
HYPERGEOMETRIC FUNCTIONS, CHARACTER SUMS AND

APPLICATIONS
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Abstract. We summarize several aspects of hypergeometric functions based on our recent work
[7, 6, 11, 16, 17, 18, 19, 20] and our understanding of the subjects.

3. Hypergeometric Galois representations

The goal here is to construct and compute explicit Galois representations from hypergeometric
data. With the inputs from classical formulas such as Clausen’s formula and Whipple’s formulas,
we can further obtain explicit information on these hypergeometric Galois representations.

For any finite field Fq of characteristic p > 2, let ω be a generator of the group F̂×q :=
Hom(F×q , F×) of multiplicative characters of Fq, where F = C or Cp. Let α = {a1, · · · , an}, β =
{1, b2, · · · , bn} be two multi-sets with entries in Q. Denote by M := lcd(α, β) the least positive
common denominator of all ai, bj . For a finite field Fq containing a primitive Mth root of 1 and
any λ ∈ Fq, recall that we write

P(α, β;λ;Fq;ω) := nPn−1

[
ω(q−1)a1 ω(q−1)a2 · · · ω(q−1)an

ω(q−1)b2 · · · ω(q−1)bn ; λ; q

]
.

Its value depends on ai and bj modulo Z, as well as their orders and the choice of ω. Similarly

F(α, β;λ;Fq;ω) := nFn−1

[
ω(q−1)a1 ω(q−1)a2 · · · ω(q−1)an

ω(q−1)b2 · · · ω(q−1)bn ; λ; q

]
.

3.1. A motivating example. We return to the Legendre curves to illustrate the main theorems
of this section.

Let λ ∈ Q \ {0, 1} be fixed and ` be a fixed prime number.

Lλ : y2 = x(1− x)(1− λx).

It is an elliptic curve defined over Q. The torsion points lim←−
n

Lλ[`n] give rise to a continuous repre-

sentation

ρλ,` : GQ := Gal(Q/Q)→ GL2(Q`).

For details, see standard textbooks such as [24] by Silverman. For p - Cond(Lλ), the conductor of
Lλ.

Trρλ,`(Frobp) = p−#(Lλ/Fp),

This note is based on Fang-Ting Tu’s course on “Hypergeometric Functions” given at LSU in Fall 2020 and
Ling Long’s mini-lectures on “Hypergeometric Functions, Character Sums and Applications” given at University of
Connecticut in 2021. Comments and suggestions will be appreciated. Special thanks to Dr. Bao Pham for his inputs.
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where Frobp stands for the Frobenius conjugacy class at p. Recall that we can count points on Lλ
using the period function

#(Lλ/Fp) =
∑
x∈Fp

(1 + φ(x(1− x)(1− λx)) = p+ P({1

2
,
1

2
}, {1, 1};λ;Fp;ω).

It is independent of the choice of ω as the quadratic character φ in F̂×p is unique.
Consequently

(1) Trρλ,`(Frobp) = −P({1

2
,
1

2
}, {1, 1};λ;Fp) = φ(−1)F({1

2
,
1

2
}, {1, 1};λ;Fp).

As Lλ is an elliptic curve defined over Q, each ρλ,` is isomorphic to an `-adic Galois representation
arising from a weight-2 cuspidal Hecke eigenform fλ. Thus for each p - Cond(Lλ)

Trρλ,`(Frobp) = ap(fλ),

the pth coefficient of fλ. Putting together,

(2) φ(−1)F({1

2
,
1

2
}, {1, 1};λ;Fp) = ap(fλ).

The level of fλ equals the conductor of Lλ. It only consists of primes dividing the discriminant
of Lλ in its minimal model defined over Z. More generally,

Theorem 3.1. Given a prime ` and a 2-dimensional absolutely irreducible representation ρ of GQ
over Q` that is odd, unramified at almost all primes, and its restriction to a decomposition subgroup
D` at ` is crystalline with Hodge-Tate weight {0, r} where 1 ≤ r ≤ ` − 2 and ` + 1 - 2r, then ρ is
modular and corresponds to a weight r + 1 holomorphic Hecke eigenform.

The actual identification of the target modular form can be also carried out by computing the
trace of the representation at various Frobenius conjugacy classes Frobp. The following theorem of
Serre (cf. [23] by Serre or [8, Theorem 2.2] by Dieulefait) is helpful to narrow the search for the
corresponding modular forms.

Theorem 3.2 (Serre). Let f be an integral weight holomorphic Hecke eigenform with coefficients
in Z. Then the p-exponents of the level of f are bounded by 8 for p = 2, by 5 for p = 3, and by 2
for all other bad primes.

3.2. A systematic way to get compatible hypergeometric functions over various finite
fields. For a general hypergeometric parameter set α, β, the integer M = lcd(α, β) may likely be
larger than 2. To look for a result generalizing Equation (1) above, we first consider how to vary
the finite fields and then the choices of the characters.

We will use the following notation.

• Degree M := lcd(α, β)
• Field K := Q(ζM )
• Ring OK = Z[ζM ]
• Group G(M) := Gal(Q/K), an index-ϕ(N) subgroup of GQ := Gal(Q/Q).
• ℘ any nonzero prime ideal of Z[ζM , 1/M ]
• k℘ := OK/℘, its size q(℘) := |k℘| ≡ 1 mod M
• Frob℘ the Frobenius conjugacy class of G(M) at ℘.

Thus we go from nonzero prime ideals in Z[ζM , 1/M ] to finite fields by

℘ 7→ κ℘ = Z[ζM ]/℘.

According to the analogy between the classical and the finite field settings

1

M
7→ ηM ∈ κ̂×℘ , an primitive order M character.
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Once ηM is fixed, by the inductive formula, P(α, β;λ;κ℘) can be defined accordingly. We now
explain to choose ηM as ℘ varies. This can be done using the Mth residue symbol, see [11,
Definition 5.8]. Namely for a given ℘

ηM (x) := ι℘(
1

M
)(x) ≡ x

q(℘)−1
M mod ℘, ∀x ∈ Z[ζM ].

Here in a compatible way means the following. We first fix a primitive order M character χM of the
multiplicative group consisting of fractional ideals IM of Z[ζM ] coprime to M , i.e. χM : IM → C×.
Then for each nonzero prime ideal ℘ of Z[ζM ], if a, b ∈ IM and a ≡ b mod ℘, then χM (a) = χM (b)
as |κ℘| = 1 mod M . Hence we can define a character ι℘( 1

M ) on κ℘ via

ι℘(
1

M
)(x℘) := χM (x), ∀x ∈ Z[ζN , 1/M ].

Another way to proceed is as follows. For a prime ideal ℘ of Z[ζM , 1/M ], ζM mod ℘ in the

residue field κ℘ of ℘ has order M , and it generates the cyclic group (κ×℘ )(N(℘)−1)/M . Put

P(α, β;λ;κ℘) = P(α, β;λ;κ℘;ω℘)

where ω℘ is a generator of κ̂×℘ so that

(3) ω℘(ζM mod ℘) = ζiM , i ∈ (Z/MZ)×.

We choose i = −1 by default. Note that P(α, β;λ;κ℘) is independent of the choice of ω℘, but
depends on the choice of i on ζiM .

3.3. The |α| = |β| = 2 case.

2F1

[
a b

c
; z

]
=

1

B(b, c− b)

∫ 1

0
xb−1(1− x)c−b−1(1− zx)−adx,

(here
∫ 1
0 could be replaced by

∫
γ01

with a normalizing factor where γ01 is the Pochhammer integral

as in Section 1) can be considered as a normalized period on

C
[N ;i,j,k]
λ : yN = xi(1− x)j(1− λx)k, where

N = lcd(a, b, c), i = N · (1− b), j = N · (1 + b− c), k = N · a.
For this subsection we follow the convention of [6] to use N instead of M for lcd(α, β). It is a

singular curve defined over Q(λ), we use X
[N ;i,j,k]
λ (or simply X(λ) when N, i, j, k are fixed) for its

smooth model. If α, β are primitive, then N - i, j, k, i+ j + k. We can also assume 0 < i, j, k < N

up to change variables x, y. Note that C
[N ;i,j,k]
λ admits an automorphism

(4) ζ : (x, y) 7→ (x, ζ−1N y).

Use J
[N ;i,j,k]
λ to denote the Jacobian of X

[N ;i,j,k]
λ . For each proper divisor d of N , J

[N ;i,j,k]
λ

contains a factor which is isogenous to J
[d;i,j,k]
λ over Q(λ, ζN ). Use Jprim

λ to denote the primitive

part of J
[N ;i,j,k]
λ , which is of dimensional ϕ(N), by Archinard [2].

Proposition 3.3 (Archinard). A basis of H0(X(λ),Ω1) can be chosen by the regular pull-backs of

differentials on C
[N ;i,j,k]
λ of the form

(5) ω(λ) =
xc0(1− x)c1(1− λx)c2dx

yn
, where 0 ≤ n ≤ N − 1, ci ∈ Z,
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satisfying the following conditions equivalent to the pullback of ω being regular at 0, 1, 1λ ,∞ respec-
tively,

c0 ≥
ni+ gcd(N, i)

N
− 1, c1 ≥

nj + gcd(N, j)

N
− 1, c2 ≥

nk + gcd(N, k)

N
− 1,

c0 + c1 + c2 ≤
n(i+ j + k)− gcd(N, i+ j + k)

N
− 1.

Using the induced action of ζ, H0
(
X(λ),Ω1

)
decomposes into eigenspaces Vi such that for each

v ∈ Vi, ζ∗v = ζiNv.
If gcd(n,N) = 1, the dimension of Vn is given by

dimVn =

{
ni

N

}
+

{
nj

N

}
+

{
nk

N

}
−
{
n(i+ j + k)

N

}
,

where {x} = x− bxc denotes the fractional part of x, see [1] by Archinard. Furthermore,

dimVn + dimVN−n = 2.

The elements of Vn with gcd(n,N) = 1 are said to be new or primitive. The subspace

H0(X(λ),Ω1)prim =
⊕

gcd(n,N)=1

Vn

is of dimension ϕ(N), Euler’s totient function of N , see [2].

Under the assumptions that i, j, k > 0, N - i, j, k, i+ j + k, by work in [2], Jprim
λ is of dimension

ϕ(N), and is defined over Q(λ). Moreover the Jacobian variety Jprim
λ is isogenous to the complex

torus Cϕ(N)/Λ(λ), see [28] by Wolfart, where the lattice is

(6) Λ(λ) =


σn(u)

∫
γ01

ωn(λ) + σn(v)

∫
γ 1
λ
∞

ωn(λ)


n∈(Z/NZ)×

: u, v ∈ Z[ζN ]

 ,

when
∫
γ01

ωn(λ) and
∫
γ 1
λ
∞
ωn(λ) are linearly independent functions of λ, where γ01 and γ 1

λ
∞ are

two Pochhammer contour paths, and σn ∈ Gal(Q(ζN )/Q) defined by ζN 7→ ζnN .

Example 3.1. For the family C
[5;3,4,4]
λ , according to the previous Proposition, a basis ofH0

(
X(λ),Ω1

)
is

dx

y
,
xdx

y
,
x(1− x)(1− λx)dx

y2
,
x(1− x)2(1− λx)2dx

y3
.

From which we know dimV1 = 2, dimV2 = 1, dimV3 = 1 and dimV4 = 0.
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Example 3.2. For the family C
[6;4,3,1]
λ , a basis of H0

(
X(λ),Ω1

)
can be given as

ω1 =
dx

y
= x−2/3(1− x)−1/2(1− λx)−1/6dx

ω4 =
x2(1− x)2dx

y4
= x−2/3(1− λx)−2/3dx

ω5 =
x3(1− x)2

y5
dx = x−1/3(1− x)−1/2(1− λx)−5/6dx.

Among them, ω4 can be considered as a differential 1-form on C
[3;4,3,1]
λ .

We now consider the expressions for
∫
γ01

ωn(λ) and
∫
γ 1
λ
∞
ωn(λ). Recall that a basis can be chosen

such that each element is of the form given in (5). If ω(z) = xb−1(1− x)c−b−1(1− zx)−adx then∫
γ01

ω(z) =(1− e2πib)(1− e2πi(c−b))
∫ 1

0
ω(z)

=(1− e2πib)(1− e2πi(c−b)) 2P1

[
a b

c
; z

]
∫
γ 1
z∞

ω(z) =(1− e−2πia)(1− e2πi(c−a))
∫ ∞

1
z

ω(z)

=(1− e−2πia)(1− e2πi(c−a))(−1)c−a−b−1z1−c(1− z)c−a−b 2P1

[
1− a 1− b

2− c
; z

]
.

(7)

Remark 1. If c = 1, like the Legendre curves case considered in Part I, a different path like γ0∞
can be used instead.

If N < i+ j + k < 2N , then

dimVn = dimVN−n = 1, gcd(N,n) = 1,

and

Vn = 〈ωn〉, where ωn = x−{ni/N}(1− x)−{nj/N}(1− λx)−{nk/N}dx.

Thus, when 1 ≤ i, j, k < N , gcd(N, i, j, k) = 1, N - i + j nor i + j + k, and λ 6= 0, 1, the period
lattice Λ(λ) can be expressed in terms of

2P1

[
{nkN } 1− {niN }

2− {niN } − {
nj
N }

;λ

]
.

When 0 < i + j + k < N or 2N < i + j + k < 3N , i.e. the corresponding triangle group is
spherical, we do not have such a general form for the vector space Vn.

If λ ∈ Q \ {0, 1}, there is a 2ϕ(N)-dimensional `-adic Galois representation ρλ,` of GQ arising

from Jprim
λ . Using the action induced from (4), ρλ,`|G(M) decomposes as a direct sum of ϕ(N)

copies of 2-dimensional Galois representations.

Theorem 3.4 (Fuselier, Long, Ramakrishna, Swisher, Tu, [11]). Let a, b, c ∈ Q with least common
denominator N such that a, b, a− c, b− c /∈ Z and λ ∈ Q \ {0, 1}. Set K = Q(ζN ) and denote its
ring of integers OK . Let ` be any prime. Then there exists a representation

σλ,` : GK := Gal(K/K)→ GL2(Q`),
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depending on a, b and c, that is unramified at all nonzero prime ideals ℘ of Z[ζN , 1/N`] and satisfy
ord℘(λ) = 0 = ord℘(1 − λ). Furthermore, the trace of Frobenius at ℘ in the image of σλ,` is the
well-defined algebraic integer

−P({a, b}, {1, c};λ;κ℘).

Remark 2. We use σλ,` to denote its complex conjugate, namely the requirement for the generator
as in (3) is changed from i = −1 by default to

ω℘(ζM mod ℘) = ζM .

Question 1. Assume that ϕ(N) = 2. When does Jprim
λ admit quaternionic multiplication (QM)?

By Definition 3.1.1 of [3], Jprim
λ admits QM means it affords the actions of two linear maps Js, Jt

such that J2
s = J2

t = −id and JsJt = −JsJt. Using Clifford theory [5], if σλ,` is absolute irreducible,
then σλ,` and σλ,` only differ by a finite order character of G(M), see [3, 15].

In addition to the motivation we mentioned in Section 1 about the hypergeometric monodromy
groups being “triangle groups”, and arithmetic Shimura curves parameterize 2-dimensional abelian
varieties admitting quaternionic multiplications, we are also motivated by a modularity theorem
on 4-dimensional Galois representations of GQ admitting QM by Atkin, Li, Liu and Long, see [3,
Theorem 3.1.2].

Theorem 3.5 (Deines, Fuselier, Long, Swisher, Tu). Let N = 3, 4, 6 and other notations and

assumptions as above, in particular, N - i + j + k, i, j, k. Then for each λ ∈ Q, End0(J
prim
λ )

contains a quaternion algebra over Q if and only if

B

(
N − i
N

,
N − j
N

)/
B

(
k

N
,
2N − i− j − k

N

)
∈ Q.

Idea of the proof. The traces of σλ,` are −2P1 = −J · 2F1 functions. Due to the Euler transformation

(see Equation (30) of Section 1), 2F1 and 2F1 in the current context only differ by a finite character.
So we want to know when J/J is a finite order character. Yamaoto’s result (see Theorem 1.2 of
Section 2) says if it is the case then the above ratio is algebraic. Conversely, we use a result of
Wüstholz. �

Theorem 3.6 (Wüstholz). Let A be an abelian variety isogenous over Q to the direct product
An1

1 ×· · ·×A
nk
k of simple, pairwise non-isogenous abelian varieties Aµ defined over Q, µ = 1, . . . , k.

Let ΛQ(A) denote the space of all periods of differentials, defined over Q, of the first kind and the

second on A. Then the vector space V̂A over Q generated by 1, 2πi, and ΛQ(A), has dimension

dimQ V̂A = 2 + 4

k∑
ν=1

dimA2
ν

dimQ(End0Aν)
,

where End0(Aν) = End(Aν)⊗Z Q.

Example 3.3. For the smooth model Xλ := X
[6;4,3,1]
λ , the new space H0(X(λ),Ω1)prim is spanned

by ω1 = dx
y = x−2/3(1− x)−1/2(1− λx)−1/6dx, ω5 = x3(1−x)2

y5
dx = x−1/3(1− x)−1/2(1− λx)−5/6dx

as in Example 3.2. The corresponding periods as in Equation (7) are
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τ1 =

∫
γ01

ω1 ∼ B
(

1

3
,
1

2

)
2F1

[1
6

1
3
5
6

; λ

]
,

τ ′1 =

∫
γ1/λ∞

ω1 ∼ B
(

1

3
,
5

6

)
2F1

[1
2

1
3
7
6

;λ

]
,

τ5 =

∫
γ01

ω5 ∼ B
(

2

3
,
1

2

)
2F1

[5
6

2
3
7
6

;λ

]
,

τ ′5 =

∫
γ1/λ∞

ω5 ∼ λ−
1
6B

(
2

3
,
1

6

)
2F1

[1
2

2
3
5
6

;λ

]
,

where x ∼ y means x = cy for some c ∈ Q.

Exercise 3.1. 1). Use Euler’s transformation formula to verify that

τ ′5/τ1 ∼ α(λ)
Γ
(
2
3

)
Γ
(
1
6

)
Γ
(
1
3

)
Γ
(
1
2

) , τ ′1/τ5 ∼
Γ
(
1
3

)
Γ
(
5
6

)
α(λ)Γ

(
2
3

)
Γ
(
1
2

) ,
where α(λ) = (−1)

2
3λ−

1
6 (1− λ)−

1
3 .

2). Use properties of Gamma functions to verify both τ ′5/τ1, τ
′
1/τ5 ∈ Q.

The corresponding period matrix of J
[6;4,3,1],prim
λ is given by

Λλ =

(
τ1 ζτ1 β1τ5 ζβ1τ5
τ5 ζ−1τ5 β2τ1 ζ−1β2τ1

)
where ζ = ζ6 and

τ1 = 2P1

[1
6

1
3
5
6

; λ

]
, τ5 = 2P1

[5
6

2
3
7
6

; λ

]
,

β1 = (−1)−2/3
(
λ1/6(1− λ)1/3

3
√

2
)
, β2 = (−1)2/3

(
λ−1/6(1− λ)−1/3

3
√

4
)
,

satisfying β1β2 = 2. From this, we can see that the endomorphisms(
ζ 0
0 ζ−1

)
,

(
0 β1
β2 0

)
are contained in the endomorphis ring of the lattice Λλ, End0(Λλ). For a generic choice of λ ∈ Q
(non-CM case), these two generate End0(J

new
λ ) which is isomorphic to

(
−3,2
Q

)
.

The traces of the Galois representations σλ,` and σλ,` in Theorem 3.4 correspond to

−P
({

1

6
,
1

3

}
,

{
1,

5

6

}
;λ

)
, −P

({
5

6
,
2

3

}
,

{
1,

7

6

}
;λ

)
,

respectively. Furthermore, Proposition 2.8 of Part II implies that

P
({

5
6 ,

2
3

}
,
{

1, 76
}

;λ
)

P
({

1
6 ,

1
3

}
,
{

1, 56
}

;λ
) = ω

−N(℘)−1
6

℘ (λ)ω
−N(℘)−1

3
℘ (λ− 1)

J

(
ω
N(℘)−1

6
℘ , ω

2
3
(N(℘)−1)

℘

)
J

(
ω
N(℘)−1

3
℘ , φ

)
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is a character since

J

(
ω
N(℘)−1

6
℘ , ω

2
3
(N(℘)−1)

℘

)
J

(
ω
N(℘)−1

3
℘ , φ

) =

g

(
ω
N(℘)−1

6
℘

)
g

(
ω

2
3
(N(℘)−1)

℘

)
g

(
ω
N(℘)−1

3
℘

)
g (φ)

= ω
−N(℘)−1

3
℘ (2),

which is the finite field version of the value τ ′5/τ1.

Exercise 3.2. Verify the above using the multiplication formula g(χ)g(φχ) = g(χ2)g(φ)χ(4).

3.4. Weil’s theorem on Jacobi-sums. Let a, b ∈ Q such that a+ b, a− b /∈ Z. Let M = lcd(a, b)
and K = Q(ζM ) as above.

Theorem 3.7 (Weil [27]). The function from the set of all fractional ideals of Z[ζM ] coprime to
M to C× defined by the following formula is a Hecke (or Grössencharacter, see [27] or Definition
5.3 of [11]).

Ja,b(℘) = −J(ω(q−1)a
℘ , ω(q−1)b

℘ ),

where q = |Z[ζM ]/℘|, ω℘ is chosen so that (3) is satisfied. In terms of Galois representation,
this means for any fixed prime `, there exists a 1-dimensional Galois representation of χa,b,` of

G(M) → Q` which is unramified outside of primes dividing M such that at any prime ℘ coprime
to M ,

(8) χa,b,`(Frob℘) = −J(ω(q−1)a
℘ , ω(q−1)b

℘ ).

Example 3.4. For example, the Hekce character in Example 2.3 (of Part 2: Section 2.8) is the
Grössencharacter in above theorem with a = 1

4 , b = 1
2 . More precisely, for each prime ideal p of

Z[i] coprime to 4, let q be the norm of p and ψp be the order-4 multiplicative character such that

ψp(x) ≡ x
q−1
4 mod p for each x ∈ Z[

√
−1]. The map that assigns −

∑
x mod p

ψp(x)ψ2
p(1 − x) =

−J(ψp, ψ
2
p) to p extends to a Hecke (or Grössencharacter) character ψ of GQ(

√
−1) = G(4).

3.5. Katz’s theorem. The connection between P(HD, ·) and Galois representation ρHD,` is the
following result of Katz.

Theorem 3.8 (Katz [12, 13]). Let ` be a prime. Given a primitive pair of multi-sets α =
{a1, · · · , an}, β = {1, b2, · · · , bn} with M = lcd(α ∪ β), for any datum HD = {α, β;λ} with
λ ∈ Z[ζM , 1/M ] r {0} the following hold.

i). There exists an `-adic Galois representation ρHD,` : G(M) → GL(Wλ) unramified almost
everywhere such that at each prime ideal ℘ of Z[ζM , 1/(M`λ)] with norm N(℘) = |κ℘|,

(9) TrρHD,`(Frob℘) = (−1)n−1ω(N(℘)−1)a1
℘ (−1)P(α, β; 1/λ;κ℘),

where Frob℘ stands for the geometric Frobenius conjugacy class of G(M) at ℘.
iia). When λ 6= 0, 1, the dimension d := dimQ`

Wλ equals n and all roots of the character-

istic polynomial of ρDH,`(Frob℘) are algebraic integers and have the same absolute value

N(℘)(n−1)/2 under all archimedean embeddings.
iib). When λ 6= 0, 1 and HD is self-dual, then Wλ admits a symmetric (resp. alternating) bilinear

pairing if n is odd (resp. even).
8
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iii). When λ = 1, dimension d equals n−1. In this case if HD is self-dual, then ρHD,` has a sub-

representation ρprimHD,` of dimension 2bn−12 c whose representation space admits a symmetric

(resp. alternating) bilinear pairing if n is odd (resp. even). All roots of the characteristic

polynomial of ρprimHD,`(Frob℘) have absolute value N(℘)(n−1)/2, the same as (iia).

Here and in what follows, when ord℘λ ≥ 0, the λ in P(α, β;λ;κ℘) is viewed as an element in the
residue field κ℘.

Remark 3. The sign ω
(N(℘)−1)a1
℘ (−1) as ℘ varies defines a character φ(M,a1) of G(M), which

is trivial unless ord2 M = −ord2 a1 = r ≥ 1. In the latter case it is the quadratic character

corresponding to the Hilbert’s quadratic norm residue symbol
(
ζ2r
·

)
2

on the field Q(ζM ).

3.6. When the hypergeometric data are defined over Q. In this case ρHD,` in the previous
theorem is invariant under the twist by any τ ∈ GQ/G(M), so it can be lifted to a representation
of GQ. As usual, the lifting is not unique, it is up to tensoring with any 1-dimensional character of
the abelian group GQ/G(M) ∼= (Z/MZ)×. Due to [4, Theorem 1.5] by Beukers, Cohen and Mellit,
one can choose the one particular lifting which corresponds to a submotive of Vα,β(ψp1+···+ps) (see
Equation (22) of Part II).

Theorem 3.9 (Katz, Beukers-Cohen-Mellit). Let α = {a1, · · · , an}, β = {1, b2, · · · , bn} be a prim-
itive pair with M = lcd(α ∪ β), and let λ ∈ Z[1/M ] r {0}. Suppose the hypergeometric datum
HD = {α, β;λ} is defined over Q. Assume that exactly m elements in β are in Z. Then, for each
prime `, there exists an `-adic representation ρBCMHD,` of GQ with the following properties:

i). ρBCMHD,` |G(M)
∼= ρHD,`.

ii). For any prime p - ` ·M such that ordpλ = 0,

(10) Tr ρBCMHD,` (Frobp) = φ(M,a1)(Frobp)χ(α, β;Fp)Hp(α, β; 1/λ) · p(n−m)/2 ∈ Z.

iii). When λ = 1, ρBCMHD,` is (n − 1)-dimensional and it has a subrepresentation, denoted by

ρBCM,prim
HD,` , of dimension 2bn−12 c whose representation space admits a symmetric (resp. al-

ternating) bilinear pairing if n is odd (resp. even). All roots of the characteristic polynomial

of ρBCM,prim
HD,` (Frobp) have absolute value p(n−1)/2.

The character φ(M,a1) in Remark 3 extends to a character of GQ. The character φ(M,a1) in
Theorem 3.9 refers to the extension with minimal conductor. When it is nontrivial, that is, when
ord2 M = −ord2 a1 = r ≥ 1, it has conductor 2r+1. In particular, when ord2 M = −ord2 a1 = 1,

φ(M,a1)(Frobp) =
(
−1
p

)
is given by the Legendre symbol at odd primes p.

Given α = {a1, ..., an} and β = {b1, ..., bn} with ai, bj ∈ Q ∩ [0, 1) defined over Q and M =
lcd(α ∪ β), the following step function on the interval [0, 1) is introduced in [18] by Long:

eα,β(x) :=
n∑
i=1

−bai − xc − bx+ bic .

The value of eα,β(x) jumps up (resp. down) only at ai (resp. 1− bj). When p is an odd prime not

dividing M , 0 ≤ k < p − 1 is an integer and the pair α, β is defined over Q, eα,β( k
p−1) gives the

collective exponent of p in the kth summand of Hp(α, β;λ)

(11) Hq(α, β;λ) :=
1

1− q

q−2∑
k=0

n∏
j=1

g(ωk+(q−1)aj )g(ω−k−(q−1)bj )

g(ω(q−1)aj )g(ω−(q−1)bj )
ωk
(
(−1)nλ

)
.
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Moreover when the pair α, β is defined over Q, the shape of the graph is independent of p as long
as it is coprime to lcd(α, β).

We will compare it with the plot consisting of {e2πiaj}nj=1 and {e2πibj}nj=1 on the unit circle
mentioned in Lecture I. Both graphs encode the same information, while the step function represents
multiplicity more clearly.

Example 3.5. For α = {1/5, 2/5, 3/5, 4/5}, β = {0, 0, 0, 0}

The weight w(HD) of a datum HD = {α, β;λ} is defined as

(12) w(HD) = w(α, β) := max eα,β(x)−min eα,β(x).

In order to compare what can be computed by Magma’s hypergeometric motive package, we
further introduce the adjustment factor

(13) t := −min{eα,β(x) | 0 ≤ x < 1} − n−m
2

,

where n = |α|,m = #{bj | bj ∈ Z}.

Example 3.6. α = {12 ,
1
2 ,

1
6 ,

5
6} and β = {0, 0, 13 ,

2
3}

In this case max = 2,min = 0,max−min = 2, n = 4,m = 2, t = −1.
10



For HD defined over Q, there is an efficient Magma program called “Hypergeometric Motives over
Q” implemented by Watkins (see [26]) which computes the characteristic polynomial of ρBCM{α,β;λ},`[t]

(resp. ρBCM,prim
{α,β;λ},` [t]) at Frp, the inverse of Frobp, for p -M` efficiently when λ 6= 0, 1 (resp. λ = 1),

where t as in (13). Here ρ[t] denotes the weight-t Tate twist of a representation ρ of GQ.

Example 3.7. H:=HypergeometricData([1/5,2/5,3/5,4/5],[1,1,1,1]);

[w = 4, t = 0]
Factorization(EulerFactor(H,1,7));

The output is < 343 ∗ $.12 − 6 ∗ $.1 + 1, 1 >

Factorization(EulerFactor(H,-1,7));

The output is < 117649 ∗ $.14 + 8575 ∗ $.13 + 350 ∗ $.12 + 25 ∗ $.1 + 1, 1 >, where 117649 = 76.

H2:=HypergeometricData([1/2,1/2,1/6,5/6],[0,0,1/3,2/3]);

[w = 2, t = −1]

Factorization(EulerFactor(H2,1,5));

The output is < 5 ∗ $.12 + 2 ∗ $.1 + 1, 1 >

Factorization(EulerFactor(H2,-1,5));

The output is
< 5 ∗ $.12 − 4 ∗ $.1 + 1, 1 >,
< 5 ∗ $.12 + 2 ∗ $.1 + 1, 1 >

3.7. Modularity results. Note that Theorem 3.9 implies that one can study a whole category
of explicitly computatable Galois representations. They can be used to test standard conjectures
or to discover new ones. For instance, according to Langlands general philosophies, these Galois
representations are automorphic. In the remaining discussion, we focus on degree-2 irreducible
subrepresentations constructed from hypergeometric data defined over Q.

Question 2. What do we get degree-2 irreducible subrepresentations of G(M) or GQ from a hy-
pergeometric datum HD = {α, β;λ}?

In view of Theorem 3.9, here are some candidates.

• When |α| = |β| = 2, λ 6= 0, 1.
• When |α| = |β| = 3, self-dual and λ = 1; or when HD has a CM background in view of

Clausen formula (Section 1.10.1 (28)). See Proposition 3 of [16] for some modularity results.
• When |α| = |β| = 4, self-dual and λ = 1. See [20, Theorem 2], [16, Theorem 4] for some

modularity results.
• Other constructions from hypergeometric formulas, including 7 cases in which |α| = |β| = 6,
λ = 1 based on Whipple’s formula (Section 1.10.6 (39)).

Remark 4. When α = {12 ,
1
2 ,

1
2 ,

1
2}, β = {1, 1, 1, 1}, λ = −1, see [21] by McCarthy and Pananikolas

for a result of how the 4-dimensional Galois representation is related to a Siegel modular form.

Question 3. How to construct degree-3 irreducible subrepresentations of GQ from primitive hyper-
geometric data HD = {α, β;λ}?

A natural source of such representations comes from |α| = |β| = 3 and λ 6= 0, 1. By Clausen
formula (Theorem 2.17), they are symmetric squares of 2-dimensional representations of G(M)
when α, β are self-dual.

To obtain modularity result for degree-2 Galois representations of GQ, we use Theorems 3.1 and
3.2 recalled earlier.
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3.7.1. For HD = {α = {r1, r2, 1 − r1, 1 − r2}, β = {1, 1, 1, 1};λ = 1}. When α is defined over Q,
note that by Theorems 3.8 and 3.9, ρBCMHD,` of GQ is 3-dimensional which decomposes into a direct

sum of 2 subrepresentations ρBCM,prim
HD,` ⊕ ρBCM,1

HD,` . Among them ρBCM,prim
HD,` is 2-dimensional and

ρBCM,1
HD,` is 1-dimensional.

In this way we know that ρBCM,prim
HD,` is modular in each case and are able to identify the cor-

responding weight-4 normalized Hecke eigenforms fα. The other piece ρBCM,1
HD,` is of the form χαε`

where χα is a finite order character and ε` stands for the `-adic cyclotomic character. The identi-
fication of χα boils down to computing the values of Hp(α, β; 1)− ap(fα).

Theorem 3.10 (Long, Tu, Yui and Zudilin). Let p > 5 be a prime and α and β as above. Then
the following equality holds:

Hp(α,β; 1) = ap(fα) + χα(p) · p,
where ap(fα) is the p-th coefficient of the normalized Hecke eigenform and χα is a Dirichlet char-
acter of order at most 2, whose precise description is given in Table 1.

Table 1. The Hecke eigenforms for rigid hypergeometric Calabi–Yau threefolds

(r1, r2) fα(τ) level LMFDB label χα

(12 ,
1
2) η42η

4
4 8 = 23 8.4.a.a χ1

(12 ,
1
3) η146 /(η

3
2η

3
18)− 3η32η

2
6η

3
18 36 = 22 · 32 36.4.a.a χ3

(12 ,
1
4) η164 /(η

4
2η

4
8) 16 = 24 16.4.a.a χ2

(12 ,
1
6)

η34η
6
6η

2
18/(η

2
12η36)− 3η22η

6
6η

3
36/(η4η

2
12)

+ 8η32η
6
12η

2
36/(η

2
6η18)− 16η1212/η

4
6

72 = 23 · 32 72.4.a.b χ1

(13 ,
1
3) η31η

4
3η9 − 27η3η

4
9η

3
27 27 = 33 27.4.a.a χ1

(13 ,
1
4) η83 9 = 32 9.4.a.a χ6

(13 ,
1
6) η106 /η

2
18 − 27η1018/η

2
6 + 9η76η

3
54/η

2
18 − 9η32η

7
18/η

2
6 108 = 22 · 33 108.4.a.a χ3

(14 ,
1
4) η104 /η

2
8 − 8η108 /η

2
4 32 = 25 32.4.a.a χ1

(14 ,
1
6) η3212/(η

12
6 η

12
24) + 16η46η

4
24 144 = 24 · 32 144.4.a.f χ2

(16 ,
1
6) 216 = 23 · 33 216.4.a.c χ1

(15 ,
2
5) η105 /(η1η25) + 5η21η

4
5η

2
25 25 = 52 25.4.a.b χ5

(18 ,
3
8) 128 = 27 128.4.a.b χ2

( 1
10 ,

3
10) 200 = 23 · 52 200.4.a.f χ1

( 1
12 ,

5
12) 864 = 25 · 33 864.4.a.a χ1

Below we discuss two other classical formulas in light of Galois representations.

3.8. Clausen formula.

2F1

[
c− s− 1

2 s

c
; λ

]2
= 3F2

[
2c− 2s− 1 2s c− 1

2

2c− 1 c
; λ

]
.

This is an Orr type formula which expresses a product of two hypergeometric function in terms
of another, see [25, §2.5]. As mentioned in Section 1, we can check the symmetric square of the
Riemann scheme for the 2F1 hypergeometric function on the left is the same as the Riemann scheme
of the 3F2 on the right. In [9], Evans and Greene showed the following formula.
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Theorem 3.11 (Evans-Greene). Let C, S ∈ F̂×q . Assume that C 6= φ, and S2 6∈
{
ε, C,C2

}
. Then

for λ 6= 1,

2F1

[
CSφ S

C
; λ

]2
= 3F2

[
C2S

2
S2 Cφ

C2 C
; λ

]

+ φ(1− λ)C(λ)

(
J(S

2
, C2)

J(C, φ)
+ δ(C)(q − 1)

)
.

In terms of the Galois representation, this formula says the tensor product of the degree-2 Galois
representation corresponds to {c− s− 1

2}, {1, c}, which is 4-dimensional, which decomposes into its
symmetric square, whose trace function is the 3F2 on the right plus its alternating square, whose

trace function is φ(1 − λ)C(λ)J(S
2
,C2)

J(C,φ)
when C 6= ε. In this formula, the field field version closely

resembles the classical one.
Next is a formula of Whipple.

(14) 7F6

[
a 1 + a

2 c d e f g
a
2 1 + a− c 1 + a− d 1 + a− e 1 + a− f 1 + a− g

; 1

]
=

Γ(1 + a− e)Γ(1 + a− f)Γ(1 + a− g)Γ(1 + a− e− f − g)

Γ(1 + a)Γ(1 + a− f − g)Γ(1 + a− e− f)Γ(1 + a− e− g)

· 4F3

[
a e f g

e+ f + g − a 1 + a− c 1 + a− d
; 1

]
,

when both hand sides terminate.
Note that

• The parameter set of 7F6(1) is not primitive, i.e. 1 + a
2 and a

2 are differed by 1
• The 7F6(1) is well-posed, meaning the upper and lower parameters sum to 1 + a in each

column. Namely α = {a1, · · · , a7}, β = {1 + a− ai, i = 1, · · · , 7}.
Now we consider how to get self-dual parameter sets after cancelling 1 + a

2 and a
2 out of the left

hand side of this Whipple’s formula.

• α being self-dual, “means” if a ∈ α, 1− a is also in α. For this reason we assume

c+ d = 1, f + g = 1.

• β = {1 + a− ai} being self-dual requires a = 1
2 and consequently e = 1

2 .

Thus we let

a =
1

2
, c+ d = 1, f + g = 1, and e =

1

2

(
−p

2

)
The choice of e is to make it into a negative integer to guarantee both hand sides terminate while
being p-adically close to 1

2 .

7F6

[
1
2

5
4 c 1− c 1−p

2 f 1− f
1
4

3
2 − c

1
2 + c 1 + p

2
3
2 − f

1
2 + f

; 1

]
=

Γ(p2)Γ(32 − f)Γ(12 + f)Γ(p2)

Γ(12)Γ(12)Γ(1 + p
2 − f)Γ(p2 + f)

×

(
p · 4F3

[
1
2

1−p
2 f 1− f

1− p
2

3
2 − c

1
2 + c

; 1

])
.
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Consequently, the hypergeometric datum corresponds to the left hand side is

HD1(c, f) :={
α6(c, f) :=

{
1

2
, c, 1− c, 1

2
, f, 1− f

}
, β6(c, f) =

{
1,

3

2
− c, 1

2
+ c, 1,

3

2
− f, 1

2
+ f

}
; 1

}
;

while the hypergeometric datum corresponds to the right hand side is

HD2(c, f) :=

{
α4(f) :=

{
1

2
,
1

2
, f, 1− f

}
, β4(c) :=

{
1, 1,

3

2
− c, 1

2
+ c

}
; 1

}
.

We now get to Whipple’s formula in terms of Galois representations
For (c, f) ∈ Q2 such that HD1, HD2 both primitive, we let M(c, f) := lcd(HD2), and N(c, f) :=

lcd(1+2f−2c
4 , 3−2f−2c4 ) (which is due to an application of the Clausen formula, for details, see [16]).

Either N(c, f) = 2M(c, f) or N(c, f) = M(c, f). The corresponding Galois groups either the same,
or G(N) is an index-2 subgroup of G(M).

From Theorem 3.8, we know ρHD1(c,f),` is a 6−1 = 5-dimensional representation of G(M) which
decomposes into a 4-dimensional primitive part, plus another 1-dimensional linear part. Similarly,
ρHD2(c,f),` is a 3-dimensional Galois representation of G(M) which decomposes into a 2-dimensional
primitive part plus a 1-dimensional linear part.

Theorem 3.12 (Li, Long, Tu [16]). Assume (c, f) ∈ Q2 such that HD1, HD2 both primitive. Given
any prime `,

ρHD1(c,f),`|G(N(c,f))
∼= (ε` ⊗ ρHD2(c,f),`)|G(N(c,f)) ⊕ σsym,`

where ε` is the `-adic cyclotomic character, and σsym,` is a 2-dimensional representation of G(N)
that can be computed explicitly.

Unlike the Clausen formula, the finite field analogue of Whipple is not as parallel as the classical
formula, whose right hand side only corresponds to the trace function of (ε`⊗ ρHD2(c,f),`)|G(N(c,f)).
The other component corresponds to σsym,` is usually highly nontrivial.

In [16], the authors further considered for what choices of (c, f) the corresponding HD1 is both
primitive and defined over Q. There are 7 such (un-ordered) cases. In each case, the authors
described ρBCMHD1(c,f),`

(Frobp) by expressing its trace function in terms of 2 modular forms and a

linear character. The information is listed in the next theorem.

Theorem 3.13 (Li, Long, and Tu). For each pair (c, f) in the list, ρBCMHD1(c,f),`
is modular (using

the LMFDB label).

(c, f) Tr ρBCMHD1(c,f),`
(Frobp)

(12 ,
1
2) ap(f8.6.a.a) + p · ap(f8.4.a.a) +

(
−1
p

)
p2(

1
2 ,

1
3

)
ap(f4.6.a.a) + p · ap(f12.4.a.a) +

(
3
p

)
p2

(13 ,
1
3) ap(f6.6.a.a) + p · ap(f18.4.a.a) +

(
−1
p

)
p2

(12 ,
1
6) p · ap(f8.4.a.a) + p · ap(f24.4.a.a) +

(
3
p

)
p2

(16 ,
1
6) p2 · ap(f24.2.a.a) + p2 · ap(f72.2.a.a) +

(
−1
p

)
p2

(15 ,
2
5) p · ap(f10.4.a.a) + p · ap(f50.4.a.d) +

(
−5
p

)
p2

( 1
10 ,

3
10) p2 · ap(f40.2.a.a) + p2 · ap(f200.2.a.b) +

(
−5
p

)
p2

Remark 5. 1. In the second column, the first modular form corresponds to an extension of σsym,`
to GQ, while the second modular form corresponds to the extension of ρBCM,prim

HD2(c,f),`
to GQ.
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2. In the proof of this formula, the character sum formula stated in Lemma 2.14 of Section 2
plays an important role.

Exercise 3.3. For each pair (c, f),
1). Compute M(c, f) and N(c, f), when will they be the same?
2). Draw the step function for each of the HD1(c, f), compute the corresponding weight function

and compare it with the weight of the modular forms listed in the table.
3). If we swap c and f , what happens to HD1(c, f) and HD2(c, f)?

When (c, f) = (12 ,
1
2), Hp(HD1) = ap(f8.6.a.a) + p · ap(f8.4.a.a) +

(
−1
p

)
p2. It was first was conjec-

tured by Koike [14] and was shown by Frechette-Ono-Papanikolas in [10].
Mortenson conjectured that for each odd prime p

6F5

[1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1 1
; 1

]
p−1

?≡ ap(f8.6.a.a) mod p5.

The modulo p3 claim was proved by Osburn, Straub, and Zudilin in [22].

Corresponds to Whipple formula’s left hand side, numerically it is found that

7F6

[1
2

5
4

1
2

1
2

1
2

1
2

1
2

1
4 1 1 1 1 1

; 1

]
p−1

?≡ p · ap(f8.4.a.a) mod p4.

The corresponding complex versions at infinity are

Theorem 3.14. [Li, Long, Tu, [16]]

6F5

[ 1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1 1
; 1

]
= 16

∫ −1/2+i/2

1/2+i/2

τ2f8.6.a.a

(τ
2

)
dτ

7F6

[ 1
2

5
4

1
2

1
2

1
2

1
2

1
2

1
4 1 1 1 1 1

; 1

]
=

32i

π

∫ −1/2+i/2

1/2+i/2

τf8.4.a.a(
τ

2
)dτ,

where the path is the hyperbolic geodesic from 1+i
2 to −1+i

2 , clockwise, which corresponds to an explicit circle
in term of an modular function.

The proof of Theorem 3.14 was based on the following idea of Zagier in [29]. Observe that

4F3

[1
2

1
2

1
2

1
2

1 1 1
; 1

]
=

1

2πi

∮
|t|=1

2F1

[1
2

1
2

1
; t

]
2F1

[1
2

1
2

1
; 1/t

]
dt

t
.

Letting t to be the modular lambda function, Zagier obtained that

4F3

[1
2

1
2

1
2

1
2

1 1 1
; 1

]
=

16

π2
L(f8.4.a.a, 2).
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