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§1. Introduction



Let E/Q be an elliptic curve, and let T2(E) = lim←−E [2n] be the Tate
module. The Galois action of Gal(Q/Q) on T2(E) induces

ρE ,2 : Gal(Q/Q)→ Aut(T2(E)) ∼= GL(2,Z2).

Theorem (Rouse and Zureick-Brown, 2014)
Let E/Q be an elliptic curve with no CM. Then, there are precisely
1208 possibilities for the image ρE ,2(Gal(Q/Q)), up to conjugation.
Further, the representation ρE ,2 is defined (at most) modulo 32.
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Example
For instance, let

E : y2 + xy = x3 + 210x + 900.

Then, the 2-adic image is X235l in the notation of the RZB database,
which is defined modulo 16, and is generated in GL(2,Z/16Z) by(

1 0
1 1

)
,

(
1 0

12 1

)
,

(
9 0
0 1

)
,

(
1 0
14 1

)
,

(
5 0
0 1

)
,

(
15 0
0 1

)
,

(
9 0
8 9

)
,

(
1 0
8 1

)
Note: their matrices act on vectors on the right, so this curve has a rational
16-isogeny.

The Rouse–Zureick-Brown classification of 2-adic Galois
representations has many interesting arithmetic applications.
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Torsion points defined over abelian extensions

Theorem (Ribet, 1981)

Let A/Q be an abelian variety and let Qab be the maximal abelian
extension of Q. Then, A(Qab)tors is finite.

Theorem (González-Jiménez, L-R., 2015)
Let E/Q be an elliptic curve.

1 If there is an integer n ≥ 2 such that Q(E [n]) = Q(ζn), then
n = 2,3,4, or 5.

2 More generally, if Q(E [n])/Q is abelian, then n = 2,3,4,5,6, or 8.
3 Moreover, Gn = Gal(Q(E [n])/Q) is isomorphic to one of 11

abelian groups.
4 If E/Q has CM, and Q(E [n]) = Q(ζn), then n = 2, or 3. If

Q(E [n])/Q is abelian, then n = 2,3, or 4.



Torsion points defined over abelian extensions

Theorem (Ribet, 1981)

Let A/Q be an abelian variety and let Qab be the maximal abelian
extension of Q. Then, A(Qab)tors is finite.

Theorem (González-Jiménez, L-R., 2015)
Let E/Q be an elliptic curve.

1 If there is an integer n ≥ 2 such that Q(E [n]) = Q(ζn), then
n = 2,3,4, or 5.

2 More generally, if Q(E [n])/Q is abelian, then n = 2,3,4,5,6, or 8.
3 Moreover, Gn = Gal(Q(E [n])/Q) is isomorphic to one of 11

abelian groups.
4 If E/Q has CM, and Q(E [n]) = Q(ζn), then n = 2, or 3. If

Q(E [n])/Q is abelian, then n = 2,3, or 4.



Torsion points defined over abelian extensions

Theorem (Ribet, 1981)

Let A/Q be an abelian variety and let Qab be the maximal abelian
extension of Q. Then, A(Qab)tors is finite.

Theorem (González-Jiménez, L-R., 2015)
Let E/Q be an elliptic curve.

1 If there is an integer n ≥ 2 such that Q(E [n]) = Q(ζn), then
n = 2,3,4, or 5.

2 More generally, if Q(E [n])/Q is abelian, then n = 2,3,4,5,6, or 8.

3 Moreover, Gn = Gal(Q(E [n])/Q) is isomorphic to one of 11
abelian groups.

4 If E/Q has CM, and Q(E [n]) = Q(ζn), then n = 2, or 3. If
Q(E [n])/Q is abelian, then n = 2,3, or 4.



Torsion points defined over abelian extensions

Theorem (Ribet, 1981)

Let A/Q be an abelian variety and let Qab be the maximal abelian
extension of Q. Then, A(Qab)tors is finite.

Theorem (González-Jiménez, L-R., 2015)
Let E/Q be an elliptic curve.

1 If there is an integer n ≥ 2 such that Q(E [n]) = Q(ζn), then
n = 2,3,4, or 5.

2 More generally, if Q(E [n])/Q is abelian, then n = 2,3,4,5,6, or 8.
3 Moreover, Gn = Gal(Q(E [n])/Q) is isomorphic to one of 11

abelian groups.

4 If E/Q has CM, and Q(E [n]) = Q(ζn), then n = 2, or 3. If
Q(E [n])/Q is abelian, then n = 2,3, or 4.



Torsion points defined over abelian extensions

Theorem (Ribet, 1981)

Let A/Q be an abelian variety and let Qab be the maximal abelian
extension of Q. Then, A(Qab)tors is finite.

Theorem (González-Jiménez, L-R., 2015)
Let E/Q be an elliptic curve.

1 If there is an integer n ≥ 2 such that Q(E [n]) = Q(ζn), then
n = 2,3,4, or 5.

2 More generally, if Q(E [n])/Q is abelian, then n = 2,3,4,5,6, or 8.
3 Moreover, Gn = Gal(Q(E [n])/Q) is isomorphic to one of 11

abelian groups.
4 If E/Q has CM, and Q(E [n]) = Q(ζn), then n = 2, or 3. If

Q(E [n])/Q is abelian, then n = 2,3, or 4.





Torsion points defined over abelian extensions

Theorem (Chou, 2018)

Let E/Q be an elliptic curve and let Qab be the maximal abelian
extension of Q. Then, #E(Qab)tors ≤ 163. This bound is sharp, as the
CM curve 26569a1 has a point of order 163 over Qab. Moreover, a full
classification of the possible torsion subgroups is given.





Minimal field of definition of 2n-torsion points

Let E/Q be an elliptic curve. By Mazur’s theorem, there might be an
8-torsion point over Q, but no 16-torsion points over Q.

Question
What is the smallest degree dn ≥ 2 such that there is an elliptic curve
E/Q and a field Fn of degree dn = [Fn : Q], such that E(Fn)[2n]
contains a point of exact order 2n?

Theorem (González-Jiménez, L-R., 2015)
Let E/Q be an elliptic curve without CM, and let P ∈ E [2n] be a point
of exact order 2n, with n ≥ 4. Then, the degree [Q(P) : Q] is divisible
by 22n−7. Moreover, this bound is best possible.

For example, the curve E : y2 + xy = x3 + 210x + 900, with the 2-adic
image X235l, has a point Pn, for every n ≥ 4, that achieves the bound.
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The CM case

Let
K be an imaginary quadratic field, discriminant ∆K , integers OK ,
f ≥ 1, and OK ,f the order of K of conductor f ,
jK ,f = j(OK ,f ) its j-invariant.
E/Q(jK ,f ) an elliptic curve with CM by OK ,f .

Theorem (Bourdon and Clark, 2016)
Let N ≥ 2. There is an explicit integer T (OK ,f ,N) such that if P is a
point on E of exact order N, then [K (jf ,P) : K (jf )] is divisible by
T (OK ,f ,N).
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Example
When N = 2n, and E/Q, the explicit formulas say that the smallest
value of T (OK ,f ,2n) occurs when 2 | ∆K and 2 | f .

Thus, ∆K = −4 or
−8, and f ≥ 2, and T (OK ,f ,2n) = 22n−5 for n > 3.

For example, E/Q : y2 = x3 − 11x + 14 has CM by Z[2i], and if P ∈ E
has exact order 2n, for n ≥ 2, then [Q(P) : Q] is divisible by 22n−4 (and
equality holds for some such P).
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Example
When N = 2n, and E/K , we can achieve
[K (P) : K ] = T (OK ,f ,2n) = 22n−5.

For example, let K = Q(
√
−2), let f = 2, and let OK ,f = Z[2

√
−2]. In

this case jf = 26125000 + 18473000
√

2. Let

E/K : y2 +
√

2xy = x3 −
√

2x2 + (2− 2
√

2)x + 5− 3
√

2

that has CM by Z[2
√
−2]. This is the curve 64.1-a6 over Q(

√
−2) in

the LMFDB.

For this curve, if P ∈ E has exact order 2n, for n ≥ 2, then [K (P) : K ] is
divisible by 22n−5 (and equality holds for some such P).

The same problem can be solved if we classify all 2-adic
representations for elliptic curves E/Q(jf ) with CM by OK ,f .
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Back to 2-adic representations

Theorem (Rouse and Zureick-Brown, 2014)
Let E/Q be an elliptic curve with no CM. Then, there are precisely
1208 possibilities for the image ρE ,2(Gal(Q/Q)), up to conjugation.
Further, the representation ρE ,2 is defined (at most) modulo 32.

What about representations coming from elliptic curves with CM?

Theorem
Let E/Q be an elliptic curve. Then, there are precisely 1235
possibilities for the image ρE ,2(Gal(Q/Q)), up to conjugation. Further,
the representation ρE ,2 is defined (at most) modulo 32.

In the rest of the talk, we discuss the proof that there are 27 additional
types of 2-adic representations coming from elliptic curves over Q with
CM.
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§2. Results



Cartan subgroups:

For N ≥ 3, we define groups of GL(2,Z/NZ) as follows:
If ∆K f 2 ≡ 0 mod 4, or N is odd, let δ = ∆K f 2/4, and φ = 0.

If ∆K f 2 ≡ 1 mod 4, and N is even, let δ = (∆K−1)
4 f 2, let φ = f .

Then, the Cartan subgroup Cδ,φ(N) of GL(2,Z/NZ) is

Cδ,φ(N) =

{(
a + bφ b
δb a

)
: a,b ∈ Z/NZ, a2 + abφ− δb2 ∈ (Z/NZ)×

}

and Nδ,φ(N) =

〈
Cδ,φ(N),

(
−1 0
φ 1

)〉
.
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Theorem (The image in coordinates)
Let E/Q(jK ,f ) be an elliptic curve with CM by OK ,f , let N ≥ 3, and let
ρE ,N be the representation Gal(Q(jK ,f )/Q(jK ,f ))→ GL(2,Z/NZ).

Then,
1 There is a Z/NZ-basis of E [N] such that the image of ρE ,N is

contained in Nδ,φ(N).
2 Moreover, the index of the image of ρE ,N in Nδ,f (N) coincides with

the order of the Galois group Gal(K (jK ,f ,E [N])/K (jK ,f ,h(E [N])),
for a Weber function h, and it is a divisor of the order of O×K ,f .
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Theorem (The adelic image)
Let E/Q(jK ,f ) be an elliptic curve with CM by OK ,f .

If ∆K f 2 ≡ 0 mod 4, let δ = ∆K f 2/4, and φ = 0.

If ∆K f 2 ≡ 1 mod 4, let δ = (∆K−1)
4 f 2, let φ = f .

Let ρE be the adelic Galois representation

Gal(Q(jK ,f )/Q(jK ,f ))→ lim←−Aut(E [N]) ∼= GL(2, Ẑ),

and let Nδ,φ = lim←−Nδ,φ(N).

Then:
1 there is a compatible system of bases of E [N] such that the image

of ρE is contained in Nδ,φ,
2 the index of the image of ρE in Nδ,φ is a divisor of the order O×K ,f ,

and the index is a divisor of 4 or 6. [Lombardo, Bourdon–Clark]
3 Moreover, for every K and f ≥ 1, and a fixed N ≥ 3, there is an

elliptic curve E/Q(jK ,f ) such that the index of the image of ρE ,N in
Nδ,φ(N) is 1. [Bourdon–Clark]
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Moreover, for every K and f ≥ 1, and a fixed N ≥ 3, there is an elliptic
curve E/Q(jK ,f ) such that the index of the image of ρE ,N in Nδ,φ(N) is 1.

However, the adelic representation may not have index 1 in Nδ,φ in
certain cases.

Theorem (L.-R., 2018)

Let E/Q be an elliptic curve with j(E) = 1728, and choose compatible
bases of E [N], for each N ≥ 2, such that the image of ρE is contained
in Nδ,φ. Then, the index of the image of ρE in Nδ,φ is 2 or 4.

Theorem (L.-R., 2018)

Let E/Q be an elliptic curve with CM by an order OK ,f in an imaginary
quadratic field K with ∆K 6= −4,−8 and jK ,f 6= 0, and choose
compatible bases of E [N], for each N ≥ 2, such that the image of ρE is
contained in Nδ,φ. Then, the index of the image of ρE in Nδ,φ is 2.
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in Nδ,φ. Then, the index of the image of ρE in Nδ,φ is 2 or 4.

Theorem (L.-R., 2018)

Let E/Q be an elliptic curve with CM by an order OK ,f in an imaginary
quadratic field K with ∆K 6= −4,−8 and jK ,f 6= 0, and choose
compatible bases of E [N], for each N ≥ 2, such that the image of ρE is
contained in Nδ,φ. Then, the index of the image of ρE in Nδ,φ is 2.



Using our work, we can classify all the p-adic Galois representations
that arise from elliptic curves over Q(jK ,f ), up to conjugation

...
including p = 2 and p = 3!

Here is the complete list of 2-adic images coming from CM over Q:

jK ,f ∆K f index E
in Nδ,φ(2∞)

0 −3 1 1 y2 = x3 + 2
0 −3 1 3 y2 = x3 + 1

24 · 33 · 53 −3 2 1 y2 = x3 − 15x + 22
−215 · 3 · 53 −3 3 1 y2 + y = x3 − 30x + 63
−33 · 53 −7 1 1 y2 + xy = x3 − x2 − 2x − 1

33 · 53 · 173 −7 2 1 y2 = x3 − 595x + 5586
...

...
...

...
...

Note: the images for (∆K , f ) = (−3,2) and (−7,2) are conjugates
modulo 16, but not modulo 32.
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Using our work, we can classify all the p-adic Galois representations
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Using our work, we can classify all the p-adic Galois representations
that arise from elliptic curves over Q(jK ,f ), up to conjugation...
including p = 2 and p = 3!

Here is the complete list of 2-adic images coming from CM over Q:

jK ,f ∆K f index E
in Nδ,φ(2∞)

0 −3 1 1 y2 = x3 + 2
0 −3 1 3 y2 = x3 + 1

24 · 33 · 53 −3 2 1 y2 = x3 − 15x + 22
−215 · 3 · 53 −3 3 1 y2 + y = x3 − 30x + 63
−33 · 53 −7 1 1 y2 + xy = x3 − x2 − 2x − 1

33 · 53 · 173 −7 2 1 y2 = x3 − 595x + 5586
...

...
...

...
...

Note: the images for (∆K , f ) = (−3,2) and (−7,2) are conjugates
modulo 16, but not modulo 32.



The list of 2-adic images coming from CM over Q: (continued)

jK ,f ∆K f index in Nδ,φ(2∞) E
...

...
...

...
...

1728 = 26 · 33 −4 1 1 y2 = x3 + 3x
1728 −4 1 2 y2 = x3 + 9x
1728 −4 1 2 y2 = x3 − 9x
1728 −4 1 2 y2 = x3 + 18x
1728 −4 1 2 y2 = x3 − 18x
1728 −4 1 4 y2 = x3 + x
1728 −4 1 4 y2 = x3 − x
1728 −4 1 4 y2 = x3 + 2x
1728 −4 1 4 y2 = x3 − 2x
1728 −4 1 4 y2 = x3 + 4x
1728 −4 1 4 y2 = x3 − 4x

...
...

...
...

...



The list of 2-adic images coming from CM over Q: (continued)

jK ,f ∆K f index in Nδ,φ(2∞) E
...

...
...

...
...

23 · 33 · 113 −4 2 1 y2 = x3 − 99x + 378
23 · 33 · 113 −4 2 2 y2 = x3 − 11x + 14
23 · 33 · 113 −4 2 2 y2 = x3 − 11x − 14
23 · 33 · 113 −4 2 2 y2 = x3 − 44x + 112
23 · 33 · 113 −4 2 2 y2 = x3 − 44x + 112

...
...

...
...

...



The list of 2-adic images coming from CM over Q: (continued)

jK ,f ∆K f index in Nδ,φ(2∞) E
...

...
...

...
...

26 · 53 −8 1 1 y2 = x3 − 38880x + 2612736
26 · 53 −8 1 2 y2 = x3 − 4320x + 96768
26 · 53 −8 1 2 y2 = x3 − 4320x − 96768
26 · 53 −8 1 2 y2 = x3 − 17280x + 774144
26 · 53 −8 1 2 y2 = x3 − 17280x − 774144

Note: The last four examples are particularly interesting: the index of
the image in Nδ,φ(4) is 1, but the index in Nδ,φ(8) and the 2-adic index
is 2.



The list of 2-adic images coming from CM over Q: (continued)

jK ,f ∆K f index in Nδ,φ(2∞) E
...

...
...

...
...

26 · 53 −8 1 1 y2 = x3 − 38880x + 2612736
26 · 53 −8 1 2 y2 = x3 − 4320x + 96768
26 · 53 −8 1 2 y2 = x3 − 4320x − 96768
26 · 53 −8 1 2 y2 = x3 − 17280x + 774144
26 · 53 −8 1 2 y2 = x3 − 17280x − 774144

Note: The last four examples are particularly interesting: the index of
the image in Nδ,φ(4) is 1, but the index in Nδ,φ(8) and the 2-adic index
is 2.



Example

The elliptic curve E : y2 = x3 − 4320x + 96768 has CM by the
maximal order of K = Q(

√
−2), f = 1, and jK ,f = 26 · 53. Its 2-adic

image is conjugate to the group:〈(
1 0
0 −1

)
,

(
3 0
0 3

)
,

(
−1 −1
−δ −1

)〉
⊆ Nδ,0(2∞) ⊆ GL(2,Z2),

where δ = ∆K f 2/4 = −2.

These examples are the CM analog of those non-CM images
described by Dokchitser and Dokchitser that are surjective mod 4 (onto
GL(2,Z/4Z)) but not mod 8.





A similar effect happens for p = 3 when jK ,f = 0. Here is the list of
3-adic images coming from CM over Q:

jK ,f ∆K f index in Nδ,0(3∞) E
1728 = 23 · 33 −4 1 1 y2 = x3 + x

−215 −11 1 1 y2 + y = x3 − x2 − 7x + 10
0 −3 1 1 y2 = x3 − 1
0 −3 1 2 y2 = x3 + 1
0 −3 1 2 y2 = x3 − 3
0 −3 1 3 y2 = x3 + 2
0 −3 1 3 y2 = x3 + 6
0 −3 1 3 y2 = x3 + 18
...

...
...

...
...

Note: the last two groups are conjugates mod 9 but not mod 27.



The list of 3-adic images coming from CM: (continued)

jK ,f ∆K f index in Nδ,0(3∞) E
...

...
...

...
...

0 −3 1 6 y2 = x3 + 16
0 −3 1 6 y2 = x3 − 432
0 −3 1 6 y2 = x3 + 1296
0 −3 1 6 y2 = x3 − 48
0 −3 1 6 y2 = x3 + 144
0 −3 1 6 y2 = x3 − 3888

Note: The last four examples are particularly interesting: the index of the
image in Nδ,φ(3) is 2, but the index in Nδ,φ(9) and the 3-adic index is 6.
These examples are CM analogs of those non-CM images described by
Elkies that are surjective mod 3 (onto GL(2,Z/3Z)) but not mod 9.

Special thanks to Drew Sutherland for helping me in computing these
examples.



The list of 3-adic images coming from CM: (continued)

jK ,f ∆K f index in Nδ,0(3∞) E
...

...
...

...
...

0 −3 1 6 y2 = x3 + 16
0 −3 1 6 y2 = x3 − 432
0 −3 1 6 y2 = x3 + 1296
0 −3 1 6 y2 = x3 − 48
0 −3 1 6 y2 = x3 + 144
0 −3 1 6 y2 = x3 − 3888

Note: The last four examples are particularly interesting: the index of the
image in Nδ,φ(3) is 2, but the index in Nδ,φ(9) and the 3-adic index is 6.
These examples are CM analogs of those non-CM images described by
Elkies that are surjective mod 3 (onto GL(2,Z/3Z)) but not mod 9.

Special thanks to Drew Sutherland for helping me in computing these
examples.



The list of 3-adic images coming from CM: (continued)

jK ,f ∆K f index in Nδ,0(3∞) E
...

...
...

...
...

0 −3 1 6 y2 = x3 + 16
0 −3 1 6 y2 = x3 − 432
0 −3 1 6 y2 = x3 + 1296
0 −3 1 6 y2 = x3 − 48
0 −3 1 6 y2 = x3 + 144
0 −3 1 6 y2 = x3 − 3888

Note: The last four examples are particularly interesting: the index of the
image in Nδ,φ(3) is 2, but the index in Nδ,φ(9) and the 3-adic index is 6.
These examples are CM analogs of those non-CM images described by
Elkies that are surjective mod 3 (onto GL(2,Z/3Z)) but not mod 9.

Special thanks to Drew Sutherland for helping me in computing these
examples.





Example

The elliptic curve E : y2 = x3 + 144 has CM by the maximal order of
K = Q(

√
−3), f = 1, and jK ,f = 0. Its 3-adic image is conjugate to the

group:〈(
1 0
0 −1

)
,

(
4 0
0 4

)
,

(
−5/4 1/2
−3/8 −5/4

)〉
⊆ GL(2,Z3).



§3. Proofs



First step: understand the image in coordinates.

If we define the Cartan subgroup Cδ,φ(N) of GL(2,Z/NZ) by

Cδ,φ(N) =

{(
a + bφ b
δb a

)
: a,b ∈ Z/NZ, a2 + abφ− δb2 ∈ (Z/NZ)×

}
and

Nδ,φ(N) =

〈
Cδ,φ(N),

(
−1 0
φ 1

)〉
,

then there is a Z/NZ-basis of E [N] such that the image of ρE ,N is
contained in Nδ,φ(N).



















Key step: understand Gal(Hf (h(E [N]))/Hf )

Theorem

Let E/Q(jK ,f ) be an elliptic curve with CM by an order OK ,f of
conductor f ≥ 1 in an imaginary quadratic field K , and let N ≥ 2. Let
Hf = K (jK ,f ). Then,

Gal(Hf (h(E [N]))/Hf ) ∼=
(
OK ,f

NOK ,f

)×/ O×K ,f
O×K ,f ,N

.

Note:
Stevenhagen gives a description of the extension and the Galois
group using an adelic approach and Shimura reciprocity.
Bourdon and Clark deduce an explicit description of the field
K (jK ,f ,h(E [N])) as the compositum of a ray class field and a ring
class field.
We use a classical class field theory approach to describe it in
terms of quotients of groups of proper OK ,f -ideals





Next step: for a fixed prime p, understand the tower Hf (E [pn]) as n
grows, and its Galois group over Hf .





Theorem
Let t = 1 if p > 2 and t = 2 if p = 2, and suppose one of the following
holds:

[Hf (E [pn]) : Hf (h(E [pn]))] is relatively prime to p, for some n ≥ t .
jK ,f 6= 0, and p > 2.
jK ,f = 0 and p > 3.

Then, the image of the group Gal(Hf (E [pn+1])/Hf ) in
(OK ,f/pn+1OK ,f )× is the full inverse image of the image of
Gal(Hf (E [pn])/Hf ) in (OK ,f/pnOK ,f )× under the natural reduction map
modulo pn.



Next steps: understand the Galois group of Hf (E [N]) over Q(jK ,f ).
Describe (OK ,f/NOK ,f )×, for N a power of 2 or 3, in terms of
generators in OK ,f .
Subgroups of (OK ,f/NOK ,f )×, for N a power of 2 or 3, that are
missing a certain root of unity, stable under complex conjugation,
and are of a certain index.
Determine the possible shapes of complex conjugation.



For example, the more interesting 2-adic representations arise like so:

Lemma

1. Let n ≥ 2, let Hn be a subgroup of index 2 of (OK ,f/2nOK ,f )×, and let
H2 ≡ Hn mod 4OK ,f be the reduction of Hn modulo 4. Suppose that:

−1 is not in H2, and
H2 is fixed under complex conjugation.

Then, ∆K f 2 ≡ 0 mod 16 and there are precisely two such subgroups
Hn, namely 〈5,1 + f τ〉/2n and 〈5,−1− f τ〉/2n.

2. Suppose n ≥ 3 and Hn is a subgroup of index 2 of (OK ,f/2nOK ,f )×

such that:
−1 is not in Hn,
Hn is fixed under complex conjugation,
Hn surjects onto (OK ,f/4OK ,f )× when reduced mod4OK ,f .

Then, ∆K ≡ 0 mod 8 and there are precisely two such subgroups,
namely 〈3,1 + f τ〉/2n and 〈3,−1− f τ〉/2n.



For example, the more interesting 2-adic representations arise like so:

Lemma

1. Let n ≥ 2, let Hn be a subgroup of index 2 of (OK ,f/2nOK ,f )×, and let
H2 ≡ Hn mod 4OK ,f be the reduction of Hn modulo 4. Suppose that:

−1 is not in H2, and
H2 is fixed under complex conjugation.

Then, ∆K f 2 ≡ 0 mod 16 and there are precisely two such subgroups
Hn, namely 〈5,1 + f τ〉/2n and 〈5,−1− f τ〉/2n.

2. Suppose n ≥ 3 and Hn is a subgroup of index 2 of (OK ,f/2nOK ,f )×

such that:
−1 is not in Hn,
Hn is fixed under complex conjugation,
Hn surjects onto (OK ,f/4OK ,f )× when reduced mod4OK ,f .

Then, ∆K ≡ 0 mod 8 and there are precisely two such subgroups,
namely 〈3,1 + f τ〉/2n and 〈3,−1− f τ〉/2n.



THANK YOU
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“If by chance I have omitted anything
more or less proper or necessary,

I beg forgiveness,
since there is no one who is without fault

and circumspect in all matters.”

Leonardo Pisano (Fibonacci), Liber Abaci.
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