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What is an elliptic curve?

Given a polynomial equation

f (x1, x2, . . . , xr ) = 0

with integer coefficients (i.e., a
diophantine equation), we can ask
three basic questions:

1 Can we determine if there are
rational or integral solutions?

2 In the affirmative case, can we
find such a solution?

3 Can we describe all such
solutions?

4 (Hilbert’s Tenth Problem over
Z) Is there a Turing machine to
decide if f = 0 has solutions in
Z? (Davis, Matiyasevich,
Putnam, Robinson: No)
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A gift from Martin Davis, the diophantine equation

9(x2 + 7y2)2 − 7(u2 + 7v2)2 = 2.



C : f (x1, x2) = 0

When C is smooth (projective), of degree 3 (genus 1), we already lack
an algorithm that will determine whether there are any rational points
on C, or, if one exists, an algorithm that will determine all the rational
points on the curve C.

Definition
An elliptic curve E over a field F is a projective smooth curve of genus
one, with at least one point defined over F .

Every elliptic curve has a (Weierstrass) model of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, for some ai ∈ F .

We are interested in determining all F -rational points on E :

E(F ) = {(x0, y0) ∈ E : x0, y0 ∈ F} ∪ {O = [0 : 1 : 0]}.
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one, with at least one point defined over F .

Example

Let E/Q be the curve y2 = x3 + 13x − 34.

Then:

E(Q) = {O, (7,−20), (2,0), (7,20)},

where O = [0 : 1 : 0], in projective coordinates.
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Some examples of diophantine equations, or problems that are
connected to elliptic curves:

Fermat’s last theorem was proved via the so-called Frey curve
Y 2 = X (X − An)(X + Bn), where An + Bn = Cn .

The congruent number problem (is n ∈ N the area of a right
triangle with rational sides?) is connected to Y 2 = X 3 − n2X .

The ABC conjecture is logically equivalent to specific upper
bounds on an integral solution (x0, y0) to Mordell’s equation
Y 2 = X 3 + k in terms of the parameter k.

Hilbert’s Tenth Problem over a ring of integers of a number field
F can be shown to be undecidable if a well-known conjecture
(finiteness of Sha) holds for elliptic curves over F .
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KEY FEATURE OF ELLIPTIC CURVES:

The set of F -rational points E(F ) of an elliptic curve E/F can be
endowed with a group structure, defined geometrically (also
algebraically through groups of divisors).
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The elliptic curve E/Q : y2 + xy + y = x3 + x2

has a point P = (0,0) of order 4.
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The curve E/Q : y2 − y = x3 − x2 has a point P = (0,1) of order 5.
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The elliptic curve E/Q : y2 = x3 + 1 has a point P = (2,3) of order 6.
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The elliptic curve 30030bt1 has a point of order 12.

y2 + xy = x3 − 749461x + 263897441.



Example

Let E/Q be the curve y2 = x3 + 13x − 34. Then:

E(Q) = {O, (7,−20), (2,0), (7,20)} ∼= Z/4Z,

where O = [0 : 1 : 0], in projective coordinates.

Example

Let E/Q(i) be the curve y2 = x3 + 13x − 34. Then:

E(Q(i)) = 〈(1 + 2i ,−2− 6i), (−3,−10i)〉 ∼= Z/4Z⊕ Z/4Z.



Example

Let E/Q be the curve y2 = x3 + 13x − 34. Then:

E(Q) = {O, (7,−20), (2,0), (7,20)} ∼= Z/4Z,

where O = [0 : 1 : 0], in projective coordinates.

Example

Let E/Q(i) be the curve y2 = x3 + 13x − 34.

Then:

E(Q(i)) = 〈(1 + 2i ,−2− 6i), (−3,−10i)〉 ∼= Z/4Z⊕ Z/4Z.



Example

Let E/Q be the curve y2 = x3 + 13x − 34. Then:

E(Q) = {O, (7,−20), (2,0), (7,20)} ∼= Z/4Z,

where O = [0 : 1 : 0], in projective coordinates.

Example

Let E/Q(i) be the curve y2 = x3 + 13x − 34. Then:

E(Q(i)) = 〈(1 + 2i ,−2− 6i), (−3,−10i)〉 ∼= Z/4Z⊕ Z/4Z.



Louis Mordell
1888− 1972

Theorem (Mordell, 1922)
Let E/Q be an elliptic curve. Then, the group of Q-rational points on E,
denoted by E(Q), is a finitely generated abelian group. In particular,
E(Q) ∼= E(Q)tors ⊕ ZRE/Q where E(Q)tors is a finite subgroup, and
RE/Q ≥ 0.



Louis Mordell
1888− 1972

André Weil
1906− 1998

Theorem (Mordell–Weil, 1928)
Let F be a number field, and let A/F be an abelian variety. Then, the
group of F-rational points on A, denoted by A(F ), is a finitely
generated abelian group. In particular, A(F ) ∼= A(F )tors ⊕ ZRA/F where
A(F )tors is a finite subgroup, and RA/F ≥ 0.



Louis Mordell
1888− 1972

André Weil
1906− 1998

André Néron
1922− 1985

Theorem (Mordell–Weil–Néron, 1952)
Let F be a field that is finitely generated over its prime field, and let
A/F be an abelian variety. Then, the group of F-rational points on A,
denoted by A(F ), is a finitely generated abelian group. In particular,
A(F ) ∼= A(F )tors ⊕ ZRA/F where A(F )tors is a finite subgroup, and
RA/F ≥ 0.



The following are some examples of elliptic curves and their
Mordell-Weil groups:

1 The curve E1/Q : y2 = x3 + 6 satisfies E1(Q) = {O}.
2 The curve E2/Q : y2 = x3 + 1 has only 6 rational points:

E2(Q) = {O, (2,±3), (0,±1), (−1,0)} ∼= Z/6Z.

3 The curve E3/Q : y2 = x3 − 2 does not have any rational torsion
points other than O. However, E3(Q) = 〈(3,5)〉 ∼= Z.

4 The elliptic curve E4/Q : y2 = x3 + 7105x2 + 1327104x features
both torsion and infinite order points. In fact, E4(Q) ∼= Z/4Z⊕ Z3.
The torsion subgroup is generated by the point of order 4
T = (1152,111744). The free part is generated by

P1 = (−6912,6912),P2 = (−5832,188568),P3 = (−5400,206280).
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Theorem (Mordell–Weil–Néron, 1952)
Let F be a field that is finitely generated over its prime field (e.g., a
global field), and let A/F be an abelian variety. Then, the group of
F-rational points on A, denoted by A(F ), is a finitely generated abelian
group. In particular, A(F ) ∼= A(F )tors ⊕ ZRA/F where A(F )tors is a finite
subgroup, and RA/F ≥ 0.

... leads to ...

Natural Question
What finitely generated abelian groups arise from abelian varieties
over global fields?

There are a number of ways to study this question, depending on what
we allow to vary.
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Natural Question
What finitely generated abelian groups E(F ) ∼= E(F )tors ⊕ ZRE/F arise
from elliptic curves over global fields?

Variations: Mordell–Weil groups of elliptic curves for a fixed field F

Fix a field F , and vary over 1-dimensional abelian varieties over F .

E1(F ) E2(F ) . . . Ek (F ) . . .

F

where E1,E2, . . . ,Ek , . . . is some family of (perhaps all) elliptic curves
over a fixed field F .
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of the base field F , contained in some fixed algebraic closure F .



Natural Question
What finitely generated abelian groups E(F ) ∼= E(F )tors ⊕ ZRE/F arise
from elliptic curves over global fields?

Variations: ranks in a family of elliptic curves over a fixed F

RE1/F RE2/F . . . REk/F . . .

F

where E1,E2, . . . ,Ek , . . . is some family of (perhaps all) elliptic curves
over a fixed field F .



Natural Question
What finitely generated abelian groups E(F ) ∼= E(F )tors ⊕ ZRE/F arise
from elliptic curves over global fields?

Variations: ranks for a fixed curve E/F under field extensions L/F

RE/L1
RE/L2

. . . RE/Lk
. . .

E/F

where L1,L2, . . . ,Lk , . . . is some family of (perhaps all) finite extensions
of a fixed field F , contained in some fixed algebraic closure F .



Natural Question
What finitely generated abelian groups E(F ) ∼= E(F )tors ⊕ ZRE/F arise
from elliptic curves over global fields?

Variations: torsion subgroups in a family of curves over a fixed F

E1(F )tors E2(F )tors . . . Ek (F )tors . . .

F

where E1,E2, . . . ,Ek , . . . is some family of (perhaps all) elliptic curves
over a fixed field F .



Natural Question
What finitely generated abelian groups E(F ) ∼= E(F )tors ⊕ ZRE/F arise
from elliptic curves over global fields?

Variations: torsion for a fixed curve E/F over extensions L/F

E(L1)tors E(L2)tors . . . E(Lk )tors . . .

E/F

where L1,L2, . . . ,Lk , . . . is some family of (perhaps all) finite extensions
of a fixed field F , contained in some fixed algebraic closure F .



Variations: ranks of elliptic curves over Q

RE1/Q RE2/Q . . . REk/Q . . .

Q
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where E1,E2, . . . ,Ek , . . . is a family of elliptic curves over Q:
All elliptic curves over Q.
Family of quadratic twists of a given curve: y2 = x3 + Ad2x + Bd3,
for fixed A,B ∈ Q, and any d 6= 0.
Other 1-parameter families of elliptic curves.

Open Problem
What values can RE/Q take? In particular, can RE/Q be arbitrarily
large, or is it uniformly bounded?
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Elkies’ elliptic curve of rank ≥ 28

y2 + xy + y = x3 − x2 − (2006776241557552658503320820933854
2750930230312178956502)x + (3448161179503055646703298569
0390720374855944359319180361266008296291939448732243429)

Noam Elkies

Independent points of infinite order:

P1 =[−2124150091254381073292137463,
259854492051899599030515511070780628911531]

P2 =[2334509866034701756884754537,
18872004195494469180868316552803627931531]

P3 =[−1671736054062369063879038663,
251709377261144287808506947241319126049131]

...



Elkies’ elliptic curve of rank ≥ 28

P4 =[2139130260139156666492982137,
36639509171439729202421459692941297527531]

P5 =[1534706764467120723885477337,
85429585346017694289021032862781072799531]

P6 =[−2731079487875677033341575063,
262521815484332191641284072623902143387531]

P7 =[2775726266844571649705458537,
12845755474014060248869487699082640369931]

P8 =[1494385729327188957541833817,
88486605527733405986116494514049233411451]

P9 =[1868438228620887358509065257,
59237403214437708712725140393059358589131]

P10 =[2008945108825743774866542537,
47690677880125552882151750781541424711531]

P11 =[2348360540918025169651632937,
17492930006200557857340332476448804363531]



Elkies’ elliptic curve of rank ≥ 28



So what about torsion subgroups?

There has been much progress in recent years in the classification of
torsion subgroups. Torsion subgroups have attracted a lot of attention!
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Elliptic curves over C (image courtesy of Karl Rubin)



Elliptic curves over C: complex plane modulo a lattice
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A lattice Λ ⊂ C.



A fundamental domain for the quotient C/Λ.



2-torsion points on E(C) = C/Λ. Clearly E [2] ∼= Z/2Z⊕ Z/2Z.



3-torsion points on E(C) = C/Λ. Clearly E [3] ∼= Z/3Z⊕ Z/3Z.



Torsion subgroups of elliptic curves

Let F be a number field, and let E/F be an elliptic curve. Let

E [n] = {P ∈ E(F ) : nP = O}

be the n-torsion subgroup of E(F ).

Then, it is easy to show that

E [n] ∼= Z/nZ⊕ Z/nZ.

In particular, there are some a,b ≥ 1, such that

E(F )tors ∼= Z/aZ⊕ Z/abZ .
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Torsion subgroups of elliptic curves over Q

E1(Q)tors E2(Q)tors . . . Ek (Q)tors . . .

Q

Barry Mazur

Theorem (Levi–Ogg Conjecture; Mazur, 1977)

Let E/Q be an elliptic curve. Then

E(Q)tors '

{
Z/MZ with 1 ≤ M ≤ 10 or M = 12, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4.

Moreover, each possible group appears infinitely many times.
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All elliptic curves with given torsion



Torsion subgroups of elliptic curves over Fq(T )
Fix a prime p, let q = pn, and K = Fq(T ).

E1(Fq(T ))tors E2(Fq(T ))tors . . . Ek (Fq(T ))tors . . .
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Fix a prime p, let q = pn, and K = Fq(T ).

E1(Fq(T ))tors E2(Fq(T ))tors . . . Ek (Fq(T ))tors . . .

Fq(T )



Building on work of Cox and Parry (1980), and Levin (1968):

Theorem (McDonald, 2017)
Let K = Fq(T ) for q a power of p. Let E/K be non-isotrivial.
If p - E(K )tors, then E(K )tors is one of

0, Z/2Z, Z/3Z, . . . , Z/10Z, Z/12Z,
(Z/2Z)2, Z/4Z× Z/2Z, Z/6Z× Z/2Z, Z/8Z× Z/2Z,

(Z/3Z)2, Z/6Z× Z/3Z, (Z/4Z)2, (Z/5Z)2.

If p | #E(K )tors, then p ≤ 11, and E(K )tors is one of

Z/pZ if p = 2,3,5,7,11,
Z/2pZ if p = 2,3,5,7,
Z/3pZ if p = 2,3,5,

Z/4pZ,Z/5pZ, if p = 2,3,
Z/12Z,Z/14Z,Z/18Z if p = 2,

Z/10Z× Z/5Z if p = 2,
Z/12Z× Z/2Z if p = 3,
Z/10Z× Z/2Z if p = 5.



Characteristic Ea,b : y2 + (1− a)xy − by = x3 − bx2, f ∈ K G

p = 11 a = (f+3)(f+5)2(f+9)2

3(f+1)(f+4)4 b = a (f+1)2(f+9)
2(f+4)3 Z/11Z

p = 2 a = f (f+1)3

f 3+f+1 b = a 1
f 3+f+1 Z/14Z

p = 7 a = (f+1)(f+3)3(f+4)(f+6)
f (f+2)2(f+5) b = a (f+1)(f+5)3

4f (f+2)

p = 3 a = f 3(f+1)2

(f+2)6 b = a f (f 4+2f 3+f+1)
(f+2)5 Z/15Z

p = 5 a = (f+1)(f+2)2(f+4)3(f 2+2)
(f+3)6(f 2+3) b = a f (f+4)

(f+3)5

p = 2 a = f (f+1)2(f 2+f+1)
f 3+f+1 b = a (f+1)2

f 3+f+1 Z/18Z

p = 5 a = f (f+1)(f+2)2(f+3)(f+4)
(f 2+4f+1)2 b = a (f+1)2(f+3)2

4(f 2+4f+1)2 Z/10Z× Z/2Z

p = 3, ζ4 ∈ k a = f (f+1)(f+2)(f 2+2f+2)
(f 2+f+2)3 b = a (f 2+1)2

f (f 2+f+2) Z/12Z× Z/2Z

p = 2, ζ4 ∈ k a = f (f 4+f+1)(f 4+f 3+1)
(f 2+f+1)5 b = a f 2(f 4+f 3+1)2

(f 2+f+1)5 Z/10Z× Z/5Z

Table: families of elliptic curves such that G ⊂ Ea,b(K )tors.



Torsion subgroups of elliptic curves over quad. field K

E1(K )tors E2(K )tors . . . Ek (K )tors . . .

K

Filip Najman

Theorem (Najman, 2011)

Let E/Q(i) be an elliptic curve. Then

E(Q(i))tors '


Z/MZ with 1 ≤ M ≤ 10 or M = 12, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4, or
Z/4Z⊕ Z/4Z.

Moreover, each torsion subgroup occurs infinitely many times.



Torsion subgroups of elliptic curves over quad. field K

E1(K )tors E2(K )tors . . . Ek (K )tors . . .

K Filip Najman

Theorem (Najman, 2011)
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Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4, or
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Moreover, each torsion subgroup occurs infinitely many times.



Torsion subgroups of elliptic curves over quad. fields K

E1(K )tors . . . Ek (K )tors E1(K ′)tors . . . Ek (K ′)tors

K K ′

Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let K/Q be a quadratic field and let E/K be an elliptic curve. Then

E(K )tors '


Z/MZ with 1 ≤ M ≤ 16 or M = 18, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or
Z/3Z⊕ Z/3MZ with M = 1 or 2, or
Z/4Z⊕ Z/4Z.

Moreover, each torsion subgroup occurs infinitely many times.



Torsion subgroups of elliptic curves over quad. fields K
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Let K/Q be a quadratic field and let E/K be an elliptic curve. Then

E(K )tors '


Z/MZ with 1 ≤ M ≤ 16 or M = 18, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or
Z/3Z⊕ Z/3MZ with M = 1 or 2, or
Z/4Z⊕ Z/4Z.

Moreover, each torsion subgroup occurs infinitely many times.



Torsion subgroups of elliptic curves over quad. fields K

Monsur Kenku Fumiyuki Momose Sheldon Kamienny

Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let K/Q be a quadratic field and let E/K be an elliptic curve. Then

E(K )tors '


Z/MZ with 1 ≤ M ≤ 16 or M = 18, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or
Z/3Z⊕ Z/3MZ with M = 1 or 2, or
Z/4Z⊕ Z/4Z.

Moreover, each torsion subgroup occurs infinitely many times.



Example: a point of order 13 (due to Markus Reichert)

Example

Let K = Q(
√

17). The elliptic curve E/K defined by

y2 = x3 + (−411864 + 99560
√

17)x + (211240640− 51226432
√

17)

has a point

P = (−474 + 118
√

17,−9088 + 2176
√

17)

of exact order 13.

(Hey! That curve is defined over R, so we can draw it!)
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Example: a point of order 13 (due to Markus Reichert)

y2 = x3 + (−411864 + 99560
√

17)x + (211240640− 51226432
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17)



Example: Another point of order 13

Example
Let E be the elliptic curve defined by

y2 + y = x3 + x2 − 114x + 473.

Then, E has a torsion point of order 13 defined over K/Q, a cubic
Galois extension, where K = Q(α) and

α3 − 48α2 + 425α− 1009 = 0.

The point P of order 13 is (α,7α− 39).

(Hey! That field has three real embeddings, so we can draw the points!
... Added to to-do list.)
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Torsion subgroups of elliptic curves over cubic fields

E1(F )tors . . . Ek (F )tors E1(F ′)tors . . . Ek (F ′)tors

F F ′

Theorem (Jeon, Kim, Schweizer, 2004)
Let F be a cubic number field, and let E be an elliptic curve defined over F .
The groups that appear as torsion subgroups for infinitely many
non-isomorphic elliptic curves E/F are precisely:{

Z/mZ with 1 ≤ m ≤ 20,m 6= 17,19, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 7.
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Theorem (Jeon, Kim, Schweizer, 2004)
Let F be a cubic number field, and let E be an elliptic curve defined over F .
The groups that appear as torsion subgroups for infinitely many
non-isomorphic elliptic curves E/F are precisely:{

Z/mZ with 1 ≤ m ≤ 20,m 6= 17,19, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 7.
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Theorem (Jeon, Kim, Schweizer, 2004)
Let F be a cubic number field, and let E be an elliptic curve defined
over F . The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:{

Z/mZ with 1 ≤ m ≤ 20,m 6= 17,19, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 7.

Warning! These are not all the possible groups!

Najman has shown
that for E : 162B1/Q and F = Q(ζ9)+ we have E(F )tors ∼= Z/21Z.
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Theorem (Jeon, Kim, Schweizer, 2004)
Let F be a cubic number field, and let E be an elliptic curve defined
over F . The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:{

Z/mZ with 1 ≤ m ≤ 20,m 6= 17,19, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 7.

Warning! These are not all the possible groups! Najman has shown
that for E : 162B1/Q and F = Q(ζ9)+ we have E(F )tors ∼= Z/21Z.



Anastasia
Etropolski

Jackson
Morrow

David
Zureick-Brown

Marteen
Derickx

Theorem (Etropolski–Morrow–Z-B., and Derickx, 2016)
Let F be a cubic number field, and let E be an elliptic curve defined
over F . The groups that appear as torsion subgroups of E(F ) are
precisely:{

Z/mZ with 1 ≤ m ≤ 21,m 6= 17,19, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 7.



Quartic, Quintic, Sextic, and beyond

Daeyeol Jeon Chang Heon Kim Euisung Park

Theorem (Jeon, Kim, Park, 2006)
Let F be a quartic number field, and let E be an elliptic curve defined
over F . The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:

Z/mZ with 1 ≤ m ≤ 24,m 6= 19,23, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 9, or
Z/3Z⊕ Z/3mZ with 1 ≤ m ≤ 3, or

Z/4Z⊕ Z/4Z, Z/4Z⊕ Z/8Z, Z/5Z⊕ Z/5Z, or Z/6Z⊕ Z/6Z.



Quartic, Quintic, Sextic, and beyond

Marteen Derickx Drew Sutherland

Theorem (Derickx, Sutherland, 2016)
Let F be a quintic number field, and let E be an elliptic curve defined
over F . The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:{

Z/mZ with 1 ≤ m ≤ 25,m 6= 23, or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 8.



Maarten Derickx (and L-R.)

Theorem (Derickx, Sutherland, 2016)
Let F be a sextic number field, and let E be an elliptic curve defined
over F . The groups that appear as torsion subgroups for infinitely
many non-isomorphic elliptic curves E/F are precisely:

Z/mZ with 1 ≤ m ≤ 30,m 6= 23,25,29 or
Z/2Z⊕ Z/2mZ with 1 ≤ m ≤ 10, or
Z/3Z⊕ Z/3mZ with 1 ≤ m ≤ 4, or

Z/4Z⊕ Z/4Z, Z/4Z⊕ Z/8Z, or Z/6Z⊕ Z/6Z.



A special case: elliptic curves with CM

Let F be a number field, and let E/F be an elliptic curve with CM.

Pete
Clark

Patrick
Corn

Alex
Rice

James
Stankewicz

Theorem (Clark, Corn, Rice, Stankewicz, 2013)
Let F be a number field of degree 1 ≤ d ≤ 13, and let E/F be an
elliptic curve with CM. Then, the complete list of possible torsion
subgroups E(F )tors is given, and an algorithm to compute the list for
d ≥ 1.
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A special case: elliptic curves with CM

Let F be a number field, and let E/F be an elliptic curve with CM.

Theorem (Clark, Corn, Rice, Stankewicz, 2013)
Let F be a number field of degree 1 ≤ d ≤ 13, and let E/F be an
elliptic curve with CM. Then, the complete list of possible torsion
subgroups E(F )tors is given.

For example, over Q: {O},Z/2Z,Z/3Z,Z/4Z,Z/6Z,Z/2Z⊕ Z/2Z.

Over quadratics, not over Q:
Z/7Z,Z/10Z,Z/2Z⊕ Z/4Z,Z/2Z⊕ Z/6Z,Z/3Z⊕ Z/3Z.

Over quartics, besides quadratics and Q:
Z/5Z,Z/8Z,Z/12Z,Z/13Z,Z/21Z,Z/2Z⊕ Z/8Z,
Z/2Z⊕ Z/10Z,Z/4Z⊕ Z/4Z,Z/3Z⊕ Z/6Z.



A special case: elliptic curves with CM

Abbey Bourdon Pete Clark

Theorem (Bourdon, Clark, 2017)
Let K be quad. imaginary, let K ⊆ F be a number field, let E/F be an
elliptic curve with CM by an order O ⊆ K , and let N ≥ 2. There is an
explicit constant T (O,N) such that if there is a point of order N in
E(F )tors, then T (O,N) divides [F : K (j(E))]. Moreover, this bound is
best possible.

See also Davide Lombardo’s work on torsion bounds for abelian
varieties with CM.



A simpler case: base extension of E/Q

Let E/Q be an elliptic curve, and let F/Q be a finite extension. Then,
E(Q)tors ⊆ E(F )tors.

Variations: torsion for a fixed curve E/Q over extensions F/Q

E(F1)tors E(F2)tors . . . E(Fk )tors . . .

E/Q

where F1,F2, . . . ,Fk , . . . is some family of (perhaps all) finite
extensions of Q, contained in some fixed algebraic closure Q.



A simpler case: base extension of E/Q

Theorem (L-R., 2011)

Let S1
Q(d) be the set of primes such that there is an elliptic curve E/Q

with a point of order p defined in an extension F/Q of degree ≤ d.
Then:

S1
Q(d) = {2,3,5,7} for d = 1 and 2;

S1
Q(d) = {2,3,5,7,13} for d = 3 and 4;

S1
Q(d) = {2,3,5,7,11,13} for d = 5, 6, and 7;

S1
Q(d) = {2,3,5,7,11,13,17} for d = 8;

S1
Q(d) = {2,3,5,7,11,13,17,19} for d = 9, 10, and 11;

S1
Q(d) = {2,3,5,7,11,13,17,19,37} for 12 ≤ d ≤ 20.

S1
Q(d) = {2,3,5,7,11,13,17,19,37,43} for d = 21.

Moreover, there is a conjectural formula for S1
Q(d) for all d ≥ 1, which

is valid for all 1 ≤ d ≤ 42, and would follow from a positive answer to
Serre’s uniformity question.
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Moreover, there is a conjectural formula for S1
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is valid for all 1 ≤ d ≤ 42, and would follow from a positive answer to
Serre’s uniformity question.



Base extension of E/Q to a quadratic field

Filip Najman

Theorem (Najman, 2015)

Let E/Q be an elliptic curve and let F be a quadratic number field.
Then

E(F )tors '


Z/MZ with 1 ≤ M ≤ 10 or M = 12,15,16, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or
Z/3Z⊕ Z/3MZ with 1 ≤ M ≤ 2 and F = Q(

√
−3), or

Z/4Z⊕ Z/4Z with F = Q(
√
−1).



Base extension of E/Q to a cubic field

Let E/Q be an elliptic curve, and let K/Q be a finite extension. Then,
E(Q)tors ⊆ E(K )tors.

Theorem (Najman, 2015)

Let E/Q be an elliptic curve and let F be a cubic number field. Then

E(F )tors '

{
Z/MZ with 1 ≤ M ≤ 10 or 12,13,14,18,21, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4 or M = 7.

Moreover, the elliptic curve 162B1 over Q(ζ9)+ is the unique rational
elliptic curve over a cubic field with torsion subgroup isomorphic to
Z/21Z. For all other groups T listed above there are infinitely many
Q-isomorphism classes of elliptic curves E/Q for which E(F ) ' T for
some cubic field F .



Base extension of E/Q to a quartic field

Michael Chou (and L-R.)

Theorem (Chou, 2015)

Let E/Q be an elliptic curve and let F be a Galois quartic field F with
Gal(F/Q) ∼= Z/4Z or Z/2Z⊕ Z/2Z. Then

E(F )tors '


Z/MZ with 1 ≤ M ≤ 16 but M 6= 11,14 or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or M = 8,
Z/3Z⊕ Z/3MZ with 1 ≤ M ≤ 2 or

Z/4Z⊕ Z/4Z, Z/4Z⊕ Z/8Z, Z/5Z⊕ Z/5Z, or Z/6Z⊕ Z/6Z.



Base extension of E/Q to a quartic field

Enrique González-Jiménez (and L-R.)

Theorem (González-Jiménez, L-R., 2016)
We give a complete classification of torsion subgroups that appear
infinitely often for elliptic curves over Q base-extended to a quartic
number field.

Warning! The torsion group Z/15Z appears infinitely often for curves
defined over quartic fields F , but if E/Q and E(F )tors ∼= Z/15Z, then
j(E) ∈ {−52/2,−52 · 2413/23,−5 · 293/25,5 · 2113/215}.



Base extension of E/Q to a quartic field

Enrique González-Jiménez Filip Najman

Theorem (González-Jiménez, Najman, 2016)

Let E/Q be an elliptic curve and let F be a quartic field. Then

E(F )tors '


Z/MZ with 1 ≤ M ≤ 10 or 12,13,15,16,20,24
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or 8,
Z/3Z⊕ Z/3MZ with 1 ≤ M ≤ 2 or

Z/4Z⊕ Z/4Z, Z/4Z⊕ Z/8Z, Z/5Z⊕ Z/5Z, or Z/6Z⊕ Z/6Z.



Base extension of E/Q to a quartic field

Enrique González-Jiménez Filip Najman

Further, they determine all the possible prime orders of a point
P ∈ E(F )tors, where [F : Q] = d for all d ≤ 3342296.



Base extension of E/Q to an infinite extension
Let E/Q be an elliptic curve, and let F/Q be an infinite algebraic
extension. Then, E(Q)tors ⊆ E(F )tors. But, E(F )tors may no longer be
finite!

Let F1 ⊆ F2 ⊆ . . . ⊆ Fk ⊆ . . . be a tower of finite extensions of Q.

Variations: torsion for a fixed curve E/Q over extensions Fk/Q

E(Fk )tors . . .

. . .
+ �

99

E(F2)tors

+ �

99

E(F1)tors
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E/Q
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Base extension of E/Q to an infinite extension

Michael Laska Martin Lorenz Yasutsugu Fujita

Theorem (Laska, Lorenz, 1985; Fujita, 2005)
Let E/Q be an elliptic curve and let Q(2∞) := Q

(
{
√

m : m ∈ Z}
)
. The

torsion subgroup E(Q(2∞))tors is finite, and

E(Q(2∞))tors '



Z/MZ with M ∈ 1,3,5,7,9,15, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6 or M = 8, or
Z/3Z⊕ Z/3Z or
Z/4Z⊕ Z/4MZ with 1 ≤ M ≤ 4, or
Z/2MZ⊕ Z/2MZ with 3 ≤ M ≤ 4.



Özlem Ejder

Theorem (Ejder, 2017)

Let K = Q(i), or Q(
√
−3), let E/K be an elliptic curve and let F be the

maximal elementary 2-abelian extension of K . Then,

E(F )tors '


Z/2Z⊕ Z/2MZ with 2 ≤ M ≤ 6 or M = 8, or
Z/4Z⊕ Z/4MZ with 2 ≤ M ≤ 4, or
Z/MZ⊕ Z/MZ with M = 2,3,4,6, or 8,

if K = Q(i), and if K = Q(
√
−3), then Z/2Z⊕ Z/32Z is also possible.



Harris Daniels (and L-R.) (L-R. and) Filip Najman Drew Sutherland

Theorem (Daniels, L-R., Najman, Sutherland, 2017)
Let E/Q be an elliptic curve, and let Q(3∞) be the compositum of all
cubic fields. The torsion subgroup E(Q(3∞))tors is finite, and

E(Q(3∞))tors '


Z/2Z⊕ Z/2MZ with M = 1,2,4,5,7,8,13, or
Z/4Z⊕ Z/4MZ with M = 1,2,4,7, or
Z/6Z⊕ Z/6MZ with M = 1,2,3,5,7, or
Z/2MZ⊕ Z/2MZ with M = 4,6,7,9.

All but 4 of the torsion subgroups occur infinitely often.



Base extension of E/Q to an infinite extension

New results of classification of torsion subgroups of E/Q after
base-extension to infinite extensions:

Daniels: classification of torsion over Q(D∞4 ).
Daniels, Derickx, Hatley: classification of torsion over Q(A∞4 ).

Harris Daniels Marteen Derickx Jeffrey Hatley



Base extension of E/Q to an infinite abelian extension

Ken Ribet, (L-R.) and Michael Chou

Theorem (Ribet, 1981)

Let A/Q be an abelian variety and let Qab be the maximal abelian
extension of Q. Then, A(Qab)tors is finite.



Base extension of E/Q to an infinite abelian extension

Theorem (González-Jiménez, L-R., 2015)
Let E/Q be an elliptic curve. If there is an integer n ≥ 2 such that
Q(E [n]) = Q(ζn), then n = 2,3,4, or 5.

More generally, if Q(E [n])/Q is
abelian, then n = 2,3,4,5,6, or 8. Moreover, Gn = Gal(Q(E [n])/Q) is
isomorphic to one of the following groups:

n 2 3 4 5 6 8

Gn
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Z/3Z (Z/2Z)3 (Z/4Z)2 (Z/2Z)6

(Z/2Z)4

Furthermore, each possible Galois group occurs for infinitely many
distinct j-invariants.
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Base extension of E/Q to an infinite abelian extension

Ken Ribet, (L-R.) and Michael Chou

Theorem (Chou, 2018)

Let E/Q be an elliptic curve and let Qab be the maximal abelian
extension of Q. Then, #E(Qab)tors ≤ 163. This bound is sharp, as the
curve 26569a1 has a point of order 163 over Qab. Moreover, a full
classification of the possible torsion subgroups is given.



The Uniform Boundedness Conjecture
Variations: fix a degree d , and vary elliptic curves E over F of deg. d .

E1(F )tors . . . Ek (F )tors E1(F ′)tors . . . Ek (F ′)tors

F F ′

Loïc Merel

Theorem (Merel, 1996)
Let F be a number field of degree [F : Q] = d > 1. Then,
there is a number B(d) > 0 such that |E(F )tors| ≤ B(d)
for all elliptic curves E/F.
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For instance, B(1) = 16, and B(2) = 24.

Folklore Conjecture (As seen in Clark, Cook, Stankewicz)
There is a constant C > 0 such that

B(d) ≤ C · d · log log d for all d ≥ 3.
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Folklore Conjecture
There is a constant C > 0 such that

B(d) ≤ C · d · log log d for all d ≥ 3.

Theorem (Hindry, Silverman, 1999)
Let F be a field of degree d ≥ 2, and let E/F be an elliptic curve such
that j(E) is an algebraic integer. Then, we have

|E(F )tors| ≤ 1977408 · d · log d .
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Folklore Conjecture
There is a constant C > 0 such that

B(d) ≤ C · d · log log d for all d ≥ 3.

Theorem (Clark, Pollack, 2015)
There is an absolute, effective constant C such that for all number
fields F of degree d ≥ 3 and all elliptic curves E/F with CM, we have

|E(F )tors| ≤ C · d · log log d .



Folklore Conjecture
There is a constant C > 0 such that

B(d) ≤ C · d · log log d for all d ≥ 3.

Assuming the conjecture, if F/Q is of degree d ≥ 3, and E(F )tors
contains a point of order pn, for some prime p, and n ≥ 1, then

pn ≤ |E(F )tors| ≤ B(d) ≤ C · d log log d .

Theorem
Let F be a number field of degree [F : Q] = d > 1. If P ∈ E(F ) is a
point of exact prime power order pn, then

1 (Merel,1996) p ≤ d3d2
.

2 (Parent, 1999) pn ≤ 129(5d − 1)(3d)6.
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Definition
Let p be a prime, and let F/L be an extension of number fields. We
define emax(p,F/L) as the largest ramification index e(P|℘) for a prime
P of OF over a prime ℘ of OL lying above the rational prime p.

Theorem (L-R., 2013)
Let F be a number field with degree [F : Q] = d ≥ 1, and suppose
there is an elliptic curve E/F with CM by a full order, with a point of
order pn. Then,

ϕ(pn) ≤ 24 · emax(p,F/Q) ≤ 24d .

Note! The ramification index emax(p,F/Q) = 1 for all but finitely many
primes p, for a fixed field F .
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Theorem (L-R., 2014)
Let F be a number field with degree [F : Q] = d ≥ 1, and let p be a
prime such that there is an elliptic curve E/F with a point of order pn.
Suppose that F has a prime P over p such that E/F has potential
good supersingular reduction at P. Then,

ϕ(pn) ≤ 24e(P|p) ≤ 24emax(p,F/Q) ≤ 24d .
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Theorem (L-R., 2014)
Let F be a number field with degree [F : Q] = d ≥ 1, and let p be a
prime such that there is an elliptic curve E/F with a point of order pn.
Suppose that F has a prime P over p such that E/F has potential
good supersingular reduction at P. Then,

ϕ(pn) ≤ 24e(P|p) ≤ 24emax(p,F/Q) ≤ 24d .

Note: Hanson Smith has shown an improved version of this theorem in
the case of good supersingular reduction, showing that ϕ(pn) ≤ d .

Hanson Smith



Conjecture
There is C > 0 s.t. if there is a point of order pn in E(F ) for some E/F
with [F : Q] ≤ d , then

ϕ(pn) ≤ C · emax(p,F/Q) ≤ C · d .



Variations: torsion subgroups under field extensions

E(L1)tors E(L2)tors . . . E(Lk )tors . . .

E/F

where L1,L2, . . . ,Lk , . . . is some family of (perhaps all) finite extensions
of a fixed field F .



Theorem (L-R., 2013)
If p > 2 and there is an elliptic curve E/Q with a point of order pn

defined in an extension L/Q of degree d ≥ 2, then

ϕ(pn) ≤ 222 · emax(p,L/Q) ≤ 222 · d .

Theorem (L-R., 2013)
Let F be a number field, and let p > 2 be a prime such that there is an
elliptic curve E/F with a point of order pn defined in an extension L of
F , with [L : Q] = d ≥ 2. Then, there is a constant CF such that

ϕ(pn) ≤ CF · emax(p,L/Q) ≤ CF · d .

Moreover, there is a computable finite set ΣF such that if pn is as
above and j(E) 6∈ ΣF , then

ϕ(pn) ≤ 588 · emax(p,L/Q) ≤ 588 · d .
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David Zywina

Theorem (Hindry–Ratazzi conjecture; Zywina, 2017)
Let A be a nonzero abelian variety over a number field F for which the
Mumford-Tate conjecture holds. Let A/C ∼

∏n
i=1 Ami

i such that each Ai
is simple and pairwise non-isogenous, and define AI =

∏
i∈I Ami

i for any
subset I ⊆ {1, . . . ,n}. Let GAI be the Mumford-Tate group of AI . Define
γA = maxI⊆{1,...,n} 2 dim AI/dimGAI . Then, γA is the smallest real value
such that for any finite extension L/K and real number ε > 0, we have

#A(L)tors ≤ C · [L : K ]γA+ε,

where C is a constant that depends only on A and ε.


