Hypergeometric Functions, Character Sums and Applications, Part I

Ling Long Notes by Ling Long and Fang-Ting Tu University of Connecticut 2021 Summer Lecture Series

https://alozano.clas.uconn.edu/hypergeometric

June 29, 2021

Plan

Day 1. Hypergeometric functions over ${\mathbb C}$

- 1.1 Hypergeometric functions and differential equations
- 1.II Hypergeometric formulas and Legendre curves

Day 2. Over finite fields

- 2.1 Hypergeometric functions over finite fields
- 2.11 Point counts over finite fields
- Day 3. In Galois perspective
 - 3.1 Hypergeometric Galois representations
 - 3.II Modularity results
- Day 4. p-adic hypergeometric functions and supercongruences
 - 4.I Dwork unit roots
 - 4.II Supercongruences

Notation

Pochhammer symbol

$$(a)_n := a(a+1)\cdots(a+n-1), \quad (a)_0 = 1.$$
 (1)

$$\frac{(-1)^k(-n)_k}{k!} = \binom{n}{k}.$$
(2)

For
$$\operatorname{Re}(x) > 0$$
,
 $\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t.$

It can be extended to a meromorphic function, satisfying

$$\Gamma(x+1) = x\Gamma(x), \tag{3}$$

For $n \in \mathbb{Z}_{\geq 0}$, $(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)}.$ (4)

Key properties of the Gamma function Reflection formula

$$\Gamma(a)\Gamma(1-a)=rac{\pi}{\sin(\pi a)}, \quad orall a\in\mathbb{C}$$

Multiplication formula

$$\Gamma(2a)(2\pi)^{1/2} = 2^{2a - \frac{1}{2}} \Gamma(a) \Gamma\left(a + \frac{1}{2}\right), \quad \forall a \in \mathbb{C}.$$

$$(a)_{2n} = 2^{2n} \left(\frac{a}{2}\right)_n \left(\frac{a+1}{2}\right)_n.$$
(6)

Theorem (Nesterenko)

For any imaginary quadratic field with discriminant -d and character $\epsilon(\cdot) = \left(\frac{-d}{\cdot}\right)$, the numbers

$$\pi, e^{\pi\sqrt{d}}, \prod_{0 < a < d} \Gamma\left(\frac{a}{d}\right)^{\epsilon(a)}$$

are algebraically independent.

Beta function

For Re(x) > 0, Re(y) > 0

$$B(x,y) := \int_0^1 t^{x-1}(1-t)^{y-1} \, \mathrm{d}t.$$

The assumptions on x and y can be relaxed by integrating along the Pochhammer contour path around 0 and 1.

Integrating over the double contour loop γ_{01} , the integral

$$B(x,y) = \frac{1}{(1-e^{2\pi i x})(1-e^{2\pi i y})} \int_{\gamma_{01}} t^{x-1} (1-t)^{y-1} dt$$

Hypergeometric parameters

A multi-set $\alpha = \{a_1, ..., a_n\}$ with $a_i \in \mathbb{Q}$, elements can repeat. It is called *defined* over \mathbb{Q} , if $\prod_{j=1}^n (X - e^{2\pi i a_j}) \in \mathbb{Z}[X]$. It is said to be *self-dual* if $\alpha \equiv -\alpha \mod \mathbb{Z}$. E.g.

A set of hypergeometric parameters consists of

$$\alpha = \{a_1, ..., a_n\}, \beta = \{b_1 = 1, b_2, ..., b_n\}$$

with $a_i, b_j \in \mathbb{Q}$. It is called *primitive* if $a_i - b_j \notin \mathbb{Z}$ for any i, j. Let $M := lcd(\alpha, \beta)$ the least positive common denominators of a_i, b_j 's.

Hypergeometric functions

Given
$$\alpha = \{a_1, ..., a_n\}, \beta = \{b_1 = 1, b_2, ..., b_n\}$$

 $F(\alpha, \beta; z) = {}_n F_{n-1} \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ & b_2 & \cdots & b_n \end{bmatrix}; z := \sum_{k=0}^{\infty} \frac{(a_1)_k \cdots (a_n)_k}{(b_1)_k \cdots (b_n)_k} z^k.$
(7)

Period functions

Let

$$_{1}P_{0}\left[a_{1}; z\right] := (1-z)^{-a_{1}}$$

Inductively

$${}_{n+1}P_{n}\left[\begin{array}{ccc}a_{1} & a_{2} & \cdots & a_{n+1}\\ & b_{2} & \cdots & b_{n+1}\end{array};z\right] := \\ \int_{0}^{1} t^{a_{n+1}-1}(1-t)^{b_{n+1}-a_{n+1}-1} {}_{n}P_{n-1}\left[\begin{array}{ccc}a_{1} & a_{2} & \cdots & a_{n}\\ & b_{2} & \cdots & b_{n}\end{array};zt\right]dt.$$

$$(8)$$

The order of the $a'_i s$ (resp. $b'_j s$) matters. So

$$_{2}P_{1}\begin{bmatrix}a_{1}&a_{2}\\b_{2}\\ b_{2}\end{bmatrix}=\int_{0}^{1}x^{a_{2}-1}(1-x)^{b_{2}-a_{2}-1}(1-zx)^{-a_{1}}dx.$$

Euler integral formula

$$(1-zx)^{-a}=\sum_{k\geq 0}\binom{-a}{k}(zx)^{k}=\sum_{k\geq 0}\frac{(a)_{k}}{k!}(zx)^{k}.$$

$${}_{2}P_{1}\begin{bmatrix}a&b\\c&;z\end{bmatrix} = \int_{0}^{1} x^{b-1} (1-x)^{c-b-1} (1-zx)^{-a} dx$$
$$= \int_{0}^{1} x^{b-1} (1-x)^{c-b-1} \sum_{k=0}^{\infty} \frac{(a)_{k}}{k!} (zx)^{k} dx$$
$$= \sum_{k=0}^{\infty} \frac{(a)_{k} z^{k}}{k!} \int_{0}^{1} x^{b-1+k} (1-x)^{c-b-1} dx$$
$$= \sum_{k=0}^{\infty} \frac{(a)_{k} z^{k}}{k!} B(b+k,c-b)$$
$$= B(b,c-b) {}_{2}F_{1} \begin{bmatrix}a&b\\c&;z\end{bmatrix}.$$

Normalized Period functions

L

et

$${}_{1}F_{0}\left[a_{1}; z\right] = {}_{1}P_{0}\left[a_{1}; z\right] = (1-z)^{-a_{1}}.$$

$${}_{n+1}F_{n}\left[a_{1} \quad a_{2} \quad \cdots \quad a_{n+1} \atop b_{2} \quad \cdots \quad b_{n+1}; z\right]$$

$$= \prod_{i=2}^{n+1} B(a_{i}, b_{i} - a_{i})^{-1} \cdot {}_{n+1}P_{n}\left[a_{1} \quad a_{2} \quad \cdots \quad a_{n+1} \atop b_{2} \quad \cdots \quad b_{n+1}; z\right].$$

- 1) The leading coefficient is 1;
- 2) The roles of the upper entries a_i (resp. lower entries b_j) are symmetric.

Hypergeometric differential equations

Let
$$\theta_z := z \frac{d}{dz}$$
.

Lemma Let $F(\alpha, \beta; z) = \sum_{k \ge 0} A(k) z^k$ as before. Let

$$\mathcal{L}_{\alpha,\beta;z} := \prod_{i=1}^{n} (\theta_z + b_i - 1) - z \prod_{i=1}^{n} (\theta_z + a_i), \tag{9}$$

then

$$\mathcal{L}_{\alpha,\beta;z}(F(\alpha,\beta;z)) = 0.$$

 $\mathcal{L}_{lpha,eta;\lambda}$ has only 3 regular singularities at 0, 1, ∞ . Example

E. g.

$$\mathcal{L}_{\{a_1,a_2\},\{1,b_2\};\lambda} = D^2 + \frac{b_2 - (a_1 + a_2 + 1)\lambda}{\lambda(1 - \lambda)} D - \frac{a_1 a_2}{\lambda(1 - \lambda)}.$$
 (10)

At singularity *a*, the characteristic/indicial equation is $r(r-1)\cdots(r-n+1)+C_{n-1}r(r-1)\cdots(r-n+2)+\cdots+C_0=0,$ (11) where $C_i = a_i(x)(x-a)^{n-i}|_{x=a}$. Roots of this polynomial are characteristic exponents at *a*.

Rigidity

Theorem The local exponents of $\mathcal{L}_{\alpha,\beta;\lambda}$ are

$$0, 1 - b_2, \cdots, 1 - b_n \quad \text{at } \lambda = 0$$

$$a_1, a_2, \cdots, a_n \quad \text{at } \lambda = \infty$$

$$0, 1, 2, \cdots, n - 2, \gamma \quad \text{at } \lambda = 1,$$
(12)

where
$$\gamma = -1 + \sum_{j=1}^{n} b_j - \sum_{j=1}^{n} a_j$$
.

Remark

The local monodromy matrix M_1 is called a (quasi)reflection as the rank of $M_1 - I_n$ is 1.

Theorem (Rigidity Theorem)

Each order-n ordinary differential equation in variable z which has only three regular singularities at 0, 1, ∞ and the corresponding indicial exponents as (12) is equivalent to $\mathcal{L}_{\alpha,\beta;z}F = 0$.

Local solutions

The solution space of $\mathcal{L}_{\alpha,\beta;z}$ is *n*-dimensional.

Example

For $\mathcal{L}_{\alpha,\beta;z}$, around the singularity z = 0, if $b_2 \notin \mathbb{Z}$, a basis of the solution space can be given by

$$f_{0} = {}_{2}F_{1} \begin{bmatrix} a_{1} & a_{2} \\ b_{2} \end{bmatrix}; z \\ g_{0} = (z)^{1-b_{2}} {}_{2}F_{1} \begin{bmatrix} 1+a_{1}-b_{2} & 1+a_{2}-b_{2} \\ 2-b_{2} \end{bmatrix}; z \\ \end{bmatrix}.$$

When $b_2 \in \mathbb{Z}$, say $b_2 = 1$

$$g_0 = \log z \cdot f_0 \\ + \sum_{m=1}^{\infty} \frac{(a_1)_m (a_2)_m}{m!^2} z^m \left[\sum_{k=1}^m \left(\frac{1}{a_1 + k - 1} + \frac{1}{a_2 + k - 1} - \frac{2}{k} \right) \right].$$

Monodromy representation

Given an order *n* ordinary Fuchsian differential equation *L* with only regular singularities x_1, \dots, x_s , let $\pi_1(\mathbb{C}P^1 \setminus \{x_1, \dots, x_s\}, x_0)$ denote its the fundamental group. By Cauchy, near x_0 , the solution space of the homogeneous equation Lu = 0 is an *n*-dimensional vector space $V(x_0) = \langle f_1, \dots, f_n \rangle$. Let $L(t) : [0,1] \to \mathbb{C}P^1 \setminus \{x_1, \dots, x_s\}$ be a continuous function with $L(0) = L(1) = x_0$. It is image is topologically a closed loop. We extend f_1, \dots, f_n analytically along *L* when *t* varies from 0 to 1. By Frobenius' result,

$$(f_1(L(1)), \cdots, f_n(L(1)))^T = M(L)(f_1, \cdots, f_n)^T$$

where $M(L) \in GL_n(\mathbb{C})$ only depending on the class [L] of L in $\pi_1(\mathbb{C}P^1 \setminus \{x_1, \cdots, x_s\}, x_0)$. The map from

$$[L]\mapsto M(L)$$

is a homomorphism, which is unique up to conjugation by $GL_n(\mathbb{C})$. It is called a *monodromy representation* of *L*.

Beukers-Heckman's Theorem

Theorem (Beukers-Heckman)

Given primitive α , β , there is an explicit way to determine the hypergeometric monodromy group H and its Zariski closure \overline{H} . Here are the possibilities:

- 1. H is finite
- 2. else if self-dual and $c = e^{2\pi i \gamma} = 1$, then $\overline{H} = Sp_n(\mathbb{C})$;
- 3. else if self-dual and $c = e^{2\pi i \gamma} = -1$, then $\overline{H} = O_n(\mathbb{C})$;
- 4. otherwise $SL_n(\mathbb{C}) \subset \overline{H}$.

Corollary

If α, β are defined over \mathbb{Q} and the sets $\{e^{2\pi i a_j}\}_{1 \leq j \leq n}$ and $\{e^{2\pi i b_j}\}_{1 \leq j \leq n}$ interlace, then H is finite.

The hypergeometric group for the multi-sets $\alpha = \{\frac{1}{2}, \frac{1}{6}, \frac{5}{6}\}, \beta = \{1, \frac{1}{3}, \frac{2}{3}\}$ is finite; while hypergeometric group for the multi-sets $\alpha = \{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}\}, \beta = \{1, \frac{1}{6}, \frac{5}{6}\}$ is $O_3(\mathbb{C})$.

Figure 1: $\{\alpha = \{\frac{1}{2}, \frac{1}{6}, \frac{5}{6}\}, \beta = \{1, \frac{1}{3}, \frac{2}{3}\}\}, \{\alpha = \{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}\}, \beta = \{1, \frac{1}{6}, \frac{5}{6}\}\}$

Schwarz theorem

Fix a $z_0 \in \mathbb{H}$, let f, g be two independent solutions to $\mathcal{L}_{\{a,b\},\{1,c\};z}F = 0$ near at z_0 , and let p = |1 - c|, q = |c - a - b|, and r = |a - b|. If p, q, r < 1, then the Schwarz map

$$D: \quad \mathbb{H} \cup \mathbb{R} \longrightarrow \mathbb{P}^1, \quad D(z) = f/g(z)$$

gives a bijection from $\mathbb{H} \cup \mathbb{R}$ onto a curvilinear triangle with vertices D(0), D(1), $D(\infty)$ and corresponding angles $p\pi$, $q\pi$, $r\pi$.

The universal cover S of the Schwarz triangle is

- sphere (\mathbb{P}^1) if p + q + r > 1 (finite monodromy);
- the Euclidean plane (\mathbb{C}) if p + q + r = 1;
- the hyperbolic plane (\mathbb{H}) if p + q + r < 1.

A spherical/algebraic case

$$_{2}F_{1}\begin{bmatrix} \frac{1}{6} & \frac{2}{3}\\ & \frac{1}{2} \end{bmatrix}; z = \frac{1}{2}\left((1+\sqrt{z})^{-\frac{1}{3}}+(1-\sqrt{z})^{-\frac{1}{3}}\right),$$

In which case $p = \frac{1}{2}, q = \frac{1}{3}, r = \frac{1}{2}$, the universal cover is

Triangle groups

We now assume that $|1 - c| = p = 1/e_1$, $|c - a - b| = q = 1/e_2$, and $|a - b| = r = 1/e_3$ with $e_i = 2, ..., \infty$. Let τ_p , τ_q , τ_r be reflections in the edges of the Schwarz triangle $\Delta(p, q, r)$.

Set $g_p = \tau_q \tau_r$, $g_q = \tau_p \tau_r$, $g_r = \tau_p \tau_q$. Then the triangle group

 $\Gamma = (e_1, e_2, e_3) := \langle g_p, g_q, g_r : g_p^{e_1} = g_q^{e_2} = g_r^{e_3} = g_p g_q g_r = 1 \rangle$

is a subgroup of $Isom^+(S)$.

Arithmetic triangle groups

When p + q + r < 1, we say that $\Gamma = (e_1, e_2, e_3)$ is arithmetic if Γ is commensurable with norm 1 group of certain quaternion order. There are exactly 85 arithmetic triangle groups falling into 19 classes by Takeuchi. When $X(\Gamma)$ is compact, it is called a Shimura curve, according to Shimura, it parametrizes certain abelian surfaces with quaternionic multiplication (QM).

Example

•
$$(2,3,\infty) \simeq \mathsf{PSL}_2(\mathbb{Z})$$

- $(\infty, \infty, \infty) \simeq \Gamma(2)$
- The monodromy group for $\alpha = \{\frac{1}{6}, \frac{1}{3}\}$ and $\beta = \{1, \frac{5}{6}\}$ is isomorphic to (3,6,6)

Question

Given an arithmetic triangle group Γ , how to find a model for the "universal" 2-dimensional abelian varieties parameterized by \mathbb{H}/Γ ?

Theorem (Deines, Fuselier, Long, Swisher, Tu)

Let N = 3, 4, 6, i, j, k be integers between 1 to N - 1 such that gcd(i, j, k) = 1 and $N \nmid i, k, j, i + j + k$. Then for each $\lambda \in \overline{\mathbb{Q}}$, the endomorphism algebra of the primitive part of the 2-dimensional abelian variety constructed from the Jacobian of the smooth model of $y^N = x^i(1-x)^j(1-\lambda x)^k$ contains a quaternion algebra over \mathbb{Q} if and only if the beta quotient

$$B\left(\frac{N-i}{N},\frac{N-j}{N}\right)\Big/B\left(\frac{k}{N},\frac{2N-i-j-k}{N}\right)\in\overline{\mathbb{Q}}.$$

Corollary

From $y^6 = x^4(1-x)^3(1-\lambda x)^1$, we get a 1-parameter family of 2-dim'l abelian varieties whose endomorphism algebra over \mathbb{Q} contains $\left(\frac{-3,2}{\mathbb{Q}}\right)$. [A different construction by Petkova and Shiga.]

A Schwarz map example

The Schwarz map
$$D(\lambda) := i \frac{{}_{2}F_{1}\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 1 \end{bmatrix}}{{}_{2}F_{1}\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 1 \end{bmatrix}}$$

of $L_{\{1/2,1/2\};\{1,1\}}$ gives an isomorphism
 $\mathbb{P}^{1} - \{0,1,\infty\} \longrightarrow \Gamma(2) \setminus \mathbb{H},$

which is the inverse map of the modular λ -function.

The Legendre curves

$$L_{\lambda}: y^2 = x(1-x)(1-\lambda x).$$
 (13)

When $\lambda \neq 0, 1$ it is an elliptic curve. It is a double over of $\mathbb{C}P^1$ which ramifies only at $P_1 = 0, P_2 = 1, P_3 = \frac{1}{\lambda}, P_4 = \infty$ as demonstrated by the picture below. Gluing along the slits gives the double cover: i.e. $\pi : L_{\lambda} \to \mathbb{C}P^1$ as a degree-2 ramfied cover.

For given λ , it has a unique up to scalar homolorphic differential 1-form

$$\omega_{\lambda} := \frac{dx}{\sqrt{x(1-x)(1-\lambda x)}}$$

Periods

 $H_1(L_{\lambda}, \mathbb{Z}) = \gamma_1 \mathbb{Z} \oplus \gamma_2 \mathbb{Z}, \ \gamma_{01} \text{ and } \gamma_{0\infty}.$ The *period* lattice

$$\Lambda(\lambda) = \mathbb{Z} \int_{\gamma_1} \omega_\lambda \oplus \mathbb{Z} \int_{\gamma_2} \omega_\lambda.$$

If $\{\gamma'_1, \gamma'_2\}$ is a different basis, then $\begin{pmatrix} \gamma'_1 \\ \gamma'_2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix},$
 $\tau' = \int_{\gamma'_2} \omega_\lambda / \int_{\gamma'_1} \omega_\lambda = \begin{pmatrix} d & c \\ b & a \end{pmatrix} \cdot \tau = \frac{d\tau + c}{b\tau + a},$
where $\begin{pmatrix} d & c \\ b & a \end{pmatrix} \in \Gamma(2).$ Upon relabelling, we can assume
 $\tau = \frac{\int_{\gamma_2} \omega_\lambda}{\int_{\gamma_1} \omega_\lambda} \in \mathbb{H}$

and its isomorphism class is determined by the value of the modular $\lambda(\tau)$ evaluated at τ , which is invariant under linear transformation by elements in $\Gamma(2)$.

CM cases

Question

How likely is the period ratio $\tau \in \overline{\mathbb{Q}}$?

The answer is not very likely, unless L_{λ} admits complex multiplication (CM), which is a fundamental result by Schneider.

Theorem (Chowla and Selberg)

If E is an ell. cur. admitting CM by $K = \mathbb{Q}(\sqrt{-d})$ with fund. discriminant -d, then all periods of E are algebraic multiples of

$$\omega_{-d} := \Gamma\left(\frac{1}{2}\right) \prod_{0 < a < d} \Gamma\left(\frac{a}{d}\right)^{\frac{n\epsilon(a)}{4h_{K}}}, \tag{14}$$

where n is the number of torsion elements in K, $\epsilon = (\frac{-d}{2})$, and h_K is the class number of K

Example

$$\omega_{-4} = \Gamma\left(\frac{1}{2}\right) \frac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)} \text{ and } \omega_{-3} = \Gamma\left(\frac{1}{2}\right) \left(\frac{\Gamma\left(\frac{1}{3}\right)}{\Gamma\left(\frac{2}{3}\right)}\right)^{3/2}$$

Picard-Fuchs

Question

How is the above picture related to the differential equation $L_{\{1/2,1/2\},\{1,1\}\lambda}F = 0$?

For any $\gamma \in H_1(L_{\lambda}, \mathbb{Z})$, $p_{\gamma}(\lambda) := \int_{\gamma} \omega_{\lambda}$. If we vary γ analytically, $p_{\gamma}(\lambda)$ becomes a function of λ . This means by analytic continuation, $\tau(\lambda) = \int_{\gamma_2} \omega_{\lambda} / \int_{\gamma_1} \omega_{\lambda}$ is also considered as function of λ .

The differential equation $\mathcal{L}_{\{1/2,1/2\},\{1,1\}\lambda}F = 0$ is called the *Picard-Fuchs equation* of L_{λ} , by which it means $\mathcal{L}_{\{1/2,1/2\};\{1,1\}}\omega_{\lambda}$ is an exact form on L_{λ} .

It follows both $\int_{\gamma_1} \omega_\lambda$ and $\int_{\gamma_2} \omega_\lambda$ are solutions of $\mathcal{L}_{\{1/2,1/2\},\{1,1\};\lambda} F = 0.$

The inverse of the modular lambda function

If we compute $\int_{\gamma_{01}} \omega_{\lambda}$, up to a scalar, by Euler integral formula, it agrees with $2\int_0^1 \omega_\lambda = 2 \cdot {}_2P_1 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ & 1 \end{bmatrix}; \lambda = 2\pi \cdot {}_2F_1 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ & 1 \end{bmatrix}.$ The other linearly independent solution is ${}_{2}F_{1} \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 \end{vmatrix}$; $1 - \lambda \end{vmatrix}$. This explains the claim that the Schwarz map $i \frac{2F_1 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 \end{bmatrix}}{2F_1 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 \end{bmatrix}}$ is the inverse of λ -function.

Hypergeometric formulas: a few techniques:

► From rigidity

$$(1-x)^{-c} {}_{2}F_{1} \begin{bmatrix} \frac{1+c}{2} - b & \frac{c}{2} & \frac{-4x}{(1-x)^{2}} \end{bmatrix}$$
$$= {}_{2}F_{1} \begin{bmatrix} b & c \\ c-b+1 & \frac{1}{2} \end{bmatrix} .$$
$$\begin{pmatrix} \frac{1}{2} | 1-2b | \pi \\ 1 & \frac{1}{2} | 1-2b | \pi \\ 1 & \frac{1}{|b-c|\pi} & \frac{1}{|b-c|\pi} \end{bmatrix}$$

Hypergeometric formulas: a few techniques:

From the definition/setup

$${}_{2}F_{1}\begin{bmatrix}a&b\\&c\\\end{bmatrix} = \frac{1}{B(b,c-b)}\int_{0}^{1}(1-t)^{-a}t^{b-1}(1-t)^{c-b-1}dt$$
$$= \frac{B(b,c-a-b)}{B(b,c-b)} = \Gamma\left(\frac{c,c-a-b}{c-a,c-b}\right).$$

From comparing coefficients

$$_{2}F_{1}\begin{bmatrix}a&b\\c&;x\end{bmatrix}=(1-x)^{c-a-b}{}_{2}F_{1}\begin{bmatrix}c-a&c-b\\c&;x\end{bmatrix}.$$

$${}_{3}F_{2}\begin{bmatrix}a & b & -n\\ c & 1+a+b-n-c \end{bmatrix} = \frac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}}.$$
(15)

From specializing values in known identities

$$(1-x)^{-c} {}_{2}F_{1} \begin{bmatrix} \frac{1+c}{2} - b & \frac{c}{2} \\ c - b + 1 \end{bmatrix}; \frac{-4x}{(1-x)^{2}} \\ = {}_{2}F_{1} \begin{bmatrix} b & c \\ c - b + 1 \end{bmatrix}; x \end{bmatrix}.$$

Plotting x = 1 and use Gauss evaluation leads to

$${}_{2}F_{1}\begin{bmatrix}b&c\\c-b+1&;&-1\end{bmatrix}=2^{-c}{}_{2}F_{1}\begin{bmatrix}\frac{1+c}{2}-b&\frac{c}{2}\\c-b+1&;&1\end{bmatrix}$$
$$=2^{-c}\Gamma\left(\frac{c-b+1,\frac{1}{2}}{\frac{c+1}{2},1+\frac{c}{2}-b}\right)=\Gamma\left(\frac{1+c-b,\frac{c}{2}+1}{1+c,\frac{c}{2}-b+1}\right).$$

From other methods like Bailey transform Below is a formula by Whipple.

when both sides terminate.