Galois Representations Attached to Elliptic Curves with Complex Multiplication

Álvaro Lozano-Robledo

Department of Mathematics
University of Connecticut

June 28th
BU/Keio Workshop
Boston University
Galois Representations Attached to Elliptic Curves with Complex Multiplication

Álvaro Lozano-Robledo
University of Connecticut
§1. Introduction
Let E/\mathbb{Q} be an elliptic curve, and let $T_2(E) = \varprojlim E[2^n]$ be the Tate module. The Galois action of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $T_2(E)$ induces

$$\rho_{E,2} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{Aut}(T_2(E)) \cong \text{GL}(2, \mathbb{Z}_2).$$

Theorem (Rouse and Zureick-Brown, 2014) Let E/\mathbb{Q} be an elliptic curve with no CM. Then, there are precisely 1208 possibilities for the image $\rho_{E,2}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, up to conjugation. Further, the representation $\rho_{E,2}$ is defined (at most) modulo 32.
Let E/\mathbb{Q} be an elliptic curve, and let $T_2(E) = \varprojlim E[2^n]$ be the Tate module. The Galois action of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $T_2(E)$ induces

$$\rho_{E,2} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{Aut}(T_2(E)) \cong \text{GL}(2, \mathbb{Z}_2).$$

Theorem (Rouse and Zureick-Brown, 2014)

Let E/\mathbb{Q} be an elliptic curve with no CM. Then, there are precisely 1208 possibilities for the image $\rho_{E,2}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, up to conjugation. Further, the representation $\rho_{E,2}$ is defined (at most) modulo 32.
Zagreb (Croatia), June 25-29, 2018.
Zagreb (Croatia), June 25-29, 2018.
Example

For instance, let

\[E : y^2 + xy = x^3 + 210x + 900. \]

Then, the 2-adic image is \(\mathbf{X}_{2351} \) in the notation of the RZB database, which is defined modulo 16, and is generated in \(\text{GL}(2, \mathbb{Z}/16\mathbb{Z}) \) by

\[
\begin{pmatrix}
1 & 0 \\
1 & 1 \\
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 \\
12 & 1 \\
\end{pmatrix}, \quad \begin{pmatrix}
9 & 0 \\
0 & 1 \\
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 \\
14 & 1 \\
\end{pmatrix}, \quad \begin{pmatrix}
5 & 0 \\
0 & 1 \\
\end{pmatrix}, \quad \begin{pmatrix}
15 & 0 \\
0 & 1 \\
\end{pmatrix}, \quad \begin{pmatrix}
9 & 0 \\
8 & 9 \\
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 \\
8 & 1 \\
\end{pmatrix}
\]

Note: their matrices act on vectors on the right, so this curve has a rational 16-isogeny.
Example

For instance, let

$$E : y^2 + xy = x^3 + 210x + 900.$$

Then, the 2-adic image is X_{2351} in the notation of the RZB database, which is defined modulo 16, and is generated in $\text{GL}(2, \mathbb{Z}/16\mathbb{Z})$ by

\[
\begin{pmatrix}
1 & 0 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 0 \\
12 & 1
\end{pmatrix},
\begin{pmatrix}
9 & 0 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 0 \\
14 & 1
\end{pmatrix},
\begin{pmatrix}
5 & 0 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
15 & 0 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
9 & 0 \\
8 & 9
\end{pmatrix},
\begin{pmatrix}
1 & 0 \\
8 & 1
\end{pmatrix}
\]

Note: their matrices act on vectors on the right, so this curve has a rational 16-isogeny.

The Rouse–Zureick-Brown classification of 2-adic Galois representations has many interesting arithmetic applications.
Theorem (Ribet, 1981)

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q}. Then, $A(\mathbb{Q}^{ab})_{\text{tors}}$ is finite.
Torsion points defined over abelian extensions

Theorem (Ribet, 1981)

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q}. Then, $A(\mathbb{Q}^{ab})_{\text{tors}}$ is finite.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve.

1. If there is an integer $n \geq 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then $n = 2, 3, 4,$ or 5.
Torsion points defined over abelian extensions

Theorem (Ribet, 1981)

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q}. Then, $A(\mathbb{Q}^{ab})_{\text{tors}}$ is finite.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve.

1. If there is an integer $n \geq 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then $n = 2, 3, 4, \text{ or } 5$.

2. More generally, if $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian, then $n = 2, 3, 4, 5, 6, \text{ or } 8$.
Torsion points defined over abelian extensions

Theorem (Ribet, 1981)

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q}. Then, $A(\mathbb{Q}^{ab})_{\text{tors}}$ is finite.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve.

1. If there is an integer $n \geq 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then $n = 2, 3, 4,$ or 5.

2. More generally, if $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian, then $n = 2, 3, 4, 5, 6,$ or 8.

3. Moreover, $G_n = \text{Gal}(\mathbb{Q}(E[n])/\mathbb{Q})$ is isomorphic to one of 11 abelian groups.
Torsion points defined over abelian extensions

Theorem (Ribet, 1981)

Let A/\mathbb{Q} be an abelian variety and let \mathbb{Q}_{ab}^n be the maximal abelian extension of \mathbb{Q}. Then, $A(\mathbb{Q}_{ab}^n)_{\text{tors}}$ is finite.

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve.

1. If there is an integer $n \geq 2$ such that $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then $n = 2, 3, 4, \text{ or } 5$.

2. More generally, if $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian, then $n = 2, 3, 4, 5, 6, \text{ or } 8$.

3. Moreover, $G_n = \text{Gal}(\mathbb{Q}(E[n])/\mathbb{Q})$ is isomorphic to one of 11 abelian groups.

4. If E/\mathbb{Q} has CM, and $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then $n = 2, \text{ or } 3$. If $\mathbb{Q}(E[n])/\mathbb{Q}$ is abelian, then $n = 2, 3, \text{ or } 4$.
Let E/\mathbb{Q} be an elliptic curve and let \mathbb{Q}^{ab} be the maximal abelian extension of \mathbb{Q}. Then, $\#E(\mathbb{Q}^{ab})_{\text{tors}} \leq 163$. This bound is sharp, as the CM curve 26569a1 has a point of order 163 over \mathbb{Q}^{ab}. Moreover, a full classification of the possible torsion subgroups is given.
Let E/\mathbb{Q} be an elliptic curve. By Mazur’s theorem, there might be an 8-torsion point over \mathbb{Q}, but no 16-torsion points over \mathbb{Q}.
Let E/\mathbb{Q} be an elliptic curve. By Mazur’s theorem, there might be an 8-torsion point over \mathbb{Q}, but no 16-torsion points over \mathbb{Q}.

Question

What is the smallest degree $d_n \geq 2$ such that there is an elliptic curve E/\mathbb{Q} and a field F_n of degree $d_n = [F_n : \mathbb{Q}]$, such that $E(F_n)[2^n]$ contains a point of exact order 2^n?
Let E/\mathbb{Q} be an elliptic curve. By Mazur’s theorem, there might be an 8-torsion point over \mathbb{Q}, but no 16-torsion points over \mathbb{Q}.

Question

What is the smallest degree $d_n \geq 2$ such that there is an elliptic curve E/\mathbb{Q} and a field F_n of degree $d_n = [F_n : \mathbb{Q}]$, such that $E(F_n)[2^n]$ contains a point of exact order 2^n?

Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve without CM, and let $P \in E[2^n]$ be a point of exact order 2^n, with $n \geq 4$. Then, the degree $[\mathbb{Q}(P) : \mathbb{Q}]$ is divisible by 2^{2n-7}. Moreover, this bound is best possible.

For example, the curve $E : y^2 + xy = x^3 + 210x + 900$, with the 2-adic image x_{2351}, has a point P_n, for every $n \geq 4$, that achieves the bound.
Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve without CM, and let $P \in E[2^n]$ be a point of exact order 2^n, with $n \geq 4$. Then, the degree $[\mathbb{Q}(P) : \mathbb{Q}]$ is divisible by 2^{2n-7}. Moreover, this bound is best possible.
Theorem (González-Jiménez, L-R., 2015)

Let E/\mathbb{Q} be an elliptic curve without CM, and let $P \in E[2^n]$ be a point of exact order 2^n, with $n \geq 4$. Then, the degree $[\mathbb{Q}(P) : \mathbb{Q}]$ is divisible by 2^{2n-7}. Moreover, this bound is best possible.

What about elliptic curves with CM?
The CM case

Let

- K be an imaginary quadratic field, discriminant Δ_K, integers \mathcal{O}_K,
- $f \geq 1$, and $\mathcal{O}_{K,f}$ the order of K of conductor f,
- $j_{K,f} = j(\mathcal{O}_{K,f})$ its j-invariant.
- $E/\mathbb{Q}(j_{K,f})$ an elliptic curve with CM by $\mathcal{O}_{K,f}$.
Let

- K be an imaginary quadratic field, discriminant Δ_K, integers \mathcal{O}_K,
- $f \geq 1$, and $\mathcal{O}_{K,f}$ the order of K of conductor f,
- $j_{K,f} = j(\mathcal{O}_{K,f})$ its j-invariant,
- $E/\mathbb{Q}(j_{K,f})$ an elliptic curve with CM by $\mathcal{O}_{K,f}$.

Theorem (Bourdon and Clark, 2016)

Let $N \geq 2$. There is an explicit integer $T(\mathcal{O}_{K,f}, N)$ such that if P is a point on E of exact order N, then $[K(j_f, P) : K(j_f)]$ is divisible by $T(\mathcal{O}_{K,f}, N)$.
Example

When $N = 2^n$, and E/\mathbb{Q}, the explicit formulas say that the smallest value of $T(O_K, f, 2^n)$ occurs when $2 \mid \Delta_K$ and $2 \mid f$.

For example, E/\mathbb{Q}: $y^2 = x^3 - 11x + 14$ has CM by $\mathbb{Z}[[2i]]$, and if $P \in E$ has exact order 2^n, for $n \geq 2$, then $[Q(P) : \mathbb{Q}]$ is divisible by 2^{2n-4} (and equality holds for some such P).
Example

When $N = 2^n$, and E/\mathbb{Q}, the explicit formulas say that the smallest value of $T(\mathcal{O}_K,f,2^n)$ occurs when $2 \mid \Delta_K$ and $2 \mid f$. Thus, $\Delta_K = -4$ or -8, and $f \geq 2$, and $T(\mathcal{O}_K,f,2^n) = 2^{2n-5}$ for $n > 3$.

For example, $E/\mathbb{Q} : y^2 = x^3 - 11x + 14$ has CM by $\mathbb{Z}[2i]$, and if $P \in E$ has exact order 2^n, for $n \geq 2$, then $[\mathbb{Q}(P) : \mathbb{Q}]$ is divisible by 2^{2n-4} (and equality holds for some such P).
Example

When $N = 2^n$, and E/K, we can achieve $[K(P) : K] = T(\mathcal{O}_K, 2^n) = 2^{2n-5}$.
Example

When $N = 2^n$, and E/K, we can achieve $[K(P) : K] = T(\mathcal{O}_K, f, 2^n) = 2^{2n-5}$.

For example, let $K = \mathbb{Q}(\sqrt{-2})$, let $f = 2$, and let $\mathcal{O}_K = \mathbb{Z}[2\sqrt{-2}]$. In this case $j_f = 26125000 + 18473000\sqrt{2}$. Let

$$E/K : y^2 + \sqrt{2}xy = x^3 - \sqrt{2}x^2 + (2 - 2\sqrt{2})x + 5 - 3\sqrt{2}$$

that has CM by $\mathbb{Z}[2\sqrt{-2}]$. This is the curve $64.1-a6$ over $\mathbb{Q}(\sqrt{-2})$ in the LMFDB.

For this curve, if $P \in E$ has exact order 2^n, for $n \geq 2$, then $[K(P) : K]$ is divisible by 2^{2n-5} (and equality holds for some such P).
Example

When $N = 2^n$, and E/K, we can achieve $[K(P) : K] = T(\mathcal{O}_{K,f}, 2^n) = 2^{2n-5}$.

For example, let $K = \mathbb{Q}(\sqrt{-2})$, let $f = 2$, and let $\mathcal{O}_{K,f} = \mathbb{Z}[2\sqrt{-2}]$. In this case $j_f = 26125000 + 18473000\sqrt{2}$. Let

$$E/K : y^2 + \sqrt{2}xy = x^3 - \sqrt{2}x^2 + (2 - 2\sqrt{2})x + 5 - 3\sqrt{2}$$

that has CM by $\mathbb{Z}[2\sqrt{-2}]$. This is the curve 64.1-a6 over $\mathbb{Q}(\sqrt{-2})$ in the LMFDB.

For this curve, if $P \in E$ has exact order 2^n, for $n \geq 2$, then $[K(P) : K]$ is divisible by 2^{2n-5} (and equality holds for some such P).

The same problem can be solved if we classify all 2-adic representations for elliptic curves $E/\mathbb{Q}(j_f)$ with CM by $\mathcal{O}_{K,f}$.
Theorem (Rouse and Zureick-Brown, 2014)

Let E/\mathbb{Q} be an elliptic curve with no CM. Then, there are precisely 1208 possibilities for the image $\rho_{E,2}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, up to conjugation. Further, the representation $\rho_{E,2}$ is defined (at most) modulo 32.

What about representations coming from elliptic curves with CM?

Theorem

Let E/\mathbb{Q} be an elliptic curve. Then, there are precisely 1235 possibilities for the image $\rho_{E,2}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, up to conjugation. Further, the representation $\rho_{E,2}$ is defined (at most) modulo 32.

In the rest of the talk, we discuss the proof that there are 27 additional types of 2-adic representations coming from elliptic curves over \mathbb{Q} with CM.
Back to 2-adic representations

Theorem (Rouse and Zureick-Brown, 2014)

Let E/\mathbb{Q} be an elliptic curve with no CM. Then, there are precisely 1208 possibilities for the image $\rho_{E,2}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, up to conjugation. Further, the representation $\rho_{E,2}$ is defined (at most) modulo 32.

What about representations coming from elliptic curves with CM?
Theorem (Rouse and Zureick-Brown, 2014)

Let E/\mathbb{Q} be an elliptic curve with no CM. Then, there are precisely **1208** possibilities for the image $\rho_{E,2}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, up to conjugation. Further, the representation $\rho_{E,2}$ is defined (at most) modulo 32.

What about representations coming from elliptic curves with CM?

Theorem

Let E/\mathbb{Q} be an elliptic curve. Then, there are precisely **1235** possibilities for the image $\rho_{E,2}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, up to conjugation. Further, the representation $\rho_{E,2}$ is defined (at most) modulo 32.

In the rest of the talk, we discuss the proof that there are **27** additional types of 2-adic representations coming from elliptic curves over \mathbb{Q} with CM.
§2. Results
Cartan subgroups:

For $N \geq 3$, we define groups of $\text{GL}(2, \mathbb{Z}/N\mathbb{Z})$ as follows:

- If $\Delta_K f^2 \equiv 0 \mod 4$, or N is odd, let $\delta = \Delta_K f^2 / 4$, and $\phi = 0$.
- If $\Delta_K f^2 \equiv 1 \mod 4$, and N is even, let $\delta = \frac{(\Delta_K - 1)}{4} f^2$, let $\phi = f$.

Then, the Cartan subgroup $C_{\delta, \phi}(N)$ of $\text{GL}(2, \mathbb{Z}/N\mathbb{Z})$ is

$$C_{\delta, \phi}(N) = \left\{ \begin{pmatrix} a + b\phi & b \\ \delta b & a \end{pmatrix} : a, b \in \mathbb{Z}/N\mathbb{Z}, \ a^2 + ab\phi - \delta b^2 \in (\mathbb{Z}/N\mathbb{Z})^\times \right\}$$

and $\mathcal{N}_{\delta, \phi}(N) = \left\langle C_{\delta, \phi}(N), \begin{pmatrix} -1 & 0 \\ \phi & 1 \end{pmatrix} \right\rangle$.
The Cartan subgroup $C_{\delta, \phi}(N)$ of $GL(2, \mathbb{Z}/N\mathbb{Z})$ is

$$C_{\delta, \phi}(N) = \left\{ \begin{pmatrix} a + b\phi & b \\ \delta b & a \end{pmatrix} : a, b \in \mathbb{Z}/N\mathbb{Z}, \ a^2 + ab\phi - \delta b^2 \in (\mathbb{Z}/N\mathbb{Z})^\times \right\}$$

and $N_{\delta, \phi}(N) = \left\langle C_{\delta, \phi}(N), \begin{pmatrix} -1 & 0 \\ \phi & 1 \end{pmatrix} \right\rangle$.

Theorem (The image in coordinates)

Let $E/\mathbb{Q}(j_{K, f})$ be an elliptic curve with CM by $\mathcal{O}_{K, f}$, let $N \geq 3$, and let $\rho_{E, N}$ be the representation $\text{Gal}(\mathbb{Q}(j_{K, f})/\mathbb{Q}(j_{K, f})) \to GL(2, \mathbb{Z}/N\mathbb{Z})$.
The Cartan subgroup $C_{\delta,\phi}(N)$ of $\text{GL}(2, \mathbb{Z}/N\mathbb{Z})$ is

$$C_{\delta,\phi}(N) = \left\{ \begin{pmatrix} a + b\phi & b \\ \delta b & a \end{pmatrix} : a, b \in \mathbb{Z}/N\mathbb{Z}, \ a^2 + ab\phi - \delta b^2 \in (\mathbb{Z}/N\mathbb{Z})^\times \right\}$$

and $N_{\delta,\phi}(N) = \left\langle C_{\delta,\phi}(N), \begin{pmatrix} -1 & 0 \\ \phi & 1 \end{pmatrix} \right\rangle$.

Theorem (The image in coordinates)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, let $N \geq 3$, and let $\rho_{E,N}$ be the representation $\text{Gal}(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \to \text{GL}(2, \mathbb{Z}/N\mathbb{Z})$. Then,

1. There is a $\mathbb{Z}/N\mathbb{Z}$-basis of $E[N]$ such that the image of $\rho_{E,N}$ is contained in $N_{\delta,\phi}(N)$.
The Cartan subgroup $C_{\delta,\phi}(N)$ of $\text{GL}(2, \mathbb{Z}/N\mathbb{Z})$ is

$$C_{\delta,\phi}(N) = \left\{ \begin{pmatrix} a + b\phi & b \\ \delta b & a \end{pmatrix} : a, b \in \mathbb{Z}/N\mathbb{Z}, \ a^2 + ab\phi - \delta b^2 \in (\mathbb{Z}/N\mathbb{Z})^\times \right\}$$

and $\mathcal{N}_{\delta,\phi}(N) = \left\langle C_{\delta,\phi}(N), \begin{pmatrix} -1 & 0 \\ \phi & 1 \end{pmatrix} \right\rangle$.

Theorem (The image in coordinates)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, let $N \geq 3$, and let $\rho_{E,N}$ be the representation $\text{Gal}(\mathbb{Q}(j_{K,f})/\mathbb{Q}(j_{K,f})) \to \text{GL}(2, \mathbb{Z}/N\mathbb{Z})$. Then,

1. There is a $\mathbb{Z}/N\mathbb{Z}$-basis of $E[N]$ such that the image of $\rho_{E,N}$ is contained in $\mathcal{N}_{\delta,\phi}(N)$.
2. Moreover, the index of the image of $\rho_{E,N}$ in $\mathcal{N}_{\delta,f}(N)$ coincides with the order of the Galois group $\text{Gal}(K(j_{K,f}, E[N])/K(j_{K,f}, h(E[N])))$, for a Weber function h, and it is a divisor of the order of $\mathcal{O}_{K,f}^\times$.
Theorem (The adelic image)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$.

- If $\Delta_K f^2 \equiv 0 \mod 4$, let $\delta = \Delta_K f^2 / 4$, and $\phi = 0$.
- If $\Delta_K f^2 \equiv 1 \mod 4$, let $\delta = (\Delta_K^{-1}) f^2$, let $\phi = f$.

Let ρ_E be the adelic Galois representation

$$\text{Gal}(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \to \varprojlim \text{Aut}(E[N]) \cong \text{GL}(2, \hat{\mathbb{Z}}),$$

and let $\mathcal{N}_{\delta,\phi} = \varprojlim \mathcal{N}_{\delta,\phi}(N)$.
Theorem (The adelic image)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$.

- If $\Delta_K f^2 \equiv 0 \mod 4$, let $\delta = \Delta_K f^2 / 4$, and $\phi = 0$.
- If $\Delta_K f^2 \equiv 1 \mod 4$, let $\delta = \frac{(\Delta_K - 1)}{4} f^2$, let $\phi = f$.

Let ρ_E be the adelic Galois representation

$$\text{Gal}(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \to \lim \leftarrow \text{Aut}(E[N]) \cong \text{GL}(2, \hat{\mathbb{Z}}),$$

and let $\mathcal{N}_{\delta,\phi} = \left\{ \lim \mathcal{N}_{\delta,\phi}(N) \right\}$. Then:

1. there is a compatible system of bases of $E[N]$ such that the image of ρ_E is contained in $\mathcal{N}_{\delta,\phi}$,
Theorem (The adelic image)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$.

- If $\Delta_K f^2 \equiv 0 \mod 4$, let $\delta = \Delta_K f^2 / 4$, and $\phi = 0$.
- If $\Delta_K f^2 \equiv 1 \mod 4$, let $\delta = (\Delta_K^{-1}) f^2$, let $\phi = f$.

Let ρ_E be the adelic Galois representation

$$\text{Gal}(\mathbb{Q}(j_{K,f})/\mathbb{Q}(j_{K,f})) \to \lim \leftarrow \text{Aut}(E[N]) \cong \text{GL}(2, \widehat{\mathbb{Z}}),$$

and let $N_{\delta,\phi} = \lim \leftarrow N_{\delta,\phi}(N)$. Then:

1. there is a compatible system of bases of $E[N]$ such that the image of ρ_E is contained in $N_{\delta,\phi}$,
2. the index of the image of ρ_E in $N_{\delta,\phi}$ is a divisor of the order $\mathcal{O}_{K,f}^\times$, and the index is a divisor of 4 or 6. [Lombardo, Bourdon–Clark]
Theorem (The adelic image)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$.

- If $\Delta_K f^2 \equiv 0 \pmod{4}$, let $\delta = \Delta_K f^2 / 4$, and $\phi = 0$.
- If $\Delta_K f^2 \equiv 1 \pmod{4}$, let $\delta = \left(\frac{\Delta_K - 1}{4}\right) f^2$, let $\phi = f$.

Let ρ_E be the adelic Galois representation

$$\text{Gal}(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \to \varprojlim \text{Aut}(E[N]) \cong \text{GL}(2, \hat{\mathbb{Z}}),$$

and let $\mathcal{N}_{\delta,\phi} = \varprojlim \mathcal{N}_{\delta,\phi}(N)$. Then:

1. there is a compatible system of bases of $E[N]$ such that the image of ρ_E is contained in $\mathcal{N}_{\delta,\phi}$,
2. the index of the image of ρ_E in $\mathcal{N}_{\delta,\phi}$ is a divisor of the order $\mathcal{O}_{K,f}^{\times}$, and the index is a divisor of 4 or 6. [Lombardo, Bourdon–Clark]
3. Moreover, for every K and $f \geq 1$, and a fixed $N \geq 3$, there is an elliptic curve $E/\mathbb{Q}(j_{K,f})$ such that the index of the image of $\rho_{E,N}$ in $\mathcal{N}_{\delta,\phi}(N)$ is 1. [Bourdon–Clark]
Moreover, for every K and $f \geq 1$, and a fixed $N \geq 3$, there is an elliptic curve $E/\mathbb{Q}(j_{K,f})$ such that the index of the image of $\rho_{E,N}$ in $\mathcal{N}_{\delta,\phi}(N)$ is 1.

However, the adelic representation may not have index 1 in $\mathcal{N}_{\delta,\phi}$ in certain cases.

Theorem (L.-R., 2018)

Let E/\mathbb{Q} be an elliptic curve with $j(E) = 1728$, and choose compatible bases of $E[N]$, for each $N \geq 2$, such that the image of ρ_{E} is contained in $\mathcal{N}_{\delta,\phi}$. Then, the index of the image of ρ_{E} in $\mathcal{N}_{\delta,\phi}$ is 2 or 4.
Moreover, for every K and $f \geq 1$, and a fixed $N \geq 3$, there is an elliptic curve $E/\mathbb{Q}(j_{K,f})$ such that the index of the image of $\rho_{E,N}$ in $\mathcal{N}_{\delta,\phi}(N)$ is 1.

However, the adelic representation may not have index 1 in $\mathcal{N}_{\delta,\phi}$ in certain cases.

Theorem (L.-R., 2018)

Let E/\mathbb{Q} be an elliptic curve with $j(E) = 1728$, and choose compatible bases of $E[N]$, for each $N \geq 2$, such that the image of ρ_E is contained in $\mathcal{N}_{\delta,\phi}$. Then, the index of the image of ρ_E in $\mathcal{N}_{\delta,\phi}$ is 2 or 4.

Theorem (L.-R., 2018)

Let E/\mathbb{Q} be an elliptic curve with CM by an order $\mathcal{O}_{K,f}$ in an imaginary quadratic field K with $\Delta_K \neq -4, -8$ and $j_{K,f} \neq 0$, and choose compatible bases of $E[N]$, for each $N \geq 2$, such that the image of ρ_E is contained in $\mathcal{N}_{\delta,\phi}$. Then, the index of the image of ρ_E in $\mathcal{N}_{\delta,\phi}$ is 2.
Using our work, we can classify all the p-adic Galois representations that arise from elliptic curves over $\mathbb{Q}(j_{K,f})$, up to conjugation...
Using our work, we can classify all the \(p \)-adic Galois representations that arise from elliptic curves over \(\mathbb{Q}(j_{K,f}) \), up to conjugation... including \(p = 2 \) and \(p = 3 \)!

Here is the complete list of 2-adic images coming from CM over \(\mathbb{Q} \):

\[
\begin{array}{cccc}
\Delta_K & f & \text{index} & E_{\infty} \\
0 & -3 & 1 & y^2 = x^3 + 2 \\
-1 & -3 & 1 & y^2 = x^3 + 3 \\
-2 & 0 & 1 & y^2 = x^3 - 15x + 22 \\
-3 & 3 & 1 & y^2 = x^3 - 30x + 63 \\
-4 & 6 & 1 & y^2 = x^3 - 180x + 1224 \\
-5 & 9 & 1 & y^2 = x^3 - 595x + 5586 \\
\end{array}
\]

Note: the images for \((\Delta_K, f) = (-3, 2) \) and \((-7, 2) \) are conjugates modulo 16, but not modulo 32.
Using our work, we can classify all the p-adic Galois representations that arise from elliptic curves over $\mathbb{Q}(j_{K,f})$, up to conjugation... including $p = 2$ and $p = 3$!

Here is the complete list of 2-adic images coming from CM over \mathbb{Q}:

<table>
<thead>
<tr>
<th>$j_{K,f}$</th>
<th>Δ_K</th>
<th>f</th>
<th>index in $\mathcal{N}_{\delta,\phi}(2^\infty)$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>$y^2 = x^3 + 2$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>3</td>
<td>$y^2 = x^3 + 1$</td>
</tr>
<tr>
<td>$2^4 \cdot 3^3 \cdot 5^3$</td>
<td>-3</td>
<td>2</td>
<td>1</td>
<td>$y^2 = x^3 - 15x + 22$</td>
</tr>
<tr>
<td>$-2^{15} \cdot 3 \cdot 5^3$</td>
<td>-3</td>
<td>3</td>
<td>1</td>
<td>$y^2 + y = x^3 - 30x + 63$</td>
</tr>
<tr>
<td>$-3^3 \cdot 5^3$</td>
<td>-7</td>
<td>1</td>
<td>1</td>
<td>$y^2 + xy = x^3 - x^2 - 2x - 1$</td>
</tr>
<tr>
<td>$3^3 \cdot 5^3 \cdot 17^3$</td>
<td>-7</td>
<td>2</td>
<td>1</td>
<td>$y^2 = x^3 - 595x + 5586$</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>
Using our work, we can classify all the p-adic Galois representations that arise from elliptic curves over $\mathbb{Q}(j_{K,f})$, up to conjugation... including $p = 2$ and $p = 3$!

Here is the complete list of 2-adic images coming from CM over \mathbb{Q}:

<table>
<thead>
<tr>
<th>$j_{K,f}$</th>
<th>Δ_K</th>
<th>f</th>
<th>index in $N_{\delta,\phi}(2^\infty)$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>$y^2 = x^3 + 2$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>3</td>
<td>$y^2 = x^3 + 1$</td>
</tr>
<tr>
<td>$2^4 \cdot 3^3 \cdot 5^3$</td>
<td>-3</td>
<td>2</td>
<td>1</td>
<td>$y^2 = x^3 - 15x + 22$</td>
</tr>
<tr>
<td>$-2^{15} \cdot 3 \cdot 5^3$</td>
<td>-3</td>
<td>3</td>
<td>1</td>
<td>$y^2 + y = x^3 - 30x + 63$</td>
</tr>
<tr>
<td>$-3^3 \cdot 5^3$</td>
<td>-7</td>
<td>1</td>
<td>1</td>
<td>$y^2 + xy = x^3 - x^2 - 2x - 1$</td>
</tr>
<tr>
<td>$3^3 \cdot 5^3 \cdot 17^3$</td>
<td>-7</td>
<td>2</td>
<td>1</td>
<td>$y^2 = x^3 - 595x + 5586$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Note: the images for $(\Delta_K, f) = (-3, 2)$ and $(-7, 2)$ are conjugates modulo 16, but not modulo 32.
The list of 2-adic images coming from CM over \mathbb{Q}: (continued)

<table>
<thead>
<tr>
<th>$j_{K,f}$</th>
<th>Δ_K</th>
<th>f</th>
<th>index in $\mathcal{N}_{\delta,\phi}(2^{\infty})$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>$1728 = 2^6 \cdot 3^3$</td>
<td>-4</td>
<td>1</td>
<td>1</td>
<td>$y^2 = x^3 + 3x$</td>
</tr>
<tr>
<td>1728</td>
<td>-4</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 + 9x$</td>
</tr>
<tr>
<td>1728</td>
<td>-4</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 - 9x$</td>
</tr>
<tr>
<td>1728</td>
<td>-4</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 + 18x$</td>
</tr>
<tr>
<td>1728</td>
<td>-4</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 - 18x$</td>
</tr>
<tr>
<td>1728</td>
<td>-4</td>
<td>1</td>
<td>4</td>
<td>$y^2 = x^3 + x$</td>
</tr>
<tr>
<td>1728</td>
<td>-4</td>
<td>1</td>
<td>4</td>
<td>$y^2 = x^3 - x$</td>
</tr>
<tr>
<td>1728</td>
<td>-4</td>
<td>1</td>
<td>4</td>
<td>$y^2 = x^3 + 2x$</td>
</tr>
<tr>
<td>1728</td>
<td>-4</td>
<td>1</td>
<td>4</td>
<td>$y^2 = x^3 - 2x$</td>
</tr>
<tr>
<td>1728</td>
<td>-4</td>
<td>1</td>
<td>4</td>
<td>$y^2 = x^3 + 4x$</td>
</tr>
<tr>
<td>1728</td>
<td>-4</td>
<td>1</td>
<td>4</td>
<td>$y^2 = x^3 - 4x$</td>
</tr>
</tbody>
</table>

...
The list of 2-adic images coming from CM over \mathbb{Q}: (continued)

<table>
<thead>
<tr>
<th>$j_{K,f}$</th>
<th>Δ_K</th>
<th>f</th>
<th>index in $\mathcal{N}_{\delta,\phi}^{(2)}$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^3 \cdot 3^3 \cdot 11^3$</td>
<td>-4</td>
<td>2</td>
<td>1</td>
<td>$y^2 = x^3 - 99x + 378$</td>
</tr>
<tr>
<td>$2^3 \cdot 3^3 \cdot 11^3$</td>
<td>-4</td>
<td>2</td>
<td>2</td>
<td>$y^2 = x^3 - 11x + 14$</td>
</tr>
<tr>
<td>$2^3 \cdot 3^3 \cdot 11^3$</td>
<td>-4</td>
<td>2</td>
<td>2</td>
<td>$y^2 = x^3 - 11x - 14$</td>
</tr>
<tr>
<td>$2^3 \cdot 3^3 \cdot 11^3$</td>
<td>-4</td>
<td>2</td>
<td>2</td>
<td>$y^2 = x^3 - 44x + 112$</td>
</tr>
<tr>
<td>$2^3 \cdot 3^3 \cdot 11^3$</td>
<td>-4</td>
<td>2</td>
<td>2</td>
<td>$y^2 = x^3 - 44x + 112$</td>
</tr>
</tbody>
</table>
The list of 2-adic images coming from CM over \mathbb{Q}: (continued)

<table>
<thead>
<tr>
<th>$j_{K,f}$</th>
<th>Δ_K</th>
<th>f</th>
<th>index in $\mathcal{N}_{\delta,\phi}(2\infty)$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^6 \cdot 5^3$</td>
<td>-8</td>
<td>1</td>
<td>1</td>
<td>$y^2 = x^3 - 38880x + 2612736$</td>
</tr>
<tr>
<td>$2^6 \cdot 5^3$</td>
<td>-8</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 - 4320x + 96768$</td>
</tr>
<tr>
<td>$2^6 \cdot 5^3$</td>
<td>-8</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 - 4320x - 96768$</td>
</tr>
<tr>
<td>$2^6 \cdot 5^3$</td>
<td>-8</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 - 17280x + 774144$</td>
</tr>
<tr>
<td>$2^6 \cdot 5^3$</td>
<td>-8</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 - 17280x - 774144$</td>
</tr>
</tbody>
</table>
The list of 2-adic images coming from CM over \mathbb{Q}: (continued)

<table>
<thead>
<tr>
<th>$j_{K,f}$</th>
<th>Δ_K</th>
<th>f</th>
<th>index in $\mathcal{N}_{\delta,\phi}(2^\infty)$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2^6 \cdot 5^3$</td>
<td>-8</td>
<td>1</td>
<td>1</td>
<td>$y^2 = x^3 - 38880x + 2612736$</td>
</tr>
<tr>
<td>$2^6 \cdot 5^3$</td>
<td>-8</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 - 4320x + 96768$</td>
</tr>
<tr>
<td>$2^6 \cdot 5^3$</td>
<td>-8</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 - 4320x - 96768$</td>
</tr>
<tr>
<td>$2^6 \cdot 5^3$</td>
<td>-8</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 - 17280x + 774144$</td>
</tr>
<tr>
<td>$2^6 \cdot 5^3$</td>
<td>-8</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 - 17280x - 774144$</td>
</tr>
</tbody>
</table>

Note: The last four examples are particularly interesting: the index of the image in $\mathcal{N}_{\delta,\phi}(4)$ is 1, but the index in $\mathcal{N}_{\delta,\phi}(8)$ and the 2-adic index is 2.
Example

The elliptic curve $E : y^2 = x^3 - 4320x + 96768$ has CM by the maximal order of $K = \mathbb{Q}(\sqrt{-2})$, $f = 1$, and $j_{K,f} = 2^6 \cdot 5^3$. Its 2-adic image is conjugate to the group:

$$\left\langle \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ -\delta & -1 \end{pmatrix} \right\rangle \subseteq \mathcal{N}_{\delta,0}(2^\infty) \subseteq \text{GL}(2, \mathbb{Z}_2),$$

where $\delta = \Delta_K f^2 / 4 = -2$.

These examples are the CM analog of those non-CM images described by Dokchitser and Dokchitser that are surjective mod 4 (onto $\text{GL}(2, \mathbb{Z}/4\mathbb{Z})$) but not mod 8.
A similar effect happens for $p = 3$ when $j_{K,f} = 0$. Here is the list of 3-adic images coming from CM over \mathbb{Q}:

<table>
<thead>
<tr>
<th>$j_{K,f}$</th>
<th>Δ_K</th>
<th>f</th>
<th>index in $N_{\delta,0}(3^\infty)$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1728 = 2^3 \cdot 3^3$</td>
<td>-4</td>
<td>1</td>
<td>1</td>
<td>$y^2 = x^3 + x$</td>
</tr>
<tr>
<td>-2^{15}</td>
<td>-11</td>
<td>1</td>
<td>1</td>
<td>$y^2 + y = x^3 - x^2 - 7x + 10$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>$y^2 = x^3 - 1$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 + 1$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>2</td>
<td>$y^2 = x^3 - 3$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>3</td>
<td>$y^2 = x^3 + 2$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>3</td>
<td>$y^2 = x^3 + 6$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>3</td>
<td>$y^2 = x^3 + 18$</td>
</tr>
</tbody>
</table>

Note: the last two groups are conjugates mod 9 but not mod 27.
The list of 3-adic images coming from CM: (continued)

<table>
<thead>
<tr>
<th>$j_{K,f}$</th>
<th>Δ_K</th>
<th>f</th>
<th>index in $N_{\delta,0}(3^\infty)$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>:</td>
</tr>
<tr>
<td>0</td>
<td>−3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 + 16$</td>
</tr>
<tr>
<td>0</td>
<td>−3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 − 432$</td>
</tr>
<tr>
<td>0</td>
<td>−3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 + 1296$</td>
</tr>
<tr>
<td>0</td>
<td>−3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 − 48$</td>
</tr>
<tr>
<td>0</td>
<td>−3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 + 144$</td>
</tr>
<tr>
<td>0</td>
<td>−3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 − 3888$</td>
</tr>
</tbody>
</table>

Note: The last four examples are particularly interesting: the index of the image in $N_{\delta,0}(3)$ is 2, but the index in $N_{\delta,0}(9)$ and the 3-adic index is 6. These examples are CM analogs of those non-CM images described by Elkies that are surjective mod 3 (onto $\text{GL}_2(\mathbb{Z}/3\mathbb{Z})$) but not mod 9. Special thanks to Drew Sutherland for helping me in computing these examples.
The list of 3-adic images coming from CM: (continued)

<table>
<thead>
<tr>
<th>$j_{K,f}$</th>
<th>Δ_K</th>
<th>f</th>
<th>index in $N_{\delta,0}(3^\infty)$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 + 16$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 - 432$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 + 1296$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 - 48$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 + 144$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 - 3888$</td>
</tr>
</tbody>
</table>

Note: The last four examples are particularly interesting: the index of the image in $N_{\delta,\phi}(3)$ is 2, but the index in $N_{\delta,\phi}(9)$ and the 3-adic index is 6. These examples are CM analogs of those non-CM images described by Elkies that are surjective mod 3 (onto $GL(2,\mathbb{Z}/3\mathbb{Z})$) but not mod 9.
The list of 3-adic images coming from CM: (continued)

<table>
<thead>
<tr>
<th>$j_{K,f}$</th>
<th>Δ_K</th>
<th>f</th>
<th>index in $N_{\delta,0}(3^\infty)$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 + 16$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 - 432$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 + 1296$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 - 48$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 + 144$</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>$y^2 = x^3 - 3888$</td>
</tr>
</tbody>
</table>

Note: The last four examples are particularly interesting: the index of the image in $N_{\delta,\phi}(3)$ is 2, but the index in $N_{\delta,\phi}(9)$ and the 3-adic index is 6. These examples are CM analogs of those non-CM images described by Elkies that are surjective mod 3 (onto $\text{GL}(2, \mathbb{Z}/3\mathbb{Z})$) but not mod 9.

Special thanks to Drew Sutherland for helping me in computing these examples.
Example

The elliptic curve $E : y^2 = x^3 + 144$ has CM by the maximal order of $K = \mathbb{Q}(\sqrt{-3})$, $f = 1$, and $j_{K,f} = 0$. Its 3-adic image is conjugate to the group:

$$\left\langle \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} -5/4 & 1/2 \\ -3/8 & -5/4 \end{pmatrix} \right\rangle \subseteq \text{GL}(2, \mathbb{Z}_3).$$
§3. Proofs
First step: understand the image in coordinates.

If we define the Cartan subgroup $C_{\delta,\phi}(N)$ of $\text{GL}(2, \mathbb{Z}/N\mathbb{Z})$ by

$$C_{\delta,\phi}(N) = \left\{ \begin{pmatrix} a + b\phi & b \\ \delta b & a \end{pmatrix} : a, b \in \mathbb{Z}/N\mathbb{Z}, \ a^2 + ab\phi - \delta b^2 \in (\mathbb{Z}/N\mathbb{Z})^\times \right\}$$

and

$$N_{\delta,\phi}(N) = \left\langle C_{\delta,\phi}(N), \begin{pmatrix} -1 & 0 \\ \phi & 1 \end{pmatrix} \right\rangle,$$

then there is a $\mathbb{Z}/N\mathbb{Z}$-basis of $E[N]$ such that the image of $\rho_{E,N}$ is contained in $N_{\delta,\phi}(N)$.
\[Q(j_k, \mathbb{E}[N]) = H_g(\mathbb{E}[N]) \]
if \(N \geq 3 \)
$\mathbb{Q}(j_{k,g}, E[N]) = H_g(E[N])$

if $N \geq 3$

$H_g(h(E[N]))$

$H_g = K(j_{k,g})$

$\mathbb{Q}(j_{k,g})$

\mathbb{Q}
If $N \geq 3$,

$$Q(j, k, s, E[N]) = H_p(E[N])$$

$$H_g(h(E[N]))$$

$$H_g = K(j, k, s)$$

$$Q(i, j, k, s)$$
\(\mathbb{Q}(j_{k,g}) \times H_g(h(E[N])) = H_g(E[N]) \) if \(N \geq 3 \)

\(H_g = K(j_{k,g}) \)

\(\left(\frac{O_{k,g}}{N(O_{k,g})} \right)^{\times} \)

\(\mathbb{Q}(j_{k,g}) \)

\(\mathbb{Q} \)

by CM thy.

by CFT
\(g_{K_N} \times \mathbb{C} \cong \mathbb{C} \times g_{K_N} \)

\(\mathcal{O}_{K_N} \cap g_{K_N} \) by CM theory.

\(H_0(\mathcal{O}_{K_N}^*) = \mathbb{C} \times g_{K_N}^* \)

\(H_0(\mathcal{O}_{K_N}^*) \cong g_{K_N}^* \times \mathbb{C} \)

Complex conjugation

\(\mathcal{O}(i, k, \theta) \)

\(\mathcal{O}(j, k, \theta, \mathbb{Z}) = H_0(\mathbb{Z}[\mathbb{Z}]) \) if \(N \geq 3 \)
Key step: understand $\text{Gal}(H_f(h(E[N]))/H_f)$

Theorem

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by an order $\mathcal{O}_{K,f}$ of conductor $f \geq 1$ in an imaginary quadratic field K, and let $N \geq 2$. Let $H_f = K(j_{K,f})$. Then,

$$\text{Gal}(H_f(h(E[N]))/H_f) \cong \left(\frac{\mathcal{O}_{K,f}}{N\mathcal{O}_{K,f}} \right) \times \frac{\mathcal{O}_{K,f}^\times}{\mathcal{O}_{K,f,N}^\times}.$$

Note:

- Stevenhagen gives a description of the extension and the Galois group using an adelic approach and Shimura reciprocity.
- Bourdon and Clark deduce an explicit description of the field $K(j_{K,f}, h(E[N]))$ as the compositum of a ray class field and a ring class field.
- We use a classical class field theory approach to describe it in terms of quotients of groups of proper $\mathcal{O}_{K,f}$-ideals.
Next step: for a fixed prime p, understand the tower $H_f(E[p^n])$ as n grows, and its Galois group over H_f.
Let $t = 1$ if $p > 2$ and $t = 2$ if $p = 2$, and suppose one of the following holds:

1. $[H_f(E[p^n]) : H_f(h(E[p^n]))]$ is relatively prime to p, for some $n \geq t$.
2. $j_{K,f} \neq 0$, and $p > 2$.
3. $j_{K,f} = 0$ and $p > 3$.

Then, the image of the group $\text{Gal}(H_f(E[p^{n+1}])/H_f)$ in $(\mathcal{O}_{K,f}/p^{n+1}\mathcal{O}_{K,f})^\times$ is the full inverse image of the image of $\text{Gal}(H_f(E[p^n])/H_f)$ in $(\mathcal{O}_{K,f}/p^n\mathcal{O}_{K,f})^\times$ under the natural reduction map modulo p^n.
Next steps: understand the Galois group of $H_f(E[N])$ over $\mathbb{Q}(j_{K,f})$.

- Describe $(\mathcal{O}_{K,f}/N\mathcal{O}_{K,f})^\times$, for N a power of 2 or 3, in terms of generators in $\mathcal{O}_{K,f}$.
- Subgroups of $(\mathcal{O}_{K,f}/N\mathcal{O}_{K,f})^\times$, for N a power of 2 or 3, that are missing a certain root of unity, stable under complex conjugation, and are of a certain index.
- Determine the possible shapes of complex conjugation.
For example, the more interesting 2-adic representations arise like so:

Lemma

1. Let $n \geq 2$, let H_n be a subgroup of index 2 of $(\mathcal{O}_K,f/2^n\mathcal{O}_K,f)\times$, and let $H_2 \equiv H_n \mod 4\mathcal{O}_K,f$ be the reduction of H_n modulo 4. Suppose that:
 - -1 is not in H_2, and
 - H_2 is fixed under complex conjugation.

 Then, $\Delta_K f^2 \equiv 0 \mod 16$ and there are precisely two such subgroups H_n, namely $\langle 5, 1 + f\tau \rangle/2^n$ and $\langle 5, -1 - f\tau \rangle/2^n$.
For example, the more interesting 2-adic representations arise like so:

Lemma

1. Let $n \geq 2$, let H_n be a subgroup of index 2 of $(\mathcal{O}_{K,f}/2^n\mathcal{O}_{K,f})^\times$, and let $H_2 \equiv H_n \mod 4\mathcal{O}_{K,f}$ be the reduction of H_n modulo 4. Suppose that:
 - -1 is not in H_2, and
 - H_2 is fixed under complex conjugation.

 Then, $\Delta_K f^2 \equiv 0 \mod 16$ and there are precisely two such subgroups H_n, namely $\langle 5, 1 + f\tau \rangle/2^n$ and $\langle 5, -1 - f\tau \rangle/2^n$.

2. Suppose $n \geq 3$ and H_n is a subgroup of index 2 of $(\mathcal{O}_{K,f}/2^n\mathcal{O}_{K,f})^\times$ such that:
 - -1 is not in H_n,
 - H_n is fixed under complex conjugation,
 - H_n surjects onto $(\mathcal{O}_{K,f}/4\mathcal{O}_{K,f})^\times$ when reduced mod $4\mathcal{O}_{K,f}$.

 Then, $\Delta_K \equiv 0 \mod 8$ and there are precisely two such subgroups, namely $\langle 3, 1 + f\tau \rangle/2^n$ and $\langle 3, -1 - f\tau \rangle/2^n$.
THANK YOU

alvaro.lozano-robledo@uconn.edu
http://alozano.clas.uconn.edu

“If by chance I have omitted anything more or less proper or necessary, I beg forgiveness, since there is no one who is without fault and circumspect in all matters.”

Leonardo Pisano (Fibonacci), *Liber Abaci*.