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Notation

Pochhammer symbol

(a)n := a(a + 1) · · · (a + n − 1), (a)0 = 1. (1)

(−1)k(−n)k
k!

=

(
n

k

)
. (2)

For Re(x) > 0,

Γ(x) :=

∫ ∞
0

tx−1e−t dt.

It can be extended to a meromorphic function, satisfying

Γ(x + 1) = xΓ(x), (3)

For n ∈ Z≥0,

(a)n =
Γ(a + n)

Γ(a)
. (4)



Key properties of the Gamma function
Reflection formula

Γ(a)Γ(1− a) =
π

sin(πa)
, ∀a ∈ C

Multiplication formula

Γ(2a)(2π)1/2 = 22a− 1
2 Γ(a)Γ

(
a +

1

2

)
, ∀a ∈ C. (5)

(a)2n = 22n
(a

2

)
n

(
a + 1

2

)
n

. (6)

Theorem (Nesterenko)

For any imaginary quadratic field with discriminant −d and
character ε(·) =

(−d
·
)
, the numbers

π, eπ
√
d ,

∏
0<a<d

Γ
( a
d

)ε(a)

are algebraically independent.



Beta function

For Re(x) > 0,Re(y) > 0

B(x , y) :=

∫ 1

0
tx−1(1− t)y−1 dt.

The assumptions on x and y can be relaxed by integrating along
the Pochhammer contour path around 0 and 1.

Integrating over the double contour loop γ01, the integral

B(x , y) =
1

(1− e2πix) (1− e2πiy )

∫
γ01

tx−1(1− t)y−1dt



Hypergeometric parameters

A multi-set α = {a1, ..., an} with ai ∈ Q, elements can repeat.
It is called defined over Q, if

∏n
j=1(X − e2πiaj ) ∈ Z[X ]. It is said to

be self-dual if α ≡ −α mod Z.
E.g.

A set of hypergeometric parameters consists of

α = {a1, ..., an}, β = {b1 = 1, b2, ..., bn}

with ai , bj ∈ Q. It is called primitive if ai − bj /∈ Z for any i , j .
Let M := lcd(α, β) the least positive common denominators of
ai , bj ’s.



Hypergeometric functions

Given α = {a1, ..., an}, β = {b1 = 1, b2, ..., bn}

F (α, β; z) = nFn−1

[
a1 a2 · · · an

b2 · · · bn
; z

]
:=

∞∑
k=0

(a1)k · · · (an)k
(b1)k · · · (bn)k

zk .

(7)



Period functions

Let

1P0

[
a1 ; z

]
:= (1− z)−a1

Inductively

n+1Pn

[
a1 a2 · · · an+1

b2 · · · bn+1
; z

]
:=∫ 1

0
tan+1−1(1− t)bn+1−an+1−1

nPn−1

[
a1 a2 · · · an

b2 · · · bn
; zt

]
dt.

(8)

The order of the a′i s (resp. b′js) matters.
So

2P1

[
a1 a2

b2
; z

]
=

∫ 1

0
xa2−1(1− x)b2−a2−1(1− zx)−a1dx .



Euler integral formula

(1− zx)−a =
∑
k≥0

(
−a
k

)
(zx)k =

∑
k≥0

(a)k
k!

(zx)k .

2P1

[
a b

c
; z

]
=

∫ 1

0
xb−1(1− x)c−b−1(1− zx)−adx

=

∫ 1

0
xb−1(1− x)c−b−1

∞∑
k=0

(a)k
k!

(zx)kdx

=
∞∑
k=0

(a)kz
k

k!

∫ 1

0
xb−1+k(1− x)c−b−1dx

=
∞∑
k=0

(a)kz
k

k!
B(b + k , c − b)

= B(b, c − b) 2F1

[
a b

c
; z

]
.



Normalized Period functions

Let

1F0

[
a1 ; z

]
= 1P0

[
a1 ; z

]
= (1− z)−a1 .

n+1Fn

[
a1 a2 · · · an+1

b2 · · · bn+1
; z

]

=
n+1∏
i=2

B(ai , bi − ai )
−1 · n+1Pn

[
a1 a2 · · · an+1

b2 · · · bn+1
; z

]
.

1) The leading coefficient is 1;

2) The roles of the upper entries ai (resp. lower entries bj) are
symmetric.



Hypergeometric differential equations

Let θz := z d
dz .

Lemma
Let F (α, β; z) =

∑
k≥0 A(k)zk as before. Let

Lα,β;z :=
n∏

i=1

(θz + bi − 1)− z
n∏

i=1

(θz + ai ), (9)

then
Lα,β;z(F (α, β; z)) = 0.



Lα,β;λ has only 3 regular singularities at 0, 1, ∞.

Example

L{a1,a2},{1,b2};λ = D2 +
b2 − (a1 + a2 + 1)λ

λ(1− λ)
D − a1a2

λ(1− λ)
. (10)

At singularity a, the characteristic/indicial equation is

r(r − 1) · · · (r −n+ 1) +Cn−1r(r − 1) · · · (r −n+ 2) + · · ·+C0 = 0,
(11)

where Ci = ai (x)(x − a)n−i |x=a. Roots of this polynomial are
characteristic exponents at a.
E. g.



Rigidity

Theorem
The local exponents of Lα,β;λ are

0, 1− b2, · · · , 1− bn at λ = 0

a1, a2, · · · , an at λ =∞
0, 1, 2, · · · , n − 2, γ at λ = 1,

(12)

where γ = −1 +
n∑

j=1

bj −
n∑

j=1

aj .

Remark
The local monodromy matrix M1 is called a (quasi)reflection as the
rank of M1 − In is 1.

Theorem (Rigidity Theorem)

Each order-n ordinary differential equation in variable z which has
only three regular singularities at 0, 1, ∞ and the corresponding
indicial exponents as (12) is equivalent to Lα,β;zF = 0.



Local solutions
The solution space of Lα,β;z is n-dimensional.

Example

For Lα,β;z , around the singularity z = 0, if b2 6∈ Z, a basis of the
solution space can be given by

f0 = 2F1

[
a1 a2

b2
; z

]

g0 = (z)1−b2
2F1

[
1 + a1 − b2 1 + a2 − b2

2− b2
; z

]
.

When b2 ∈ Z, say b2 = 1

g0 = log z · f0

+
∞∑

m=1

(a1)m(a2)m
m!2

zm

[
m∑

k=1

(
1

a1 + k − 1
+

1

a2 + k − 1
− 2

k

)]
.



Monodromy representation
Given an order n ordinary Fuchsian differential equation L with
only regular singularities x1, · · · , xs , let π1(CP1 \ {x1, · · · , xs}, x0)
denote its the fundamental group. By Cauchy, near x0, the
solution space of the homogeneous equation Lu = 0 is an
n-dimensional vector space V (x0) = 〈f1, · · · , fn〉. Let
L(t) : [0, 1]→ CP1 \ {x1, · · · , xs} be a continuous function with
L(0) = L(1) = x0. It is image is topologically a closed loop. We
extend f1, · · · , fn analytically along L when t varies from 0 to 1.
By Frobenius’ result,

(f1(L(1)), · · · , fn(L(1)))T = M(L)(f1, · · · , fn)T

where M(L) ∈ GLn(C) only depending on the class [L] of L in
π1(CP1 \ {x1, · · · , xs}, x0). The map from

[L] 7→ M(L)

is a homomorphism, which is unique up to conjugation by GLn(C).
It is called a monodromy representation of L.



Beukers-Heckman’s Theorem

Theorem (Beukers-Heckman)

Given primitive α, β, there is an explicit way to determine the
hypergeometric monodromy group H and its Zariski closure H.
Here are the possibilities:

1. H is finite

2. else if self-dual and c = e2πiγ = 1, then H = Spn(C);

3. else if self-dual and c = e2πiγ = −1, then H = On(C);

4. otherwise SLn(C) ⊂ H.

Corollary

If α, β are defined over Q and the sets {e2πiaj}1≤j≤n and
{e2πibj}1≤j≤n interlace, then H is finite.



The hypergeometric group for the multi-sets
α = {1

2 ,
1
6 ,

5
6}, β = {1, 1

3 ,
2
3} is finite;

while hypergeometric group for the multi-sets
α = {1

2 ,
1
3 ,

2
3}, β = {1, 1

6 ,
5
6} is O3(C).

Figure 1: {α = { 1
2 ,

1
6 ,

5
6}, β = {1, 1

3 ,
2
3}}, {α = { 1

2 ,
1
3 ,

2
3}, β = {1, 1

6 ,
5
6}}



Schwarz theorem
Fix a z0 ∈ H, let f , g be two independent solutions to
L{a,b},{1,c};zF = 0 near at z0, and let p = |1− c|, q = |c − a− b|,
and r = |a− b|. If p, q, r < 1, then the Schwarz map

D : H ∪ R −→ P1, D(z) = f /g(z)

gives a bijection from H ∪ R onto a curvilinear triangle with
vertices D(0), D(1), D(∞) and corresponding angles pπ, qπ, rπ.

D(0)

D(1)
D(∞)

pπ

qπ

rπ
D

H

The universal cover S of the Schwarz triangle is
I sphere (P1) if p + q + r > 1 (finite monodromy);
I the Euclidean plane (C) if p + q + r = 1;
I the hyperbolic plane (H) if p + q + r < 1.



A spherical/algebraic case

2F1

[
1
6

2
3
1
2

; z

]
=

1

2

(
(1 +

√
z)−

1
3 + (1−

√
z)−

1
3

)
,

In which case p = 1
2 , q = 1

3 , r = 1
2 , the universal cover is



Triangle groups

We now assume that |1− c | = p = 1/e1, |c − a− b| = q = 1/e2,
and |a− b| = r = 1/e3 with ei = 2, . . ., ∞. Let τp, τq, τr be
reflections in the edges of the Schwarz triangle ∆(p, q, r).

Set gp = τqτr , gq = τpτr , gr = τpτq. Then the triangle group

Γ = (e1, e2, e3) := 〈gp, gq, gr : g e1
p = g e2

q = g e3
r = gpgqgr = 1〉

is a subgroup of Isom+(S).



Arithmetic triangle groups

When p + q + r < 1, we say that Γ = (e1, e2, e3) is arithmetic if Γ
is commensurable with norm 1 group of certain quaternion order.
There are exactly 85 arithmetic triangle groups falling into 19
classes by Takeuchi. When X (Γ) is compact, it is called a Shimura
curve, according to Shimura, it parametrizes certain abelian
surfaces with quaternionic multiplication (QM).

Example

I (2, 3,∞) ' PSL2(Z)

I (∞,∞,∞) ' Γ(2)

I The monodromy group for α = {1
6 ,

1
3} and β = {1, 5

6} is
isomorphic to (3,6,6)



Question
Given an arithmetic triangle group Γ, how to find a model for the
“universal” 2-dimensional abelian varieties parameterized by H/Γ?

Theorem (Deines, Fuselier, Long, Swisher, Tu)

Let N = 3, 4, 6, i , j , k be integers between 1 to N − 1 such that
gcd(i , j , k) = 1 and N - i , k , j , i + j + k . Then for each λ ∈ Q, the
endomorphism algebra of the primitive part of the 2-dimensional
abelian variety constructed from the Jacobian of the smooth model
of yN = x i (1− x)j(1− λx)k contains a quaternion algebra over Q
if and only if the beta quotient

B

(
N − i

N
,
N − j

N

)/
B

(
k

N
,

2N − i − j − k

N

)
∈ Q.

Corollary

From y6 = x4(1− x)3(1− λx)1, we get a 1-parameter family of
2-dim’l abelian varieties whose endomorphism algebra over Q
contains

(
−3,2
Q

)
. [A different construction by Petkova and Shiga.]



A Schwarz map example

The Schwarz map D(λ) := i

2F1

1
2

1
2

1
; 1−λ


2F1

1
2

1
2

1
; λ


of L{1/2,1/2};{1,1} gives an isomorphism

P1 − {0, 1,∞} −→ Γ(2)\H,

which is the inverse map of the modular λ-function.



The Legendre curves

Lλ : y2 = x(1− x)(1− λx). (13)

When λ 6= 0, 1 it is an elliptic curve. It is a double over of CP1

which ramifies only at P1 = 0,P2 = 1,P3 = 1
λ ,P4 =∞ as

demonstrated by the picture below. Gluing along the slits gives the
double cover: i.e. π : Lλ → CP1 as a degree-2 ramfied cover.

0 1

∞

1
λ

0

0

1

1∞
∞

∞ 10

1
λ
1
λ

1
λ

For given λ, it has a unique up to scalar homolorphic differential
1-form

ωλ :=
dx√

x(1− x)(1− λx)
.



Periods
H1(Lλ,Z) = γ1Z⊕ γ2Z, γ01 and γ0∞.
The period lattice

Λ(λ) = Z
∫
γ1

ωλ ⊕ Z
∫
γ2

ωλ.

If {γ′1, γ′2} is a different basis, then

(
γ′1
γ′2

)
=

(
a b
c d

)(
γ1

γ2

)
,

τ ′ =

∫
γ′2

ωλ/

∫
γ′1

ωλ =

(
d c
b a

)
· τ =

dτ + c

bτ + a
,

where

(
d c
b a

)
∈ Γ(2). Upon relabelling, we can assume

τ =

∫
γ2
ωλ∫

γ1
ωλ
∈ H

and its isomorphism class is determined by the value of the
modular λ(τ) evaluated at τ , which is invariant under linear
transformation by elements in Γ(2).



CM cases

Question
How likely is the period ratio τ ∈ Q?

The answer is not very likely, unless Lλ admits complex
multiplication (CM), which is a fundamental result by Schneider.

Theorem (Chowla and Selberg)

If E is an ell. cur. admitting CM by K = Q(
√
−d) with fund.

discriminant −d , then all periods of E are algebraic multiples of

ω−d := Γ

(
1

2

) ∏
0<a<d

Γ
( a
d

) nε(a)
4hK , (14)

where n is the number of torsion elements in K , ε = (−d· ), and hK
is the class number of K

Example

ω−4 = Γ
(

1
2

) Γ( 1
4 )

Γ( 3
4 )

and ω−3 = Γ
(

1
2

)(Γ( 1
3 )

Γ( 2
3 )

)3/2



Picard-Fuchs

Question
How is the above picture related to the differential equation
L{1/2,1/2},{1,1}λF = 0?

For any γ ∈ H1(Lλ,Z), pγ(λ) :=

∫
γ
ωλ. If we vary γ analytically,

pγ(λ) becomes a function of λ. This means by analytic

continuation, τ(λ) =

∫
γ2

ωλ/

∫
γ1

ωλ is also considered as function

of λ.
The differential equation L{1/2,1/2},{1,1}λF = 0 is called the
Picard-Fuchs equation of Lλ, by which it means L{1/2,1/2};{1,1}ωλ
is an exact form on Lλ.

It follows both

∫
γ1

ωλ and

∫
γ2

ωλ are solutions of

L{1/2,1/2},{1,1};λF = 0.



The inverse of the modular lambda function

If we compute
∫
γ01
ωλ, up to a scalar, by Euler integral formula, it

agrees with 2
∫ 1

0 ωλ = 2 · 2P1

[
1
2

1
2

1
; λ

]
= 2π · 2F1

[
1
2

1
2

1
; λ

]
.

The other linearly independent solution is 2F1

[
1
2

1
2

1
; 1− λ

]
.

This explains the claim that the Schwarz map i

2F1

1
2

1
2

1
; 1−λ


2F1

1
2

1
2

1
; λ

 is

the inverse of λ-function.



Hypergeometric formulas: a few techniques:
I From rigidity

(1− x)−c 2F1

[
1+c

2 − b c
2

c − b + 1
;
−4x

(1− x)2

]

= 2F1

[
b c

c − b + 1
; x

]
.

|b − c |π|b − c|π

1
2 |1− 2b|π



Hypergeometric formulas: a few techniques:
I From the definition/setup

2F1

[
a b

c
; 1

]
=

1

B(b, c − b)

∫ 1

0
(1−t)−atb−1(1−t)c−b−1dt

=
B(b, c − a− b)

B(b, c − b)
= Γ

(
c , c − a− b

c − a, c − b

)
.

I From comparing coefficients

2F1

[
a b

c
; x

]
= (1− x)c−a−b 2F1

[
c − a c − b

c
; x

]
.

3F2

[
a b −n

c 1 + a + b − n − c
; 1

]
=

(c − a)n(c − b)n
(c)n(c − a− b)n

.

(15)



I From specializing values in known identities

(1− x)−c 2F1

[
1+c

2 − b c
2

c − b + 1
;
−4x

(1− x)2

]

= 2F1

[
b c

c − b + 1
; x

]
.

Plotting x = 1 and use Gauss evaluation leads to

2F1

[
b c

c − b + 1
; −1

]
= 2−c 2F1

[
1+c

2 − b c
2

c − b + 1
; 1

]

= 2−cΓ

(
c − b + 1, 1

2
c+1

2 , 1 + c
2 − b

)
= Γ

(
1 + c − b, c2 + 1

1 + c, c2 − b + 1

)
.



I From other methods like Bailey transform
Below is a formula by Whipple.

7F6

[
a 1 + a

2
c d e f g

a
2

1 + a − c 1 + a − d 1 + a − e 1 + a − f 1 + a − g
; 1

]

= Γ

(
1 + a − e, 1 + a − f , 1 + a − g, 1 + a − e − f − g

1 + a, 1 + a − f − g, 1 + a − e − f , 1 + a − e − g

)

× · 4F3

[
a e f g

e + f + g − a 1 + a − c 1 + a − d
; 1

]
, (16)

when both sides terminate.


