Elliptic Curves over Local Fields

1. **The Action of Inertia**
 - \(K \): local field, complete wrt \(\nu \).
 - \(\overline{K} \): algebraic closure.
 - \(\overline{K}^{\nu} \): maximal unramified extn of \(K \) in \(\overline{K} \).
 - \(G_k = \text{Gal}(\overline{K}/K) = \text{D}(M_{\overline{k}}/M_k) \)
 - \(I_{\nu} = \text{Gal}(\overline{K}/K^{\nu}) = \text{I}(M_{\overline{k}}/M_k) \)

 \[
 1 \rightarrow \text{Gal}(\overline{K}/K^{\nu}) \rightarrow \text{Gal}(\overline{K}/K) \rightarrow \text{Gal}(K^{\nu}/K) \rightarrow 1
 \]

 \[
 0 \rightarrow I_{\nu} \rightarrow G_k \rightarrow \text{Gal}(\overline{K}/K) \rightarrow 0
 \]

 Def. \(\Sigma \) is unramified at \(\nu \) if \(I_{\nu} \) acts trivially on \(\Sigma' \).
Prop. Let E/k be an ell. curve, s.t. \tilde{E}/k is non-singular. (Good Reduction!)

(a) Let $m \geq 1$ s.t. $\gcd(m, \text{char}(k)) = 1$.
Then $E[m]$ is unramified at v.
(b) Let $l \neq \text{char}(k)$, then $T_l(E)$ is unramified at v.

Q: Converse? The Criterion of Néron-Ogg-Shafarevich.

Thm. E/K ell. curve. TFAE:

(a) E has good reduction over K.
(b) $E[m]$ is unramified at v for all integers $m \geq 1$ rel. prime to $\text{char}(k)$.
(c) The Tate module $T_l(E)$ is unramif. at v for some (all) primes l rel. prime to p.
(d) $E[m]$ is unramif. at v for only many integers $m \geq 1$ rel. pr. to p.
Good And Bad Reduction

\[E/k \rightarrow \tilde{E}/k \]

Def.

(a) E has good (or stable) reduction over K if \(\tilde{E} \) is non-singular.

(b) E has multiplicative (or semi-stable) reduction over K if \(\tilde{E} \) has a node \(\times \) two "tangent" lines at sing.

(b.1) If the slopes are in \(k \) then, it is split multi.

(b.2) If the slopes are not in \(k \), it is non-split multi.

(c) E has additive reduc (or unstable) if \(\tilde{E} \) has a cusp\(< \) only one "tangent" line
Let E/K be given by a minl Weier. eqn $y^2 + ax + y + \ldots = x^2 + \ldots$.
Let Δ_E be the disc., and C_4, c be as usual.

(a) E has good red'n $\iff \nu(\Delta) = 0$ (i.e., $\Delta \in \mathbb{R}^*$).
In this case \tilde{E}/\tilde{k} is a ell. curve.

(b) E has mult. red'n $\iff \nu(\Delta) > 0$, $\nu(C_4) = 0$.
In this case $\tilde{E}_{ns}(\tilde{k}) \cong \tilde{k}^*$.

(c) E has odd red'n $\iff \nu(\Delta) > 0$, $\nu(C_4) > 0$.
In this case $\tilde{E}_{ns}(\tilde{k}) \cong (\tilde{k}, +)$.
Examples

(1) \(E_1 : y^2 = x^3 + 35x + s \), \(\Delta = -2^4 \cdot 5^2 \cdot 7 \cdot 97 \)
\[C_4 = -2^4 \cdot 3 \cdot 5 \cdot 7. \]

- has good red\'n at \(p=7 \) \((\tilde{E}_1 : y^2 = x^3 + 5/\mathbb{F}_7) \)
- At \(p=5 \) there is bad red\'n, \(\Delta = C_4 \equiv 0 \) mod 5 \(\Rightarrow \) additive red\'n.
\[\tilde{E} : y^2 = x^3 / \mathbb{F}_5 \quad (y - 0 \cdot x)^2 - x^3 = 0 \]
\(y=0 \) is the "tangent" line at \((0,0) \).

\(f(x,y) = 0 \), \(P = (x_0, y_0) \) singularity \(\Rightarrow \frac{\partial f}{\partial x} \bigg|_P = \frac{\partial f}{\partial y} \bigg|_P = 0 \)

\(\text{Taylor} \)
\[f(x,y) - f(x_0, y_0) = \underbrace{(y - y_0 - \alpha(x-x_0)) \cdot (y - y_0 - \beta(x-x_0))}_{\text{"tangent" lines at sing.}} - (x-x_0)^3 \]
Example

\[E_2 : \quad y^2 = x^3 - x^2 + 3s \quad , \quad \Delta = -2^4 \cdot 5 \cdot 7 \cdot 941 \]
\[C_4 = 16. \]

\[\begin{align*}
3 \Rightarrow & \quad y^2 + x^2 - 3s - x^3 = 0 \\
& \quad y^2 + x^2 - x^3 \equiv 0 \mod 5 \, \, \, \, \text{(bad)} \\
& \quad (y - 2x)(y + 2x) - x^3 \equiv 0 \quad \rightarrow \quad \text{split mult. red\'n at 5.} \\
\end{align*} \]

\[\begin{align*}
7 \Rightarrow & \quad y^2 + x^2 - x^3 \equiv 0 \mod 7 \, \, \, \, \text{(bad)} \\
& \quad \text{DOES NOT FACTOR} \\
& \quad -1 \notin (\mathbb{F}_7^\times)^2 \\
& \quad \rightarrow \quad \text{non-split mult. red\'n at 7.} \\
\end{align*} \]
Example

\(E/\mathbb{Q} : y^2 = x^3 + 7^3 \quad \Delta = -2^4 \cdot 3^3 \cdot 7^6 \)

\(\Rightarrow p = 7 \) is bad additive.

Over \(E/\mathbb{Q}(\sqrt[3]{7}) : \quad E : y^2 = x^3 + (\sqrt[3]{7})^6 \quad \text{not minimal at } 7 \)

change vars: \(y' = (\sqrt[3]{7}) y, \quad x' = (\sqrt[3]{7})^2 x \)

\(\Rightarrow E' : y'^2 = x'^3 + 1 \quad \text{which has good red'n at the prime } (\sqrt[3]{7}) \text{ of } \mathbb{Q}(\sqrt[3]{7}) \)

\(\rightarrow \text{additive red'n is "unstable"} \)
Def. Let E/K be an ell. curve. E has potential good red'n over K if there is a finite ext'n K'/K s.t. E has good red'n over K'.

ex. $E/\mathbb{Q}_9 : y^2 = x^3 + 7^3$ has pot. good red'n (bad add.) and good red'n at (17) of $\mathbb{Q}_9(17)$.

Prop. (Semi-stable red'n thm.) E/K be an ell. curve.

a) Let K'/K be an unramified ext'n. Then the red'n type of E/K (good, mult., add) is the same as the red'n type of E/K'.

b) Let K'/K be any finite ext'n. If E has either good or mult. red'n over K then it has the same type of red'n over K' (non-split mult. may become split mult.).

c) There exists a finite ext'n K'/K s.t. E/K' has either good or split mult. reduction.
Proof of (c) \(E/K \rightarrow E/K' \) with good or split mult. redn.

\(\text{Chor}(K) \neq 2 \)

- Extend \(K \) by a finite ext'n s.t. \(E \) can be given by a model

\[
E: y^2 = x(x-1)(x-\lambda) \quad \text{(Legendre Normal Form)}
\]

\[
C_4 = 16 \cdot (\lambda^2 - \lambda + 1), \quad \Delta = 16 \cdot \lambda^2 (\lambda - 1)^2
\]

CASE 1. \(\lambda \in \mathbb{R}, \lambda \neq 0, 1 \mod M \) \(\Rightarrow \Delta \in \mathbb{R}^\times \) so good reduction \(\bigcirc \)

CASE 2. \(\lambda \in \mathbb{R}, \lambda \equiv 0 \pm 1 \mod M \) \(\Rightarrow \Delta \in M \), \(C_4 \equiv 16 \mod M \)

So reduc. is multipllicative, after possibly a good ext'n, reduc. is split multi.

CASE 3. \(\lambda \notin \mathbb{R} \) Choose \(r \geq 1 \) s.t. \(r \lambda \in \mathbb{R}^\times \). The change \(\text{var} \left\{ \begin{array}{l}
\lambda = \pi^{-r} x' \\
y = \pi^{\frac{r}{2}} y'
\end{array} \right. \)

change \(K' = K(\pi^r) \), gives

\[
E/K': (y')^2 = x'(x'-\pi^r)(x'-\pi^s) \Rightarrow \Delta' \in M, \quad C_4 \in \mathbb{R}^\times
\]

so split mult. redn. \(\blacksquare \)
The Group E/E_0

$E_0(k) = \{ P \in E(k) : \exists \tilde{P} \in \tilde{E}_{ns}(k) \}$ \subseteq E(k)

$E_1(k) = \text{kernel of } (E_0(k) \rightarrow \tilde{E}_{ns}(k))$

$0 \rightarrow E_1(k) \rightarrow E_0(k) \rightarrow \tilde{E}_{ns}(k) \rightarrow 0$

$\tilde{E}(M)$ \quad \text{GOOD!} \quad 0 \rightarrow E_1(k) \rightarrow E(k) \rightarrow \tilde{E}(k) \rightarrow 0$

\textbf{Theorem (Kodaira, Néron)} E/k is an elliptic curve.

- If E/k has split multiplicative reduction, then $E(k)/E_0(k)$ is a cyclic group of order $\nu(\Delta) = -\nu(j)$.
- In all other cases $E(k)/E_0(k)$ is a finite group of order at most 4.

\textbf{Key:} The existence of a Néron model!!
Prop: K/\mathbb{Q}_p finite, E/K.

Then, $E(K)$ contains a subgroup of finite index isomorphic to $(\mathbb{R},+)$.

Proof:

$E(K)/E_0(K)$ is finite (by $[E_0(K):	ext{ker}]$) AND $E_0(K)/E_1(K) \cong \hat{E}(k)$ finite.

$E_1(K) \subseteq E_0(K) \subseteq E(K)$

Suffices to show $(\mathbb{R},+) \subseteq E_1(K)$ of finite index.

- Filtration: $\hat{E}(m) \supseteq \hat{E}(m^2) \supseteq \hat{E}(m^3) \supseteq \ldots$

 and $\hat{E}(m^i)/\hat{E}(m^{i+1}) \cong \mathbb{M}/m^{i+1}$ (finite yet!)

- And for large enough r: $\hat{E}(m^r) \xrightarrow{\text{log}} \mathbb{M}^r = \pi^r R \cong (\mathbb{R},+)$ as ab. gps.