Galois Representations Attached to Elliptic Curves with Complex Multiplication

Álvaro Lozano-Robledo

Department of Mathematics University of Connecticut

June 28th BU/Keio Workshop Boston University

WORKSHOP 2019

Galois Representations Attached to Elliptic Curves with Complex Multiplication

Álvaro Lozano-Robledo University of Connecticut

§1. Introduction

Let E/\mathbb{Q} be an elliptic curve, and let $T_2(E) = \varprojlim E[2^n]$ be the Tate module. The Galois action of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on $T_2(E)$ induces

 $\rho_{E,2}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_2(E)) \cong \operatorname{GL}(2, \mathbb{Z}_2).$

Let E/\mathbb{Q} be an elliptic curve, and let $T_2(E) = \varprojlim E[2^n]$ be the Tate module. The Galois action of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on $T_2(E)$ induces

 $\rho_{E,2}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(T_2(E)) \cong \operatorname{GL}(2, \mathbb{Z}_2).$

Theorem (Rouse and Zureick-Brown, 2014)

Let E/\mathbb{Q} be an elliptic curve with no CM. Then, there are precisely 1208 possibilities for the image $\rho_{E,2}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, up to conjugation. Further, the representation $\rho_{E,2}$ is defined (at most) modulo 32.

Zagreb (Croatia), June 25-29, 2018.

Zagreb (Croatia), June 25-29, 2018.

For instance, let

$$E: y^2 + xy = x^3 + 210x + 900.$$

Then, the 2-adic image is X2351 in the notation of the RZB database, which is defined modulo 16, and is generated in $GL(2, \mathbb{Z}/16\mathbb{Z})$ by

$$\begin{pmatrix}1&0\\1&1\end{pmatrix},\begin{pmatrix}1&0\\12&1\end{pmatrix},\begin{pmatrix}9&0\\0&1\end{pmatrix},\begin{pmatrix}1&0\\14&1\end{pmatrix},\begin{pmatrix}5&0\\0&1\end{pmatrix},\begin{pmatrix}15&0\\0&1\end{pmatrix},\begin{pmatrix}9&0\\8&9\end{pmatrix},\begin{pmatrix}1&0\\8&1\end{pmatrix}$$

Note: their matrices act on vectors on the right, so this curve has a rational 16-isogeny.

For instance, let

$$E: y^2 + xy = x^3 + 210x + 900.$$

Then, the 2-adic image is X2351 in the notation of the RZB database, which is defined modulo 16, and is generated in $GL(2, \mathbb{Z}/16\mathbb{Z})$ by

$$\begin{pmatrix}1&0\\1&1\end{pmatrix},\begin{pmatrix}1&0\\12&1\end{pmatrix},\begin{pmatrix}9&0\\0&1\end{pmatrix},\begin{pmatrix}1&0\\14&1\end{pmatrix},\begin{pmatrix}5&0\\0&1\end{pmatrix},\begin{pmatrix}15&0\\0&1\end{pmatrix},\begin{pmatrix}9&0\\8&9\end{pmatrix},\begin{pmatrix}1&0\\8&1\end{pmatrix}$$

Note: their matrices act on vectors on the right, so this curve has a rational 16-isogeny.

The Rouse–Zureick-Brown classification of 2-adic Galois representations has many interesting arithmetic applications.

Torsion points defined over abelian extensions

Theorem (Ribet, 1981)

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q} . Then, $A(\mathbb{Q}^{ab})_{tors}$ is finite.

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q} . Then, $A(\mathbb{Q}^{ab})_{tors}$ is finite.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve.

If there is an integer $n \ge 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then n = 2, 3, 4, or 5.

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q} . Then, $A(\mathbb{Q}^{ab})_{tors}$ is finite.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve.

- If there is an integer $n \ge 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then n = 2, 3, 4, or 5.
- 2 More generally, if $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian, then n = 2, 3, 4, 5, 6, or 8.

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q} . Then, $A(\mathbb{Q}^{ab})_{tors}$ is finite.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve.

- If there is an integer $n \ge 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then n = 2, 3, 4, or 5.
- 2 More generally, if $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian, then n = 2, 3, 4, 5, 6, or 8.
- Moreover, G_n = Gal(Q(E[n])/Q) is isomorphic to one of 11 abelian groups.

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q} . Then, $A(\mathbb{Q}^{ab})_{tors}$ is finite.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve.

- If there is an integer $n \ge 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then n = 2, 3, 4, or 5.
- 2 More generally, if $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian, then n = 2, 3, 4, 5, 6, or 8.
- Moreover, G_n = Gal(Q(E[n])/Q) is isomorphic to one of 11 abelian groups.
- If *E*/Q has *CM*, and Q(*E*[*n*]) = Q(ζ_n), then *n* = 2, or 3. If Q(*E*[*n*])/Q is abelian, then *n* = 2, 3, or 4.

Theorem (Chou, 2018)

Let E/\mathbb{Q} be an elliptic curve and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q} . Then, $\#E(\mathbb{Q}^{ab})_{tors} \leq 163$. This bound is sharp, as the CM curve 26569a1 has a point of order 163 over \mathbb{Q}^{ab} . Moreover, a full classification of the possible torsion subgroups is given.

Minimal field of definition of 2ⁿ-torsion points

Let E/\mathbb{Q} be an elliptic curve. By Mazur's theorem, there might be an 8-torsion point over \mathbb{Q} , but no 16-torsion points over \mathbb{Q} .

Minimal field of definition of 2^{*n*}-torsion points

Let E/\mathbb{Q} be an elliptic curve. By Mazur's theorem, there might be an 8-torsion point over \mathbb{Q} , but no 16-torsion points over \mathbb{Q} .

Question

What is the smallest degree $d_n \ge 2$ such that there is an elliptic curve E/\mathbb{Q} and a field F_n of degree $d_n = [F_n : \mathbb{Q}]$, such that $E(F_n)[2^n]$ contains a point of exact order 2^n ?

Minimal field of definition of 2^{*n*}-torsion points

Let E/\mathbb{Q} be an elliptic curve. By Mazur's theorem, there might be an 8-torsion point over \mathbb{Q} , but no 16-torsion points over \mathbb{Q} .

Question

What is the smallest degree $d_n \ge 2$ such that there is an elliptic curve E/\mathbb{Q} and a field F_n of degree $d_n = [F_n : \mathbb{Q}]$, such that $E(F_n)[2^n]$ contains a point of exact order 2^n ?

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve without CM, and let $P \in E[2^n]$ be a point of exact order 2^n , with $n \ge 4$. Then, the degree $[\mathbb{Q}(P) : \mathbb{Q}]$ is divisible by 2^{2n-7} . Moreover, this bound is best possible.

For example, the curve $E: y^2 + xy = x^3 + 210x + 900$, with the 2-adic image X2351, has a point P_n , for every $n \ge 4$, that achieves the bound.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve without CM, and let $P \in E[2^n]$ be a point of exact order 2^n , with $n \ge 4$. Then, the degree $[\mathbb{Q}(P) : \mathbb{Q}]$ is divisible by 2^{2n-7} . Moreover, this bound is best possible.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve without CM, and let $P \in E[2^n]$ be a point of exact order 2^n , with $n \ge 4$. Then, the degree $[\mathbb{Q}(P) : \mathbb{Q}]$ is divisible by 2^{2n-7} . Moreover, this bound is best possible.

What about elliptic curves with CM?

Let

- *K* be an imaginary quadratic field, discriminant Δ_K , integers \mathcal{O}_K ,
- $f \ge 1$, and $\mathcal{O}_{K,f}$ the order of K of conductor f,
- $j_{K,f} = j(\mathcal{O}_{K,f})$ its *j*-invariant.
- $E/\mathbb{Q}(j_{K,f})$ an elliptic curve with CM by $\mathcal{O}_{K,f}$.

Let

- *K* be an imaginary quadratic field, discriminant Δ_K , integers \mathcal{O}_K ,
- $f \ge 1$, and $\mathcal{O}_{K,f}$ the order of K of conductor f,
- $j_{K,f} = j(\mathcal{O}_{K,f})$ its *j*-invariant.
- $E/\mathbb{Q}(j_{K,f})$ an elliptic curve with CM by $\mathcal{O}_{K,f}$.

Theorem (Bourdon and Clark, 2016)

Let $N \ge 2$. There is an explicit integer $T(\mathcal{O}_{K,f}, N)$ such that if P is a point on E of exact order N, then $[K(j_f, P) : K(j_f)]$ is divisible by $T(\mathcal{O}_{K,f}, N)$.

When $N = 2^n$, and E/\mathbb{Q} , the explicit formulas say that the smallest value of $T(\mathcal{O}_{K,f}, 2^n)$ occurs when $2 \mid \Delta_K$ and $2 \mid f$.

When $N = 2^n$, and E/\mathbb{Q} , the explicit formulas say that the smallest value of $T(\mathcal{O}_{K,f}, 2^n)$ occurs when $2 \mid \Delta_K$ and $2 \mid f$. Thus, $\Delta_K = -4$ or -8, and $f \ge 2$, and $T(\mathcal{O}_{K,f}, 2^n) = 2^{2n-5}$ for n > 3.

For example, $E/\mathbb{Q} : y^2 = x^3 - 11x + 14$ has CM by $\mathbb{Z}[2i]$, and if $P \in E$ has exact order 2^n , for $n \ge 2$, then $[\mathbb{Q}(P) : \mathbb{Q}]$ is divisible by 2^{2n-4} (and equality holds for some such P).

When $N = 2^n$, and E/K, we can achieve $[K(P) : K] = T(\mathcal{O}_{K,f}, 2^n) = 2^{2n-5}$.

When $N = 2^n$, and E/K, we can achieve $[K(P) : K] = T(\mathcal{O}_{K,f}, 2^n) = 2^{2n-5}$.

For example, let $K = \mathbb{Q}(\sqrt{-2})$, let f = 2, and let $\mathcal{O}_{K,f} = \mathbb{Z}[2\sqrt{-2}]$. In this case $j_f = 26125000 + 18473000\sqrt{2}$. Let

$$E/K: y^2 + \sqrt{2}xy = x^3 - \sqrt{2}x^2 + (2 - 2\sqrt{2})x + 5 - 3\sqrt{2}$$

that has CM by $\mathbb{Z}[2\sqrt{-2}]$. This is the curve 64.1-a6 over $\mathbb{Q}(\sqrt{-2})$ in the LMFDB.

For this curve, if $P \in E$ has exact order 2^n , for $n \ge 2$, then [K(P) : K] is divisible by 2^{2n-5} (and equality holds for some such P).

When $N = 2^n$, and E/K, we can achieve $[K(P) : K] = T(\mathcal{O}_{K,f}, 2^n) = 2^{2n-5}$.

For example, let $K = \mathbb{Q}(\sqrt{-2})$, let f = 2, and let $\mathcal{O}_{K,f} = \mathbb{Z}[2\sqrt{-2}]$. In this case $j_f = 26125000 + 18473000\sqrt{2}$. Let

$$E/K: y^2 + \sqrt{2}xy = x^3 - \sqrt{2}x^2 + (2 - 2\sqrt{2})x + 5 - 3\sqrt{2}$$

that has CM by $\mathbb{Z}[2\sqrt{-2}]$. This is the curve 64.1-a6 over $\mathbb{Q}(\sqrt{-2})$ in the LMFDB.

For this curve, if $P \in E$ has exact order 2^n , for $n \ge 2$, then [K(P) : K] is divisible by 2^{2n-5} (and equality holds for some such P).

The same problem can be solved if we classify all 2-adic representations for elliptic curves $E/\mathbb{Q}(j_f)$ with CM by $\mathcal{O}_{K,f}$.

Theorem (Rouse and Zureick-Brown, 2014)

Let E/\mathbb{Q} be an elliptic curve with no CM. Then, there are precisely **1208** possibilities for the image $\rho_{E,2}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, up to conjugation. Further, the representation $\rho_{E,2}$ is defined (at most) modulo 32.

Theorem (Rouse and Zureick-Brown, 2014)

Let E/\mathbb{Q} be an elliptic curve with no CM. Then, there are precisely **1208** possibilities for the image $\rho_{E,2}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, up to conjugation. Further, the representation $\rho_{E,2}$ is defined (at most) modulo 32.

What about representations coming from elliptic curves with CM?

Theorem (Rouse and Zureick-Brown, 2014)

Let E/\mathbb{Q} be an elliptic curve with no CM. Then, there are precisely **1208** possibilities for the image $\rho_{E,2}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, up to conjugation. Further, the representation $\rho_{E,2}$ is defined (at most) modulo 32.

What about representations coming from elliptic curves with CM?

Theorem

Let E/\mathbb{Q} be an elliptic curve. Then, there are precisely **1235** possibilities for the image $\rho_{E,2}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, up to conjugation. Further, the representation $\rho_{E,2}$ is defined (at most) modulo 32.

In the rest of the talk, we discuss the proof that there are **27** additional types of 2-adic representations coming from elliptic curves over \mathbb{Q} with CM.

§2. Results

Cartan subgroups:

For $N \ge 3$, we define groups of $GL(2, \mathbb{Z}/N\mathbb{Z})$ as follows:

• If $\Delta_{\mathcal{K}} f^2 \equiv 0 \mod 4$, or *N* is odd, let $\delta = \Delta_{\mathcal{K}} f^2/4$, and $\phi = 0$.

• If $\Delta_{K} f^{2} \equiv 1 \mod 4$, and *N* is even, let $\delta = \frac{(\Delta_{K}-1)}{4} f^{2}$, let $\phi = f$. Then, the Cartan subgroup $C_{\delta,\phi}(N)$ of GL(2, $\mathbb{Z}/N\mathbb{Z})$ is

$$\mathcal{C}_{\delta,\phi}(N) = \left\{ \left(egin{array}{c} a+b\phi & b \ \delta b & a \end{array}
ight) : a,b \in \mathbb{Z}/N\mathbb{Z}, \ a^2+ab\phi-\delta b^2 \in (\mathbb{Z}/N\mathbb{Z})^{ imes}
ight\}$$

and $\mathcal{N}_{\delta,\phi}(N) = \left\langle \mathcal{C}_{\delta,\phi}(N), \left(egin{array}{c} -1 & 0 \ \phi & 1 \end{array}
ight)
ight
angle.$
The Cartan subgroup $\mathcal{C}_{\delta,\phi}(N)$ of $\operatorname{GL}(2,\mathbb{Z}/N\mathbb{Z})$ is

$$\mathcal{C}_{\delta,\phi}(N) = \left\{ \left(egin{array}{cc} a+b\phi & b \ \delta b & a \end{array}
ight) : a,b\in\mathbb{Z}/N\mathbb{Z}, \ a^2+ab\phi-\delta b^2\in(\mathbb{Z}/N\mathbb{Z})^{ imes}
ight\}$$

and $\mathcal{N}_{\delta,\phi}(N) = \left\langle \mathcal{C}_{\delta,\phi}(N), \left(egin{array}{cc} -1 & 0 \ \phi & 1 \end{array}
ight)
ight
angle.$

Theorem (The image in coordinates)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, let $N \ge 3$, and let $\rho_{E,N}$ be the representation $\operatorname{Gal}(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \to \operatorname{GL}(2,\mathbb{Z}/N\mathbb{Z})$.

The Cartan subgroup $\mathcal{C}_{\delta,\phi}(N)$ of $\operatorname{GL}(2,\mathbb{Z}/N\mathbb{Z})$ is

$$\mathcal{C}_{\delta,\phi}(N) = \left\{ \left(egin{array}{cc} a+b\phi & b \ \delta b & a \end{array}
ight) : a,b\in\mathbb{Z}/N\mathbb{Z}, \ a^2+ab\phi-\delta b^2\in(\mathbb{Z}/N\mathbb{Z})^{ imes}
ight\}$$

and $\mathcal{N}_{\delta,\phi}(N) = \left\langle \mathcal{C}_{\delta,\phi}(N), \left(egin{array}{cc} -1 & 0 \ \phi & 1 \end{array}
ight)
ight
angle.$

Theorem (The image in coordinates)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, let $N \ge 3$, and let $\rho_{E,N}$ be the representation $Gal(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \to GL(2,\mathbb{Z}/N\mathbb{Z})$. Then,

There is a Z/NZ-basis of E[N] such that the image of ρ_{E,N} is contained in N_{δ,φ}(N).

The Cartan subgroup $\mathcal{C}_{\delta,\phi}(N)$ of $\operatorname{GL}(2,\mathbb{Z}/N\mathbb{Z})$ is

$$\mathcal{C}_{\delta,\phi}(N) = \left\{ \left(egin{array}{cc} a+b\phi & b \ \delta b & a \end{array}
ight) : a,b\in\mathbb{Z}/N\mathbb{Z}, \ a^2+ab\phi-\delta b^2\in(\mathbb{Z}/N\mathbb{Z})^{ imes}
ight\}$$

and $\mathcal{N}_{\delta,\phi}(N) = \left\langle \mathcal{C}_{\delta,\phi}(N), \left(egin{array}{cc} -1 & 0 \ \phi & 1 \end{array}
ight)
ight
angle.$

Theorem (The image in coordinates)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, let $N \geq 3$, and let $\rho_{E,N}$ be the representation $Gal(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \rightarrow GL(2,\mathbb{Z}/N\mathbb{Z})$. Then,

- There is a $\mathbb{Z}/N\mathbb{Z}$ -basis of E[N] such that the image of $\rho_{E,N}$ is contained in $\mathcal{N}_{\delta,\phi}(N)$.
- 2 Moreover, the index of the image of $\rho_{E,N}$ in $\mathcal{N}_{\delta,f}(N)$ coincides with the order of the Galois group $\operatorname{Gal}(K(j_{K,f}, E[N])/K(j_{K,f}, h(E[N])))$, for a Weber function h, and it is a divisor of the order of $\mathcal{O}_{K,f}^{\times}$.

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$. • If $\Delta_K f^2 \equiv 0 \mod 4$, let $\delta = \Delta_K f^2/4$, and $\phi = 0$. • If $\Delta_K f^2 \equiv 1 \mod 4$, let $\delta = \frac{(\Delta_K - 1)}{4} f^2$, let $\phi = f$. Let ρ_E be the adelic Galois representation

 $\operatorname{Gal}(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \to \varprojlim \operatorname{Aut}(E[N]) \cong \operatorname{GL}(2,\widehat{\mathbb{Z}}),$

and let $\mathcal{N}_{\delta,\phi} = \varprojlim \mathcal{N}_{\delta,\phi}(N)$.

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$. • If $\Delta_K f^2 \equiv 0 \mod 4$, let $\delta = \Delta_K f^2/4$, and $\phi = 0$. • If $\Delta_K f^2 \equiv 1 \mod 4$, let $\delta = \frac{(\Delta_K - 1)}{4} f^2$, let $\phi = f$. Let ρ_E be the adelic Galois representation

 $\operatorname{Gal}(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \to \varprojlim \operatorname{Aut}(E[N]) \cong \operatorname{GL}(2,\widehat{\mathbb{Z}}),$

and let $\mathcal{N}_{\delta,\phi} = \varprojlim \mathcal{N}_{\delta,\phi}(N)$. Then:

there is a compatible system of bases of E[N] such that the image of ρ_E is contained in N_{δ,φ},

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$. • If $\Delta_K f^2 \equiv 0 \mod 4$, let $\delta = \Delta_K f^2/4$, and $\phi = 0$. • If $\Delta_K f^2 \equiv 1 \mod 4$, let $\delta = \frac{(\Delta_K - 1)}{4} f^2$, let $\phi = f$. Let ρ_F be the adelic Galois representation

 $\operatorname{Gal}(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \to \varprojlim \operatorname{Aut}(E[N]) \cong \operatorname{GL}(2,\widehat{\mathbb{Z}}),$

and let $\mathcal{N}_{\delta,\phi} = \varprojlim \mathcal{N}_{\delta,\phi}(N)$. Then:

- there is a compatible system of bases of E[N] such that the image of ρ_E is contained in N_{δ,φ},
- 2 the index of the image of ρ_E in $\mathcal{N}_{\delta,\phi}$ is a divisor of the order $\mathcal{O}_{K,f}^{\times}$, and the index is a divisor of 4 or 6. [Lombardo, Bourdon–Clark]

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$. • If $\Delta_K f^2 \equiv 0 \mod 4$, let $\delta = \Delta_K f^2/4$, and $\phi = 0$. • If $\Delta_K f^2 \equiv 1 \mod 4$, let $\delta = \frac{(\Delta_K - 1)}{4} f^2$, let $\phi = f$. Let ρ_F be the adelic Galois representation

 $\mathsf{Gal}(\overline{\mathbb{Q}(j_{\mathcal{K},f})}/\mathbb{Q}(j_{\mathcal{K},f})) \to \varprojlim \mathsf{Aut}(E[N]) \cong \mathsf{GL}(2,\widehat{\mathbb{Z}}),$

and let $\mathcal{N}_{\delta,\phi} = \varprojlim \mathcal{N}_{\delta,\phi}(N)$. Then:

- there is a compatible system of bases of E[N] such that the image of ρ_E is contained in N_{δ,φ},
- 2 the index of the image of ρ_E in $\mathcal{N}_{\delta,\phi}$ is a divisor of the order $\mathcal{O}_{K,f}^{\times}$, and the index is a divisor of 4 or 6. [Lombardo, Bourdon–Clark]
- Solution Moreover, for every K and f ≥ 1, and a fixed N ≥ 3, there is an elliptic curve E/Q(j_{K,f}) such that the index of the image of ρ_{E,N} in N_{δ,φ}(N) is 1. [Bourdon–Clark]

Moreover, for every K and $f \ge 1$, and a fixed $N \ge 3$, there is an elliptic curve $E/\mathbb{Q}(j_{K,f})$ such that the index of the image of $\rho_{E,N}$ in $\mathcal{N}_{\delta,\phi}(N)$ is 1.

However, the adelic representation may not have index 1 in $\mathcal{N}_{\delta,\phi}$ in certain cases.

Theorem (L.-R., 2018)

Let E/\mathbb{Q} be an elliptic curve with j(E) = 1728, and choose compatible bases of E[N], for each $N \ge 2$, such that the image of ρ_E is contained in $\mathcal{N}_{\delta,\phi}$. Then, the index of the image of ρ_E in $\mathcal{N}_{\delta,\phi}$ is 2 or 4. Moreover, for every K and $f \ge 1$, and a fixed $N \ge 3$, there is an elliptic curve $E/\mathbb{Q}(j_{K,f})$ such that the index of the image of $\rho_{E,N}$ in $\mathcal{N}_{\delta,\phi}(N)$ is 1.

However, the adelic representation may not have index 1 in $\mathcal{N}_{\delta,\phi}$ in certain cases.

Theorem (L.-R., 2018)

Let E/\mathbb{Q} be an elliptic curve with j(E) = 1728, and choose compatible bases of E[N], for each $N \ge 2$, such that the image of ρ_E is contained in $\mathcal{N}_{\delta,\phi}$. Then, the index of the image of ρ_E in $\mathcal{N}_{\delta,\phi}$ is 2 or 4.

Theorem (L.-R., 2018)

Let E/\mathbb{Q} be an elliptic curve with CM by an order $\mathcal{O}_{K,f}$ in an imaginary quadratic field K with $\Delta_K \neq -4, -8$ and $j_{K,f} \neq 0$, and choose compatible bases of E[N], for each $N \geq 2$, such that the image of ρ_E is contained in $\mathcal{N}_{\delta,\phi}$. Then, the index of the image of ρ_E in $\mathcal{N}_{\delta,\phi}$ is 2.

Using our work, we can classify all the *p*-adic Galois representations that arise from elliptic curves over $\mathbb{Q}(j_{K,f})$, up to conjugation

Using our work, we can classify all the *p*-adic Galois representations that arise from elliptic curves over $\mathbb{Q}(j_{K,f})$, up to conjugation... including p = 2 and p = 3!

Using our work, we can classify all the *p*-adic Galois representations that arise from elliptic curves over $\mathbb{Q}(j_{\mathcal{K},f})$, up to conjugation... including p = 2 and p = 3!

Here is the complete list of 2-adic images coming from CM over \mathbb{Q} :

Ĵк,f	Δ_K	f	index	E
			in $\mathcal{N}_{\delta,\phi}(2^\infty)$	
0	-3	1	1	$y^2 = x^3 + 2$
0	-3	1	3	$y^2 = x^3 + 1$
$2^4\cdot 3^3\cdot 5^3$	-3	2	1	$y^2 = x^3 - 15x + 22$
$-2^{15}\cdot 3\cdot 5^3$	-3	3	1	$y^2 + y = x^3 - 30x + 63$
$-3^{3} \cdot 5^{3}$	-7	1	1	$y^2 + xy = x^3 - x^2 - 2x - 1$
$3^3\cdot 5^3\cdot 17^3$	-7	2	1	$y^2 = x^3 - 595x + 5586$
÷	÷	:		÷

Using our work, we can classify all the *p*-adic Galois representations that arise from elliptic curves over $\mathbb{Q}(j_{\mathcal{K},f})$, up to conjugation... including p = 2 and p = 3!

Here is the complete list of 2-adic images coming from CM over \mathbb{Q} :

jк,f	Δ_K	f	index	E
			in $\mathcal{N}_{\delta,\phi}(2^\infty)$	
0	-3	1	1	$y^2 = x^3 + 2$
0	-3	1	3	$y^2 = x^3 + 1$
$2^4\cdot 3^3\cdot 5^3$	-3	2	1	$y^2 = x^3 - 15x + 22$
$-2^{15}\cdot 3\cdot 5^3$	-3	3	1	$y^2 + y = x^3 - 30x + 63$
$-3^{3} \cdot 5^{3}$	-7	1	1	$y^2 + xy = x^3 - x^2 - 2x - 1$
$3^3 \cdot 5^3 \cdot 17^3$	-7	2	1	$y^2 = x^3 - 595x + 5586$
÷	÷	:		

Note: the images for $(\Delta_K, f) = (-3, 2)$ and (-7, 2) are conjugates modulo 16, but not modulo 32.

The list of 2-adic images coming from CM over \mathbb{Q} : (continued)

ј К,f	Δ_K	f	index in $\mathcal{N}_{\delta,\phi}(2^\infty)$	E
÷	:	÷	:	:
$1728 = 2^6 \cdot 3^3$	-4	1	1	$y^2 = x^3 + 3x$
1728	-4	1	2	$y^2 = x^3 + 9x$
1728	-4	1	2	$y^2 = x^3 - 9x$
1728	-4	1	2	$y^2 = x^3 + 18x$
1728	-4	1	2	$y^2 = x^3 - 18x$
1728	-4	1	4	$y^2 = x^3 + x$
1728	-4	1	4	$y^2 = x^3 - x$
1728	-4	1	4	$y^2 = x^3 + 2x$
1728	-4	1	4	$y^2 = x^3 - 2x$
1728	-4	1	4	$y^2 = x^3 + 4x$
1728	_4	1	4	$y^2 = x^3 - 4x$
÷	:	:	÷	÷

		f		 (+ '
1 no liet of 7-20	ic imadae	comina tror	$\mathbf{n} \in \mathbf{N}$	CONTINUED
1110 IISL UI Z-au	it illiauts			CONTINUED

ј к,f	Δ_K	f	index in $\mathcal{N}_{\delta,\phi}(2^\infty)$	E
:	÷	:	:	:
$2^3\cdot 3^3\cdot 11^3$	_4	2	1	$y^2 = x^3 - 99x + 378$
$2^3\cdot 3^3\cdot 11^3$	_4	2	2	$y^2 = x^3 - 11x + 14$
$2^3\cdot 3^3\cdot 11^3$	-4	2	2	$y^2 = x^3 - 11x - 14$
$2^3\cdot 3^3\cdot 11^3$	-4	2	2	$y^2 = x^3 - 44x + 112$
$2^3\cdot 3^3\cdot 11^3$	-4	2	2	$y^2 = x^3 - 44x + 112$
÷	:	:	÷	÷

The list of 2-adic images coming from CM over \mathbb{Q} : (continued)

ј к,f	Δ_K	f	index in $\mathcal{N}_{\delta,\phi}(2^\infty)$	E
-	:	:		
$2^6 \cdot 5^3$	-8	1	1	$y^2 = x^3 - 38880x + 2612736$
$2^6 \cdot 5^3$	-8	1	2	$y^2 = x^3 - 4320x + 96768$
$2^6 \cdot 5^3$	-8	1	2	$y^2 = x^3 - 4320x - 96768$
$2^6 \cdot 5^3$	-8	1	2	$y^2 = x^3 - 17280x + 774144$
$2^6 \cdot 5^3$	-8	1	2	$y^2 = x^3 - 17280x - 774144$

The list of 2-adic images coming from CM over \mathbb{Q} : (continued)

ј к,f	Δ_K	f	index in $\mathcal{N}_{\delta,\phi}(2^\infty)$	E
-	÷	:		
$2^6 \cdot 5^3$	-8	1	1	$y^2 = x^3 - 38880x + 2612736$
$2^6 \cdot 5^3$	-8	1	2	$y^2 = x^3 - 4320x + 96768$
$2^6 \cdot 5^3$	-8	1	2	$y^2 = x^3 - 4320x - 96768$
$2^6 \cdot 5^3$	-8	1	2	$y^2 = x^3 - 17280x + 774144$
$2^6 \cdot 5^3$	-8	1	2	$y^2 = x^3 - 17280x - 774144$

Note: The last four examples are particularly interesting: the index of the image in $\mathcal{N}_{\delta,\phi}(4)$ is 1, but the index in $\mathcal{N}_{\delta,\phi}(8)$ and the 2-adic index is 2.

Example

The elliptic curve $E: y^2 = x^3 - 4320x + 96768$ has CM by the maximal order of $K = \mathbb{Q}(\sqrt{-2})$, f = 1, and $j_{K,f} = 2^6 \cdot 5^3$. Its 2-adic image is conjugate to the group:

$$\left\langle \left(\begin{array}{rrr} 1 & 0 \\ 0 & -1 \end{array}\right), \left(\begin{array}{rrr} 3 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rrr} -1 & -1 \\ -\delta & -1 \end{array}\right) \right\rangle \subseteq \mathcal{N}_{\delta,0}(2^{\infty}) \subseteq \mathsf{GL}(2,\mathbb{Z}_2),$$

where $\delta = \Delta_{\mathcal{K}} f^2 / 4 = -2$.

These examples are the CM analog of those non-CM images described by Dokchitser and Dokchitser that are surjective mod 4 (onto $GL(2, \mathbb{Z}/4\mathbb{Z})$) but not mod 8.

A similar effect happens for p = 3 when $j_{K,f} = 0$. Here is the list of 3-adic images coming from CM over \mathbb{Q} :

ј к,f	Δ _K	f	index in $\mathcal{N}_{\delta,0}(3^\infty)$	E
$1728 = 2^3 \cdot 3^3$	-4	1	1	$y^2 = x^3 + x$
-2 ¹⁵	-11	1	1	$y^2 + y = x^3 - x^2 - 7x + 10$
0	-3	1	1	$y^2 = x^3 - 1$
0	-3	1	2	$y^2 = x^3 + 1$
0	-3	1	2	$y^2 = x^3 - 3$
0	-3	1	3	$y^2 = x^3 + 2$
0	-3	1	3	$y^2 = x^3 + 6$
0	-3	1	3	$y^2 = x^3 + 18$
÷	:	:	÷	:

Note: the last two groups are conjugates mod 9 but not mod 27.

The list of 3-adic images coming from CM: (continued)

ј к,f	Δ_{K}	f	index in $\mathcal{N}_{\delta,0}(3^\infty)$	E
:	:	÷		
0	-3	1	6	$y^2 = x^3 + 16$
0	-3	1	6	$y^2 = x^3 - 432$
0	-3	1	6	$y^2 = x^3 + 1296$
0	-3	1	6	$y^2 = x^3 - 48$
0	-3	1	6	$y^2 = x^3 + 144$
0	-3	1	6	$y^2 = x^3 - 3888$

The list of 3-adic images coming from CM: (continued)

ј к,f	Δ_K	f	index in $\mathcal{N}_{\delta,0}(3^\infty)$	E
:	••••	÷		:
0	-3	1	6	$y^2 = x^3 + 16$
0	-3	1	6	$y^2 = x^3 - 432$
0	-3	1	6	$y^2 = x^3 + 1296$
0	-3	1	6	$y^2 = x^3 - 48$
0	-3	1	6	$y^2 = x^3 + 144$
0	-3	1	6	$y^2 = x^3 - 3888$

Note: The last four examples are particularly interesting: the index of the image in $\mathcal{N}_{\delta,\phi}(3)$ is 2, but the index in $\mathcal{N}_{\delta,\phi}(9)$ and the 3-adic index is 6. These examples are CM analogs of those non-CM images described by Elkies that are surjective mod 3 (onto GL(2, $\mathbb{Z}/3\mathbb{Z})$) but not mod 9.

The list of 3-adic images coming from CM: (continued)

ј к,f	Δ_K	f	index in $\mathcal{N}_{\delta,0}(3^\infty)$	E
÷	÷	÷	:	:
0	-3	1	6	$y^2 = x^3 + 16$
0	-3	1	6	$y^2 = x^3 - 432$
0	-3	1	6	$y^2 = x^3 + 1296$
0	-3	1	6	$y^2 = x^3 - 48$
0	-3	1	6	$y^2 = x^3 + 144$
0	-3	1	6	$y^2 = x^3 - 3888$

Note: The last four examples are particularly interesting: the index of the image in $\mathcal{N}_{\delta,\phi}(3)$ is 2, but the index in $\mathcal{N}_{\delta,\phi}(9)$ and the 3-adic index is 6. These examples are CM analogs of those non-CM images described by Elkies that are surjective mod 3 (onto GL(2, $\mathbb{Z}/3\mathbb{Z})$) but not mod 9.

Special thanks to Drew Sutherland for helping me in computing these examples.

Example

The elliptic curve $E: y^2 = x^3 + 144$ has CM by the maximal order of $K = \mathbb{Q}(\sqrt{-3})$, f = 1, and $j_{K,f} = 0$. Its 3-adic image is conjugate to the group:

$$\left\langle \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \left(\begin{array}{cc} 4 & 0 \\ 0 & 4 \end{array}\right), \left(\begin{array}{cc} -5/4 & 1/2 \\ -3/8 & -5/4 \end{array}\right) \right\rangle \subseteq GL(2,\mathbb{Z}_3).$$

§3. Proofs

First step: understand the image in coordinates.

If we define the Cartan subgroup $\mathcal{C}_{\delta,\phi}(N)$ of $\operatorname{GL}(2,\mathbb{Z}/N\mathbb{Z})$ by

$$\mathcal{C}_{\delta,\phi}(\mathsf{N}) = \left\{ \left(egin{array}{cc} \mathsf{a} + \mathsf{b}\phi & \mathsf{b} \ \delta \mathsf{b} & \mathsf{a} \end{array}
ight) : \mathsf{a}, \mathsf{b} \in \mathbb{Z}/\mathsf{N}\mathbb{Z}, \ \mathsf{a}^2 + \mathsf{a}\mathsf{b}\phi - \delta\mathsf{b}^2 \in (\mathbb{Z}/\mathsf{N}\mathbb{Z})^{ imes}
ight\}$$

and

$$\mathcal{N}_{\delta,\phi}(\mathbf{N}) = \left\langle \mathcal{C}_{\delta,\phi}(\mathbf{N}), \left(egin{array}{cc} -1 & 0 \ \phi & 1 \end{array}
ight)
ight
angle,$$

then there is a $\mathbb{Z}/N\mathbb{Z}$ -basis of E[N] such that the image of $\rho_{E,N}$ is contained in $\mathcal{N}_{\delta,\phi}(N)$.

 $\mathbb{Q}(j_{k,s}, \mathbb{E}[\mathbb{N}])$ $\mathbb{Q}(j_{k,j})$

(j_{k,5}, E[N])=Hg(E[N]) / if N≥3 Hg=K(jkg) / $\mathbb{Q}(j_{k,j})$

 $(D(j_{k,s}, E[N]) = H_{s}(E[N])$ / if N>3 Hg (h (E[N])) Hg=K(jkg) / $\mathbb{Q}(j_{k,j})$

Q(jK, , E[N])=Hg(E[N]) / if N>3 $\begin{pmatrix} O_{k,j} \\ N \\ b_{j} \end{pmatrix} \geq 1$ Hg (h (E[N])) Hg=K(jkg) $\mathbb{Q}(j_{k,j})$

Key step: understand $Gal(H_f(h(E[N]))/H_f)$

Theorem

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by an order $\mathcal{O}_{K,f}$ of conductor $f \ge 1$ in an imaginary quadratic field K, and let $N \ge 2$. Let $H_f = K(j_{K,f})$. Then,

$$\mathsf{Gal}(H_f(h(E[N]))/H_f) \cong \left(\frac{\mathcal{O}_{\mathcal{K},f}}{\mathcal{N}\mathcal{O}_{\mathcal{K},f}}\right)^{\times} \Big/ \frac{\mathcal{O}_{\mathcal{K},f}^{\times}}{\mathcal{O}_{\mathcal{K},f,N}^{\times}}$$

Note:

- Stevenhagen gives a description of the extension and the Galois group using an adelic approach and Shimura reciprocity.
- Bourdon and Clark deduce an explicit description of the field *K*(*j_{K,f}*, *h*(*E*[*N*])) as the compositum of a ray class field and a ring class field.
- We use a classical class field theory approach to describe it in terms of quotients of groups of proper O_{K,f}-ideals

Next step: for a fixed prime *p*, understand the tower $H_f(E[p^n])$ as *n* grows, and its Galois group over H_f .

Theorem

Let t = 1 if p > 2 and t = 2 if p = 2, and suppose one of the following holds:

- $[H_f(E[p^n]) : H_f(h(E[p^n]))]$ is relatively prime to p, for some $n \ge t$.
- *j*_{K,f} ≠ 0, and *p* > 2.
- *j*_{*K*,*f*} = 0 and *p* > 3.

Then, the image of the group $\operatorname{Gal}(H_f(E[p^{n+1}])/H_f)$ in $(\mathcal{O}_{K,f}/p^{n+1}\mathcal{O}_{K,f})^{\times}$ is the full inverse image of the image of $\operatorname{Gal}(H_f(E[p^n])/H_f)$ in $(\mathcal{O}_{K,f}/p^n\mathcal{O}_{K,f})^{\times}$ under the natural reduction map modulo p^n .

Next steps: understand the Galois group of $H_f(E[N])$ over $\mathbb{Q}(j_{K,f})$.

- Describe (*O_{K,f}/NO_{K,f}*)[×], for *N* a power of 2 or 3, in terms of generators in *O_{K,f}*.
- Subgroups of $(\mathcal{O}_{K,f}/N\mathcal{O}_{K,f})^{\times}$, for *N* a power of 2 or 3, that are missing a certain root of unity, stable under complex conjugation, and are of a certain index.
- Determine the possible shapes of complex conjugation.

For example, the more interesting 2-adic representations arise like so:

Lemma

1. Let $n \ge 2$, let H_n be a subgroup of index 2 of $(\mathcal{O}_{K,f}/2^n\mathcal{O}_{K,f})^{\times}$, and let $H_2 \equiv H_n \mod 4\mathcal{O}_{K,f}$ be the reduction of H_n modulo 4. Suppose that:

• -1 is not in H_2 , and

• H₂ is fixed under complex conjugation.

Then, $\Delta_{\mathcal{K}} f^2 \equiv 0 \mod 16$ and there are precisely two such subgroups H_n , namely $\langle 5, 1 + f\tau \rangle / 2^n$ and $\langle 5, -1 - f\tau \rangle / 2^n$.

For example, the more interesting 2-adic representations arise like so:

Lemma

1. Let $n \ge 2$, let H_n be a subgroup of index 2 of $(\mathcal{O}_{K,f}/2^n\mathcal{O}_{K,f})^{\times}$, and let $H_2 \equiv H_n \mod 4\mathcal{O}_{K,f}$ be the reduction of H_n modulo 4. Suppose that:

• -1 is not in H₂, and

• H₂ is fixed under complex conjugation.

Then, $\Delta_K f^2 \equiv 0 \mod 16$ and there are precisely two such subgroups H_n , namely $\langle 5, 1 + f\tau \rangle/2^n$ and $\langle 5, -1 - f\tau \rangle/2^n$.

2. Suppose $n \ge 3$ and H_n is a subgroup of index 2 of $(\mathcal{O}_{K,f}/2^n\mathcal{O}_{K,f})^{\times}$ such that:

- -1 is not in H_n ,
- *H_n* is fixed under complex conjugation,

• H_n surjects onto $(\mathcal{O}_{K,f}/4\mathcal{O}_{K,f})^{\times}$ when reduced mod $4\mathcal{O}_{K,f}$.

Then, $\Delta_K \equiv 0 \mod 8$ and there are precisely two such subgroups, namely $\langle 3, 1 + f\tau \rangle/2^n$ and $\langle 3, -1 - f\tau \rangle/2^n$.

THANK YOU

alvaro.lozano-robledo@uconn.edu http://alozano.clas.uconn.edu

"If by chance I have omitted anything more or less proper or necessary, I beg forgiveness, since there is no one who is without fault and circumspect in all matters."

Leonardo Pisano (Fibonacci), Liber Abaci.