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§1. Introduction



Let E/Q be an elliptic curve, and let T>(E) = Lm E[2"] be the Tate
module. The Galois action of Gal(Q/Q) on T,(E) induces

pe2 - Gal(Q/Q) — Aut(T(E)) = GL(2, Zz).



Let E/Q be an elliptic curve, and let T>(E) = Lm E[2"] be the Tate
module. The Galois action of Gal(Q/Q) on T,(E) induces

pe2 - Gal(Q/Q) — Aut(T(E)) = GL(2, Zz).

Theorem (Rouse and Zureick-Brown, 2014)

Let E/Q be an elliptic curve with no CM. Then, there are precisely
1208 possibilities for the image pg »(Gal(Q/Q)), up to conjugation.
Further, the representation pg » is defined (at most) modulo 32.
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Example
For instance, let

E:y?+xy = x +210x + 900.

Then, the 2-adic image is x2351 in the notation of the RZB database,
which is defined modulo 16, and is generated in GL(2,Z/16Z) by

(G 9)(e 9-6 9-G 969 (5 36 o) e ?)

Note: their matrices act on vectors on the right, so this curve has a rational
16-isogeny.




Example
For instance, let

E:y?+xy = x +210x + 900.

Then, the 2-adic image is x2351 in the notation of the RZB database,
which is defined modulo 16, and is generated in GL(2,Z/16Z) by

(G 9)(e 9-6 9-G 969 (5 36 o) e ?)

Note: their matrices act on vectors on the right, so this curve has a rational
16-isogeny.

The Rouse—Zureick-Brown classification of 2-adic Galois
representations has many interesting arithmetic applications.
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Theorem (Ribet, 1981)

Let A/Q be an abelian variety and let Q2 be the maximal abelian
extension of Q. Then, A(Q®) s is finite.

Theorem (Gonzalez-Jiménez, L-R., 2015)

Let E/Q be an elliptic curve.

@ Ifthere is an integer n > 2 such that Q(E[n]) = Q(¢y), then
n=2,3,4, orb.
@ More generally, if Q(E[n])/Q is abelian, then n=2,3,4,5,6, or 8.

© Moreover, G, = Gal(Q(E[n])/Q) is isomorphic to one of 11
abelian groups.




Torsion points defined over abelian extensions

Theorem (Ribet, 1981)

Let A/Q be an abelian variety and let Q2 be the maximal abelian
extension of Q. Then, A(Q®) s is finite.

Theorem (Gonzalez-Jiménez, L-R., 2015)

Let E/Q be an elliptic curve.

@ [Ifthere is an integer n > 2 such that Q(E[n]) = Q(¢n), then
n=2,3,4, orb.

@ More generally, if Q(E[n])/Q is abelian, then n = 2,3,4,5,6, or 8.

© Moreover, G, = Gal(Q(E[n])/Q) is isomorphic to one of 11
abelian groups.

Q IfE/Q has CM, and Q(E[n]) = Q(¢n), thenn =2, or 3. If
Q(E[n])/Q is abelian, then n = 2,3, or 4.







Torsion points defined over abelian extensions

Theorem (Chou, 2018)

Let E/Q be an elliptic curve and let Q2 be the maximal abelian
extension of Q. Then, #E(Q®)s < 163. This bound is sharp, as the
CM curve 26569a1 has a point of order 163 over Q2. Moreover, a full
classification of the possible torsion subgroups is given.
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Let E/Q be an elliptic curve. By Mazur’s theorem, there might be an
8-torsion point over Q, but no 16-torsion points over Q.
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What is the smallest degree d, > 2 such that there is an elliptic curve
E/Q and a field F, of degree d, = [F, : Q], such that E(F,)[2"]
contains a point of exact order 27?




Minimal field of definition of 2"-torsion points

Let E/Q be an elliptic curve. By Mazur’s theorem, there might be an
8-torsion point over Q, but no 16-torsion points over Q.

What is the smallest degree d, > 2 such that there is an elliptic curve
E/Q and a field F, of degree d, = [F, : Q], such that E(F,)[2"]
contains a point of exact order 27?

Theorem (Gonzalez-Jiménez, L-R., 2015)

Let E/Q be an elliptic curve without CM, and let P € E[2"] be a point
of exact order 2", with n > 4. Then, the degree [Q(P) : Q] is divisible
by 22"=7. Moreover, this bound is best possible.

For example, the curve E : y2 + xy = x3 + 210x + 900, with the 2-adic
image X2351, has a point Pp, for every n > 4, that achieves the bound.



Theorem (Gonzélez-Jiménez, L-R., 2015)

Let E/Q be an elliptic curve without CM, and let P € E[2"] be a point
of exact order 2", with n > 4. Then, the degree [Q(P) : Q] is divisible
by 2277 Moreover, this bound is best possible.




Theorem (Gonzélez-Jiménez, L-R., 2015)

Let E/Q be an elliptic curve without CM, and let P € E[2"] be a point
of exact order 2", with n > 4. Then, the degree [Q(P) : Q] is divisible
by 2277 Moreover, this bound is best possible.

What about elliptic curves with CM?



The CM case

Let
@ K be an imaginary quadratic field, discriminant Ak, integers O,
@ f>1,and Ok the order of K of conductor f,
@ ji 1 = j(Ok ) its j-invariant.
@ E/Q(jk r) an elliptic curve with CM by Ok ;.



The CM case

Let
@ K be an imaginary quadratic field, discriminant Ak, integers O,
@ f>1,and Ok the order of K of conductor f,
@ ji 1 = j(Ok ) its j-invariant.
@ E/Q(jk r) an elliptic curve with CM by Ok ;.

Theorem (Bourdon and Clark, 2016)

Let N > 2. There is an explicit integer T(Oy ¢, N) such that if P is a
point on E of exact order N, then [K(js, P) : K(j)] is divisible by
T(Ok f, N).










When N = 2", and E/Q, the explicit formulas say that the smallest
value of T(Ok r,2") occurs when 2 | Ak and 2 | f.




Example

When N = 2", and E/Q, the explicit formulas say that the smallest
value of T(Ok r,2") occurs when 2 | Ak and 2 | f. Thus, Ax = —4 or
—8,and f > 2, and T(O s, 2") = 2275 for n > 3.

For example, E/Q : y? = x> — 11x + 14 has CM by Z[2i], and if P € E
has exact order 27, for n > 2, then [Q(P) : Q] is divisible by 22"—* (and
equality holds for some such P).




When N = 2", and E/K, we can achieve
[K(P) : K] = T(Ok,2") = 2279,




Example

When N = 2", and E/K, we can achieve
[K(P) : K] = T(Ok,2") = 2279,

For example, let K = Q(v/—2), let f = 2, and let Ok s = Z[2v/-2]. In
this case jr = 26125000 + 18473000/2. Let

E/K:y?+Voxy =x3—V2x?+(2-2V2)x +5-3V2

that has CM by Z[2+/—2]. This is the curve 64.1-a6 over Q(v/—2) in
the LMFDB.

For this curve, if P € E has exact order 2", for n > 2, then [K(P) : K] is
divisible by 2275 (and equality holds for some such P).
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Example

When N = 2", and E/K, we can achieve
[K(P) : K] = T(Ok,2") = 2279,

For example, let K = Q(v/—2), let f = 2, and let Ok s = Z[2v/-2]. In
this case jr = 26125000 + 18473000/2. Let

E/K:y?+Voxy =x3—V2x?+(2-2V2)x +5-3V2

that has CM by Z[2+/—2]. This is the curve 64.1-a6 over Q(v/—2) in
the LMFDB.

For this curve, if P € E has exact order 2", for n > 2, then [K(P) : K] is
divisible by 2275 (and equality holds for some such P).

The same problem can be solved if we classify all 2-adic
representations for elliptic curves E/Q(jr) with CM by Ok ¢.
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Back to 2-adic representations

Theorem (Rouse and Zureick-Brown, 2014)

Let E/Q be an elliptic curve with no CM. Then, there are precisely
1208 possibilities for the image /)E’Q(GSJ(@/@)), up to conjugation.
Further, the representation pg » is defined (at most) modulo 32.

What about representations coming from elliptic curves with CM?

Let E/Q be an elliptic curve. Then, there are precisely 1235
possibilities for the image pe »(Gal(Q/Q)), up to conjugation. Further,
the representation pg » is defined (at most) modulo 32.

In the rest of the talk, we discuss the proof that there are 27 additional
types of 2-adic representations coming from elliptic curves over Q with
CM.



§2. Results



Cartan subgroups:

For N > 3, we define groups of GL(2,Z/NZ) as follows:
@ If Axf>=0mod 4, or N is odd, let § = Axf2/4, and ¢ = 0.
o If Axf2 =1mod 4, and N is even, let § = (2.2 et ¢ = f,
Then, the Cartan subgroup Cs 4(N) of GL(2,Z/NZ) is

Cs.o(N) = {( agbbqb Z ) cabeZ/NZ, &+ abp— 5bP ¢ (Z/NZ)X}

and N 4(N) = <C57¢(N), < _(; ° >>



The Cartan subgroup Cs 4(N) of GL(2,Z/NZ) is

Cs.s(N) = {( aroe b ) cabeZ/NZ, &+ abp—ob? c (Z/NZ)X}

and \s 4(N) = <CM,(N), < ‘(; ) )>

Theorem (The image in coordinates)
Let E/Q(jk ) be an elliptic curve with CM by Ok ¢, let N > 3, and let

peN be the representation Gal(Q(jk r)/Q(k ) — GL(2,Z/NZ).
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The Cartan subgroup Cs 4(N) of GL(2,Z/NZ) is

Cs.s(N) = {( aroe b ) cabeZ/NZ, &+ abp—ob? c (Z/NZ)X}

and \s 4(N) = <c5,¢,(N), < ‘(; ) )>

Theorem (The image in coordinates)
Let E/Q(jk ) be an elliptic curve with CM by Ok ¢, let N > 3, and let

pe,N be the representation Gal(Q(jk r)/Q(k,r)) — GL(2,Z/NZ).Then,
@ There is a’Z/NZ-basis of E[N] such that the image of pg y is
contained in N 4(N).
@ Moreover, the index of the image of pg n in N ¢(N) coincides with
the order of the Galois group Gal(K (jk r, E[N])/ K (jk.r, h(E[N])),
for a Weber function h, and it is a divisor of the order of Oé,.




Theorem (The adelic image)

Let E/Q(jk.r) be an elliptic curve with CM by Ok ;.
@ IfAkf> =0mod 4, lets = Akf?/4, and ¢ = 0.
o IfAkf2=1mod 4, lets = Lx=)f2 Jetp — f.

Let pe be the adelic Galois representation

Gal(QUi.1)/QUix 1)) — lim Aut(E[N]) = GL(2, Z),

and let N, = lim N5 4(N).
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@ the index of the image of pe in N5, is a divisor of the order O K.f
and the index is a divisor of 4 or 6. [Lombardo, Bourdon—Clark]




Theorem (The adelic image)

Let E/Q(jk.r) be an elliptic curve with CM by Ok ;.
@ IfAkf> =0mod 4, lets = Akf?/4, and ¢ = 0.
o IfAkf2=1mod 4, lets = Lx=)f2 Jetp — f.

Let pe be the adelic Galois representation

Gal(QUi.1)/QUix 1)) — lim Aut(E[N]) = GL(2, Z),

and let Ns.g = Im N5, 4(N). Then:
@ there is a compatible system of bases of E[N] such that the image
of pe is contained in N 4,
@ the index of the image of pe in N5, is a divisor of the order O K.f
and the index is a divisor of 4 or 6. [Lombardo, Bourdon—Clark]
© Moreover, for every K and f > 1, and a fixed N > 3, there is an

elliptic curve E /Q(jk r) such that the index of the image of pe n in
Ns.4(N) is 1. [Bourdon—Clark]




Moreover, for every K and f > 1, and a fixed N > 3, there is an elliptic
curve E/Q(jk ) such that the index of the image of pg n in Ns 4(N) is 1.

However, the adelic representation may not have index 1 in ;4 in
certain cases.

Theorem (L.-R., 2018)

Let E/Q be an elliptic curve with j(E) = 1728, and choose compatible
bases of E[N], for each N > 2, such that the image of pg is contained
in Ns.4. Then, the index of the image of pg in N, is 2 or 4.




Moreover, for every K and f > 1, and a fixed N > 3, there is an elliptic
curve E/Q(jk ) such that the index of the image of pg n in Ns 4(N) is 1.

However, the adelic representation may not have index 1 in ;4 in
certain cases.

Theorem (L.-R., 2018)

Let E/Q be an elliptic curve with j(E) = 1728, and choose compatible
bases of E[N], for each N > 2, such that the image of pg is contained
in Ns.4. Then, the index of the image of pg in N, is 2 or 4.

Theorem (L.-R., 2018)

Let E/Q be an elliptic curve with CM by an order O ; in an imaginary
quadratic field K with Ak # —4,—8 and jk s # 0, and choose
compatible bases of E[N], for each N > 2, such that the image of pg is
contained in N 4. Then, the index of the image of pg in N4 is 2.

V.




Using our work, we can classify all the p-adic Galois representations
that arise from elliptic curves over Q(jk r), up to conjugation
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Using our work, we can classify all the p-adic Galois representations
that arise from elliptic curves over Q(jk ), up to conjugation...
includingp=2and p = 3!

Here is the complete list of 2-adic images coming from CM over Q:

JK.f Ak | f index E
in ./\/’57(1,(200)

0 -3 |1 1 y2=x342

0 -3 |1 3 y? =x34+1
24.3%3.5% | -3 |2 1 y? =x3 —15x + 22
—21%.3.5%8| 3|3 1 y?+y=x%—-30x+63

-3%3.58 | 7|1 1 Y24+ xy=x3—x%—2x -1

3.58.173 | -7 |2 1 y? = x3 — 595x + 5586




Using our work, we can classify all the p-adic Galois representations
that arise from elliptic curves over Q(jk ), up to conjugation...
includingp=2and p = 3!

Here is the complete list of 2-adic images coming from CM over Q:

JK.f Ak | f index E
in ./\/’57(1,(200)

0 -3 |1 1 y2=x342

0 -3 |1 3 y? =x34+1
24.3%3.5% | -3 |2 1 y? =x3 —15x + 22
—21%.3.5%8| 3|3 1 y?+y=x%—-30x+63

-3%3.58 | 7|1 1 Y24+ xy=x3—x%—2x -1

3.58.173 | -7 |2 1 y? = x3 — 595x + 5586

Note: the images for (Ak, f) = (—3,2) and (-7, 2) are conjugates
modulo 16, but not modulo 32.



The list of 2-adic images coming from CM over Q: (continued)

jK7f Ak | f | indexin ./\/’57(;3(200) E

1728 =26.33 | —4 | 1 1 y? = x3 +3x
1728 —4 |1 2 y? =x3 +9x
1728 —4 |1 2 y2 =x3 —9x
1728 —4 |1 2 y?2 = x3 +18x
1728 —4 |1 2 y2 = x3 —18x
1728 —4 |1 4 y2=x34x
1728 —4 |1 4 y2=x3 —x
1728 —4 |1 4 y? =x3 +2x
1728 —4 |1 4 y2 = x3 —2x
1728 —4 |1 4 y?2 =x3 +4x
1728 —4 |1 4 y2 = x3 — 4x




The list of 2-adic images coming from CM over Q: (continued)

JK f Ak | f | index in Nj,(2%) E
28.33.113 | 4|2 1 y? = x3 - 99x 4 378
28.33. 113 | 4 | 2 2 y2=x3 —11x + 14
28.33.113 | 4| 2 2 y2=x3—11x—14
28.33.113 | 4| 2 2 y2 = x% —44x + 112
28.33.113 | 4|2 2 y? =x

3 _44x +112




The list of 2-adic images coming from CM over Q: (continued)

Jkf | Dk | | indexin Nsg4(2%) E
26.53 | 8 |1 1 y? = x3 — 38880x + 2612736
26.5%3 | 8 |1 2 y? = x3 — 4320x + 96768
26.5%3 | —8 |1 2 y? = x3 — 4320x — 96768
26.53| -8 |1 2 y? = x3 —17280x + 774144
26.53 | 8 |1 2 y? = x3 —17280x — 774144




The list of 2-adic images coming from CM over Q: (continued)

Jkf | Dk | | indexin Nsg4(2%) E
26.53 | 8 |1 1 y? = x3 — 38880x + 2612736
26.5%3 | 8 |1 2 y? = x3 — 4320x + 96768
26.5%3 | —8 |1 2 y? = x3 — 4320x — 96768
26.53| -8 |1 2 y? = x3 —17280x + 774144
26.53 | 8 |1 2 2 = x3 - 17280x — 774144

Note: The last four examples are particularly interesting: the index of
the image in N; 4(4) is 1, but the index in N5 4(8) and the 2-adic index

is 2.



The elliptic curve E : y? = x® — 4320x + 96768 has CM by the
maximal order of K = Q(v/=2), f = 1, and jy s = 28 - 5. Its 2-adic
image is conjugate to the group:

<<2, b )(3 2)(:} B >>§N5,o(2°°)§GL(2,Z2),

where § = Axf2/4 = 2.

These examples are the CM analog of those non-CM images
described by Dokchitser and Dokchitser that are surjective mod 4 (onto
GL(2,7Z/4Z)) but not mod 8.






A similar effect happens for p = 3 when jk s = 0. Here is the list of
3-adic images coming from CM over Q:

Jk.t Ak | f | indexin N o(3%) E
1728 =2%.3%3 | —4 | 1 1 y2=x3+x

—215 —11 | 1 1 V24+y=x3—x2-7x+10
0 -3 |1 1 y2=x3 -1
0 -3 |1 2 y? =x3 4+ 1
0 -3 |1 2 y2=x3-3
0 -3 |1 3 y2=x342
0 -3 | 1 3 y2=x% 16
0 -3 |1 3

Note: the last two groups are conjugates mod 9 but not mod 27.



The list of 3-adic images coming from CM: (continued)

jK,f Ak | f | indexin ./\/'570(300) E
0 | -3 |1 6 y2=x34+16
0 | -3 |1 6 y? =x3 432
0 | -3 |1 6 y? = x3 +1296
0 | -3 |1 6 y2 =x3 48
0 | -3 |1 6 y? =x% 4144
0 | -3 |1 6 y? = x3 — 3888




The list of 3-adic images coming from CM: (continued)

jK,f Ak | f | indexin ./\/'570(300) E
0| -3]1 6 y2=x3+16
0| -3/|1 6 y — 432
0| -3 |1 6 y? = x3 +1296
0| -3 |1 6 y2 =x3-48
0 | -3 |1 6 y2 = x3 1+ 144
0 | -3 |1 6 y? = x3 - 3888

Note: The last four examples are particularly interesting: the index of the
image in NV (3) is 2, but the index in N 4(9) and the 3-adic index is 6.
These examples are CM analogs of those non-CM images described by
Elkies that are surjective mod 3 (onto GL(2,Z/37Z)) but not mod 9.



The list of 3-adic images coming from CM: (continued)

jK,f Ak | f | indexin ./\/'570(300) E
0| -3]1 6 y2=x3+16
0| -3/|1 6 y — 432
0| -3 |1 6 y? = x3 +1296
0| -3 |1 6 y2 =x3-48
0 | -3 |1 6 y2 = x3 1+ 144
0 | -3 |1 6 y? = x3 - 3888

Note: The last four examples are particularly interesting: the index of the
image in NV (3) is 2, but the index in N 4(9) and the 3-adic index is 6.
These examples are CM analogs of those non-CM images described by
Elkies that are surjective mod 3 (onto GL(2,Z/37Z)) but not mod 9.

Special thanks to Drew Sutherland for helping me in computing these
examples.






Example
The elliptic curve E : y? = x® 4 144 has CM by the maximal order of
K =Q(v—-3), f =1, and jx s = 0. Its 3-adic image is conjugate to the

group:

((o 5)(04) (3% s ))coem




§3. Proofs



First step: understand the image in coordinates.
If we define the Cartan subgroup C; »(N) of GL(2,Z/NZ) by

Cs.6(N) = {( a;bmz) Z > ra,beZ/NZ, & + abp — ob® € (Z/NZ)X}

Nsp(N) = <C(57¢(N), < _¢1 (1) )>

then there is a Z/NZ-basis of E[N] such that the image of pe y is
contained in N 4(N).

and
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Key step: understand Gal(H;(h(E[N]))/Hs)

Theorem

Let E/Q(jk.r) be an elliptic curve with CM by an order Ok ¢ of
conductor f > 1 in an imaginary quadratic field K, and let N > 2. Let
Hf = K(ijf). Then,

X X
Ok f ) K. f

Gal(H¢(h(E[N]))/Hy) = (N(’)K f

—.
OK,f,N

Note:
@ Stevenhagen gives a description of the extension and the Galois
group using an adelic approach and Shimura reciprocity.
@ Bourdon and Clark deduce an explicit description of the field

K(jk.r, h(E[N])) as the compositum of a ray class field and a ring
class field.

@ We use a classical class field theory approach to describe it in
terms of quotients of groups of proper Ok -ideals






Next step: for a fixed prime p, understand the tower H¢(E[p"]) as n
grows, and its Galois group over H;.



~
/ Sy
@k
Hf E[r / (2

@k
/ ), ( H,(A E&m



Theorem
Lett=1ifp>2andt=2ifp=2, and suppose one of the following

holds:
@ [H{(E[p"]) : H:(h(E[p"]))] is relatively prime to p, for some n > t.
@ jxr#0,andp > 2.
@ jxr=0andp> 3.

Then, the image of the group Gal(H;(E[p"+'])/H) in
(Ok.r/P™ Ok £)* is the full inverse image of the image of
Gal(H;(E[p"])/Hy) in (Ok.t/P"Ok r)* under the natural reduction map

modulo p".




Next steps: understand the Galois group of H;(E[N]) over Q(jk ).
@ Describe (Ok t/NO ¢)*, for N a power of 2 or 3, in terms of
generators in Ok f.

@ Subgroups of (Ok /NOk ¢)*, for N a power of 2 or 3, that are
missing a certain root of unity, stable under complex conjugation,
and are of a certain index.

@ Determine the possible shapes of complex conjugation.



For example, the more interesting 2-adic representations arise like so:

Lemma

1. Letn > 2, let H, be a subgroup of index 2 of (Ok ¢/2"Ok ¢)*, and let
H> = Hp mod 40k ¢ be the reduction of H, modulo 4. Suppose that:

@ —1isnotin H,, and
@ H» is fixed under complex conjugation.

Then, Axf? = 0 mod 16 and there are precisely two such subgroups
Hy,, namely (5,1 + fr)/2" and (5,—1 — fr)/2".




For example, the more interesting 2-adic representations arise like so:

Lemma

1. Letn > 2, let H, be a subgroup of index 2 of (Ok ¢/2"Ok ¢)*, and let
H> = Hp mod 40k ¢ be the reduction of H, modulo 4. Suppose that:

@ —1isnotin H,, and

@ H» is fixed under complex conjugation.
Then, Axf? = 0 mod 16 and there are precisely two such subgroups
Hy,, namely (5,1 + fr)/2" and (5,—1 — fr)/2".
2. Suppose n > 3 and Hy, is a subgroup of index 2 of (Ok ¢/2"Ok f)*
such that:

@ —1snotin H,y,

@ Hj is fixed under complex conjugation,

@ H, surjects onto (Ok /40 ¢)* when reduced mod4Ok ;.

Then, Ak = 0 mod 8 and there are precisely two such subgroups,
namely (3,1 + fr)/2" and (3, —1 — fr)/2".




THANK YOU

alvaro.lozano-robledo@uconn.edu

http://alozano.clas.uconn.edu

“If by chance | have omitted anything
more or less proper or necessary,
| beg forgiveness,
since there is no one who is without fault
and circumspect in all matters.”

Leonardo Pisano (Fibonacci), Liber Abaci.

Alvaro Lozano-Robledo (UConn) CM Galois Representations BU/Keio, June 28th 50 /50



