# Math 5020-Elliptic Curves 

Homework 3 (the exercise below)

Problem 1 The elliptic curve $y^{2}=x^{3}+2 x^{2}-3 x$ satisfies $E(\mathbb{Q})[4]=\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, i.e., the full 2 -torsion is defined over $\mathbb{Q}$ and there is also a point of order 4 defined over $\mathbb{Q}$. The goal of this exercise is to uniquely determine $\mathbb{Q}(E[4])$ and $\operatorname{Gal}(\mathbb{Q}(E[4]) / \mathbb{Q})$ :

1. Find the coordinates of generators of $E(\mathbb{Q})[4]$, i.e., find $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$, with $x_{i}, y_{i} \in \mathbb{Q}$ such that $P$ has exact order 4 and $Q$ has exact order 2 , but $2 P \neq Q$. (You may use SageMath or Magma here).
2. Find $2 P$ (do not use a computer for the rest of the problem. Instead, use directly the formulae in p. 54. Note: there is a typo in the formula for $b_{2}$ in p. 42 (in the first edition). The correct formula is $b_{2}=a_{1}^{2}+4 a_{2}$ ).
3. Find the coordinates of a point $R=\left(x_{3}, y_{3}\right) \in E(\overline{\mathbb{Q}})$ such that $2 R=Q$ (once again, simply use p. 54).
4. Show that $\mathbb{Q}(E[4])=\mathbb{Q}\left(x_{3}, y_{3}\right)$ and determine this field. Use this to calculate the group structure of $\operatorname{Gal}(\mathbb{Q}(E[4]) / \mathbb{Q})$.
5. Identify $\operatorname{Gal}(\mathbb{Q}(E[4]) / \mathbb{Q})$ with a subgroup of $\mathrm{GL}(2, \mathbb{Z} / 4 \mathbb{Z})$, where the $\mathbb{Z} / 4 \mathbb{Z}$-basis for $E[4]$ is $\{P, R\}$.
6. What is the Galois orbit of $R$ ? That is, find:

$$
\{T \in E[4]: T=\sigma(R) \text { for some } \sigma \in \operatorname{Gal}(\mathbb{Q}(E[4]) / \mathbb{Q})\} .
$$

You should write each $T$ as a linear combination of $P$ and $R$.
7. Can you find the coordinates of a point on $E(\overline{\mathbb{Q}})$ of order 8 ?

