HYPERGEOMETRIC FUNCTIONS, CHARACTER SUMS AND
APPLICATIONS

LING LONG AND FANG-TING TU

ABSTRACT. We summarize several aspects of hypergeometric functions based on our recent work
[8L 7} 14, 22), 23| 24], 25] [26] and our understanding of the subjects.

1. HYPERGEOMETRIC FUNCTIONS OVER FINITE FIELDS, 1ST APPROACH

In this section, we will approach hypergeometric functions over finite fields in a way parallel to
the development recalled above. For details, see [14].

1.1. Gauss sums and Jacobi sums. To begin, fix an odd prime p and let F, be a finite field of
size q, where ¢ = p®. Recall that a multiplicative character X on qu is a group homomorphism

x:F; = C* (or C)),
and the set Fy of all multiplicative characters on F7 forms a cyclic group of order ¢ — 1 under
multiplication. Throughout, we fix the following notations
e := the trivial character in Fy

—

¢ := the quadratic character in Fy,

so that ¢(a) = 1 for all @ # 0, and ¢ is nontrivial such that ¢? = . Use X to denote the complex

conjugate or the inverse of x. We extend the definition of each character x € Fy to all of F, by
setting x(0) = 0, including £(0) = 0. In some textbooks, such as [2] use a different convention that
e(0) = 1.

For ¢ for x € Fy, or z € F,, define

6ww=&uw={l fx=e

0 ifxz#e;
1 ifz=0,
§(x) :=do(x) := {O if 20

This definition will allow us to describe formulas which hold for all characters, without having to
separate cases involving trivial characters.
The orthogonal properties:

> ®(z) =0.

zclFy

This note is based on Fang-Ting Tu’s course on “Hypergeometric Functions” given at LSU in Fall 2020 and
Ling Long’s mini-lectures on “Hypergeometric Functions, Character Sums and Applications” given at University of
Connecticut in 2021. Comments and suggestions will be appreciated. Special thanks to Dr. Bao Pham for his inputs.
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e For x,p € Fy

0oe)=— D xl = 3(x®).

xEFX

Let (y = €2™/N_ We fix a primitive p* root of unity (p and A, B € F;. We define the Gauss
sum by

Fq

- Z A(z)®(z), P(x):= C;‘rmp

xEF;

(z)

where Trgi () :==x+2P+ 2P’ 4+ 2P is the trace of 2 viewed as a surjective linear map from
F, to F,. The Gauss sum is the finite field analogue of the gamma function. It follows from the
orthogonality of the additive character ®(x) that

o(e) = —1.

The Gauss sums depends on the choice of the additive character ®(x), which depends on the
primitive root (,. Like the Gamma function, Gauss sums also satisfy reflection formula

(1) 9(A)g(A) = gA(-1) — (¢ — 1)5(4)
and the following multiplication formula. As a corollary, when A # ¢,
l8(A) = Va.
Theorem 1.1 (Hasse-Davenport Relation, see Theorem 11.3.5 of [2]). L/e\t m €N and q = p°® be a

prime power with ¢ =1 (mod m). For any multiplicative character ¢ € Fy, we have

ngw Hg

Xe]FX XGIFX
X"%:E X7n=€

In [34], Yamamoto proved a conjecture of Hasse which says the following:

Theorem 1.2 (Yamamoto). Let M > 4 be an even integer, p =1 (mod M) be a prime, then the
reflection formula and the multiplication formulas ﬁ)g the divisors n of M are the only two types of
relations connecting the Gauss sums g(x) for x € F) satisfying x™ = ¢, when considered as ideals
in the ring of algebraic integers.

Next we define the finite field analogue of the Beta function, the Jacobi sum, as follows. For
A, BeF;

B):= > A(x)B(1-=x).

z€elF,
In relation to Gauss sums
g(A)g(B)
JA,B)==——"—"—"+4(¢—1)B(—1)6(AB).
(4.8)= T 05+ (a— DB(-1)a(4B)
In particular,
q, if A,B,AB # ¢,

J(A,B)|={q¢—2,  ifA=B=c¢,
1

, otherwise.



We will use the following notation

1.2. Lagrange inversion. Below is a finite field analogue of the Lagrange inversion formula. We
state the version where the basis of complex valued functions on the finite field is comprised of all

multiplicative characters in Fy, together with §(x).

Theorem 1.3 ([18] Theorem 2.7). Let p be an odd prime, ¢ = p°, and suppose f : Fy — C and
g : ¥y — Fy are functions. Then

S fw)=6(g@) > fw)+ > fxlgl),

y€F yEF, X
o(w)=a(x) o(5)=0 XeFg

where

fx= qil > Fw)X(9w)).

y€Fq

Compared with the classical formula (Day 1: Theorem 1.6), the assumptions f(0) = 0, f'(0) # 0,
i.e. the map being one-to-one near 0, are not required. Greene pointed out that it is also the
reason why the finite field version cannot be used to determine coefficients when f is not a one-to-
one function.

From the Lagrange inversion, one can obtain a finite field version of the binomial theorem (Day
1: Equation (8)).

Lemma 1.4. For any multiplicative character A € Fy and x € Fy, we have

1 -1 A
AL -2) =0+ 1 Y v On-a) =)+ =1 3 (Tt
X€Fy X

We will end this discussion by another Hasse-Davenport relation. Let [F, be a finite field, F - be

its degree-r extension of ;. Let Trizr and Ni:r be the trace and norm maps from Fr to ;. Then

for any x € Fg', xr(z) = X(Ngjr (z)) is a multiplicative character for ;.

Theorem 1.5 (Hasse and Davenport). Notation as above. Let g(x) be the Gauss sum of x in Fg,
and g(xr) be the Gauss sum of x, in Fgr. Then,

(2) —0(xr) = (a(x)"

See [19] by Ireland-Rosen for a proof.
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1.3. A dictionary between the complex and finite field settings. We now list a dictionary
that we will use for convenience. Let N € N, and a,b € Q with common denominator N.

—

1

¥ — an order N character ny € Fy
a=i b=4 ~ ABEFS, A=, B=1
x® — A(x)
b = goth — A(x)B(z) = AB(x)
a+b — A-B
—a — A
I'(a) — a(A4)
(@)n =T(a+mn)/I(a) — (A)y = 8(4AX)/g(A)
B(a,b) — J(A, B)
fol dz - D acF
Ma)'(1—a) = nsﬁ, a¢Z — g(Ag(A) = A(—l)gl, A#e
ma) = T[ (a4 2) = (A7) = v [0
n i=1

i=1
1.4. Finite field period functions and normalized period functions. We now introduce a
finite field version of P- and F-functions parallel to the classical case. We start with a natural
analogue to 1Py (Day 1: Equation(12)) by letting
(3) 1Po[A; A q] := A(1 = ),

for A e ]i% and A € F,. We inductively define

AL Ay o Agn
4 n Pn ;)\; =
@) By ... By 4
— A1 Ay .. A,
E An1() A1 Brs1(1 = y) - nPpor | Bz B;)\y;Qa
= ... By,

which corresponds to (Day 1: Equation(15)) via the dictionary in We note the asymmetry
among the characters A; (resp. Bj;) in the definition. Part of the reason we start with the analogue
of the period, rather than the hypergeometric function is because the periods are related to point
counting. When there is no ambiguity in our choice of field Fy, we will leave out the ¢ in this
notation and simply write

A1 AQ e An+1 A1 A2 e An+1
n+1Pn ; A = np1lPy ; )\; .
+1 [ By ... By +1 By ... By 4

When n =1 we have,
A B — _
2Py [ o )\] = Y B(z)BC(1 - 2)A(1 — \z).

zely
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By Lemma we can rewite olP; in terms of Jacobi sums as follows:

, (J(B,CB), ifA=0
B B(-1 _ -
2Py [ o A} = q(_l) Z; J(Ax,X)J(Bx, Cx)x(N), if A#0
x€Fg
J(B,CB), ifA=0
_ ) Bo(-1) <AX> <BX> .
=q == A), ifA#£0.
P Z « Moy X #
L X€EFS

A general formula for the , 1P, period function highlighting this symmetry is:

Ay AQ An+1.
n-‘ran 32 . Bn+1’ )‘:|

1)ntt nHAB A1x\ [(Az2x Apt1X 3

N q—l H Z(X)(BzX)"(an)X()

x€Fg
n+1
+3(\) [ 7(Ai, 4iBy).
i=2

This is similar to Greene’s definition [I7, Def. 3.10], though we note that our binomial coefficient
differs from Greene’s by a factor of —q, and we define the value at A = 0 differently.

In the classical case, a hypergeometric function is normalized to have constant term 1, obtained
from the corresponding ,1 P, function divided by its value at 0. Here we similarly normalize the
finite field period functions. Define

A B
5) 21[ C ] J(B,CB)’

The 5F; function satisfies
A B
1) oF; [ o O] =1
%) SF, [A B
C
additional Jacobi sum factor one can rewrite the right hand side of using the finite field
analogues of rising factorials with the roles of A and B being symmetric: for A\ # 0,

B A
; )\] = olFq [ o )\}, it A, B # ¢, and A, B # C. Intuitively, with the

A B (Ax) Bx)g(Cx
gFl[ ] Z g( x ) 9(Bx)9(Cx) )

c’ q—1 9(B)g(C)

xEF
1 _

14 (A)x(E)x(B)x(C)x - x(A)

xEFX
More generally, we define
Ay oo Ay 1 A Ay ... An+1)\

A ]
6 n+1Fn ) = n+1Pn
( ) +1 |: By - Bn+1 Hn-‘rl J(A B A ) +1 By ... Bn+1



1.5. Finite fields version of hypergeometric formulas. Here we list some hypergoemetric
formulas in the finite fields setting. These are finite field version of the formulas inDay 1: Subsection
1.10.

1.5.1. Degree 1 transformations.

—

Proposition 1.6 (Solutions around singularities). For any characters A, B, C € Fy, and X € Fy,

we have
A B _ CB CA _
oPq |: C; /\:| = ABC(—l)C()\) ] o, P A +(5()\)J(B,CB),
— A CA —
= ABC(-1)A()) oI, EA; 1/A| +6(N)J(B,CB),

A B
= B(—l) 2P1 AB?’ 1—AX.
X

Proposition 1.7 (Euler and Pfaff). For any characters A, B, C € Fy, and X € Fy, we have

A B — A CB A —
2P [ o )\] = A(1 - \) 2Py [ o A_J +5(1 = \)J(B,CAB),
_ ‘A B .

CA CB

= ABC(1—)\) 9Py [ o )\} +6(1—\)J(B,CAB).

Proposition 1.8. If A,B,C € F;, A,B#¢ and A, B # C, then

(1)
_ A B — B A
J(A,AC) 2P1 ; A IJ(B,BC)' 2P1 N A y
C C
A B B A
F : = HF :
21[ C’A] 21[ C’)\]’

(2) for X #0, 1, we have

A B 1 = gmn W J(B.CB) A B
2P { o /\} = C(A\)CAB(\ I)J(A,CZ) o ok )\] :
oFF [A g; /\} =C(\)CAB(\ — 1)‘5&’23 oFFy [A g; )\] .

1.5.2. FEvaluations.

Proposition 1.9 (Gauss summation formula).
a b ] _ B(b,c—=b—a) T(c)I'(c—a—Db)

;1 =
C

2F1 [ B(b,c—b)  I(c—a)l(c—b)

For A, B, C € FY,

A B __ A B
N 1 = N . 1 =
2P1 [ C, :| J(B,CAB), QFl |: C, ]

6

J(B,CAB)
J(B,CB)
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Recall that the Gauss summation formula can be obtained from the Euler integral formula (Day
1: Equation (29)). In a like manner, its finite field version can be derived by definition.

Proposition 1.10 (Kummer).
K.1 When Re(b—a) > —1,

a c—b _ a b 1
2lF1 ;=1 =2"%F N
c c 2

For any characters A, B, C € Fy,

A CB — A B 1 A CB
2P1[ C;l]:A(2)2P1[ }; 21[ ;

_ A B 1
c’2 0’1]_A(2>2F1[ 0’2}‘
K.2
c b . B b c . T +c—b)I(1+¢/2)
2F1[ c—b+1’ 1}_21?1[ c—b+1’ 1}_F(1+0)F(1b+0/2)

Let ¢ be the quadratic character. For any characters B, C € F,

(%) + (°8"), #fc=D7
for some character D. ILe., if C = D?
B C -

P B C 1' 0, if C is not a square,
21001 i CE’ -

9Py OB’ —1| = B(-1)J(BD,B) + B(-1)J(¢BD, B).
In terms of F-functions, for any characters B, C,
B C . .
olFy B i —1| =0,if C' is not a square.

When C = D? is a square, further assume C, B # ¢,CB, and C # B, B?. Then
P [B C 1] _ 9(CB)g(D) | g(CB)g(¢D)
2l =5 —1| =

CB’ g(C)a(DB) ~ 9(C)g(¢DB)
Below is a general formula which holds for all n.

Proposition 1.11 (Theorem 4.2, [I7] by Greene). For any fized Fy of characteristic p > 2, A;,
B; € Fy, and t # 0,

A Ay - A, 1 i A A1By --- AB,
nPr— ;| = A(—t A;B;i(—1 P —_ —_
! By, .- B, J i )<HQ ( )> ! AA, - A4,
L AsBs Ay AsBs3 .-+ AsB,
= As(t A;Bi(—1) ] - zP,_ Z _- —;
o (g ( )) 1 AT AAs - A,
It corresponds to the following classical result.

Proposition 1.12. Given a = {aj,as, -+ ,an}, f={1,b2, b3, - =
{aj,14+a;—ba,--- ,14+aj—by} and 1 +a; —a:={14+aj—a1,--- ,14+a; —a,} then the functions

F(o, B;2) and (—2)" % F(1+a;—B,14aj—a;1/z) for any j = 1,...,n, satisfy the same differential
equation

7bn}; Zf we denote 1 + aj — B =

d
0O +by—1)---(0+b,—1)—2(@+a1) - (0+an)]|F =0, wheref=z—.
2
7
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Corollary 1.13.

p, |4 Bt o B"-(1)" =0, if A is not
n+l1in A§1 AETL, = U, (3 1§ not a square.

See [27] by McCarthy for more evaluation formulas for well-posed series (see Day 1: Definition
5) at £1. Next we recall Lemma 1 and its proof of [22] by Li, Long and Tu in which we write the

following (shifted) well-posed series at 1 as a special summation.
Lemma 1.14. For a finite field F, of odd characteristic and A, B, C, D, E € Fy, we have

A B C A D E
oPs . . } BCDE(— ZA 3Py

AD AFE ¢ AB AC’
telFy

A B oc Y
AD AE’

A D E 2
= BCDE(— ZA 31@2[ -t}

= AB AC
Proof.
B C 71
BCDE(-1) Y A(t 3}P’2{ AT AT t]
teF,
Prop[L17] A B C A D FE
P A(-1 P N 1
( )t%:x“[ AD AF P am oac W
€
Ay Cx -1 A Dy E
Zx q—1 Z ( ><ADX> (AEX>X(t)q —1 Z < ¥ > <AB¢> <AC¢>¢(1/t)
telg XEF¥ YRy
_ Ax Cx AY\ ( Dy
=4l q—12 2 < )(ADX><AEX> Z<w><ABw Acw ZW
erF PYeFy
1 Ax By Cx Ax Dy Ex
( )q—l Z(X)(ADX><AEX (X ABx) \ACx
x€Fg
b A B C A D E .
T AD AE ¢ AB AC’
O
Ezercise 1.1. Prove that in general
A B, --- B, A e Oy
7 nPop— — — — — i1
(1) 2l 1[ AC, -+ AC,., e AB, ---AB, ]
A By - B, 2
= A" Y(=1)By - B,_1C A(t) o P, _ it
(0B B G Coms(=1) 35 Al Ao

Recall that Pfaff-Saalschiitz evaluation formula was proved by comparing coefficients on both
sides of Euler’s formula. In a parallel manner, one can obtain its finite field analogue.

Proposition 1.15 (Pfaff-Saalschiitz Evaluation). For n € Z,
8
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a b —n }_ (d — a)n(d— b)n

F 1| = _
32{ d 14a+b—d—n’ (d)n(d—a—b),

For any characters A, B, C, D € ﬁ}, we have

A B C — — _ _
P ;1| =JBCD,B)J(C,AD) - J(DB,ABD
o |* ) sep 1| = I(BCD.B)I(C.AD) - (DB, ABD)

(8)
= B(~1)J(C,AD)J(B,CD) — BD(-1).J(DB, A).

Note also in the finite field version there is an extra term —BD(—1)J(DB, A).

Exercise 1.2. (1) Obtain the finite field analogue of (32) of Lecture I by generalizing the idea

of its proof.
(2) In this question, we will consider the finite field P-version of Dixon’s, Watson’s and Whip-

ple’s 3 Fy-evaluation formulas. For each of the followings, establish the P-evaluation as well

as you can.
(a) Dixon’s evaluation:

P a b c . _T 1+5,1+a-bl+a—cl+5—-b-c
32 l+a—-b 1l4+a—c’ | l+a,14+§-01+§-cl+a-b—c/
P C B A 1] =
T2l AC ABT ]

(b) Watson’s evaluation:
11 l+atb l—a—b
3F2|:a b 6;1:|: §,§+C, +g+7%+c .
e g Mo T Lo iy

(c¢) Whipple’s evaluation:

7 {a l1—a c ‘1}_ T b,1—b+2c
3472 b 1—b+2¢’ T 92c-1 aTer’1+gfb_'_c7 17%“214—0—% :

c 4 A

P _
342 C2B B7

Proposition 1.16 (Algebraic hypergeometric functions).

a a 1
R ("] (VA V),

2
[14, Theorem 8.11] Let A € ng; have order larger than 2. Then
A ¢A _ _
oI { ¢¢ ; 2] =(1+ ¢(2)) <A2(1 +VE) + A1 - \/5)>
~J0, if z is not a square,
B ZQ(l +z)+ ZQ(l — /%), if z is a square.
9



Exercise 1.3. (1) Prove Proposition m Hint: Proposition and the multiplication formula

a(x)a(ox) = s(x*)a(d)x(4)

may be helpful.
(2) Let A € F; have order larger than 2. Show that

[ ] () (o () o ().

1.5.3. Higher degree transformation formula. A version of Clausen formula says

1 2 1
- - 5 2_2 _1 2 Y
210 S 2 S;)\ o F, C S S C 2;)\'
C 2c—1 C

Below is a result of Evans and Greene in [13, Theorem 1.5].

Theorem 1.17 (Clausen formula). Let C,S € IEq;. Assume that C # ¢, and S* ¢ {5, C, 02}.

Then for A # 1,

CS¢ S
C ?

2 =2
25 2 Co
2T [ )\] = 3F o o A

+o(1=NC(N) < +6(C)(q - 1)) :

Equivalently it can be stated as

Theorem 1.18 (Evans-Greene [13]). Assumen, K € Fy such that none of n, K¢, nK,nK is trivial.
Suppose nK = S? is a square. When t # 0,1, we have

‘ . _ 2
P, {gb In{ %; t] = ¢(1—1) <¢(t—1)K(t)‘W¢KS)2P1 [¢KS IS(; t} —Q>

J(S,KS)
=¢(l—1) (219)1 [¢KS }S;; t] 2Py oKS [S(; t] —q>,
where
OKS S 1 e 1)t SES o [0S 5
©) b [P0 8] Ko - ) Sy [ 2 t].

When t = 1, we have

6 n 7 1 J@KGK)I(6.6K) ( J(S.65)  J(65.5)
10) 3%{ K K’l}‘qﬁ”( D068, 7) (5. ) (J(Sn,chn) J(nwsm)
_ ‘m (J(SE, 65" + J (65K, ).

In particular, when K = ¢, this gives
(1) o | T 0] = (5,687 4 (305

When nK is not a square, we have

(12) 3Py [



Theorem 1.19 (Kummer quadratic transformation formula). Let B, D € Fy, and set C = D?.
When D # ¢ and B # D, we have, for all z € F,

_ D¢B D —4x
Cc(1 - F . —
(1-2) 2F1 CB (1—95)2]
B C B B,D
CB J(C,B) J(C,B)
In [14], this theorem is proved using a straightforward translation of the proof over C. It turns
out the minor term of plays a dedicate role in obtaining the delta terms on the right hand side,
which describe the degeneracy of character sums when z = +1.

However, do not take the similarities for granted. For example,

e Over C.
a b c,c—a—b a b
F ; =T 1—-—— ) 2 F ;1 —
? 1{ c’z] (c—a,c—b) ? 1{ at+b+1—c’ Z}
c,a+b—c —a—b c—a c—b
' — | (1 —2) %" yF 31—
+ ( a,b )( 2 ? 1{ l+c—a—0b’ ok
e Over [F,.

PAB-A—B(UPA By
247 Ca - 247 ABéa .

If one looks for the finite field analogue of the following useful Schwarz map in Lecture I

101
2F1[2 ;1—)\]

the outcome is disappointing.

Here is another example

e Over C.

a a—
F
21[ 9%

D=
N
—_
I
Y
—
+
[a—
|
N
N———
—
N
IS]

e Over ;. When z # 0,

F A Ao 0 if p(1 —2)=-1

251 [ A2 Z] - (22 (7”“2@) + A (LQE)) if $(1—2) = 1.

Remark 1. While ,F,,—1 is a single function (solution), ,F,_1 is by nature an average (trace)
function.

A nice example which realizes the Clausen formula geometrically is given by Ahlgren, Ono and
Penniston [I]. In their work, they consider the K3 surfaces defined by

Xy: 8 =ay(l+a)(1+y)(z+Xy), A#0,-1,
in relation to the elliptic curves

Ex:y?=(@x—-1)(a®>=1/(1+X)), A#0,-1
11



In particular, the point counting on Xy over [, is related to

S o(ey(+2)(1+ )@ + Ay)) = 3P F e —)\].

z,y€ly
When ¢ =1 (mod 4), the point counting on Ey over F; (or F2 if needed), which is given by

a(A,q) ==Y dlx = 1)g(a” —1/(1+N)),

z€Fy

is essentially 9P [774 " ; —)\] where 74 is an order 4 character. This follows from the quadratic
€

formula in Theorem with B=C =¢ €F; and z = (b+1)/(b— 1) with b?> = 1 + \, for some
b. Thus Theorem 1.1 of [1] is equivalent to the Clausen formula over the finite field F, with S =4
and C' =e.

For special choices of A € Q such as 1, 8, 1/8, —4, —1/4, the corresponding elliptic curve F) has
complex multiplication (CM). For these A values, the period functions 9IP; can be written in terms
of Jacobi sums and can be viewed as Grossencharacters.

1.6. Two views of hypergeometric character sums. For example, if a = {%, %};/3 ={1,1},
for an odd prime p use

1 -~

3 —¢cl,

By |” % x| = 3 olelt - )1 - Aa))

z€lF),

in which p can be varied among all odd primes, referred to as a “horizontal” variation.

FpTl"'Q

horizontal
F

1 vertical norm

bS]

Fs Fs .. F,

For fixed p, we can also vary the character sum “vertically” by consider the character sum induced
to finite extensions IF,» of IF), via the norm map. Vertical variation can be put together via

¢ 9 1"
7 N _ N7
(avﬁa Aapa T) exXp Z ZPI |: e 3 )‘,p r
r>1
For example, when A = —1 and p =1 mod 4, let 74 be an order-4 character of F;’ and n4, be

the multiplicative character ny o N]E:T for IE‘;T. By Kummer evaluation formula (Proposition |1.10
12




and the vertical Hasse-Davenport relation,

Z(a, B T) = exp | ¢(=1) > (S (&) + T (M ¢))?
r>1
= exp | G(-1) Y21 (T, ) + T 0))

r>1

=1 =)L = pT) = (1 — ppT)(1 — p/ppT)
where p, = —¢(—1)J(n1, ¢) = —J (N4, ¢), since —1 is a square in [F),.

1.7. Another formulation when the hypergeometric data are defined over Q. Below we
assume A € Q and use led(e, B; \) to denote the least positive denominators of a;,b; and A. Let
[F, be a finite field of characteristic p { lcd(c, B; A). Following McCarthy, Beukers-Cohen-Mellit [3],
when lcd(a, B; A) | ¢—1, in which (¢—1)a;, (¢—1)b; € Z for all j, one defines a finite hypergeometric
function over F, as

72 n ok a=1)ag) g (k- (a—1Db;
(13) Hy(o, 85 N) - ZH j;iw—(q—l)bj) )wk((—l)”)\).
4=

When « and § are defined over Q, write

n

H X _ e2mia; _ H;’:l(ij -1)
X —e?mi - [ (X% —1)

j=1
where p;, qr € Z~o and p; # qi for all j, k. Applying the multiplication formula of Gauss sums, by
Theorem 1.3 of [3], the character sum Hy(c, 8; \) can be rewritten as

(14)  Hy(o, B;N) == (;1_)Tq+s ;Z—:z Hg mps) H (W Y ((— 1Bt Fas N1y,
where
(15) N := N(a,B) = M
41 - 4s
and s(m) is the multiplicity of X —e?7"/(4=1) in the factorization of gcd(ﬁ(ij —1), f[ (X% —1)).
Jj=1 k=1

Example 1.1. For oo = {%, %},ﬂ ={1,1},r=1,s=3,p1=3, 1 =@=q@g =1, N =-33

Remark 2. Note that requires q to be congruent to 1 modulo led(c, B; N), while this assumption
1s relazed in to as long as q is coprime to led(a, 55 N).

Ezercise 1.4. Show that under the above assumptions can be written as .
Here we state an equivalent version of [3, Theorem 1.3]:

Proposition 1.20. If the given HD is defined over Q, partition the multi-set o in the form
t
(16) a=|J%q, whereSy={t/d:0< (¢ modd)<d, (¢,d)=1}forde {d,...,d},

=1
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with o(dy) + -+ 4+ @(dy) = n (d; are not necessarily distinct). Let D, be the sequence of the
denominators of a;’s as

Da = {dl, e ,dt}.

Take Dy the sequence of the denominators of b;’s in a similar way.
Then

H,y (o, B; ) Z IT Sa@w®) T Sa@*)e((-1)"N),

]_ —
q k=0deD, deDy

where

— g(Xm) m=™ u(d/m)_ 1 m m=m p(d/m)
a0 = [T (2 ) = oo L),

g \ 800
and u(-) is the Mdébius function.
Ezample 1.2. Take HDy = {{3, 2},{1,1}, A} for example, for which case D, = {3}, D, = {1,1}.

1 q—2 wk+qT1 wk—qg;l w—F)2
D) =5 3 8
q—2
(17) _ 1 g(wg) (w—k)ka(?)—S)\)

1 13
S (1 o1 Zgw%)g(w—k)%k(—s—%)) .
For HDy = {{}, 1,2} {1,153} )}, D, = {2,3}, Dy = {1,6}.

k—a=1 _f—a=1 B P bt

2 (AT (RS
g(w g(w™ 3 )g(w I ) g(w " E Jg(w )
Hy(HDy) = Z 1 “a1 1 ) W (=)
“iT g )W T aw ) g(w s )glw™ )
2 _ _
1 SR s e ) e
T—q2 g glw P ™) '
For convenience, when ¢ =1 mod led(a, 5; \) we write
(g—1)ax (¢=Daz .. (¢=Dan

w w w

(18) Ple, 45 AiFgiw) = nPu-t wla b la—tpe N

Proposition 1.21. When o = {ay,...,an}, = {1,ba,...,by} forming a primitive pair, the H,-
and P-functions are related by

(19) P(a, B; A Fg;w) = Hy(a, B; Aw) - [ [ w7 D% (—1) (w0 D%, wlam D0,
=2
and the Hy- and F-functions are the same.

Ezercise 1.5. Verify the above Proposition.
14



1.8. Finite hypergeometric functions and point counts over finite fields. Classically it is
known that Jacobi sums are useful for point counts of Fermat type diagonal hypersurfaces over
finite fields.

Example 1.3. Consider the elliptic curve E : y?> = «
zt+1/4).
(1) When ¢ =3 mod 4,

3 — 2 (which is birational to the curve y? =

#En(Fq) =144
(2) When ¢ = 1 mod 4, let ¢, be the quadratic character and 744 a primitive character of
order 4 of F,*. Then

In the case p =1 mod 4 and ¢ = p", by the Hasse-Davenport relation ,

#E(FQ) = 1_|_q_a7‘_ar7 o= J(¢pan4,p)'

Thus, the local zeta function of F is

(1—apT), ifp=1 mod4,
(1=T)A -pT)Z(E/Fy;T) = { ¢)lp
1+ pT?, ifp=3 mod 4,

where ap, = a + bi € Z[i] such p = (ap) and ap =1 mod 2 + 2i.
The elliptic curve is a CM-elliptic curve of level 32 and the associated Hecke character is given by
the multiplicative character 1(z) of order 4 on (Z[i]/(2 + 2i))™ such that ¢ (x)x =1 mod 2 + 2i.
The L-function of E' can be written as

1 a+bi)y(a+ bi
3 ( ¥( )

L(E.s)=; T L(n(47)*n(87)%, s).

a+bieZi]

In particular,

L(E,1) = L(n(4r)2n(8r)%, 1) = %B @ i) .

See [21, Lemma 3.1].
Hypergeometric functions over finite fields are convenient for point counts on special algebraic
varieties. We will discuss three types here.

1.8.1. Firstly, finite period functions can be used to count algebraic varieties similar to the Le-
gendre curves Ly :  y? =xz(1 —z)(1 — \z). If A € F,.

#(LafFy) = 3 (14 (el =)0 = 2e)) =+ 71 |* 23]

x€lFp

There will be an additional 1 in the above point count formula when infinity is also considered. In
general if one considers the family of hypergeometric algebraic varieties

X/\: yN :(I;Zf x;’l’n (l_xl)]l(l_l'n)]n . (1_A$1$n>k’
then as in [§]

Proposition 1.22. Let ¢ = p® =1 (mod N) be a prime power, and ny € Fg a primitive order N
character. Then

N1 n_mk nmln 777)’L7:l
#XA(Fq) =1+ qn + Z n+1]P)n |: N mi»,]y—s—mjn mi{\—fi—mjl;)‘; q] -
— Ny My

15



1.8.2. Secondly, when «, 8 are both defined over Q, toric models are used in [3, Thm. 1.5] by
Beukers, Cohen, Mellit (BCM). Let p;, g; be distinct, unique up to a re-ordering the p; (resp. g;),
positive integers such that

n

11 X —e?mia [ (X7 —1)

(20) M- o2mib; T, (X% —1)
From the degrees of the rational function on the left hand side, we know
(21) prtcc e =a g
The BCM varieties are defined as a subset of the torus 7' = (C*)" x (C*)® by two equations
(22) Vapg(\) i @4tz —yr——ys =0, NXaf'---abr =yf' oyl

s q;
where N = H}L:IZ;}Z. as ((15)).

i=1F4q

Example 1.4. For a = {%,% B =11}, r = 1,s = 3,p1 = 3,1 = ¢ = g3 = 1. So the
corresponding model is

(23) X1 =Y -Y,—Y3=0, 27TAX}=Y1Y,V3.

Lemma 1.23 (Lemma 2.7 [3]). Let a = (a1, - ,a,) € Z". Define any1 = —a1 — -+ — a, and
a =ged(ay, -+ ,ay). Then for any m € Z

(24) S Byt a1t )™ = (g — 1)"6(am) + glarm) - glansim)

UEFq,XE(F; )n
The main result of [3] is as follows.

Theorem 1.24 (Beukers, Cohen, Mellit). Let the notation p;,q;, N := N (o, ) as above. Suppose
the greatest common denominators of pi,--+ ,pr,q1,- - ,qs is one and suppose N (o, B)X # 1. Then
exists a suitable non-singular completion of V, g(N), denoted by Vi, g(X) such that

#Vo s(N)/Fg = Prs(q) + (1) 1gmint=Ls=D (o, B; NN),

min(r—1,s—1) r—1 s—1 qr+sfm72 _ qm
prs(@) = Y U st

m=0

where

1.8.3. Thirdly, special Fermat type hypersurfaces with one-parameter deformations can also be
counted using hypergeometric functions over finite fields. In particular, we are referring to algebraic
varieties of the type xp° + 2} + - 23V — cxo---xny = 0 where ¢ is a given constant, 1 is a

parameter and [zg, -+ ,zn] is a point in a weighted projective space, see [10] by Dolachev. One of
the well-known family is called degree-IN Dwork family which takes the form of
(25) D’LUN(w) : wév+xiv+---x%j—Nwa:0~--a:N_1 =0.

For a fixed v, it is a (N — 2)-dimensional projective variety with a unique up to scalar holomorphic
differential (N — 2)-form. It admits the action

G ={(ag, - ,an—-1) € (Z/NZ)N_l,Zai =0 mod N}

via (zg, -+ ,xn-1) = ((Wxo, -+, (3 "@n—1). A Picard-Fuchs equation of Dwy (%) is
L

{%7%7“’7%}7{17“'71};1&_1\]’
see an explicit computation in §6 [12] for the N = 4 case and [5] by Candelas, de la Ossa, Green

and Parkes for the N = 5 case. Dwork also study the unit root functions for the Dwork family,
16



see also [35] by Yu. Point count formulas for Dwork family over finite fields are obtained in [20] by
Koblitz and [28] by McCarthy. See also [29] by Salerno for three algorithms for Dwork family.

Ezample 1.5. When N = 3, it is also known as the Hesse pencil

(26) H(): a3+ a3 + a3 — 3pzorize = 0.
When A = ¢, a morphism from (26]) to is:
(27) 3pxorixe > X1, x> Yy, a3 Y, ozl Vi,

which is defined over Z.

We will next show how its point counts are related to truncated hypergeometric functions, which
can be considered as Hasse invariants of the Hesse pencil.

Lemma 1.25. Let p > 3 be a prime and ip € F,. Let Np(v)) be the number of solutions of
f(x;9) = ad + 23 + 23 — 3vzoz122 0ver Fy, where x = (wg,x1,x2), then
1

Ny(w) = o5 |?

— wWIiN

; )\] mod p, where A = 3.
p—1

Proof. By Fermat little theorem,
F )Pt mod p =1 —6o(f(x)),
SO
No(@) =D (1= flxspp™t) =p° - (Z f(x;w—l) mod p.
x€F3 X
Here f(x;1)P~! is a degree 3p — 3 homogeneous polynomial. When summing over all x € IF;;,
> (@mezs)P ' = (p— 1) = -1 mod p,

X

while for all other monomials appear in the expansion of f(x;¢)P~1, Y a1 xl?25® = 0 mod p
including >~ x?p_?’ =p*(p—1)=0 modp,i=1,2,3. Thus N =C(p—1,p—1,p—1) mod p,
where C(p — 1,p — 1,p — 1) is the coefficient of (z122x3)P~!, which is

p—1 v i L2
_a i\ p—1-3i _ =3t — 3 3.
; (i,i,i,p— 1 _3i>( 3¢)) = go (Z”> (3¢) % = oF) [ s AL_l mod p.

O

The above computation is closely related a Commutative Formal Group Laws result of Stienstra
in [31].

Ezercise 1.6. Let p > 3 be a prime. Show that the number of solutions the intersection of the

1 2 1 2
)\} modulo p, where \ = 176,

3 3 3 3.
1 1 1’
A@) 2l + a8 + 23 — 3vasasae =0,
o) af + a3 + 2 — 3parzaws = 0.

following two equation over IF, is congruent to 4F3 [

(28)

Next we will give a more precise formula for the point count N;(¢) of Hesse pencil over any
finite field I, of charactersistic larger than 3 by computing its major term

1
(29) Ny() == e Z O, (v(x$ + 23 + 23 — 3w w013))
veFy,xe(Fy )3

17



is a function from F, — C, in which we omit the count for the cases when at least one z; is 0.
Where ®, denotes the additive character. Note also here we use the orthogonality of the additive
character instead of the delta function so that Gauss sums will appear naturally when we apply
finite Fourier analysis (or the Lagrange inversion formula) The while purpose is to show the major
term can be written as the finite character sum Hgy({3, 2}, {1,1}; A) in the formulation of (T4). We
decompose the computution on the following steps.

I) Computing the inner product of (N (1), x) of Ny(v) with x when x = ¢ is the trivial character.

(Ng(¥), ) = (g = 1).

We leave the verification as an exericse.
IT) Computing (N4(v), x) when x # e.

(30) (¢ —1){ Z Ny(
ala— 1 Z Z <I>q(va::f)@q(vxg)q)q(v:vg)(l)q(73m/):clxgx3)X(f?wd)xl:132:63))((731}@:62333)
veFR; xe(Fy )3
1
= 00 D Dg(vad) @y (vad) By (vad) x(—Bvaizaws)
q(g—1) s
veFy xe(Fg)3
Write
S0 = S By, (vad) By (v (3 raams)

veFy xe(Fg )3

Let g3 be a primitive 3rd root of unity in Fy (in which case ¢ =1 mod 3). Replacing =1 by gzz1
is a bijection on F,. When y is not a cubic, then x(g3) # 1. It follows S(x) = 0.

Now we assume y = 7° is a cube. Then

> xW)®q(vy?) = Y n(y®)2q(vy?)

y€eFy y€eFy
= (1+ xa(w) + x3(w)) = 7(v)8(n) + 7x3(v)8(nxs) + Txa(v)a(7Xs)
ueFX
Hence,

S(x) = Y x(=3v) M(v)a(n) +7X3(0)8(1x3) + 7xs (v)g(7%s))

vEF;

= > x(=3) [8(n) + X3(v)a(nx3) + x3(v)g(1X3)]”

vEF;
=x(=3) [a(n)® + a(nxs)® + 8(nX3)* + 6a(ma(nxs)a(nx3)] > 1
UEFX
=x(=3)(¢ — 1) [9(n)* + 8(nx3)® + 8(nX3)* + 68(n)g(nx3)a(nx3)]

=6q(q — 1)x(=D)a(x) + x(=3)(¢ — 1) [a(n)® + g(nx3)® + a(nx3)*]
18



In other words, when y is a nontrivial character and y = 1?3,

(31)
P x(=3) _
(Ng, x) = 6(] 1 + (g — 1)9(X

3 3 — 3 a9 n(=3%) 3 3
) [a0n)? + 8(nxa)” + 9(nXa)*] =6~ + > alg—1)9)s(n)
nm3=x

IIT) Applying the finite Fourier analysis (or the Lagrange inversion formula), we obtain that for

$#0

IV) The major term of the above is ﬁ Do X2 (—3¢)g(x*)g(x)3. From (7)), we see that it can

be written as —H, ( %, %} AL 1} %) — %, where \ = 3.

Ezercise 1.7. Try this method on the complete intersection given by the equations listed in .

1.8.4. Arithmetic mirror symmetries. There is an extensive literature regarding mirror symmetries
arising from string theory in Physics, see the textbook [6] by Cox and Sheldon. We will only
mention the relevant information to hypergeometric functions.
Dwork quintic threefold
V() =V 23 3(4): X4+ Xo 4+ X0+ X3+ X2 — 50 X1 XoX3X,X5 =0

has been studied extensively, for example see [4] by Candelas, de la Ossa, Rodriguez-Villegas for
the arithmetic of the quintic family over finite fields. In [5, §3] by Candelas, de la Ossa, Green and
Parkes, the Picard-Fuchs differential operator of V(1)) is given using variable A\ = ¢

d
0 — 57IN(50 + 1)(50 + 2)(50 + 3)(50 +4), where § := Aot
whose unique (up to scalar) holomorphic solution near zero is given by the hypergeometric function

1 2 3

Z (5k)' (575)\)k _ 4F3 |:5 ?

— o
— Ol

k!5
k=0

; )\] .
It is a hypergeometric differential equation with parameters o = {%, %, %, %}, B =1{1,1,1,1}. There
are 14 such Calabi-Yau differential equations (see a preprint by Almkvist, van Enckevort, van
Straten, Zudilin). Their parameter sets are of the form o = {ry,1 —r1,7r9,1 — 19}, 5 ={1,1,1,1},
where 71,72 € (0,1) and « is defined over Q. We list the defining equations (from [26]) of the
Calabi-Yau three-folds families whose Picard Fuchs operators are £, g. in the following tables. The
first table consists of 4 cases given by one equation. The remaining cases are given by complete
intersection in weighted projective spaces. To compute their Picard-Fuchs equation, there is a
general method called the Gel’fand, Zelevinskii, and Kapranov (GKZ) method [15]. See [36] by Zhou
for using GKZ to derive the Picard-Fuchs equation of the Hesse pencil , which is £ (12101100
The notion of mirror symmetry connects two types of models in String theory. See [6] on Mirror
symmetry and algebraic geometry by Cox and Sheldon for more mathematical background. One of
the most well-studied examples in mirror symmetry is the Dwork quintic case. For a fixed 1, the
equation V(1) admits the action of the discrete group

G={(¢",....¢¢% :a1++as =0 mod 5} = (Z/5Z)*
via the map (X1,...,X5) — (&' X1,...,(*X5), where (5 = €2™/° is the primitive 5-th root of

unity. Its mirror threefold is constructed from the orbifold V(¢)/G. One way to realize the quotient
is letting y; = X;’ for j =1,...,5, 1 = 5 X1 --- X5 and A\ = ¢ ~°; the image is

Y+ tys—x1 =0, 50N =y1-- -y
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TABLE 1. One-parameter families of hypersurfaces for Vi, ., 15 1-ry} (¥)

’ (di,...,d) ‘ n ‘ (r1,m2) H X(n) € PX(wo, ..., wy) ‘ Calabi—Yau threefold equation
5 5
(5) 50 (L3 | xX(5)cP(1,1,1,1,1) S X7 -sp][xi=0
. j=1 j=1
5
(10) 10 | (5. 45) | X(10) c P4(1,1,1,2,5) | Y X%+ 2X5 +5X2 — 10y [[ X; =0
=1 =1
J T = J
(8) 8| (L3 | X8 cP(1,1,1,1,4) doxPraxi-sp[X;=0
j=1 j=1
4 5
(3,6) 6| (L1 | x(6)cP(1,1,1,1,2) doxfroxi-6p][[X;=0
j=1 j=1

TABLE 2. Complete intersection of one-parameter families of hypersurfaces for Vi, 1, 1—r 1-7,1 (%)

’ (di,...,d) ‘ (ri,m2) H X(ny,...,ny) ‘ Calabi—Yau threefold equations ‘
X; + XQE —2pX3X, =0
11 7 X2 4 X2 - 2)X5X6 =0
(2,2,2,2) | (3,3) X(2,2,2,2) CP X%+X%_2M7X8:0
X2+ X2 —29pX1X2 =0
(3 3) (% % X(S 3) C IP)5 Xi +X§; +X32 —3Y X4 X5X6 =0
’ ’ ’ X3+ X3+ X8 —3YX1X2X3=0
X2+ X2+ X2 -3pX4X5=0
(2,2,3) (3,4 X(2,2,3) c PS X3 4 X2 — 29X) X6 X7 =0
X2+ X2 - 29X2X3=0
224 | G X249 cP ot
5 6 1A2A3A4 —
12) | (&) | X(1212) CPLL46,6,6) | |, SEaXE 20
5 6 3 4 — 1A2A3A4 —
11 5 Xi+ X5 +2X2 — 44Xy X5Xs =0
(4,4) (1) | X(4,4)cP(1,1,2,1,1,2) X4 X0 42Xk 4pX XX = 0
(4,6) | (4,1 | Xx(4,6)CcP5(1,1,2,1,2,3) NN PN XS iXe =0
4 6 — 1A2A3A5 —
3,4 | (51 | XG9cP(1,1,1,1,1,2) M L X =0
5 6 1A2A3A4 —
11 5 X8 +2X3 +3X2 — 6y XuX5X6 =0
(6,6) (5:5) || X(6,6)CP(1,2,3,1,2,3) Xb 42X 45X . XX — 0
11 5 3X2 4+ X34+ X2+ X2 -6YX1X5=0
(27276) (2’6) X(276) CP (1a1a1717173) 1Xg+2Xg 7321/1X2§(3X4X6=0

The reader may already notice that it is nothing but Vit2sayrg 1}()\) by formula Resolving

5757575

singularities, one gets a Calabi—Yau threefold f/()\) with generic hodge number h%! equal to 1 (see
[5 6] for details). From mathematical point of view, one would ask what is the relation between
the Quntic family V{ 1234y and its mirror which is of the form

5'5'55

1 _
20
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Wan gave an answer by comparing their local zeta functions [32] B3]. See [I1] by Doran, Kelly,
Salerno, Sperber, Voight and Whitcher for discussions on arithmetic mirror symmetry on K3 sur-
faces.

When )\ = 1, the corresponding Calabi—Yau threefold f/(l) is defined over Q and it becomes rigid,
that is, h>'(V(1)) = 0 meaning that its third Betti number Bz = dim H3(V(1),C) is 2. It is shown
by Schoen [30] that the ¢-adic Galois representation (of the absolute Galois group Gg := Gal(Q/Q))
arising from étale cohomology H3,(V(1), Q) is modular in the sense that it is isomorphic to the Galois
representation attached to a weight 4 level 25 Hecke eigenform f = f{ 128 4y, labeled 25.4.a.b in

575’575

the database.

Theorem 1.26 (Dieulefait [9], Gouvéa-Yui [16]). For any rigid Calabi-Yau X defined over Q
and each prime £, there is a weight 4 modular form f with integer coefficients such that the £-adic
Galois representation arising from the third étale cohomology group of X is isomorphic to the £-adic
Deligne representation associated to f.

When ¢ = 1, for each of the 14 families listed in Tables [1| and [2] the corresponding Calabi-Yau
manifolds are rigid are defined over Q. By the modularity theorem of Dieulefait and Gouvéa-Yui,
they are all modular.

We will explain to identify the corresponding weight-4 modular forms in the next lecture.
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