
HYPERGEOMETRIC FUNCTIONS, CHARACTER SUMS AND

APPLICATIONS

LING LONG AND FANG-TING TU

Abstract. We summarize several aspects of hypergeometric functions based on our recent work
[8, 7, 14, 22, 23, 24, 25, 26] and our understanding of the subjects.

1. Hypergeometric functions over finite fields, 1st approach

In this section, we will approach hypergeometric functions over finite fields in a way parallel to
the development recalled above. For details, see [14].

1.1. Gauss sums and Jacobi sums. To begin, fix an odd prime p and let Fq be a finite field of
size q, where q = pe. Recall that a multiplicative character χ on F×q is a group homomorphism

χ : F×q → C× (or C×p ),

and the set F̂×q of all multiplicative characters on F×q forms a cyclic group of order q − 1 under
multiplication. Throughout, we fix the following notations

ε := the trivial character in F̂×q

φ := the quadratic character in F̂×q ,

so that ε(a) = 1 for all a 6= 0, and φ is nontrivial such that φ2 = ε. Use χ to denote the complex

conjugate or the inverse of χ. We extend the definition of each character χ ∈ F̂×q to all of Fq by
setting χ(0) = 0, including ε(0) = 0. In some textbooks, such as [2] use a different convention that
ε(0) = 1.

For δ for χ ∈ F̂×q , or x ∈ Fq, define

δ(χ) := δε(χ) :=

{
1 if χ = ε,

0 if χ 6= ε;

δ(x) := δ0(x) :=

{
1 if x = 0,

0 if x 6= 0.

This definition will allow us to describe formulas which hold for all characters, without having to
separate cases involving trivial characters.

The orthogonal properties:

• ∑
x∈Fq

Φ(x) = 0.

This note is based on Fang-Ting Tu’s course on “Hypergeometric Functions” given at LSU in Fall 2020 and
Ling Long’s mini-lectures on “Hypergeometric Functions, Character Sums and Applications” given at University of
Connecticut in 2021. Comments and suggestions will be appreciated. Special thanks to Dr. Bao Pham for his inputs.
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• For χ, ϕ ∈ F̂×q
〈χ, ϕ〉 =

1

q − 1

∑
x∈F×

q

χ(x)ϕ(x) = δ(χϕ).

Let ζN := e2πi/N . We fix a primitive pth root of unity ζp and A,B ∈ F̂×q . We define the Gauss
sum by

g(A) :=
∑
x∈F×

q

A(x)Φ(x), Φ(x) := ζ
Tr

Fq
Fp (x)

p

where Tr
Fq

Fp
(x) := x+ xp + xp

2
+ · · ·+ xp

e−1
is the trace of x viewed as a surjective linear map from

Fq to Fp. The Gauss sum is the finite field analogue of the gamma function. It follows from the
orthogonality of the additive character Φ(x) that

g(ε) = −1.

The Gauss sums depends on the choice of the additive character Φ(x), which depends on the
primitive root ζp. Like the Gamma function, Gauss sums also satisfy reflection formula

g(A)g(A) = qA(−1)− (q − 1)δ(A)(1)

and the following multiplication formula. As a corollary, when A 6= ε,

|g(A)| = √q.

Theorem 1.1 (Hasse-Davenport Relation, see Theorem 11.3.5 of [2]). Let m ∈ N and q = pe be a

prime power with q ≡ 1 (mod m). For any multiplicative character ψ ∈ F̂×q , we have∏
χ∈F̂×

q
χm=ε

g(χψ) = −g(ψm)ψ(m−m)
∏
χ∈F̂×

q
χm=ε

g(χ).

In [34], Yamamoto proved a conjecture of Hasse which says the following:

Theorem 1.2 (Yamamoto). Let M ≥ 4 be an even integer, p ≡ 1 (mod M) be a prime, then the
reflection formula and the multiplication formulas by the divisors n of M are the only two types of

relations connecting the Gauss sums g(χ) for χ ∈ F̂×p satisfying χM = ε, when considered as ideals
in the ring of algebraic integers.

Next we define the finite field analogue of the Beta function, the Jacobi sum, as follows. For

A,B ∈ F̂×q

J(A,B) :=
∑
x∈Fq

A(x)B(1− x).

In relation to Gauss sums

J(A,B) =
g(A)g(B)

g(AB)
+ (q − 1)B(−1)δ(AB).

In particular,

|J(A,B)| =


√
q, if A,B,AB 6= ε,

q − 2, if A = B = ε,

1, otherwise.
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We will use the following notation(
A

B

)
:= −B(−1)J(A,B).

1.2. Lagrange inversion. Below is a finite field analogue of the Lagrange inversion formula. We
state the version where the basis of complex valued functions on the finite field is comprised of all

multiplicative characters in F̂×q , together with δ(x).

Theorem 1.3 ([18] Theorem 2.7). Let p be an odd prime, q = pe, and suppose f : Fq → C and
g : Fq → Fq are functions. Then

∑
y∈Fq

g(y)=g(x)

f(y) = δ(g(x))
∑
y∈Fq

g(y)=0

f(y) +
∑
χ∈F̂×

q

fχχ(g(x)),

where

fχ =
1

q − 1

∑
y∈Fq

f(y)χ(g(y)).

Compared with the classical formula (Day 1: Theorem 1.6), the assumptions f(0) = 0, f ′(0) 6= 0,
i.e. the map being one-to-one near 0, are not required. Greene pointed out that it is also the
reason why the finite field version cannot be used to determine coefficients when f is not a one-to-
one function.

From the Lagrange inversion, one can obtain a finite field version of the binomial theorem (Day
1: Equation (8)).

Lemma 1.4. For any multiplicative character A ∈ F̂×q and x ∈ Fq, we have

A(1− x) = δ(x) +
1

q − 1

∑
χ∈F̂×

q

J(Aχ, χ)χ(−x) = δ(x) +
−1

q − 1

∑
χ

(
Aχ

χ

)
χ(x).

We will end this discussion by another Hasse-Davenport relation. Let Fq be a finite field, Fqr be

its degree-r extension of Fq. Let Tr
Fqr

Fq
and N

Fqr

Fq
be the trace and norm maps from Fqr to Fq. Then

for any χ ∈ F̂×q , χr(x) = χ(N
Fqr

Fq
(x)) is a multiplicative character for F×qr .

Theorem 1.5 (Hasse and Davenport). Notation as above. Let g(χ) be the Gauss sum of χ in Fq,
and g(χr) be the Gauss sum of χr in Fqr . Then,

(2) − g(χr) = (−g(χ))r.

See [19] by Ireland-Rosen for a proof.
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1.3. A dictionary between the complex and finite field settings. We now list a dictionary
that we will use for convenience. Let N ∈ N, and a, b ∈ Q with common denominator N .

1
N → an order N character ηN ∈ F̂×q

a = i
N , b = j

N → A,B ∈ F̂×q , A = ηiN , B = ηjN

xa → A(x)

xaxb = xa+b → A(x)B(x) = AB(x)

a+ b → A ·B
−a → A

Γ(a) → g(A)

(a)n = Γ(a+ n)/Γ(a) → (A)χ = g(Aχ)/g(A)

B(a, b) → J(A,B)∫ 1
0 dx →

∑
x∈F

Γ(a)Γ(1− a) = π
sin aπ , a /∈ Z → g(A)g(A) = A(−1)q, A 6= ε

(ma)mn = mmn
m∏
i=1

(
a+

i

m

)
n

→ (Am)ψm = ψ(mm)

m∏
i=1

(Aηim)ψ

1.4. Finite field period functions and normalized period functions. We now introduce a
finite field version of P - and F -functions parallel to the classical case. We start with a natural
analogue to 1P0 (Day 1: Equation(12)) by letting

(3) 1P0[A;λ; q] := A(1− λ),

for A ∈ F̂×q and λ ∈ Fq. We inductively define

(4) n+1Pn
[
A1 A2 . . . An+1

B2 . . . Bn+1
;λ; q

]
:=∑

y∈Fq

An+1(y)An+1Bn+1(1− y) · nPn−1
[
A1 A2 . . . An

B2 . . . Bn
;λy; q

]
,

which corresponds to (Day 1: Equation(15)) via the dictionary in §1.3. We note the asymmetry
among the characters Ai (resp. Bj) in the definition. Part of the reason we start with the analogue
of the period, rather than the hypergeometric function is because the periods are related to point
counting. When there is no ambiguity in our choice of field Fq, we will leave out the q in this
notation and simply write

n+1Pn
[
A1 A2 . . . An+1

B2 . . . Bn+1
;λ

]
:= n+1Pn

[
A1 A2 . . . An+1

B2 . . . Bn+1
;λ; q

]
.

When n = 1 we have,

2P1

[
A B

C
; λ

]
=
∑
x∈Fq

B(x)BC(1− x)A(1− λx).
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By Lemma 1.4, we can rewite 2P1 in terms of Jacobi sums as follows:

2P1

[
A B

C
; λ

]
=


J(B,CB), if λ = 0
B(−1)

q − 1

∑
χ∈F̂×

q

J(Aχ, χ)J(Bχ,Cχ)χ(λ), if λ 6= 0

=


J(B,CB), if λ = 0
BC(−1)

q − 1

∑
χ∈F̂×

q

(
Aχ

χ

)(
Bχ

Cχ

)
χ(λ), if λ 6= 0.

A general formula for the n+1Pn period function highlighting this symmetry is:

n+1Pn
[
A1 A2 . . . An+1

B2 . . . Bn+1
;λ

]
=

(−1)n+1

q − 1
·

(
n+1∏
i=2

AiBi(−1)

) ∑
χ∈F̂×

q

(
A1χ

χ

)(
A2χ

B2χ

)
· · ·
(
An+1χ

Bnχ

)
χ(λ)

+ δ(λ)

n+1∏
i=2

J(Ai, AiBi).

This is similar to Greene’s definition [17, Def. 3.10], though we note that our binomial coefficient
differs from Greene’s by a factor of −q, and we define the value at λ = 0 differently.

In the classical case, a hypergeometric function is normalized to have constant term 1, obtained
from the corresponding n+1Pn function divided by its value at 0. Here we similarly normalize the
finite field period functions. Define

(5) 2F1

[
A B

C
; λ

]
=

1

J(B,CB)
2P1

[
A B

C
; λ

]
.

The 2F1 function satisfies

1) 2F1

[
A B

C
; 0

]
= 1;

2) 2F1

[
A B

C
; λ

]
= 2F1

[
B A

C
; λ

]
, if A, B 6= ε, and A, B 6= C. Intuitively, with the

additional Jacobi sum factor one can rewrite the right hand side of (5) using the finite field
analogues of rising factorials with the roles of A and B being symmetric: for λ 6= 0,

2F1

[
A B

C
; λ

]
=

1

q − 1

∑
χ∈F̂×

q

g(Aχ)g(χ)

g(A)

g(Bχ)g(Cχ)

g(B)g(C)
χ(λ)

=
1

1− q
∑
χ∈F̂×

q

(A)χ(ε)χ(B)χ(C)χ · χ(λ).

More generally, we define

n+1Fn
[
A1 A2 · · · An+1

B2 · · · Bn+1
; λ

]
:=

1∏n+1
i=2 J(Ai, BiAi)

n+1Pn
[
A1 A2 . . . An+1

B2 . . . Bn+1
;λ

]
.(6)
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1.5. Finite fields version of hypergeometric formulas. Here we list some hypergoemetric
formulas in the finite fields setting. These are finite field version of the formulas in Day 1: Subsection
1.10.

1.5.1. Degree 1 transformations.

Proposition 1.6 (Solutions around singularities). For any characters A, B, C ∈ F̂×q , and λ ∈ Fq,
we have

2P1

[
A B

C
; λ

]
= ABC(−1)C(λ) 2P1

[
CB CA

C
; λ

]
+ δ(λ)J(B,CB),

= ABC(−1)A(λ) 2P1

[
A CA

BA
; 1/λ

]
+ δ(λ)J(B,CB),

= B(−1) 2P1

[
A B

ABC
; 1− λ

]
.

Proposition 1.7 (Euler and Pfaff). For any characters A, B, C ∈ F̂×q , and λ ∈ Fq, we have

2P1

[
A B

C
; λ

]
= A(1− λ) 2P1

[
A CB

C
;

λ

λ− 1

]
+ δ(1− λ)J(B,CAB),

= B(1− λ) 2P1

[
CA B

C
;

λ

λ− 1

]
+ δ(1− λ)J(B,CAB),

= ABC(1− λ) 2P1

[
CA CB

C
; λ

]
+ δ(1− λ)J(B,CAB).

Proposition 1.8. If A,B,C ∈ F̂×q , A,B 6= ε and A,B 6= C, then

(1)

J(A,AC) · 2P1

[
A B

C
; λ

]
= J(B,BC) · 2P1

[
B A

C
; λ

]
,

2F1

[
A B

C
; λ

]
= 2F1

[
B A

C
; λ

]
;

(2) for λ 6= 0, 1, we have

2P1

[
A B

C
; λ

]
= C(λ)CAB(λ− 1)

J(B,CB)

J(A,CA)
2P1

[
A B

C
; λ

]
,

2F1

[
A B

C
; λ

]
= C(λ)CAB(λ− 1)

J(B,CB)

J(A,CA)
2F1

[
A B

C
; λ

]
.

1.5.2. Evaluations.

Proposition 1.9 (Gauss summation formula).

2F1

[
a b

c
; 1

]
=
B(b, c− b− a)

B(b, c− b)
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

For A, B, C ∈ F̂×q ,

2P1

[
A B

C
; 1

]
= J(B,CAB); 2F1

[
A B

C
; 1

]
=
J(B,CAB)

J(B,CB)
.
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Recall that the Gauss summation formula can be obtained from the Euler integral formula (Day
1: Equation (29)). In a like manner, its finite field version can be derived by definition.

Proposition 1.10 (Kummer).
K.1 When Re(b− a) > −1,

2F1

[
a c− b

c
; −1

]
= 2−a 2F1

[
a b

c
;

1

2

]
.

For any characters A, B, C ∈ F̂×q ,

2P1

[
A CB

C
; −1

]
= A(2) 2P1

[
A B

C
;

1

2

]
; 2F1

[
A CB

C
; −1

]
= A(2) 2F1

[
A B

C
;

1

2

]
.

K.2

2F1

[
c b

c− b+ 1
; −1

]
= 2F1

[
b c

c− b+ 1
; −1

]
=

Γ(1 + c− b)Γ(1 + c/2)

Γ(1 + c)Γ(1− b+ c/2)

Let φ be the quadratic character. For any characters B, C ∈ F̂×q ,

− 2P1

[
B C

CB
; −1

]
=

{
0, if C is not a square,(
BD
B

)
+
(
BφD
B

)
, if C = D2,

for some character D. I.e., if C = D2

2P1

[
B C

CB
; −1

]
= B(−1)J(BD,B) +B(−1)J(φBD,B).

In terms of F-functions, for any characters B, C,

2F1

[
B C

CB
; −1

]
= 0, if C is not a square.

When C = D2 is a square, further assume C,B 6= ε, CB, and C 6= B, B2. Then

2F1

[
B C

CB
; −1

]
=

g(CB)g(D)

g(C)g(DB)
+

g(CB)g(φD)

g(C)g(φDB)
.

Below is a general formula which holds for all n.

Proposition 1.11 (Theorem 4.2, [17] by Greene). For any fixed Fq of characteristic p > 2, Ai,

Bj ∈ F̂×q , and t 6= 0,

nPn−1
[
A1 A2 · · · An

B2 · · · Bn
;

1

t

]
= A1(−t)

(
n∏
i=2

AiBi(−1)

)
· nPn−1

[
A1 A1B2 · · · A1Bn

A1A2 · · · A1An
; t

]

= A2(t)

(
n∏
i=3

AiBi(−1)

)
· nPn−1

[
A2B2 A2 A2B3 · · · A2Bn

A2A1 A2A3 · · · A2An
; t

]
.

It corresponds to the following classical result.

Proposition 1.12. Given α = {a1, a2, · · · , an}, β = {1, b2, b3, · · · , bn}, if we denote 1 + aj − β :=
{aj , 1 + aj − b2, · · · , 1 + aj − bn} and 1 + aj −α := {1 + aj − a1, · · · , 1 + aj − an} then the functions
F (α, β; z) and (−z)−ajF (1+aj−β, 1+aj−α; 1/z) for any j = 1, . . . , n, satisfy the same differential
equation

[θ (θ + b2 − 1) · · · (θ + bn − 1)− z (θ + a1) · · · (θ + an)]F = 0, where θ = z
d

dz
.
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Corollary 1.13.

n+1Pn
[
A B1 · · · Bn

AB1 · · · ABn
; (−1)n

]
= 0, if A is not a square.

See [27] by McCarthy for more evaluation formulas for well-posed series (see Day 1: Definition
5) at ±1. Next we recall Lemma 1 and its proof of [22] by Li, Long and Tu in which we write the

following (shifted) well-posed series at 1 as a special summation.

Lemma 1.14. For a finite field Fq of odd characteristic and A, B, C, D, E ∈ F̂×q , we have

6P5

[
A B C A D E

AD AE ε AB AC
; 1

]
= BCDE(−1)

∑
t∈Fq

A(t) 3P2

[
A B C

AD AE
; t

]2

= BCDE(−1)
∑
t∈Fq

A(t) 3P2

[
A D E

AB AC
; t

]2
.

Proof.

BCDE(−1)
∑
t∈Fq

A(t) 3P2

[
A B C

AD AE
; t

]2
Prop.1.11

= A(−1)
∑
t∈F×

q

3P2

[
A B C

AD AE
; t

]
3P2

[
A D E

AB AC
; 1/t

]

= A(−1)
∑
t∈F×

q

−1

q − 1

∑
χ∈F̂×

q

(
Aχ

χ

)(
Bχ

ADχ

)(
Cχ

AEχ

)
χ(t)

−1

q − 1

∑
ψ∈F̂×

q

(
Aψ

ψ

)(
Dψ

ABψ

)(
Eψ

ACψ

)
ψ(1/t)

= A(−1)
1

(q − 1)2

∑
χ∈F̂×

q

(
Aχ

χ

)(
Bχ

ADχ

)(
Cχ

AEχ

) ∑
ψ∈F̂×

q

(
Aψ

ψ

)(
Dψ

ABψ

)(
Eψ

ACψ

) ∑
t∈F×

q

χψ−1(t)

= A(−1)
1

q − 1

∑
χ∈F̂×

q

(
Aχ

χ

)(
Bχ

ADχ

)(
Cχ

AEχ

)(
Aχ

χ

)(
Dχ

ABχ

)(
Eχ

ACχ

)

= 6P5

[
A B C A D E

AD AE ε AB AC
; 1

]
.

�

Exercise 1.1. Prove that in general

(7) 2nP2n−1

[
A B1 · · · Bn−1 A C1 · · ·Cn−1

AC1 · · · ACn−1 ε AB1 · · ·ABn−1
; 1

]
= An−1(−1)B1 · · ·Bn−1C1 · · ·Cn−1(−1)

∑
t∈Fq

A(t) nPn−1
[
A B1 · · · Bn−1

AC1 · · · Cn−1
; t

]2
Recall that Pfaff-Saalschütz evaluation formula was proved by comparing coefficients on both

sides of Euler’s formula. In a parallel manner, one can obtain its finite field analogue.

Proposition 1.15 (Pfaff-Saalschütz Evaluation). For n ∈ Z>0,
8
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3F2

[
a b −n

d 1 + a+ b− d− n
; 1

]
=

(d− a)n(d− b)n
(d)n(d− a− b)n

.

For any characters A, B, C, D ∈ F̂×q , we have

3P2

[
A B C

D ABCD
; 1

]
= J(BCD,B)J(C,AD)− J(DB,ABD)

= B(−1)J(C,AD)J(B,CD)−BD(−1)J(DB,A).

(8)

Note also in the finite field version there is an extra term −BD(−1)J(DB,A).

Exercise 1.2. (1) Obtain the finite field analogue of (32) of Lecture I by generalizing the idea
of its proof.

(2) In this question, we will consider the finite field P-version of Dixon’s, Watson’s and Whip-
ple’s 3F2-evaluation formulas. For each of the followings, establish the P-evaluation as well
as you can.
(a) Dixon’s evaluation:

3F2

[
a b c

1 + a− b 1 + a− c
; 1

]
= Γ

(
1 + a

2 , 1 + a− b, 1 + a− c, 1 + a
2 − b− c

1 + a, 1 + a
2 − b, 1 + a

2 − c, 1 + a− b− c

)
.

3P2

[
C B A

AC AB
; 1

]
=?

(b) Watson’s evaluation:

3F2

[
a b c

a+b+c
2 2c

; 1

]
= Γ

(
1
2 ,

1
2 + c, 1+a+b2 , 1−a−b2 + c

1+a
2 , 1+b2 , 1−a2 + c, 1−b2 + c

)
.

3P2

[
A2C B C

AC B2 ; 1

]
=?

(c) Whipple’s evaluation:

3F2

[
a 1− a c

b 1− b+ 2c
; 1

]
=

π

22c−1
Γ

(
b, 1− b+ 2c

a+b
2 , 1+a−b2 + c, 1−a+b2 , 1 + c− a+b

2

)
.

3P2

[
C A A

C2B B
; 1

]
=?

Proposition 1.16 (Algebraic hypergeometric functions).

2F1

[
a a+ 1

2
1
2

; z

]
=

1

2

(
(1 +

√
z)−2a + (1−

√
z)−2a

)
,

[14, Theorem 8.11] Let A ∈ F̂×q have order larger than 2. Then

2F1

[
A φA

φ
; z

]
=(1 + φ(z))

(
A

2
(1 +

√
z) +A

2
(1−

√
z)
)

=

{
0, if z is not a square,

A
2
(1 +

√
z) +A

2
(1−

√
z), if z is a square.
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Exercise 1.3. (1) Prove Proposition 1.16. Hint: Proposition 1.6 and the multiplication formula

g(χ)g(φχ) = g(χ2)g(φ)χ(4)

may be helpful.

(2) Let A ∈ F̂×q have order larger than 2. Show that

2F1

[
A Aφ

A2 ; z

]
=

(
1 + φ(1− z)

2

)(
A

2
(

1 +
√

1− z
2

)
+A

2
(

1−
√

1− z
2

))
.

1.5.3. Higher degree transformation formula. A version of Clausen formula says

2F1

[
c− s− 1

2 s

c
; λ

]2
= 3F2

[
2c− 2s− 1 2s c− 1

2

2c− 1 c
; λ

]
.

Below is a result of Evans and Greene in [13, Theorem 1.5].

Theorem 1.17 (Clausen formula). Let C, S ∈ F̂×q . Assume that C 6= φ, and S2 6∈
{
ε, C,C2

}
.

Then for λ 6= 1,

2F1

[
CSφ S

C
; λ

]2
= 3F2

[
C2S

2
S2 Cφ

C2 C
; λ

]
+ φ(1− λ)C(λ)

(
J(S

2
, C2)

J(C, φ)
+ δ(C)(q − 1)

)
.

Equivalently it can be stated as

Theorem 1.18 (Evans-Greene [13]). Assume η,K ∈ F̂×q such that none of η,Kφ, ηK, ηK is trivial.
Suppose ηK = S2 is a square. When t 6= 0, 1, we have

3P2

[
φ η η

K K
; t

]
= φ(1− t)

(
φ(t− 1)K(t)

J(φS, φKS)

J(S,KS)
2P1

[
φKS S

K
; t

]2
− q

)

= φ(1− t)

(
2P1

[
φKS S

K
; t

]
2P1

[
φKS S

K
; t

]
− q

)
,

where

(9) 2P1

[
φKS S

K
; t

]
= K(t)φ(t− 1)

J(S,KS)

J(φKS, φS)
2P1

[
φKS S

K
; t

]
.

When t = 1, we have

(10) 3P2

[
φ η η

K K
; 1

]
= φη(−1)q

J(ηK, ηK)J(φ, φK)

J(φS,K)J(S,K)

(
J(S, φS)

J(Sη, φSη)
+

J(φS, S)

J(ηS, φSη)

)
=
J(ηK, ηK)

J(φ,K)

(
J(SK, φS)2 + J(φSK,S)2

)
.

In particular, when K = ε, this gives

(11) 3P2

[
φ η η

ε ε
; 1

]
= J(S, φS)2 + J(S, φS)2.

When ηK is not a square, we have

(12) 3P2

[
φ η η

K K
; 1

]
= 0.

10



Theorem 1.19 (Kummer quadratic transformation formula). Let B,D ∈ F̂×q , and set C = D2.
When D 6= φ and B 6= D, we have, for all x ∈ Fq

C(1− x) 2F1

[
DφB D

CB
;
−4x

(1− x)2

]

= 2F1

[
B C

CB
; x

]
− δ(1− x)

J(C,B
2
)

J(C,B)
− δ(1 + x)

J(B,Dφ)

J(C,B)
.

In [14], this theorem is proved using a straightforward translation of the proof over C. It turns
out the minor term of (8) plays a dedicate role in obtaining the delta terms on the right hand side,
which describe the degeneracy of character sums when x = ±1.

However, do not take the similarities for granted. For example,

• Over C.

2F1

[
a b

c
; z

]
= Γ

(
c, c− a− b
c− a, c− b

)
2F1

[
a b

a+ b+ 1− c
; 1− z

]
+ Γ

(
c, a+ b− c

a, b

)
(1− z)c−a−b

2F1

[
c− a c− b

1 + c− a− b
; 1− z

]
,

• Over Fq.

2P1

[
A B

C
; λ

]
= B(−1) 2P1

[
A B

ABC
; 1− λ

]
.

If one looks for the finite field analogue of the following useful Schwarz map in Lecture I

i

2F1

[1
2

1
2

1
; 1− λ

]
2F1

[1
2

1
2

1
; λ

] ,

the outcome is disappointing.

Here is another example

• Over C.

2F1

[
a a− 1

2

2a
; z

]
=

(
1 +
√

1− z
2

)1−2a

.

• Over Fq. When z 6= 0,

2F1

[
A Aφ

A2 ; z

]
=

{
0 if φ(1− z) = −1(
A

2
(
1+
√
1−z
2

)
+A

2
(
1−
√
1−z
2

))
if φ(1− z) = 1.

Remark 1. While nFn−1 is a single function (solution), nFn−1 is by nature an average (trace)
function.

A nice example which realizes the Clausen formula geometrically is given by Ahlgren, Ono and
Penniston [1]. In their work, they consider the K3 surfaces defined by

Xλ : s2 = xy(1 + x)(1 + y)(x+ λy), λ 6= 0,−1,

in relation to the elliptic curves

Eλ : y2 = (x− 1)(x2 − 1/(1 + λ)), λ 6= 0,−1.
11



In particular, the point counting on Xλ over Fq is related to

∑
x,y∈Fq

φ(xy(1 + x)(1 + y)(x+ λy)) = 3P2

[
φ φ φ

ε ε
; −λ

]
.

When q ≡ 1 (mod 4), the point counting on Eλ over Fq (or Fq2 if needed), which is given by

a(λ, q) := −
∑
x∈Fq

φ(x− 1)φ(x2 − 1/(1 + λ)),

is essentially 2P1

[
η4 η4

ε
; −λ

]
where η4 is an order 4 character. This follows from the quadratic

formula in Theorem 1.19 with B = C = φ ∈ F̂×q and x = (b+ 1)/(b− 1) with b2 = 1 + λ, for some
b. Thus Theorem 1.1 of [1] is equivalent to the Clausen formula over the finite field Fq with S = η4
and C = ε.

For special choices of λ ∈ Q such as 1, 8, 1/8, −4, −1/4, the corresponding elliptic curve Eλ has
complex multiplication (CM). For these λ values, the period functions 2P1 can be written in terms
of Jacobi sums and can be viewed as Grössencharacters.

1.6. Two views of hypergeometric character sums. For example, if α = {12 ,
1
2}, β = {1, 1},

for an odd prime p use

1

2
→ φ ∈ F̂×p

2P1

[
φ φ

ε
; λ; p

]
=
∑
x∈Fp

φ(x(1− x)(1− λx))

in which p can be varied among all odd primes, referred to as a “horizontal” variation.

Fpr1r2

norm

��

horizontal // Fpr1

F3 F5 · · · Fp · · ·

vertical

OO

For fixed p, we can also vary the character sum “vertically” by consider the character sum induced
to finite extensions Fpr of Fp via the norm map. Vertical variation can be put together via

Z(α, β;λ; p;T ) = exp

∑
r≥1

2P1

[
φ φ

ε
; λ; pr

]
T r

r


For example, when λ = −1 and p ≡ 1 mod 4, let η4 be an order-4 character of F̂×p and η4,r be

the multiplicative character η4 ◦N
Fpr

Fp
for F×pr . By Kummer evaluation formula (Proposition 1.10)
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and the vertical Hasse-Davenport relation,

Z(α, β; p;T ) = exp

φ(−1)
∑
r≥1

(J(η4,r, φ) + Jr(η4,r, φ))
T r

r


= exp

φ(−1)
∑
r≥1

(−1)r−1(J(η4, φ)r + J(η4, φ)r)
T r

r


= (1− µpT )(1− µpT ) = (1− µpT )(1− p/µpT )

where µp = −φ(−1)J(η4, φ) = −J(η4, φ), since −1 is a square in Fp.

1.7. Another formulation when the hypergeometric data are defined over Q. Below we
assume λ ∈ Q and use lcd(α, β;λ) to denote the least positive denominators of ai, bj and λ. Let
Fq be a finite field of characteristic p - lcd(α, β;λ). Following McCarthy, Beukers-Cohen-Mellit [3],
when lcd(α, β;λ) | q−1, in which (q−1)aj , (q−1)bj ∈ Z for all j, one defines a finite hypergeometric
function over Fq as

(13) Hq(α, β;λ) :=
1

1− q

q−2∑
k=0

n∏
j=1

g(ωk+(q−1)aj )g(ω−k−(q−1)bj )

g(ω(q−1)aj )g(ω−(q−1)bj )
ωk
(
(−1)nλ

)
.

When α and β are defined over Q, write

n∏
j=1

X − e2πiaj
X − e2πibj

=

∏r
j=1(X

pj − 1)∏s
k=1(X

qk − 1)

where pj , qk ∈ Z>0 and pj 6= qk for all j, k. Applying the multiplication formula of Gauss sums, by
Theorem 1.3 of [3], the character sum Hq(α, β;λ) can be rewritten as

(14) Hq(α, β;λ) :=
(−1)r+s

1− q

q−2∑
m=0

q−s(0)+s(m)
r∏
j=1

g(ωmpj )
s∏

k=1

g(ω−mqk)ω((−1)q1+···+qsN−1λ),

where

(15) N := N(α, β) =
pp11 · · · p

pr
r

qq11 · · · q
qs
s

and s(m) is the multiplicity of X−e2πim/(q−1) in the factorization of gcd(
r∏
j=1

(Xpj−1),
s∏

k=1

(Xqk−1)).

Example 1.1. For α = {13 ,
2
3}, β = {1, 1}, r = 1, s = 3, p1 = 3, q1 = q2 = q3 = 1, N = −33.

Remark 2. Note that (13) requires q to be congruent to 1 modulo lcd(α, β;λ), while this assumption
is relaxed in (14) to as long as q is coprime to lcd(α, β;λ).

Exercise 1.4. Show that under the above assumptions (13) can be written as (14).

Here we state an equivalent version of [3, Theorem 1.3]:

Proposition 1.20. If the given HD is defined over Q, partition the multi-set α in the form

(16) α =

t⋃
i=1

Σdi , where Σd = {`/d : 0 < (` mod d) ≤ d, (`, d) = 1} for d ∈ {d1, . . . , dt},
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with ϕ(d1) + · · · + ϕ(dt) = n (di are not necessarily distinct). Let Da be the sequence of the
denominators of ai’s as

Da := {d1, . . . , dt}.

Take Db the sequence of the denominators of bi’s in a similar way.
Then

Hq(α, β;λ) =
1

1− q

q−2∑
k=0

∏
d∈Da

Sd(ω
k)
∏
d∈Db

Sd(ω
k)ωk

(
(−1)nλ

)
,

where

Sd(χ) :=
∏
m|d

(
g(χm)

g(χ)
χ(m−m)

)µ(d/m)

=
1

g(χ)ϕ(d)

∏
m|d

(
g(χm)χ(m−m)

)µ(d/m)
,

and µ(·) is the Möbius function.

Example 1.2. Take HD1 = {{13 ,
2
3}, {1, 1}, λ} for example, for which case Da = {3}, Db = {1, 1}.

Hq(HD1) =
1

1− q

q−2∑
k=0

g(ωk+
q−1
3 )g(ωk−

q−1
3 )

g(ω
q−1
3 )g(ω−

q−1
3 )

g(ω−k)2

g(ε)2
ωk(λ)

=
1

1− q

q−2∑
k=0

g(ω3k)

g(ωk)
g(ω−k)2 ωk(3−3λ)

=
1

1− q

(
1 +

1

q

q−2∑
k=1

g(ω3k)g(ω−k)3 ωk(−3−3λ)

)
.

(17)

For HD2 = {{12 ,
1
3 ,

2
3}, {1,

1
6 ,

5
6}, λ}, Da = {2, 3}, Db = {1, 6}.

Hq(HD2) =
1

1− q

q−2∑
k=0

g(ωk+
q−1
2 g(ωk+

q−1
3 )g(ωk−

q−1
3 )

g(ω
q−1
2 )g(ω

q−1
3 )g(ω−

q−1
3 )

g(ω−k−
q−1
6 )g(ω−k+

q−1
6 )

g(ω
q−1
6 )g(ω−

q−1
6 )

ωk(−λ)

=
1

1− q

q−2∑
k=0

g(ω2k)g(ω3k)

g(ωk)2
g(ω−k)g(ω−6k)

g(ω−2k)g(ω−3k)
ωk(22λ).

For convenience, when q ≡ 1 mod lcd(α, β;λ) we write

(18) P(α, β;λ;Fq;ω) := nPn−1

[
ω(q−1)a1 ω(q−1)a2 · · · ω(q−1)an

ω(q−1)b2 · · · ω(q−1)bn ; λ; q

]
.

Proposition 1.21. When α = {a1, ..., an}, β = {1, b2, ..., bn} forming a primitive pair, the Hq-
and P-functions are related by

P(α, β;λ;Fq;ω) = Hq(α, β;λ;ω) ·
n∏
i=2

ω(q−1)ai(−1)J(ω(q−1)ai , ω(q−1)(−bi)).(19)

and the Hq- and F-functions are the same.

Exercise 1.5. Verify the above Proposition.
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1.8. Finite hypergeometric functions and point counts over finite fields. Classically it is
known that Jacobi sums are useful for point counts of Fermat type diagonal hypersurfaces over
finite fields.

Example 1.3. Consider the elliptic curve E : y2 = x3 − x (which is birational to the curve y2 =
x4 + 1/4).

(1) When q ≡ 3 mod 4,
#En(Fq) = 1 + q

(2) When q ≡ 1 mod 4, let φq be the quadratic character and η4,q a primitive character of
order 4 of F×q . Then

#E(Fq) = 1 + q − J(φq, η4,q)− J(φq, η4,q).

In the case p ≡ 1 mod 4 and q = pr, by the Hasse-Davenport relation (2),

#E(Fq) = 1 + q − αr − αr, α = J(φp, η4,p).

Thus, the local zeta function of E is

(1− T )(1− pT )Z(E/Fp;T ) =


∏
(p)|p

(1− αpT ), if p ≡ 1 mod 4,

1 + pT 2, if p ≡ 3 mod 4,

where αp = a+ bi ∈ Z[i] such p = (αp) and αp ≡ 1 mod 2 + 2i.
The elliptic curve is a CM-elliptic curve of level 32 and the associated Hecke character is given by

the multiplicative character ψ(x) of order 4 on (Z[i]/(2 + 2i))× such that ψ(x)x ≡ 1 mod 2 + 2i.
The L-function of E can be written as

L(E, s) =
1

4

∑
a+bi∈Z[i]

(a+ bi)ψ(a+ bi)

(a2 + b2)s
= L(η(4τ)2η(8τ)2, s).

In particular,

L(E, 1) = L(η(4τ)2η(8τ)2, 1) =
1

8
B

(
1

2
,
1

4

)
.

See [21, Lemma 3.1].
Hypergeometric functions over finite fields are convenient for point counts on special algebraic

varieties. We will discuss three types here.

1.8.1. Firstly, finite period functions can be used to count algebraic varieties similar to the Le-
gendre curves Lλ : y2 = x(1− x)(1− λx). If λ ∈ Fp.

#(Lλ/Fp) =
∑
x∈Fp

(1 + φ(x(1− x)(1− λx))) = p+ 2P1

[
φ φ

ε
; λ

]
.

There will be an additional 1 in the above point count formula when infinity is also considered. In
general if one considers the family of hypergeometric algebraic varieties

Xλ : yN = xi11 · · ·x
in
n · (1− x1)j1 · · · (1− xn)jn · (1− λx1 · · ·xn)k,

then as in [8]

Proposition 1.22. Let q = pe ≡ 1 (mod N) be a prime power, and ηN ∈ F̂×q a primitive order N
character. Then

#Xλ(Fq) = 1 + qn +

N−1∑
m=1

n+1Pn
[
η−mkN ηminN . . . ηmi1N

ηmin+mjnN . . . ηmi1+mj1N

;λ; q

]
.
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1.8.2. Secondly, when α, β are both defined over Q, toric models are used in [3, Thm. 1.5] by
Beukers, Cohen, Mellit (BCM). Let pi, qj be distinct, unique up to a re-ordering the pi (resp. qj),
positive integers such that

(20)

n∏
j=1

X − e2πiaj
X − e2πibj

=

∏r
j=1(X

pj − 1)∏s
j=1(X

qj − 1)

From the degrees of the rational function on the left hand side, we know

(21) p1 + · · ·+ pr = q1 + · · ·+ qs.

The BCM varieties are defined as a subset of the torus T = (C∗)r × (C∗)s by two equations

(22) Vα,β(λ) : x1 + · · ·+ xr − y1 − · · · − ys = 0, Nλxp11 · · ·x
pr
r = yq11 · · · y

qs
s ,

where N =
∏s

i=1 q
qi
i∏r

i=1 p
pi
i

as (15).

Example 1.4. For α = {13 ,
2
3}, β = {1, 1}, r = 1, s = 3, p1 = 3, q1 = q2 = q3 = 1. So the

corresponding model is

(23) X1 − Y1 − Y2 − Y3 = 0, 27λX3
1 = Y1Y2Y3.

Lemma 1.23 (Lemma 2.7 [3]). Let a = (a1, · · · , an) ∈ Zn. Define an+1 = −a1 − · · · − an and
a = gcd(a1, · · · , an). Then for any m ∈ Z

(24)
∑

v∈Fq ,x∈(F×
q )n

Φq(v(1 + x1 + · · ·+ xn))ω(xa)m = (q − 1)nδ(am) + g(a1m) · · · g(an+1m)

The main result of [3] is as follows.

Theorem 1.24 (Beukers, Cohen, Mellit). Let the notation pi, qj , N := N(α, β) as above. Suppose
the greatest common denominators of p1, · · · , pr, q1, · · · , qs is one and suppose N(α, β)λ 6= 1. Then

exists a suitable non-singular completion of Vα,β(λ), denoted by Vα,β(λ) such that

#Vα,β(λ)/Fq = Prs(q) + (−1)r+s−1qmin(r−1,s−1)Hq(α, β;Nλ),

where

prs(q) =

min(r−1,s−1)∑
m=0

(
r − 1

m

)(
s− 1

m

)
qr+s−m−2 − qm

q − 1
.

1.8.3. Thirdly, special Fermat type hypersurfaces with one-parameter deformations can also be
counted using hypergeometric functions over finite fields. In particular, we are referring to algebraic
varieties of the type xn0

0 + xn1
1 + · · ·xnN

N − cψx0 · · ·xN = 0 where c is a given constant, ψ is a
parameter and [x0, · · · , xN ] is a point in a weighted projective space, see [10] by Dolachev. One of
the well-known family is called degree-N Dwork family which takes the form of

(25) DwN (ψ) : xN0 + xN1 + · · ·xN−1N−1 −Nψx0 · · ·xN−1 = 0.

For a fixed ψ, it is a (N −2)-dimensional projective variety with a unique up to scalar holomorphic
differential (N − 2)-form. It admits the action

G = {(a0, · · · , aN−1) ∈ (Z/NZ)N−1,
∑

ai = 0 mod N}

via (x0, · · · , xN−1) 7→ (ζa0N x0, · · · , ζ
aN−1

N xN−1). A Picard-Fuchs equation of DwN (ψ) is

L{ 1
N
, 2
N
,··· ,N−1

N
},{1,··· ,1};ψ−N ,

see an explicit computation in §6 [12] for the N = 4 case and [5] by Candelas, de la Ossa, Green
and Parkes for the N = 5 case. Dwork also study the unit root functions for the Dwork family,
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see also [35] by Yu. Point count formulas for Dwork family over finite fields are obtained in [20] by
Koblitz and [28] by McCarthy. See also [29] by Salerno for three algorithms for Dwork family.

Example 1.5. When N = 3, it is also known as the Hesse pencil

H(ψ) : x30 + x31 + x32 − 3ψx0x1x2 = 0.(26)

When λ = ψ−3, a morphism from (26) to (23) is:

(27) 3ψx0x1x2 7→ X1, x30 7→ Y1, x31 7→ Y2, x32 7→ Y3,

which is defined over Z.

We will next show how its point counts are related to truncated hypergeometric functions, which
can be considered as Hasse invariants of the Hesse pencil.

Lemma 1.25. Let p > 3 be a prime and ψ ∈ Fp. Let Np(ψ) be the number of solutions of
f(x;ψ) = x30 + x31 + x32 − 3ψx0x1x2 over Fp, where x = (x0, x1, x2), then

Np(ψ) ≡ 2F1

[1
3

2
3

1
; λ

]
p−1

mod p, where λ = ψ−3.

Proof. By Fermat little theorem,

f(x;ψ)p−1 mod p = 1− δ0(f(x)),

so

Np(ψ) =
∑
x∈F3

p

(
1− f(x;ψ)p−1

)
= p3 −

(∑
x

f(x;ψ)p−1

)
mod p.

Here f(x;ψ)p−1 is a degree 3p− 3 homogeneous polynomial. When summing over all x ∈ F3
p,∑

x

(x1x2x3)
p−1 = (p− 1)3 ≡ −1 mod p,

while for all other monomials appear in the expansion of f(x;ψ)p−1,
∑

x x
n1
1 x

n2
2 x

n3
3 = 0 mod p

including
∑

x x
3p−3
i = p2(p − 1) ≡ 0 mod p, i = 1, 2, 3. Thus N ≡ C(p − 1, p − 1, p − 1) mod p,

where C(p− 1, p− 1, p− 1) is the coefficient of (x1x2x3)
p−1, which is∑

i

(
p− 1

i, i, i, p− 1− 3i

)
(−3ψ)p−1−3i ≡

(p−1)/3∑
i=0

(
3i

i, i, i

)
(3ψ)−3i ≡ 2F1

[1
3

2
3

1
; λ

]
p−1

mod p.

�

The above computation is closely related a Commutative Formal Group Laws result of Stienstra
in [31].

Exercise 1.6. Let p > 3 be a prime. Show that the number of solutions the intersection of the

following two equation over Fp is congruent to 4F3

[1
3

2
3

1
3

2
3

1 1 1
; λ

]
modulo p, where λ = ψ−6.

f1(ψ) : x31 + x32 + x33 − 3ψx4x5x6 = 0,

f2(ψ) : x34 + x35 + x36 − 3ψx1x2x3 = 0.
(28)

Next we will give a more precise formula for the point count Nq(ψ) of Hesse pencil over any
finite field Fq of charactersistic larger than 3 by computing its major term

(29) Nq(ψ) :=
1

q(q − 1)

∑
v∈Fq ,x∈(F×

q )3

Φq(v(x31 + x32 + x33 − 3ψx1x2x3))
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is a function from Fq 7→ C, in which we omit the count for the cases when at least one xi is 0.
Where Φq denotes the additive character. Note also here we use the orthogonality of the additive
character instead of the delta function so that Gauss sums will appear naturally when we apply
finite Fourier analysis (or the Lagrange inversion formula). The while purpose is to show the major
term can be written as the finite character sum Hq({13 ,

2
3}, {1, 1};λ) in the formulation of (14). We

decompose the computution on the following steps.
I) Computing the inner product of 〈Nq(ψ), χ〉 of Nq(ψ) with χ when χ = ε is the trivial character.

〈Nq(ψ), ε〉 = (q − 1).

We leave the verification as an exericse.
II) Computing 〈Nq(ψ), χ〉 when χ 6= ε.

(30) (q − 1)〈Nq, χ〉 =
∑
ψ

Nq(ψ)χ̄(ψ)

=
1

q(q − 1)

∑
ψ

∑
v∈F×

q ,x∈(F×
q )3

Φq(vx
3
1)Φq(vx

3
2)Φq(vx

3
3)Φq(−3vψx1x2x3)χ(−3vψx1x2x3)χ(−3vx1x2x3)

=
1

q(q − 1)
g(χ)

∑
v∈F×

q ,x∈(F×
q )3

Φq(vx
3
1)Φq(vx

3
2)Φq(vx

3
3)χ(−3vx1x2x3)

Write

S(χ) :=
∑

v∈F×
q ,x∈(F×

q )3

Φq(vx
3
1)Φq(vx

3
2)Φq(vx

3
3)χ(−3vx1x2x3).

Let g3 be a primitive 3rd root of unity in F×q (in which case q ≡ 1 mod 3). Replacing x1 by g3x1
is a bijection on F×q . When χ is not a cubic, then χ(g3) 6= 1. It follows S(χ) = 0.

Now we assume χ = η3 is a cube. Then

∑
y∈F×

q

χ(y)Φq(vy
3) =

∑
y∈F×

q

η(y3)Φq(vy
3)

=
∑
u∈F×

q

η(u)Φq(vu)
(
1 + χ3(u) + χ2

3(u)
)

= η(v)g(η) + ηχ3(v)g(ηχ3) + ηχ3(v)g(ηχ3)

Hence,

S(χ) =
∑
v∈F×

q

χ(−3v) [η(v)g(η) + ηχ3(v)g(ηχ3) + ηχ3(v)g(ηχ3)]
3

=
∑
v∈F×

q

χ(−3) [g(η) + χ3(v)g(ηχ3) + χ3(v)g(ηχ3)]
3

=χ(−3)
[
g(η)3 + g(ηχ3)

3 + g(ηχ3)
3 + 6g(η)g(ηχ3)g(ηχ2

3)
] ∑
v∈F×

q

1

=χ(−3)(q − 1)
[
g(η)3 + g(ηχ3)

3 + g(ηχ3)
3 + 6g(η)g(ηχ3)g(ηχ2

3)
]

=6q(q − 1)χ(−1)g(χ) + χ(−3)(q − 1)
[
g(η)3 + g(ηχ3)

3 + g(ηχ3)
3
]
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In other words, when χ is a nontrivial character and χ = η3,
(31)

〈Nq, χ〉 = 6
q

q − 1
+

χ(−3)

q(q − 1)
g(χ)

[
g(η)3 + g(ηχ3)

3 + g(ηχ3)
3
]

= 6
q

q − 1
+
∑

η,η3=χ

η(−33)

q(q − 1)
g(η3)g(η)3

III) Applying the finite Fourier analysis (or the Lagrange inversion formula), we obtain that for
ψ 6= 0

Nq(ψ) =
∑
χ

〈Nq, χ〉χ(ψ) =
1

3

∑
χ

〈Nq, χ
3〉χ3(ψ).

IV) The major term of the above is 1
q(q−1)

∑
χ χ

3(−3ψ)g(χ3)g(χ)3. From (17), we see that it can

be written as −Hq

({
1
3 ,

2
3

}
, {1, 1} ; 1

λ

)
− 1

q , where λ = ψ3.

Exercise 1.7. Try this method on the complete intersection given by the equations listed in (28).

1.8.4. Arithmetic mirror symmetries. There is an extensive literature regarding mirror symmetries
arising from string theory in Physics, see the textbook [6] by Cox and Sheldon. We will only
mention the relevant information to hypergeometric functions.

Dwork quintic threefold

V (ψ) := V{ 1
5
, 2
5
, 3
5
, 4
5
}(ψ) : X5

1 +X5
2 +X5

3 +X5
4 +X5

5 − 5ψX1X2X3X4X5 = 0

has been studied extensively, for example see [4] by Candelas, de la Ossa, Rodriguez-Villegas for
the arithmetic of the quintic family over finite fields. In [5, §3] by Candelas, de la Ossa, Green and
Parkes, the Picard–Fuchs differential operator of V (ψ) is given using variable λ = ψ−5

θ4 − 5−4λ(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4), where θ := λ
d

dλ
,

whose unique (up to scalar) holomorphic solution near zero is given by the hypergeometric function
∞∑
k=0

(5k)!

k!5
(5−5λ)k = 4F3

[1
5

2
5

3
5

4
5

1 1 1
; λ

]
.

It is a hypergeometric differential equation with parameters α = {15 ,
2
5 ,

3
5 ,

4
5}, β = {1, 1, 1, 1}. There

are 14 such Calabi-Yau differential equations (see a preprint by Almkvist, van Enckevort, van
Straten, Zudilin). Their parameter sets are of the form α = {r1, 1− r1, r2, 1− r2}, β = {1, 1, 1, 1},
where r1, r2 ∈ (0, 1) and α is defined over Q. We list the defining equations (from [26]) of the
Calabi-Yau three-folds families whose Picard Fuchs operators are Lα,β;λ in the following tables. The
first table consists of 4 cases given by one equation. The remaining cases are given by complete
intersection in weighted projective spaces. To compute their Picard-Fuchs equation, there is a
general method called the Gel’fand, Zelevinskĭı, and Kapranov (GKZ) method [15]. See [36] by Zhou
for using GKZ to derive the Picard-Fuchs equation of the Hesse pencil (26), which is L{ 1

3
, 2
3
},{1,1};λ.

The notion of mirror symmetry connects two types of models in String theory. See [6] on Mirror
symmetry and algebraic geometry by Cox and Sheldon for more mathematical background. One of
the most well-studied examples in mirror symmetry is the Dwork quintic case. For a fixed ψ, the
equation V (ψ) admits the action of the discrete group

G = {(ζa15 , . . . , ζa55 ) : a1 + · · ·+ a5 ≡ 0 mod 5} ∼= (Z/5Z)4

via the map (X1, . . . , X5) 7→ (ζa15 X1, . . . , ζ
a5
5 X5), where ζ5 = e2πi/5 is the primitive 5-th root of

unity. Its mirror threefold is constructed from the orbifold V (ψ)/G. One way to realize the quotient
is letting yj = X5

j for j = 1, . . . , 5, x1 = 5ψX1 · · ·X5 and λ = ψ−5; the image is

y1 + · · ·+ y5 − x1 = 0, 5−5λx51 = y1 · · · y5.
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Table 1. One-parameter families of hypersurfaces for V{r1,r2,1−r1,1−r2}(ψ)

(d1, . . . , dt) n (r1, r2) X(n) ∈ P4(w0, . . . , w4) Calabi–Yau threefold equation

(5) 5
(
1
5 ,

2
5

)
X(5) ⊂ P4(1, 1, 1, 1, 1)

5∑
j=1

X5
j − 5ψ

5∏
j=1

Xj = 0

(10) 10
(

1
10 ,

3
10

)
X(10) ⊂ P4(1, 1, 1, 2, 5)

3∑
j=1

X10
j + 2X5

4 + 5X2
5 − 10ψ

5∏
j=1

Xj = 0

(8) 8
(
1
8 ,

3
8

)
X(8) ⊂ P4(1, 1, 1, 1, 4)

4∑
j=1

X8
j + 4X2

5 − 8ψ
5∏
j=1

Xj = 0

(3, 6) 6
(
1
6 ,

1
3

)
X(6) ⊂ P4(1, 1, 1, 1, 2)

4∑
j=1

X6
j + 2X3

5 − 6ψ
5∏
j=1

Xj = 0

Table 2. Complete intersection of one-parameter families of hypersurfaces for V{r1,r2,1−r1,1−r2}(ψ)

(d1, . . . , dt) (r1, r2) X(n1, . . . , nr) Calabi–Yau threefold equations

(2, 2, 2, 2)
(
1
2 ,

1
2

)
X(2, 2, 2, 2) ⊂ P7

X2
1 +X2

2 − 2ψX3X4 = 0

X2
3 +X2

4 − 2ψX5X6 = 0
X2

5 +X2
6 − 2ψX7X8 = 0

X2
7 +X2

8 − 2ψX1X2 = 0

(3, 3)
(
1
3 ,

1
3

)
X(3, 3) ⊂ P5 X3

1 +X3
2 +X3

3 − 3ψX4X5X6 = 0
X3

4 +X3
5 +X3

6 − 3ψX1X2X3 = 0

(2, 2, 3)
(
1
2 ,

1
3

)
X(2, 2, 3) ⊂ P6

X2
1 +X2

2 +X2
3 − 3ψX4X5 = 0

X3
4 +X3

5 − 2ψX1X6X7 = 0
X2

6 +X2
7 − 2ψX2X3 = 0

(2, 2, 4)
(
1
2 ,

1
4

)
X(2, 4) ⊂ P5 X2

1 +X2
2 +X2

3 +X2
4 − 4ψX5X6 = 0

X4
5 +X4

6 − 2ψX1X2X3X4 = 0

(12)
(

1
12 ,

5
12

)
X(12, 12) ⊂ P5(1, 1, 4, 6, 6, 6) X12

1 +X12
2 − 2ψX5X6 = 0

X2
5 +X2

6 + 4X3
3 + 6X2

4 − 12ψX1X2X3X4 = 0

(4, 4)
(
1
4 ,

1
4

)
X(4, 4) ⊂ P5(1, 1, 2, 1, 1, 2) X4

1 +X4
2 + 2X2

3 − 4ψX4X5X6 = 0

X4
4 +X4

5 + 2X2
6 − 4ψX1X2X3 = 0

(4, 6)
(
1
4 ,

1
6

)
X(4, 6) ⊂ P5(1, 1, 2, 1, 2, 3) X4

1 +X4
2 + 2X2

3 + 2X2
5 − 6ψX4X6 = 0

X6
4 + 3X2

6 − 4ψX1X2X3X5 = 0

(3, 4)
(
1
3 ,

1
4

)
X(3, 4) ⊂ P5(1, 1, 1, 1, 1, 2) X3

1 +X3
2 +X3

3 +X3
4 − 4ψX5X6 = 0

X4
5 + 2X2

6 − 3ψX1X2X3X4 = 0

(6, 6)
(
1
6 ,

1
6

)
X(6, 6) ⊂ P5(1, 2, 3, 1, 2, 3) X6

1 + 2X3
2 + 3X2

3 − 6ψX4X5X6 = 0

X6
4 + 2X3

5 + 3X2
6 − 6ψX1X2X3 = 0

(2, 2, 6)
(
1
2 ,

1
6

)
X(2, 6) ⊂ P5(1, 1, 1, 1, 1, 3) 3X2

1 +X2
2 +X2

3 +X2
4 − 6ψX1X5 = 0

X6
5 +X2

6 − 2ψX2X3X4X6 = 0

The reader may already notice that it is nothing but V{ 1
5
, 2
5
, 3
5
, 4
5
},{1,1,1,1}(λ) by formula 22. Resolving

singularities, one gets a Calabi–Yau threefold V̂(λ) with generic hodge number h2,1 equal to 1 (see
[5, 6] for details). From mathematical point of view, one would ask what is the relation between
the Quntic family V{ 1

5
, 2
5
, 3
5
, 4
5
} and its mirror which is of the form

x1 − y1 − y2 − · · · − y5 = 0,
1

55
λx51 = y1 · · · y5, λ = ψ−5.
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Wan gave an answer by comparing their local zeta functions [32, 33]. See [11] by Doran, Kelly,
Salerno, Sperber, Voight and Whitcher for discussions on arithmetic mirror symmetry on K3 sur-
faces.

When λ = 1, the corresponding Calabi–Yau threefold V̂(1) is defined over Q and it becomes rigid,

that is, h2,1(V̂(1)) = 0 meaning that its third Betti number B3 = dimH3(V̂(1),C) is 2. It is shown
by Schoen [30] that the `-adic Galois representation (of the absolute Galois group GQ := Gal(Q/Q))

arising from étale cohomologyH3
et(V̂(1),Q) is modular in the sense that it is isomorphic to the Galois

representation attached to a weight 4 level 25 Hecke eigenform f = f{ 1
5
, 2
5
, 3
5
, 4
5
}, labeled 25.4.a.b in

the database.

Theorem 1.26 (Dieulefait [9], Gouvêa-Yui [16]). For any rigid Calabi-Yau X defined over Q
and each prime `, there is a weight 4 modular form f with integer coefficients such that the `-adic
Galois representation arising from the third étale cohomology group of X is isomorphic to the `-adic
Deligne representation associated to f .

When ψ = 1, for each of the 14 families listed in Tables 1 and 2, the corresponding Calabi-Yau
manifolds are rigid are defined over Q. By the modularity theorem of Dieulefait and Gouvêa-Yui,
they are all modular.

We will explain to identify the corresponding weight-4 modular forms in the next lecture.
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