 x Z/3Z.

Similarly, if we begin with a curve written in the Tate normal form for Z/6Zx Z /37
torsion, we can look at the numerator of ¢5(E,p), to find Cigs. It turns out, the
normalization of Clgs is again Clas @ u? +u = t> + 1, but we will call it Cig3 for

consistency. Under the map 7 : 61873 — Cg,3 we have

Pttt Htut+t+ud +ud+ 1
t2ut 4 2u? 4 ub 4+ ud +ud +u? + 1

We again have the example where C = Cig3, and K = F(Cig3) = F(t,u). Setting

AR VLN STL TS R f(f2+f+1) b— —a4f2 —2f+1
= t2u4+t2u2+u6+u5+u3+u2+1 9 - (f - 1)3 9 - (f o 1)3 Y

E?), is an infinite family of curves with torsion structure Z/187Z x Z/3Z over K.
Again, as above, in each of these examples, we may suppose that C — C’zm,n is

an isogeny of curves with ¢ : F(Cyy, ) — K such that t — ¢, and u — wu,. Then by

replacing ¢ by t, and u by u,, in each equation, we can find Eg;, an infinite family of

elliptic curves with torsion structure Z/mZ x Z/nZ over K. O
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3.2.4 Characteristic p =3

Specializing to characteristic p = 3, and considering a function field K of genus one,

Theorem 3.2.3 provides the following corollary.

Corollary 3.2.9. Let C be a curve of genus 1 over F, a finite field of characteristic
3, and let K =F(C). Let E/K be non-isotrivial. Then E(K);,. is one of

tors

Z/NZ with N = 1,2,4,5,7,8, 10, 11, 14,
ZJ)2NZ x ZJ27 with N = 1,2,4,5,
ZJANZ x 7.J4Z. with N = 1,2,
(Z/5Z)2.

Further, let G = ZL/mZ x Z/nZ be in this list with n | m, and such that F contains
a primitive nth root of unity. Then there are infinitely many non-isomorphic, non-

isotrivial elliptic curves with E(K )ios = G only if

C is isogenous to X1(n,m) if (m,n) is in (3.1),
C is any smooth curve otherwise.
Again, as in Section 3.2.3, we may have points of order 3¢ with e = 1,2. Thus, we

will combine the Tate normal form for G = Z/mZ x Z/nZ and division polynomials to

define curves Cse, , parameterizing elliptic curves with torsion structure G' x Z/3°Z.

Theorem 3.2.10. Let C be a curve of genus 1 over IF, a finite field of characteristic
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3, and let K =F(C). Let E/K be non-isotrivial. Then E(K )ios i one of

Z/NZ with N =1,...,12,14,15, 18,21, 24,
Z/2NZ x )27 with N =1,...,6,
ZJANZ x 7,JAZ with N =1,2,3,
(Z/5Z)?.

Further, let G = Z/mZ x Z/nZ be in this list with n | m, and such that F contains
a primitive nth root of unity. Then there are infinitely many non-isomorphic, non-

isotrivial elliptic curves with E(K )ios = G only if

/

C is isogenous to Xi(n,m) if (m,n) is in (3.1) with 3t m,
C is isogenous to a curve in Table 3.9 if G appears in Table 3.9,

C is any smooth curve otherwise.

\

Proof. This time, by Levin’s bounds, £/K can have a point of 3-primary order 3 or

9, so we need to look a subgroups Z/mZ x Z/nZ with (m,n) coming from

(3N,1),(9N,1)  with N =1,2,4,5,7,8,10,11, 14,
(6N,2),(18N,2)  with N =1,2,4,5,
(12N,4), (26N,4)  with N = 1,2,
(15N, 5), (45N, 5).
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As we have already seen, the following pairs appear for genus zero function fields:

(3N,1), with N=1,...,5,
(6N,2), with N =1,2.

We, again, construct curves Cs,, ,, by combining with the Tate normal form, or with
division polynomials as in Chapter 2, where we also see that Cs,,,, has genus > 2
when (3m,n) = (30,1), (45,1), or (15,5). This rules out torsion these structures
from (3.4), and those containing them.

To rule out points of order 36, we begin with E, ;, written in the Tate normal form
for points of order 9 and look at the division polynomial ¢g(x) = 0. In this case,
06 = f-g-Asg, where f, g, and A are polynomials of degree 5, 10 and 45 respectively.
Here, f = 0 defines a genus zero curve corresponding to the point P of order 9 such
that [4]P = (0,0), and g = 0 defines a genus 1 curve that corresponds to points of
order 18 (which we will see below). The irreducible curve defined by Css1 @ A3g = 0
corresponds to points of order 36, but is of genus 7, showing that points of this order
are impossible over K.

To rule out points of order 63, we begin with a curve E,; written in the Tate
normal form for points of order 9. By looking at the division polynomial ¢ (z) = 0,
we find the conditions for the x-coordinate a point of order 7 to exist. The curve
defined by Cgs ;1 : 7(z) = 0 is irreducible of degree 90 and genus 18.

To rule out Z/18Z x 7Z/27Z, we begin with the Tate normal form E,; for Z/67Z x
Z/2Z, and look at ¢3(x) = 0. This time, the numerator of ¢3, which we denote A;s 2
defines an irreducible curve Cigo of genus 3, showing that this torsion structure is

impossible over K.
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To rule out Z /247 x 7Z/27Z, we begin with the Tate normal form E,; for Z/87Z x
7, /27, and use the Hasse invariant. Recall, for a curve in the Tate normal form over
a field of characteristic 3, we have

fFEr2fT 2/ 424+ 3+ f+1

H(E,) =d*+a+2b=1=
(Fap) = 0"+ (FT+ 7+ 1)

We need H(E,;) = ¢* for some g € K*, which amounts to finding non-constant

points on the curve

Cogp i 5+ 26" + 288 + 2t + 3+t + 1 = u®

But Cy 4 is irreducible of genus 3, so no such points exist, and therefore the desired
torsion structure is impossible over K.
For points of order 33, we begin with a curve with a point of order 3. Recall,

non-isotrivial curves over K with a point of order 3 can be written in the form

Eup: y* + azy + by = 23 for some a,b € K, not both constant.

If a = 0, however, this curve is singular, so we may safely assume a # 0 and set

f =b/a®. This way, we can write E,; using the single parameter ¢:

E, :y? 4+ xy + fy = 2® for some non-constant f € K,

where (0,0) is a point of order 3. We find that the division polynomial ¢q;(z) =
x - A111(x), where A1 is a degree 120 polynomial with coefficients in F. A point of

order 33 implies a non-constant point on the curve Css; : A\j;1 = 0. After a 151 hour
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calculation, Magma reports that Css; has genus 6, and is irreducible showing that
points of order 33 are impossible over K.

To rule out points of order 36 over K, we start with a curve written in the
Tate normal form for curves with a point of order 9. Then looking at the division
polynomial ¢4(x), we see that ¢4 factors as ¢4 = f - g - Asg1, where f, g and Asg; are
functions in x and t of degrees 5, 10, and 45 respectively, with coefficients in [F. The
curve Ct : f = 0 has genus zero, and corresponds to points of order 9. The curve
Cy : g = 0 is genus 1, and corresponds to points of order 18 (which we’ve already
seen above). The curve Csq1 @ Asg1 = 0, however, gives points of order 36, and is
irreducible of genus 7. Thus, we see that points of order 36 are impossible over K.

For points of order 42, we begin with an elliptic curve written in the Tate normal
form for curves with a point of order 7 and look at ¢g(z). Here, ¢4 factors as ¢g =
f-g-h-Xa1, where f, g, h and \jo; are functions in = and ¢ of degrees 1, 8, 17, and 37
respectively, with coefficients in IF. The curve C : f = 0 is genus 0, and corresponds
to points of order 7. The curve Cy : g = 0 is genus 1, and corresponds to points of
order 14, which are guaranteed by Theorem 3.2.3. The curve C}, : h = 0 is also genus
1, and corresponds to points of order 21 (which we’ve already seen above). Finally,
the curve Cya1 @ M21 = 0, gives points of order 42, and is irreducible of genus 7.
Thus, we see that points of order 42 are impossible over K.

To rule out torsion structure Z/18Z x Z/2Z, we start with a curve written in the
Tate the normal form for Z/6 x Z/27 torsion. We set g2 to be the numerator of
the division polynomial ¢3(x) = 0, a degree 35 polynomial in the variables x, ¢ with
coefficients in [F. The curve Cigs : Ajg2 = 0 is irreducible of genus 3, showing that
this torsion structure is impossible over K.

Finally, to rule out torsion structure Z /247 x 7./ 27, we begin with the Tate normal
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form E,; for an elliptic curve with torsion structure Z/8Z x Z/2Z, where

a:(2f+1)(8f2+4f+1) PR 24f +1)f

2(4f + 1)(8f% — 1)t 81

The Hasse invariant for this curve is

SEH2fT 2/ +2f  + P4t 41

H(E;)=a’+a+2b+1= T Py

Here, since the denominator is a square, we will have H(E) a square in K* if and
only if the numerator f® + 2f7 +2f5 +2f4 + 3+ f +1 = ¢? for some g € K*.
But this equation corresponds to an irreducible genus 3 curve, so that Z /247 x Z./27
torsion is impossible over K. Note that we have finally ruled out all pairs from (3.4)
which do not appear in the theorem.

In Chapter 2, it was also determined that Cse,,,, has genus 1 when (3°m,n) =
(18,1), (21,1), (24,1), or (12,4), which by the above argument reveals that torsion
subgroups corresponding to these pairs can appear over function fields where the base
curve is isogenous to the normalizations, C*gemm. As a reminder, these curves appear

in Table 3.2, where we see that, with the exception of Cig;, each of these curves is

(36m7 Tl) CBEm,n C~’3€m,n

(18,1) | w®+ 283 +t)ulS + (" + tYuP + 3 + 2610 +4" =0 | w2 + 2tu+u =13+ 2> + ¢
21,1 2t +1=u? n/a

(21,1)

(24,1) At + 283+ 2+t + 1 =u? n/a

(12,4) 2(f4+1) =u? n/a

Table 3.2: Genus one C3yy, for p = 3.

already non-singular. The normalization of C}g; is given, with normalization map
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T 611871 — 018,1 such that
tes (280t 2u+ 2+ 2+t 42

Thus, if C = 01871, and K = F(C’l&l) = F(t,u), then the following is an infinite family

of elliptic curves with a point of order 18 for all n > 1:
By + (B 420+ D+ (1 4+ 205 + 262+ 20+ 2))” wy + (260 + 3%y = 2% + (267 + 3" 22

Furthermore, if p: D — C~’18,1 is an isogeny, then using the notation above, we have
the same family, call it £, ,,, with ¢ and u replaced by t, and u, respectively.
If p: C — Cy,1 is an isogeny, then with the above notaion, the following gives an

infinite family of curves with a point of order 21 over F(C):
Epn 9>+ (ti —t,)* wy — (ti — ti)?’"y =% - (ti - ti)3nx2 for all n > 1.

If o : C — (a4, is an isogeny, the following gives an infinite family of curves with

a point of order 24 over F(C) = F(¢,u):

n

3
B i+ (W) vy — (2t — D)(t, — 1))¥y = 2% — ((2t, — 1)(t, — 1))¥"22 for all n > 1.

Finally, if ¢ : C — Cia4 is an isogeny, the following gives an infinite family of

curves with torsion structure Z/127Z x Z/AZ over F(C):

3’71
B+ (2e00) gy (21, = 1)(1, — 1)y = 2 = (28, — D(t, — 1o for all n > 1
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3.2.5 Characteristic p =17

When the characteristic of a genus one function field K is 7, Theorem 3.2.3 provides

the following corollary about prime-to-7 torsion structures for elliptic curves over K.

Corollary 3.2.11. Let C be a curve of genus 1 over IF, a finite field of characteristic
7, and let K =TF(C). Let E/K be non-isotrivial. Then E(K);,. is one of

tors

Z/NZ with N =1,...,6,8,...,12,15,
Z)2NZ x 7./27. with N =1,...,6,
ZJ3NZ x Z.J3Z. with N =1,2,3,
ZJANZ x 7.JAZ. with N = 1,2,
(Z/NZ)?>  with N =5,6.

Further, let G = Z/mZ x Z/nZ be in this list with n | m, and such that F contains
a primitive nth root of unity. Then there are infinitely many non-isomorphic, non-

isotrivial elliptic curves with E(K )ios = G only if

C is isogenous to X1(n,m) if (m,n) is in (3.1),

C is any smooth curve otherwise.

This time, since we can only have points of order 7¢ for at most e = 1, we can
use the Hasse invariant strategy from Section 3.2.2: Here, we take a curve with
torsion structure Z/mZ x Z/nZ in Corollary 3.2.11 written in short Weierstrass form

E;:y? = 2% + A(f)x + B(f). If we assume that E; has a point of order 7, then we
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can use Theorem 2.1.7 to say

H(Eap) =3B(f) = ¢° for some g € K*.

We then define the curve Cry,,,, : 3B(t) = u®, which parameterizes elliptic curves with

torsion structure G x Z/77Z, and use the genus arguments above.

Theorem 3.2.12. Let C be a curve of genus 1 over IF, a finite field of characteristic
7, and let K =TF(C). Let E/K be non-isotrivial. Then E(K )ios is one of

Z/NZ with N =1,...,12,14,
7)2NZ x 7./27. with N =1,...,6,7,
ZJ3NZ x 7.J37. with N =1,2,3,
ZJANZ x 7.JAZ. with N = 1,2,

(Z/NZ)?>  with N =5,6.

Further, let G = Z/mZ X Z/nZ be in this list with n | m, and such that F contains
a primitive nth root of unity. Then there are infinitely many non-isomorphic, non-

isotrivial elliptic curves with E(K )ios = G only if

(

C is isogenous to X1(n,m) if (myn) is in (3.1) with 71 m,
C is isogenous to Chyg : 63 + 2t2u + 2tu® +u =1 if (m,n) = (14,2),

C 1s any smooth curve otherwise.

\

Proof. Using Corollary 3.2.11, and the fact that by Levin, E' can have a point of 7-

primary order at most 7, we need to rule or confirm the existence of Z/TmZ x Z/nZ
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with (7m,n) coming from

(TN,1)  with N =3,4,6,8,9,11,12,

(14N,2) with N =1,2,3,4,6,

(21N,3) with N =1,2,3, (3.5)
(28N,4)  with N = 1,2

(42,6).

We have already seen above that the torsion structure Z/14Z can appear infinitely
often regardless of the base curve C. Again, we can construct curves C7,,, as in
Section 3.2.2, by starting with a curve written in the Tate normal form for torsion
structure Z/mZ x Z/nZ, and using the Hasse invariant to force a point of order 7.

This time, for F : y* = 2® + A(f)z + B(f), we need

H(E4p) =3B(f) = ¢° for some g € K*.

Let Copmp : 3B(t) = u® be the curve parameterizing Z/7mZ x Z/nZ, defined by this
equation. Again, each C7,,, is a curve defined over I, and we conclude that the torsion
structure is impossible for an elliptic curve defined over K if g(Crppn) > 1 = ¢(C)
by Corollary 3.2.1. Our results are collected in Table 3.3, and with the exception of
Z,JTTZ, this table rules out any G from (3.5) with a point of order > 28.

For points of order 77, we may again start with F/K in the Tate normal form,
parameterized by f, such that (0,0) has order 7. Solutions, (z, f), to 111 (F) = 0 give
x-coordinates of points, P, such that 77P, = O. This time, C77; has genus 31 after
a Magma 38 hour computation, and is shown to be irreducible after 35. Thus, no

such points exist, and therefore Z/77Z torsion structure is impossible for an elliptic
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G=Z/TmZ x Z/nZ Curve Crpp, genus
7.)217 a® + 6a®b + 66> = 1 2
7287 6t + 2 + 3t + 1 = uS 4
7./ 357 0+ 385+ 5t +5t2 + 4t +1=u’ | 10

ZJ1AZ x 7.)27 a® + 2a%b + 2ab® + b =1 1

Table 3.3: Ruling out G torsion over K for m > 4.

curve over K.

With the exception of Z/147 x 7 /27, we have already seen that all groups in
the theorem appear infinitely often as the torsion subgroup of an elliptic curve E/K.
Again, we also find that because ¢(Cis2) = 1, in order for an elliptic curve E/K
to have a torsion structure Z /147 x 7 /27, we must have that C is isogenous to the
normalization of C'45. Again, in this case, Cl4 9 is itself, already non-singular, so we
may take as an example the case where C = Cly9, and F(C) = F(Ci42) = F(a,b).

Here, the following family has the desired torsion structure:

E,:y*=x2(x—a")(x—b") for all n > 1,

since, again, H(E,) = 1 € K® and j(E) € K’. As in the previous example, if

¢ : Cia2 — C is an isogeny between curves, then

B¢y =a(r— @) ) (x — b)) for all n > 1,

has torsion structure Z/14Z x Z /27 for all n.
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3.2.6 Characteristic p = 11

For genus one function fields of characteristic 11, Theorem 3.2.3 yields the following.

Corollary 3.2.13. Let C be a curve of genus 1 over F, a finite field of characteristic
11, and let K =F(C). Let E/K be non-isotrivial. Then E(K); . is one of

tors

Z/NZ. with N =1,...,10,12,14, 15,
7J2NZ x 7./27. with N =1,...,6,
Z/3NZ x Z/3Z with N =1,2,3,
ZJANZ x ZJAZ with N = 1,2,
(Z/NZ)?*  with N = 5,6.

Further, let G = Z/mZ x Z/nZ be in this list with n | m, and such that F contains
a primitive nth root of unity. Then there are infinitely many non-isomorphic, non-

isotrivial elliptic curves with E(K )os = G only if
C is isogenous to Xi(n,m) if (m,n) is in (3.1),
C is any smooth curve otherwise.

Again, we can only have points of order 11¢ for at most e = 1, and use the Hasse

invariant strategy from previous sections. This time, the Hasse invariant is

H(Eap) =9A#)B(t) = u'.

This time, all of the possible cases have been considered in Section 2.3.3, when we
determined the possible torsion subgroups for an elliptic curve over a characteristic

11 function field of genus zero. We summarize and reinterpret the results here.



91

Theorem 3.2.14. Let C be a curve of genus 1 over IF, a finite field of characteristic

11, and let K = F(C). Let E/K be non-isotrivial. Then E(K ) is one of

7/NZ.

with N =1,...,12,14,15

ZJ2NZ x 7.J]27 with N =1,...,6,

7.J3NZ x Z/37. with N =1,2,3,

ZJANZ x 7.JAZ with N = 1,2,

(Z/NZ)®>  with N = 5,6.

Further, let G = Z/mZ x Z/nZ be in this list with n | m, and such that F contains

a primitive nth root of unity. Then there are infinitely many non-isomorphic, non-

isotrivial elliptic curves with E(K )i = G only if

C is isogenous to X1(n,m) if (m,n) is in (3.1) with 11t m,

C is any smooth curve otherwise.

Proof. Again, by Theorem 3.2.3, and the fact that E can have a point of 11-primary

order at most 11, we need to rule out or confirm the existence of Z/11mZ x Z/nZ

with (11m,n) coming from

(11N, 1)
(22N, 2)
(33N, 3)
(44N, 4)
(11N, N)

with N = 3,4,6,7,8,9,11,12, 14,
with N =1,2,3,4,6

with N = 1,2, 3, (3.6)
with N = 1,2
with N =5,6.
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This time, proceeding with our previous strategy, we construct the curves Ciyy, , in
Table 3.4, which rules out every torsion structure with a point of order > 22, thus

proving the theorem.

G =7Z/11mZ x Z/nZ Ciimn genus
7.]227. a® + 9a®b + 8ab® = 1 2
7./337 a'® +6a"b + 2a*b? + 8ab® = 1 9
7./557 FO43f - 8f8 +AfT+8f +8fA+ TP +8f2+8f+1=u'"| 36
7.)777 OB A AT 6O+ 5f P46+ 5 92+ T 31
+5F10+ 80+ 8f5+ 5T+ 20+ T +4f + 83+ 62+ 10f + 1 =wu'®

Table 3.4: Curves parameterizing elliptic curves with G torsion over K.

O

Remark 3.2.15. Observe that for p # 11, elliptic curves over genus one function
fields of characteristic p can only have a point of order 11 if the base curve is isogenous
to X1(11). When p = 11, however, we can find points of order eleven over function

fields of arbitrary curves.

3.2.7 Characteristic p = 13

For function genus one function fields K of characteristic 13, we find the following

specialization of Theorem 3.2.3.

Corollary 3.2.16. Let C be a curve of genus 1 over F, a finite field of characteristic
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13, and let K = F(C). Let E/K be non-isotrivial. Then E(K); . is one of

tors

Z/NZ with N =1,...,12,14, 15,
ZJ2NZ x )27 with N =1,...,6,
Z/3NZ x Z)3Z with N = 1,2,3,

ZJANZ x ZJAZ with N = 1,2,
(Z/NZ)?  with N = 5,6.

Further, let G = Z/mZ x Z/nZ be in this list with n | m, and such that F contains
a primitive nth root of unity. Then there are infinitely many non-isomorphic, non-

isotrivial elliptic curves with E(K )os = G only if
C is isogenous to Xi(n,m) if (m,n) is in (3.1),
C 1s any smooth curve otherwise.

In this final case, the Hasse invariant for a curve in short Weierstrass form is

H(Eap) =TA* + 2B

Thus, we will check genera of curves written in the form 7A(¢)*+2B(t)* = u'?. Again,
in some cases we will find it more convenient to work with the division polynomial

(and in this setting, the modular polynomial) for points of order 13.

Theorem 3.2.17. Let C be a curve of genus 1 over IF, a finite field of characteristic
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13, and let K = F(C). Let E/K be non-isotrivial. Then E(K )i is one of

Z/NZ with N =1,...,15,
Z)2NZ x 7./2Z. with N =1,...,6,
7J3NZ x 7./37. with N =1,2,3,
ZJANZ x ZJAZ with N = 1,2,

(Z/NZ)?>  with N = 5,6.

Further, let G = Z/mZ x Z/nZ be in this list with n | m, and such that F contains
a primitive nth root of unity. Then there are infinitely many non-isomorphic, non-

isotrivial elliptic curves with E(K )os = G only if

(

C is isogenous to Xy(n,m) if (m,n) is in (3.1) with 131 m,
C is isogenous to Chz1 = u? =3+ 11 if (m,n) = (13,1),

C is any smooth curve otherwise.

\

Proof. Again, by Theorem 3.2.3, and the fact that E can have a point of 13-primary
order at most 13, we need to rule out or confirm the existence of Z/13mZ x Z/nZ

with (13m, n) coming from

(13N,1)  with N =1,2,...,12,14, 15,

(26N,2) with N=1,...,6

(39N,3)  with N =1,2,3, (3.7)
(52N,4)  with N =1,2

(13N,N) with N =5,6.
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This time, proceeding with our previous strategy, we construct the curves C\3,, , and
record their genera in Table 3.5, which rules out every torsion structure with a point

of order > 26, with the exception of 143 = 13 - 11.

G =Z/13mZ x Z/nZ | genus of Cizy.n
7,267 4
Z,/397 15
7,/65Z 55
7/91Z 121

Table 3.5: Curves parameterizing elliptic curves with G torsion over K.

To see a point of order 13, we suppose E,; : y* + (1 — a)zy — by = 2> — ba? for

a,b e K, and set

Az = b"%13((0,0)) = a' + 12a°6° + 7a®0® + 6a®b + 5a’b” + 5a’b* + 3a’b + 11a°b*+

+a%b + 4a°b? + 8a°b® + Ta’V? + 11a’b* + 24D + 4a®V® + 6a°b* + 2a%b° + Tab® + b7,

where 113 is the 13-division polynomial. If (0,0) has order 13, then we must have
that (t,u) is a point on Cis; : A\i3(t,u) = 0. Over i3, the curve Ci3, is irreducible
of genus 1, and has normalization Cis; : u? = 3 + 11 with 7 : Cy3; — Cy3; given by

Magma as

R 445 + (9u + 5)t* + (du + 12)83 + (1lu+ 7)t2 + (9u + 11)t +2u + 5
(t+4)° ’

%4 (11u+11)t3 4 (5u+10)t" +(11u+9)t5 4 (8u+4)t5 +6ut® +(5u+2)t3 4+ (4u+8)t* 4+ (u410)t+8u+3
(t+4)°

U —

By our above argument, if £/K has a point of order 13, then there must be an

isogeny from C to C~’1371. For example, with C = C~'13,1, and K = IF(C~’1371) = F(t,u) if
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we set

A%+ (9u 4 5)tt + (du 4 12)8° + (11u+ )2 + (Yu + 11)t +2u +5
B (t+4)° ’

b— t94+(11u4+11)t5 +(5u+10)t" +(11u+9)t® +(8u+4)t° +6ut + (5u+2)t> +(4u+8)t2 +(u+10)t+8u+3
- (t+4)?

a

then the following is an infinite family of elliptic curves with a point of order 13:

E;gbn cyt (1— algn)my — b1y =23 — 2%
Ifo:C— C~’13’1 is an isogeny, then replacing a and b with ¢(a) and ¢(b) respectively
gives an infinite family of curves with a point of order 13.

Recall, from above, that if £/K has a point of order 11, then C must be isogenous

to Xq(11) : u* + (t* + 1)u + ¢t = 0, which can be written in short Weierstrass form as
D:u® =13+ 4t 4+ 3.

If, in addition, E has a point of order 13, we must have that C is isogenous to Ci3,
so that there must be an isogeny, defined over IF, from Ci3; to D. If we can show that
no such isogeny exists in any extension of 3, then points of order 143 are impossible
over K. However, if an isogeny between Cj3; and D exists, (j(Cis1),7(D)) must
be a root of the modular polynomial ®43(X,Y") defined over Fi3. We again consult

Andrew Sutherland’s tables in [20]. Since j(D) = 0, we find that

169
0143(X,0) = Y a, X" where

n=1
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alu---va’rJ :[17 117 107 27 57

6
3, 1, 9, 8 1, 1, 11, 5, 11, 10, 6, 9, 7, 11, 8
7,12, 8, 8 10, 1, 10, 2, 9, 7, 4, 10, 12, 4, 5,
12, 12, 2, 8 2, 5 3, 11, 10, 12, 4, 10, 6, 4, 4,
5, 7, 5 6 1, 8 12, 4, 10, 12, 2, 10, 10, 6, 11,
6, 2, 9, 7, 4, 10, 12, 4, 5, 12, 12, 2, 8 2, 0O,
8, 12, 5 6 2 5 3, 2 2 9 10, 9, 6, 1, 8,
12, 4, 10, 12, 2, 10, 10, 11, 6, 6 1, 8 12, 4,

10, 12, 2, 10, 10, 6, 11,
9, 6, 6, 1, 4, 1, 4, 5, 1, 8 7, 11, 8, 10, 11,
, 4, 3, 4, 1,11, 10, 2, 5 6, 2, 9 6 6, 1, 4, 1]

Thus, we have that ®143(6,0) = 12, and an isogeny between C13; and D cannot exist,

that is, there are no points of order 143 over K.

3.3 Explicit Parameterizations and Isogenies

Let IF be a finite field of characteristic p, and set K = F(C) for a smooth, projective,
absolutely irreducible curve C. In this final section, we give conditions on the base
curve to find torsion structures appearing in this thesis, and parameterizations where
possible. Tables 3.6 and 3.7, taken from Chapter 2, give E,;, which parameterize
non-isotrivial elliptic curves with torsion subgroup G regardless of the base curve. In
each parameterization, (0,0) is a point of maximal order.

Table 3.8, also taken from Chapter 2, shows the additional torsion subgroups
which can appear over K, regardless of C, such that p divides the order of the torsion

subgroup. Again, in this table, E,;, parameterizes non-isotrivial elliptic curves with
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Characteristic E, /K G

p 2 y* = 2® + ax® + bx 727

p#2 ?=z(x—a)(z—D) 727 x 7|27
general p y? + axy + by = 23 7.)3Z

p#3, GeF y¥*+3(f+2ay+ (f*+f+1)y=2* Z/3LxZ/3L

Table 3.6: Two-parameter familes of elliptic curves E, ;/K such that G C Eg ,(K)tors-

Characteristic Eup:y*+ (1 —a)zy — by = 2° — ba? G

general p a=0 b=f 7]AZ

general p a=f b=f 7./5Z

general p a=f b= f+ f? 7/6Z

general p a=f*—f b=af 777

general p a= w;w b=af 787

general p a= f2(f—1) b=a(f*—f+1) Z/9Z

general p a= —% b= _G'P%;H Z/10Z
general p a= fu_Qfgﬁ’Sf“” b=—a- 2102;# 7.)127

p#£2 a=0 b=f2— 1 ZJAZ x 7)2Z
p#2 - b= 2LUUSD 767 x 7/22
142 o= QT oo SO aja <o
p#3, GEF a=—{L20D b=—all2L 767 x 7/3T
p#4, i€F  a=0 b=f*'— & ZJAZ x 7.]AZ
p#5, GEF a=LlHIH h— g Z/5Z x L]5Z

Table 3.7: One-parameter familes of elliptic curves E, /K such that G C E, p(K)tors.

torsion subgroup G.

The rest of the torsion structures that were found in this thesis require that C be

isogenous to a specific curve, D. In Table 3.9, we collect all of these curves when p
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Characteristic Eup:y*+ (1 —a)zy — by = 2® — ba® G
_ _ ([H3)U+5)2(f49)? _  (f+D?(f+9)
p=1 4= D] b=aTgmy 217
_ _ fU+1)? _ 1
. - {;H)J(r; )3 (f+4) (f+6) "~ a{;Jrf)J(r; )? Zj14z
_ (DU +3)3(f+4) (f+6 _(HD(+5)?
p=7 = (R b= a5
_ _ fAf+1)? _ 2P 41
e - (JEfJ;)Q(); 2)2(f+4)*(f*+2) "~ af(f (4J;+2)5 Z/152
_ _ O+ + + _ +
P=5 A (2 TR b=afiny
_ _ fUADA(fPHf+D) _ o (f+D?
p—2 CL—W b—af3+f+1 Z/]_gZ
_ _ fUAD+2)*(f43)(f+4) _  (fHD2(f+3)°
p—5 a = (2F47+1)2 b—am Z/]_OZXZ/2Z
_ _ fUAD(F+2)(f2+2f+2) _ ,_(f241)?
p—S,ZGF a = (fPF/+2)° b—am Z/]_QZXZ/2Z
—_9 _ fUHAD P4 _ LU
p—Q,ZGF a = 2+ /+1)P b—aw Z/]_OZXZ/5Z

Table 3.8: One-parameter families of elliptic curves E, ;/K such that E, (K )tors has a subgroup G.

divides the order of the torsion subgroup, and in Table 3.10 we provide examples for

when C = D and K = F(D) = F(¢,u). For prime-to-p torsion, we refer the reader to

the tables in [18] and [19].

For other examples where C is not isomorphic to D, we suppose that D — C is

an isogeny, and ¢ : F(C) — F(D) is the induced map on the function fields of D

and C. Then writing F(C) = F(¢,u), and replacing ¢ with ¢(t), and v with ¢(u) in

the parameterizations above gives an infinite family of elliptic curves with the desired

torsion structure over K.
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Characteristic C G

p=2 w+u=1t+t ZJ16Z, 7207

p=2 W+ P+ u+t=0 7]227

p=2 u? +tu+u =13 4 ¢ Z/30Z

p=2 w+u=1t+1 ZJ127 x /37, ZJ18Z x Z]3Z

3 W+ 2tu+u=8+202+t 7Z/18Z

w? ="+ 2t +1 7.)217

W =2+ 283+ +t+1 7247

ut =2t + 1) 7.)127 x 7.JATZ.

ut =1 +t+1 Z/20Z

B+ 2%+ 2tu* +ud =1 ZJ14Z x 7./27

ST S T B~ T S T e S T B S T S
I
~N | Ot | W | W | W

13 w? =13+ 11 7.)13Z

Table 3.9: Genus one curves that must be isogenous to C for G to appear for an elliptic curve over K.
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n n "
Char(K) EV iy +(1—a)l' oy —0y=a2® "z, n>1 G
t+1)2 (0 +t2ut+t2 +t 4 63442
p=2 - (+><+tl—g+++u> b = qftttiitftiu 7,/16Z
9 6 6 5 4 3 2 [
p= 2 a = P+t uA O+t -%zé utt®+t +ttu b= a(to + t2u +t+u+ 1) Z/QOZ
_ _ (ut D) (tuSHtud +tutuS+ud +udu+1) i tutuS+uS ful utl
p=2 a= uP (uS+ud+1) b=a u(u®+ud+1) Z/QQZ
_ (D) (@412 (2 Out S ut O+t 2 tut 1)
p=2 a= [GETEESE Z/30Z
b= at13+t12+t11u+t11+t10u+t10+t9u+t5u+t7+t6+t5u+t4u+t4+t3+t2+tu+u
B (t14+3+1)2

(43130 1428y 428 42T 4 g2y 24 423 44200, 420 41T 416 415 g1y g1 g120 4 4124410 149 8 46y gt 143 1y,
- (t+1)5 (2 +t+1)0 (3 +t+1)0 Z/lSZ X Z/3Z

b=a (2 +t+1)2 (#1244 1045415 42 412u+ 1)

(t3+t4+1)6
_ PO Bt Pyt M O 1O 8 O A 3 P u 2 )

p=2 a= P E TR ZJ12Z x Z/3Z

b=a 0445 +2ut1

(t+1)2(¢2+t+1)2
1)3(t42)3 (¢4 +t3u+t3 426> +2tu+-2¢ 2

p=3 o= (t41)3 (t42)3 (t14-¢ uJ;gf 22 4-2bu+2t4u+-2) Z/lSZ

b=a (7 +t0ut 260 42t u 263 u 263 4262 4 2tut- 2t ut-1)

=aq 5

o 204209 418 u 208 42Tt T+ 260 u 20 w202 u A2 tut- 2t ut1)
p=3 a= D Z/21Z

b=a(t®+ 12+ 2t + 1)(t7 +2t* + Bu+ 3 + 2020 + > + tu + t + 2)

_ _ (t+2) (#O+ B ut tSut 260 +5 Httut 263 ut B + 202 ut 2tuttHut1)
p=3 a= BE)e Z/247
b=a (£2+2t+2) (15 + 2t +t3ut 262 u+ 2 +Hutu+1)
-7 t7(t+1)
_ _ (But2ed 2t ut 2t 4-2u) _ (¢ ut1)
p=3 4= TP 2 )° b= s e e L/ 122 % /AL
= _ uut2) (tut 2t Hut+ 44208 +ud +4ut +4u+-3u+1)
p=>5 a= ) (a3 (atd) Z.]20Z
b= a(tm+3tu~"+tu2+4t+uﬁ+3u5+u‘+3u3+3u+2)
B u(u+3)°
_ _ PSP +4t2ut + 20203 420202 42 4 Bt +3tud +2tu® +6tutt+ud 4507+ 2u04ud +4ut +2u +3u?+3u+t1
p="7 a= ORI oY) ZJ14Z x Z./2Z
b= a(z2u2+t2u+t2+3tu3+3tu2+5zu+t+u4+u3+4u2+3u+5)
B (ut4)?
_ (512t u 114+ 3 ut-3t53 6t 2ut 512+ 1 2tu+6t+Tu+11)
p=13 a = o 7]13Z
b= a(t3+2t2u+9t2+9tu+11t+u+1)
- (t+4)*

Table 3.10: One-parameter families of elliptic curves E{;/K such that F, (K)tors has a subgroup G for n > 1.
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