Hypergeometric Functions, Character Sums and
Applications, Part |l

Ling Long
Notes by Ling Long and Fang-Ting Tu
University of Connecticut 2021 Summer Lecture Series

https://alozano.clas.uconn.edu/hypergeometric

June 30, 2021



Plan

Day 1. Hypergeometric functions over C

1.1 Hypergeometric functions
1.1l Hypergeometric formulas and Legendre curves

Day 2. Over finite fields

2.1 Hypergeometric functions over finite fields
2.1l Point counts over finite fields

Day 3. In Galois perspective
3.1 Hypergeometric Galois representations
3.11' Modularity results
Day 4. p-adic hypergeometric functions and supercongruences

4.1 Dwork unit roots and commutative formal group laws
4.1l Supercongruences



Goals for today

» Introduce hypergeometric functions over finite field in a way
parallel to the classical setting

» With which one can obtain many character sum identities
(Greene, Evans-Greene, McCarthy,
Fuselier-Long-Ramakrishna-Swisher-Tu, - - -)

P> Relate hypergeometric character sums to point counts on
algebraic varieties



Key properties of the Gamma function

For Re(x) > 0,
M(x) := / e tdt.
0

Reflection formula

rar(l—a)= , VaeC

sin(ma)

Multiplication formula

1
[(2a)(2m)Y/? = 223—%r(a)r (a + 2) , VaeC.

om0 (2),(552),



Notation for finite fields

> p: an odd prime

» Fg: a finite field of size q, where g = p°®

> g @ a multiplicative cyclic group of order g — 1
> Fg = {x:F; - C*} = (w)

» ¢ := the trivial character in Fj
>
>
>

—

¢ := the quadratic character in Fg
X the inverse of y
X(0) =0, including €(0) =0

[F(X

Tr.9
> dO(x):=¢p F ), (p a fixed pth root of unity



Notation for finite fields
>

1

6(X) = 0e(x) = {0

1

d(x) = do(x) :== {O

The orthogonal properties:
>

> o(x)

x€Fq
» For x,p € Fy

o) = =7 2«

XGFX

=0.

if X =¢,
if X #¢;

if x =0,
if x # 0.

5(xP)-



Finite Fourier analysis

Any function f : Fq — C, it can be expressed as

f(x) = £(0)do(x) + Cy - x(x),

where

G=(f,x)= Zf

XGFX



Gauss sums

—

Given A € IF?, we define its Gauss sum by

F
T?FZ(X)

8(A) = Y AXP(x),  d(x) =G

xEF?

g(e) = Z d(x) = —1.

XGF;

Reflection formula

9(A)a(A) = gA(-1) — (q — 1)3(A)

8(A) = V4, if A%<



Theorem (Hasse-Davenport Relation)

—

Let me N and g =1 (mod m). For any ¢ € Fy, we have

llg(xw) = —g(@™y(m™™) ] a(0.

XeF} XeFy
sza sza

Theorem (Yamamoto)

Let M > 4 be an even integer, p =1 (mod M) be a prime, then
the reflection formula and the multiplication formulas by divisors of
M are the ONLY two types of relations connecting the Gauss sums

g(x) for x € F, satisfying xM = ¢, when considered as ideals in
the ring of algebraic integers.



Jacobi sums

For A, B € F;, their Jacobi sum is defined as

J(AB) =) A(X)B(1 - x).

x€Fq

In relation to Gauss sums

J(A, B) = % +(q — 1)B(~1)5(AB).

When A, B, AB # ¢, | J(A, B)| = /4.



Notation:

Lemma L
For any A € Fg and x € Fq, we have

In comparison,



An analog between the complex and finite field settings

—

% — an order N character ny € Fg
a=q, b=% — ABEF?,A—nN,B an
x? — A(x)
xath — (x)B(x) = AB(x)
—a — A
r(a) — 9(A)
(a)n =T(a+n)/T(a) — (A)x = 9(Ax)/a(A)
B(a, b) — J(A, B)
fol dx — D _xcF
Mar(l—a)=g5-, a¢Z — g(A)g(A) = A(—l)’ci7 A#e

i

(A™)ym = (m™) [ [(Anmm)y

i=1

. i
(ma)mn = m’"’"l:[1 <a+ m>n



(Vertical) Hasse-Davenport relation

Let F; be a finite field,
Fqr be its degree-r field extension

Let Trizr and NEZF be the trace and norm maps from Fgr to Fy.
Then for any x € FJ, x/(x) = X(Ng;’r (x)) is a multiplicative
character for ;.

Theorem (Hasse and Davenport)

Notation as above. Let g(x) be the Gauss sum of x in Fg, and
9(xr) be the Gauss sum of x, in Fqr. Then,

—o(xr) = (—900)"- (3)



Hypergeometric functions over finite fields

» Katz, Beukers-Cohen-Mellit, Hoffman-Tu, - --
» Greene, Evans, Ono, Ahlgren, McCarthy, - - -
» Today's lecture is largely based on a variation of Greene

Hypergeometric functions over finite fields,

Jenny G. Fuselier, Ling Long, Ravi Ramakrishna,
Holly Swisher, and Fang-Ting Tu,

arxiv:1510.02575 , Memoirs of the AMS, to appear.



Period functions over C

Let
o1 z) = (1 2)™
Inductively
dar a2 -+ dn4l .
n+1Pn[ b2 bn+1 ,Z:| =
1
t9n+1*1 11—t bpy1—ant1—1 P._ |: a azx - an
/o ( ) ntn-1 by --- b,

The order of the a;'s (resp. b;'s) matters.
So

.zt

dt.



Finite field period functions, defined by induction

Let B
1Po[A; s q] == A(1 — ),

for Ac iq; and A € Fy. We inductively define

Al A ... Anpr .
”“P”[ B ... B,,H’)"q =
— Al A ... A,
E An+1(Y)An+an+1(1_Y)'nPn1[ ! Bz Bn;)\y;CI>

y€Fq

we will drop g if no ambiguity will arise.



When n = 1 we have,

2Py

A

B

=) B(x)BC(1 - x)A(1 - \x).

x€Fq

J(B. CB), ifA=0

B(-1) _ _ _

g—1 Z J(AXX)I(Bx, Cx)x(A),  if A#0
xEFy

J(B, CB), Fr—0

BqC(__ll) Z]FA (ix) (g@xm, if A £ 0.



Normalization

Define
A B 1
2F1 ) Al = —
C J(B,CB)
The 5IF; function satisfies
1) oF A B 0| =1;
2 1 C, - 1
2) HF A B Al = oF B A A
) 2F1 c’ = ol c’

B+ C.

P A B_)\
ol c’ .
,if A, B¢, and A,



More generally,

Just like
a ax -+ an4l
F, 4
n+1"n [ b2 o bn+1 ]
n+1 2 2
= H B(a,-, b; a,-)_ n—|—1Pn |: 1 2
by
=2
We define
Al Ay - A,
JuiF, 1 2 +1 A
By -+ Bpi1
o 1 [Al A>
52 (AL BA)™ "L B

An+1
‘A
Bn—i—l

E



The Legendre curves
For the Legendre curves
Ly: y?=x(1-x)(1-Xx).

Let p be a fixed odd prime. If A € Fp,.

#(L\/Fp) =1+ Y (1+(x(1 = x)(1 = Ax)))

x€F,

=14+p+ P

¢;)\].
€

ap(L2) == (14 p) — #(L/Fp) = — 2Py F . A] .

The error term



Hypergeometric algebraic varieties

Xy: yN=xxi (=) (1= X (1= Axg e x)
Theorem (Fuselier, Long, Ramakrishna, Swisher, Tu)

Let g = p® =1 (mod N) be a prime power, and ny € Fg a
primitive order N character. Then

#X\(Fq) =1+ 4q"

N—-1 —mk mi, miq
n p. | U R/ TRy
n+1n Min+mjn miy+mjir q] -
— UM cee My



Hypergeometric formulas over finite fields
We mentioned a few techniques for obtaining hypergeometric
formulas such as from definition/setup, from comparing
coefficients, from specializing values. Many of them can be applied
to the finite field settings to obtain very analogous formulas. The
main technicality lies in analyzing the delta terms.

Theorem (Gauss summation formula)

» Over C.

a
2P
c

b; 1] = B(b,c — b—a).

> OverF,. For A, B, C € F,

A B _
o1 c 1| = J(B,CAB).




Theorem (Kummer transformation)

» OQOverC.
b - —b
2F1 ? ;X] :(1—X)C_a_b2F1 €T« ;X].
c c
» OverFy.
m | B caBa - nyom | Y CB
2 1 C, - 2 1 C 1
B,CAB
+5(1_)\)M

J(C,CB)



Theorem (Pfaff-Saalschiitz Evaluation)
» Over C. For n € Z~y,

£ 12 b —n 1 _ (d—a)s(d —b),
21 d 1+a+b—d-n'""| (d)a(d—a—b),

Over F,. For any characters A, B, C, D € Fy, we have

A B C

P —
32 D ABCD

1

— J(BCD, B)J(C,AD) — J(DB, ABD)
= B(~1)J(C,AD)J(B, CD) — BD(—1)J(DB, A).
(7)



Theorem (Kummer evaluation formula)

» Over C.
£ b c 4] Ml+c—b)r(1+c/2)
M c—b+1 TTA+r(1-b+c/2)
» OverF
B(-1)J(BD,B) + B(—1)J(¢BD
B C if C = D?;
2Py —; 1] =
CB 0

otherwise

When C = D?, further assume "primitive”,

" [B C;_ll g(CB)
CB

B)



Do not take the similarities for granted
» Over C.

a b c,c—a—>b a b
F iz =T 22— 2F i1 —
21[ c Z] (c—a,c—b)z1 at+b+1-c z]

c,at+b—c c—a c—b
4 (92127 ) (qg)emab,F T1- 2z,
( ab >( ?) 21[ l4c—a—b z]

A B
oIPy [ c A] = B(—1) 2Py

A B
_:1—-X].
ABC ]

If one looks for the finite field analogue of the mirror map

11
Fi|? 2;1-)

l b
2F [2 ; A]

the outcome is disappointing.

i

= Nl



Another example

» Over C.

a a—3 <1+\/1—z>1_2a
2F1 cz|l = ——— .
2a 2

» Over Fq. When z # 0,

o[y [A /:f z]
0 if p(1—2)=-1
o) (4 e

Remark
While nFn_1 is a single function (solution), ,F,_1 is by nature an
average (trace) function.



Two views of hypergeometric character sums
For example, if « = {3,3},8 = {1,1}, use

1 —
Eﬁqf)G]F;
-
Py D o(x(1—x)(1 - Ax))
x€F,

in which p can be varied among all odd primes, referred to as a
“horizontal” variation.

IE‘;7’1"2

horizontal
orizonta ]Fp’l

vertical norm

s Fs .. Fp



Vertical view

For a fixed prime p, we can also vary the character sums
“vertically” by considering their finite extensions to IF,r via the
norm maps. Vertical variation can be put together as follows.

M

r

Z(Oz,/@;)\;p; T) = exp Z2IP>1 [¢ f; )\;pr

r>1

Recall

T2 1,73
—log(l—aT):aT+a27+§a3?+



Example
When A= —1and p=1 mod 4, let 74 be an order-4 character of

,f and 74, =14 © N " By Kummer evaluation formula and the
vertical Hasse- Davenport relation,

Z(e Bp; T) = exp <¢(1) > (I, 8) + (i ¢))Trr)

r>1
= exp (¢(1> S -1 Om, 6) -+ (7 (mTrr)
r>1

=@ =T =7pT) =1 = ppT)L = p/ppT)

where 1ip = —¢(—1)J(1a, @) = —J(na, $).



Another formulation and comparison

Assume X\ € Q. Following McCarthy, Beukers-Cohen-Mellit, when
led(ex, B; X) | g — 1, in which case (q — 1)a;, (g — 1)b; € Z for all j,

Hq(cv, B; A w)

2 1 (kD) g(wk—(a-Dby)

721_[9 o(w(T D) g(—(a-Dk)) W ((—1)"A).

When «, 8 form a primitive pair,

wk+(q_1)al wk+(q_1)32 . wk+(q_1)a"

Hq(er, B X w) = nFp1 k@b . u)k+(q—1)b,,; Al



If v, B are defined over Q,

Example
For HD = {a = {3,2},8 = {1,1}; A},




If v, B are defined over Q,

Write

n

11 X — e [l (XP —1)

= X — e2mib; - Hi:l(qu — ]_)

where p;, qx € Z~o and p; # qy for all j, k.

Example
For HD = {a = {3,2},8 = {1,1}; A},



If v, B are defined over Q,

H (a,B:A)
972 n o (okHa—1)3; —k—(q—1)b
)g(w,( =T J) w ( _1)n)\)
1—koJ1 F)g(w=t97H5)
r+s q-2 ©)
s(0)+s(m m —m 1
= l—q mzo Hg P Hg W )w(eNTTN),
where € = (—1)9t+4s
P1
Py
= N(a, B) = ‘ﬁf‘fi?ﬁ
s(m) is the multiplicity of X — ™1 in

ged([J(xP — 1), [T (x% - 1)).
j=1 k=1



Example

For HD = {a = {3,3},8 = {1,1}; A},
r=1,s=3p1=3,q1=qp=qg3=1,€e=—-1, N =33

Hy(HD;) = <1+ Zg Y a(w )P wk(=3~ 3)\)>. (8)

In comparison,

2F1 [

Wl
= WIN
>
-
|

=
Vv
o
7 N
=
w
> =
Pl
N—
—~~
o
w
>
N—r
B



Finite character sums defined over QQ

Hq(oéﬁ; )‘)
(—1)r= 2 f :
_ - Z q—s(0)+s(m) Hg(wmpj) H g(w—mqk)w(elv—l)\)’
R A—; j=1 k=1
Question

It is now defined for all prime powers coprime to lcd(c, B, \). But
is it a natural or geometric extension?

Let
VO(,B(A) : X1++Xr_y1__ys :0’ N)\X],-)]'X'Pr :-y]‘-h...-ysqs7

Example

FOI’O[Z{%,%},B:{].,].}, r=1,s=3p=3,q1=q=q3=1.
So the corresponding model is

X1—Yi—Ya—Yz3=0, 271AX{ = Y1 Y2V,



Hg-function and point counts

Va,s(A) 1 xaitbbxe—y1——ys = 0, NG - xPr =yt oy,

Theorem (Beukers, Cohen, Mellit)

Let the notation pj, qj, N as above. Suppose the greatest common
denominators of p1,--- ,pr,q1,- - , Qs IS one and suppose N\ # 1.
Then exists a suitable non-singular completion of V,, 3()\), denoted

by Vi 5(X) such that
#Vas(N)/Fq = Prs(q) + (1)1 gm 15D Hy (o, ; NA),

where

min(r—1,s—1)

) r—1 s—1 qr+s—m—2_qm
= X ()

m=0




Question
Are there other 1-parameter families of algebraic varieties whose
Picard-Fuchs equations are hypergeometric?

In the study of Mirror Symmetries originated in String theory, there
are families of Calabi-Yau manifolds whose Picard-Fuchs equations
are hypergeometric.

Example

Viizs ()1 XP4+X3 + X3+ X7 + X5 — 50 Xi XoXs XaXs = 0

15

SIS
ollw
s

=

Lz aiyesh =0

Example
V1212(¢): Xf+X2‘9’+X§’—3@Z}X4X5X6:0
{3535}
X3+X3—|—X63—3’¢X1X2X3 =0
Lz izpaaiag-ef =0



Dwork family
Degree-N Dwork family of hypersurfacs:

Dwpn () : XéV—FX{V—i-'-‘—FX,\A,I__ll—Nl/Jxo---xN_l =0.

For a fixed %, it is a (N — 2)-dimensional, has a unique up to scalar
holomorphic differential (N — 2)-form. It admits the action of

N—1
G ={(ao, - ,an_1) € (Z/NzZ)"1, ai=0 mod N}
i=0
via
(X07 e 7XN71) = (</?/OX07 e 7<5N_1XN71)'

A Picard-Fuchs equation of Dwy/(v)) is £{ L2 N1y 1y

N>
Question
Will the point counts on Dwy(1)/Fq be related to the
hypergeometric character sums?

Answers from Koblitz, McCarthy.



Hesse pencils

Example
When N = 3, it is also known as the Hesse pencil

H() 1 g +3 +53 — 3ibxoxixe = 0. 9)

When \ = ¢~3, a morphism from H(%) to

Vi apM: Xi-Y1-Y2—Y3=0, 21AXE = V1Ya Vs
is given by
3Yxpxixe — X1, xg — Y1, Xf — Yo, X23 — Y3,

which is defined over Z.



Point counts, modulo p

Lemma
Let p > 3 be a prime and i) € Fp,. Let Np(v)) be the number of
solutions H(v) over F,. Then

1

No(¥) = 2F1 [3

= WIN

; )\] mod p, where A =3,
p—1

the right hand side is a truncated sum.
Proof: Let f(x; ) = xg + xf + x23 — 3Yxgx1x2. Then

f(X; w)P*l mod P = 1-— 5O(f(x))7



Proof continued

Here f(x;4)P~! is a degree 3p — 3 homogeneous polynomial.
When summing over all x € F3,

> (xexs)P = (p-1)°*=-1 mod p,

X

while for all other monomial 3° x{"x)°x3® =0 mod p. Thus
modulo p, N(3) coincides with the coefficient of (x3x2x3)P~1,

which is
- (=173 , 4,
2 \p—1-3i _ Y
2 < jip—1- 3,->( WP =) <,-,,-, ,-> (34)

= WIN

1
=-F [3 : )\] mod p.
p—1



A formal group detour

There is a theory called commutative formal group laws (CFGL).
We will illustrate some useful results of Stienstra in the current
example. Assume ¢ € Z, \ {0,1} where p > 3.

» Formal. Let by, be the coefficient of (xyz)™~ ! of f(x,)™ L.

Putting together
Tm

» Group. Using which we define a group law
G(u,v) := €71 (€(u)+€(v)) = u+v+higher degree € Z,[u, v].

Reproducing the group law of H(v) near infinity.
» Law. Atkin and Swinnerton-Dyer congruences: for m,r > 1

bmpr — ap(H(¥))bpr—1 + pbppr—2 =0 mod p.



Back to point counts on H(v))

The major term is

1
Ng(v) = PTCEE) Z Oq(v(d + 5 + 53 — 3px1x0x3)).
vEF g xe(F5 )"

It is a function from Fg — C.

Here we use the additive character instead of the delta function so
that Gauss sums will appear naturally when we apply finite Fourier
analysis.



Computing (Ng, x) when x # €.

(= 1){Ng. x) = Z N ()T (¢)

= fl Z Z g (v} ) Bq (123 ) Bq (v43) Oq(—3Vibxx0x3)

Y veFy xe(Fy)n

X X (=3vipxixox3)x(—3vxix2x3)

_qqu(,\i) Z (V)P q(v3) Py (V3 )X (—3vx1x2x3)

-1
( ) veFy xe(Fq )"
(10)
Write
SO) =Y @g(vd)Pa(1d)0q(vd)x(~Buxxes).

veFg xe(F5 )"

which is 0 if x is not a cubic.



Now we assume x = 1% is a cube. Then

D x0)Pq(w®) = D n(y?)ee(vy?)

y€Fy y€Fy

=) ) (14 x3(u) + x3(u))

uelFy

=n(v)a(n) + nx3(v)e(nxsz) + nxs(v)e(nxs)

Hence,
S() = > x(=3v) [7(v)a(n) +7x3(v)a(nxs) + Txs(v)a(nxs)l
VEIF><
= > x(=3) [8(n) + X3(v)a(nx3) + x3(v)s(nx3)]’
VEJF><
=x(—3) [8(n)* + 8(nx3)® + a(11x3) + 69(a(nxz)a(m3)] D 1

veFi
=6q(q — 1)x(—=1)a(x)
+x(=3)(g — 1) [a(n)® + a(nx3)® + a(nx3)?]



Putting together,

x€Fy

The major term of the above is
1 3 -3 3
X~ (=3¢)a(x)a(x)™
1) 2 V)

It can be written as —Hg ({3, %} {1,1};}) - %, where \ = 173,



Arithmetic mirror symmetries
Dwork quintic threefold (when v # 0)
V() : XD+ X3+ X5+ X7 + X2 — 50 X1 X2 X3 X X5 = 0

plays an important role in the study of Mirror Symmetries. Its
mirror is obtained by the smooth model of V/())/G. The Hodge
diamonds of V/(¢) and its mirror V are related by

hL1(V) = h%1(V), which equals 1 presently.

1
0 0
0 htl 0
1 h2’1 h1’2 1
0 h?2 0
0 0



Modularity of rigid Calabi-Yau defined over Q

1
0 0
0 ht:t 0
1 h2’1 — h1’2 — 1
0 h?2 0
0 0
1

Theorem (Dieulefait, Gouvéa-Yui)

For any rigid Calabi-Yau X defined over Q and each prime ¢, there
is a weight 4 modular form f with integer coefficients such that
the {-adic Galois representation arising from the third étale
cohomology group of X is isomorphic to the £-adic Deligne
representation associated to f.



Ordinary Calabi-Yau differential equations
A Picard-Fuchs differential operator of V(1)) is given using variable
A=
d

0% — 57*\(50 + 1)(560 + 2)(50 + 3)(50 + 4), where § := Ay

whose unique (up to scalar) holomorphic solution near zero is
1
§ B 55 x)k = 4 |3 ;A
k|5 3 1 .

There are 14 such Calabi-Yau differential equations (by Almkuvist,
van Enckevort, van Straten, Zudilin). Their parameter sets are of
the form a = {n,1 —n,rn,1—n},={1,1,1,1}, where
111 1}

2’3746

= N
= Clw
= s

n,rn e {

or
12 ,13 1 3

() € {5 2): (5 2): G i) (53 33)



The defining equations of the corresponding Calabi-Yau three-folds
can be given explicitly.

To compute their Picard-Fuchs equation, there is a general method
called the Gel'fand, Zelevinskii, and Kapranov (GKZ) method.

When 1 = XA = 1, the corresponding Calabi-Yau manifolds are
rigid. By modularity theorem of Dieulefait and Gouvéa-Yui, they
are all modular.

We will explain to identify the corresponding weight-4 modular
forms in the next lecture.



Take-away from this lecture

> Hypergeometric functions over finite fields can be studied in a
way parallel to the classical setting

» There are horizontal (more to say in Lecture IIl) and vertical
perspectives

» They are useful for point counts, especially for 1-parameter
families of varieties whose Picard-Fuchs equations are
hypergeometric

» Some of these varieties are important for the development of
mirror symmetries in string theory. In return, the notation of
“mirror” gives us a connection between two types of
hypergeometric varieties.



