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Review

A multiset α = {a1, ..., an} with ai ∈ Q is called defined over Q, if∏n
j=1(X − e2πiaj ) ∈ Z[X ]. It is said to be self-dual if α ≡ −α

mod Z.
A set of hypergeometric parameters consists of

α = {a1, ..., an}, β = {b1 = 1, b2, ..., bn}

with ai , bj ∈ Q. It is called primitive if ai − bj /∈ Z for any i , j .
A hypergeometric datum is a triple

{α, β;λ}

where λ ∈ Z, or Q, or Q.
We introduced P,F,Hq-functions over finite fields in Lecture II.



Two perspectives

Fpr1r2

horizontal // Fpr1

F3 F5 · · · Fp · · ·

vertical
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We will consider now how to go horizontally in a compatible way.



Basic setup

I Degree M := lcd(α, β)

I Field K = Q(ζM)

I Ring OK = Z[ζM ]

I Group G (M) := Gal(Q/K ), GQ = Gal(Q/Q).

I ℘ any nonzero prime ideal of Z[ζM , 1/M]

I k℘ := OK/℘, size q(℘) := |k℘| ≡ 1 mod M

I Frob℘ the Frobenius conjugacy class of G (M) at ℘



Notation

For a finite field Fq containing a primitive Mth root of 1 and any
λ ∈ Fq, recall that we write

P(α, β;λ;Fq;ω) := nPn−1

[
ω(q−1)a1 ω(q−1)a2 · · · ω(q−1)an

ω(q−1)b2 · · · ω(q−1)bn
; λ; q

]
.

Similarly

F(α, β;λ;Fq;ω) := nFn−1

[
ω(q−1)a1 ω(q−1)a2 · · · ω(q−1)an

ω(q−1)b2 · · · ω(q−1)bn
; λ; q

]
,

where F̂×q = 〈ω〉.



The Legendre curves
Let λ ∈ Q \ {0, 1} be fixed and ` be a fixed prime number.

Lλ : y2 = x(1− x)(1− λx).

It gives rise to a continuous representation

ρλ,` : GQ → GL2(Q`).

For p - Cond(Lλ),

Trρλ,`(Frobp) = p −#(Lλ/Fp)

#(Lλ/Fp) =
∑
x∈Fp

(1+φ(x(1−x)(1−λx)) = p+P({1

2
,

1

2
}, {1, 1};λ;Fp;ω)

It is independent of the choice of ω.

Trρλ,`(Frobp) = −P({1

2
,

1

2
}, {1, 1};λ;Fp)

= φ(−1)F({1

2
,

1

2
}, {1, 1};λ;Fp).



Let ζM be a fixed primitive Mthe root of unity. For a prime ideal ℘
of Z[ζM , 1/M], ζM mod ℘ in the residue field κ℘ of ℘ has order
M, and it generates the cyclic group (κ×℘ )(N(℘)−1)/M . Put

P(α, β;λ;κ℘) = P(α, β;λ;κ℘;ω℘)

where ω℘ is a generator of κ̂×℘ so that

ω℘(ζM mod ℘) = ζ iM , i ∈ (Z/MZ)×.

We choose i = −1 by default. Note that P(α, β;λ;κ℘) is
independent of the choice of ω℘, but depends on the choice of i on
ζ iM .



When |α| = |β| = 2,

2F1

[
a b

c
; z

]
=

1

B(b, c − b)

∫ 1

0
xb−1(1− x)c−b−1(1− zx)−adx ,

Normalized periods on

C
[N;i ,j ,k]
λ : yN = x i (1− x)j(1− λx)k , where

N = lcd(a, b, c), i = N · (1−b), j = N · (1+b−c), k = N ·a,

If α, β are primitive, N - i , j , k , i + j + k, assume 0 < i , j , k < N.

C
[N;i ,j ,k]
λ admits an automorphism

ζ : (x , y) 7→ (x , ζ−1
N y).

Let X (λ) be its smooth model.



Jacobians and Galois representations

Use J
[N;i ,j ,k]
λ to denote the Jacobian of X

[N;i ,j ,k]
λ . For each proper

divisor d of N, J
[N;i ,j ,k]
λ contains a factor which is isogenous to

J
[d ;i ,j ,k]
λ over Q(λ, ζN). Use Jprim

λ to denote the primitive part of

J
[N;i ,j ,k]
λ , which is of dimensional ϕ(N), by Archinard.

If λ ∈ Q \ {0, 1}, there is a 2ϕ(N)-dimensional `-adic Galois
representation ρλ,` of GQ arising from Jprim

λ . Using the action
induced from

ζ : (x , y) 7→ (x , ζ−1
N y),

ρλ,`|G(M) decomposes as a direct sum of ϕ(N) copies of
2-dimensional Galois representations.



Theorem (Fuselier, Long, Ramakrishna, Swisher, Tu)

Let a, b, c ∈ Q with least common denominator N such that a, b,
a− c, b − c /∈ Z and λ ∈ Q \ {0, 1}. Set K = Q(ζN) and denote
its ring of integers OK . Let ` be any prime. Then there exists a
representation

σλ,` : GK := Gal(K/K )→ GL2(Q`),

depending on a, b and c, that is unramified at all nonzero prime
ideals ℘ of Z[ζN , 1/N`] and satisfy ord℘(λ) = 0 = ord℘(1− λ).
Furthermore, the trace of Frobenius at ℘ in the image of σλ,` is
the well-defined algebraic integer

−P({a, b}, {1, c};λ;κ℘).



When ϕ(N) = 2

Let σλ,` be its complex conjugate, namely the requirement for the
generator is changed to

ω℘(ζM mod ℘) = ζM .

Question
When does Jprimλ admit quaternionic multiplication (QM)? Or
when do σλ,` and σλ,` differ by a finite order character.

It is in part motivated by a modularity theorem on 4-dimensional
Galois representations of GQ admitting QM by Atkin, Li, Liu and
Long.



Theorem (Deines, Fuselier, Long, Swisher, Tu)

Let N = 3, 4, 6 and other notations and assumptions as above, in
particular, N - i + j + k, i , j , k. Then for each λ ∈ Q, End0(Jprimλ )
contains a quaternion algebra over Q if and only if

B

(
N − i

N
,
N − j

N

)/
B

(
k

N
,

2N − i − j − k

N

)
∈ Q.

Idea of the proof: The traces of σλ,` are −2P1 = −J · 2F1

functions. Due to Euler transformation, 2F1 and 2F1 in the current
context only differ by a finite character. So we want to know when
J/J is a finite order character. Yamaoto’s result says if it is the
case then the above ratio is algebraic. Conversely, we use a result
of Wüstholz.



Katz, Exponential sums and Differential Equations, 1990
Katz, Another look at Dwork family, 2009

Theorem (Katz)

Let ` be a prime. Given a primitive pair of multi-sets
α = {a1, · · · , an}, β = {1, b2, · · · , bn} with M = lcd(α ∪ β), for
any datum HD = {α, β;λ} with λ ∈ Z[ζM , 1/M] r {0}, the
followings hold.

i). There exists an `-adic Galois representation
ρHD,` : G (M)→ GL(Wλ) unramified almost everywhere such
that at each prime ideal ℘ of Z[ζM , 1/(M`λ)] with norm
N(℘) = |κ℘|,

TrρHD,`(Frob℘) = (−1)n−1ω(N(℘)−1)a1
℘ (−1)P(α, β; 1/λ;κ℘),

where Frob℘ stands for the Frobenius conjugacy class of
G (M) at ℘.



iia). When λ 6= 0, 1, the dimension d := dimQ`
Wλ equals n and all

roots of the characteristic polynomial of ρDH,`(Frob℘) are
algebraic integers and have the same absolute value
N(℘)(n−1)/2 under all archimedean embeddings.

iib). When λ 6= 0, 1 and HD is self-dual, then Wλ admits a
symmetric (resp. alternating) bilinear pairing if n is odd (resp.
even).



iii). When λ = 1, dimension d equals n − 1. In this case if HD is
self-dual, then ρHD,` has a subrepresentation ρprimHD,` of

dimension 2bn−1
2 c whose representation space admits a

symmetric (resp. alternating) bilinear pairing if n is odd (resp.
even). All roots of the characteristic polynomial of
ρprimHD,`(Frob℘) have absolute value N(℘)(n−1)/2, the same as
(iia).



Recall

n+1Fn

[
A1 A2 · · · An+1

B2 · · · Bn+1
; λ

]

:=
1∏n+1

i=2 J(Ai ,BiAi )
n+1Pn

[
A1 A2 . . . An+1

B2 . . . Bn+1
;λ

]
.

|J(Ai ,BiAi )| =
√
q, if Ai ,Bi ,BiAi 6= ε



Theorem (Katz, Beukers-Cohen-Mellit)

Assumption as before and further HD = {α, β;λ} is defined over
Q. Assume that exactly m elements in β are in Z. Then, for each
prime `, there exists an `-adic representation ρBCMHD,` of GQ s.t.:

i). ρBCMHD,` |G(M)
∼= ρHD,`.

ii). For any prime p - ` ·M such that ordpλ = 0,

Tr ρBCMHD,`(Frobp)

= φ(M, a1)(Frobp)χ(α, β;Fp)Hp(α, β; 1/λ) · p(n−m)/2 ∈ Z.

where φ(M, a1) is a character of GQ, depending on a1.

iii). When λ = 1, ρBCMHD,` is (n − 1)-dimensional and it has a

subrepresentation, denoted by ρBCM,prim
HD,` , of dimension 2bn−1

2 c
whose representation space admits a symmetric (resp.
alternating) bilinear pairing if n is odd (resp. even). All roots

of the characteristic polynomial of ρBCM,prim
HD,` (Frobp) have

absolute value p(n−1)/2.



A p-adic detour to derive a step function

Hq(α, β;λ)

:=
1

1− q

q−2∑
k=0

n∏
j=1

g(ωk+(q−1)aj )g(ω−k−(q−1)bj )

g(ω(q−1)aj )g(ω−(q−1)bj )
ωk
(
(−1)nλ

)
.

The Gross-Koblitz formula says for integer 0 ≤ k < p − 1

g(ω−k) = −πkpΓp

(
k

p − 1

)
,

where ω is the Teichmuller character of F×p , Γp(·) is the p-adic
Gamma function, πp is a fixed root of xp−1 + p = 0 in Cp, where
ζp is a primitive pth root of unity which is congruent to 1 + πp
modulo π2

p.



A step function

Given α = {a1, ..., an} and β = {b1, ..., bn} with ai , bj ∈ Q ∩ [0, 1)
and M = lcd(α ∪ β), let

eα,β(x) :=
n∑

i=1

−bai − xc − bx + bic . for 0 ≤ x < 1.

For p - lcd(α, β) and 0 ≤ k < p − 1 is an integer, eα,β( k
p−1 ) gives

the collective exponent of p in the kth summand of Hp(α, β;λ).

The graph of eα,β(x) is a step function. The value of eα,β(x)
jumps up (resp. down) only at ai (resp. 1− bj). (If α, β not
defined over Q, the step function will also depends on p.)
We will compare it with the plot consisting of {e2πiaj}nj=1 and

{e2πibj}nj=1 on the unit circle mentioned in Lecture I.



α = {1/5, 2/5, 3/5, 4/5}, β = {0, 0, 0, 0}



The weight function and the adjustment factor

I The weight w(HD) of a datum HD = {α, β;λ} is defined as

w(HD) := w(α, β) := max eα,β(x)−min eα,β(x).

I The adjustment factor

t := −min{eα,β(x) | 0 ≤ x < 1} − n −m

2
, (1)

where n = |α|,m = #{bj | bj ∈ Z}.



α = {1
2 ,

1
2 ,

1
6 ,

5
6} and β = {0, 0, 1

3 ,
2
3}

max = 2,min = 0,max −min = 2, n = 4,m = 2, t = −1



α = {1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
3 ,

2
3} and β = {0, 0, 0, 0, 1

6 ,
5
6}

max = 5,min = −1,max −min = 6, t = −(−1)− (6− 4)/2 = 0.



Magma package implemented by Watkins

For HD defined over Q, there is an efficient Magma program called
“Hypergeometric Motives over Q” implemented by Watkins which
computes the characteristic polynomial of ρBCM{α,β;λ},`[t] (resp.

ρBCM,prim
{α,β;λ},` [t]) at Frp, the inverse of Frobp, for p - M` efficiently

when λ 6= 0, 1 (resp. λ = 1), where ρ[t] denotes the weight-t Tate
twist of a representation ρ of GQ.

Example

H:=HypergeometricData([1/5,2/5,3/5,4/5],[1,1,1,1]);

[w = 4, t = 0]
Factorization(EulerFactor(H,1,7));

The output is < 343 ∗ $.12 − 6 ∗ $.1 + 1, 1 >

Factorization(EulerFactor(H,-1,7));

The output is
< 117649 ∗ $.14 + 8575 ∗ $.13 + 350 ∗ $.12 + 25 ∗ $.1 + 1, 1 >
[117649 = 76]



H2:=HypergeometricData([1/2,1/2,1/6,5/6],[0,0,1/3,2/3]);

[w = 2, t = −1]

Factorization(EulerFactor(H2,1,5));

The output is < 5 ∗ $.12 + 2 ∗ $.1 + 1, 1 >

Factorization(EulerFactor(H2,-1,5));

The output is
< 5 ∗ $.12 − 4 ∗ $.1 + 1, 1 >,
< 5 ∗ $.12 + 2 ∗ $.1 + 1, 1 >



Hypergeometric Galois representations
Note that Theorem by Katz, Beukers-Cohen-Mellit implies that
one can study a whole category of Galois representations that can
be explicitly computed. Roberts, Rodriguez-Villegas and Watkins
use them to test standard conjectures on L-functions. For instance,
according to Langlands general philosophies, these Galois
representations are automorphic.

Question
When do we get degree-2 subrepresentations from hypergeometric
data HD = {α, β;λ}?
Here are some candidates.

I When |α| = |β| = 2.

I When |α| = |β| = 3, self-dual, λ = 1.

I When |α| = |β| = 4, self-dual, λ = 1.

I A special construction by Li, Long and Tu using a Whipple’s
formula over finite field in which cases |α| = |β| = 6,
(well-posed), λ = 1.



Modularity theorems

Theorem
Given a prime ` and a 2-dimensional absolutely irreducible
representation ρ of GQ over Q` that is odd, unramified at almost
all primes, and its restriction to a decomposition subgroup D` at `
is crystalline with Hodge-Tate weight {0, r} where 1 ≤ r ≤ `− 2
and `+ 1 - 2r , then ρ is modular and corresponds to a weight r + 1
holomorphic Hecke eigenform.

The actual identification of the target modular form can be carried
out using

Theorem (Serre)

Let f be an integral weight holomorphic Hecke eigenform with
coefficients in Z. Then the p-exponents of the level of f are
bounded by 8 for p = 2, by 5 for p = 3, and by 2 for all other bad
primes.



Back to rigid Calabi-Yau 3folds

For HD = {α = {r1, r2, 1− r1, 1− r2}, β = {1, 1, 1, 1};λ = 1},
where r1, r2 ∈ {1

2 ,
1
3 ,

1
4 ,

1
6} or (r1, r2) = ( 1

5 ,
2
5 ),

( 1
10 ,

3
10 ), ( 1

8 ,
3
8 ), ( 1

12 ,
5

12 ). For these, ρBCMHD,` of GQ are 3-dimensional,
which decomposes into a direct sum of 2 subrepresentations
ρBCM,prim
HD,` ⊕ ρBCM,1

HD,` . Among them ρBCM,prim
HD,` is 2-dimensional and

ρBCM,1
HD,` is 1-dimensional.

Theorem (Long, Tu, Yui and Zudilin)

Let p > 5 be a prime and α and β as above. Then the following
equality holds:

Hp(α,β; 1) = ap(fα) + χα(p) · p,

where ap(fα) is the p-th coefficient of the normalized Hecke
eigenform and χα is a Dirichlet character of order at most 2,
whose precise description is given in the following table.



(r1, r2) fα(τ) level LMFDB label χα

( 1
2 ,

1
2 ) η4

2η
4
4 8 = 23 8.4.a.a χ1

( 1
2 ,

1
3 ) 36 = 22 · 32 36.4.a.a χ3

( 1
2 ,

1
4 ) η16

4 /(η4
2η

4
8) 16 = 24 16.4.a.a χ2

( 1
2 ,

1
6 ) 72.4.a.b χ1

( 1
3 ,

1
3 ) 27 = 33 27.4.a.a χ1

( 1
3 ,

1
4 ) η8

3 9 = 32 9.4.a.a χ6

( 1
3 ,

1
6 ) 108 = 22 · 33 108.4.a.a χ3

( 1
4 ,

1
4 ) 32.4.a.a χ1

( 1
4 ,

1
6 ) 144.4.a.f χ2

( 1
6 ,

1
6 ) 216 = 23 · 33 216.4.a.c χ1

( 1
5 ,

2
5 ) 25 = 52 25.4.a.b χ5

( 1
8 ,

3
8 ) 128.4.a.b χ2

( 1
10 ,

3
10 ) 200 = 23 · 52 200.4.a.f χ1

( 1
12 ,

5
12 ) 864 = 25 · 33 864.4.a.a χ1

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/36/4/a/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/16/4/a/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/72/4/a/b/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/27/4/a/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/9/4/a/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/108/4/a/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/32/4/a/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/144/4/a/f/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/216/4/a/c/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/25/4/a/b/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/128/4/a/b/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/200/4/a/f/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/864/4/a/a/


Other formulas in light of Galois representations

Clausen formula

2F1

[
c − s − 1

2 s

c
; λ

]2

= 3F2

[
2c − 2s − 1 2s c − 1

2

2c − 1 c
; λ

]
.

Theorem (Evans-Greene)

Let C ,S ∈ F̂×q . Assume that C 6= φ, and S2 6∈
{
ε,C ,C 2

}
. Then

for λ 6= 1,

2F1

[
CSφ S

C
; λ

]2

= 3F2

[
C 2S

2
S2 Cφ

C 2 C
; λ

]

+ φ(1− λ)C (λ)

(
J(S

2
,C 2)

J(C , φ)
+ δ(C )(q − 1)

)
.



Whipple’s formula

Theorem (Whipple)

7F6

[
a 1 + a

2
c d e f g

a
2

1 + a − c 1 + a − d 1 + a − e 1 + a − f 1 + a − g
; 1

]

= C · 4F3

[
a e f g

e + f + g − a 1 + a − c 1 + a − d
; 1

]
,

when both sides terminate

I The parameter set of 7F6(1) is imprimitive

I The 7F6(1) is well-posed, meaning the upper and lower
parameters sum to 1 + a in each column. Namely
α = {a1, · · · , a7}, β = {1 + a− ai , i = 1, · · · , 7}

I It is widely known and used



Whipple’s formula + self-dual

7F6

[
a 1 + a

2
c d e f g

a
2

1 + a − c 1 + a − d 1 + a − e 1 + a − f 1 + a − g
; 1

]

=
Γ(1 + a − e)Γ(1 + a − f )Γ(1 + a − g)Γ(1 + a − e − f − g)

Γ(1 + a)Γ(1 + a − f − g)Γ(1 + a − e − f )Γ(1 + a − e − g)
×

4F3

[
a e f g

e + f + g − a 1 + a − c 1 + a − d
; 1

]
,

I Goal: to make 6F5(1) reduced from 7F6(1) self-dual

I α being self-dual, “means” if a ∈ α, 1− a is also in α.
c + d = 1, f + g = 1

I β = {1 + a− ai} being self-dual requires a = 1
2 ⇒ e = 1

2 .

a =
1

2
, c + d = 1, f + g = 1, and e =

1

2

(
−p

2

)



7F6

[
1
2

5
4 c 1− c 1−p

2 f 1− f
1
4

3
2 − c 1

2 + c 1 + p
2

3
2 − f 1

2 + f
; 1

]
=

C ×

(
p · 4F3

[
1
2

1−p
2 f 1− f

1− p
2

3
2 − c 1

2 + c
; 1

])
,

C =
Γ( p

2 )Γ( 3
2 −f )Γ( 1

2 +f )Γ( p
2 )

Γ( 1
2 )Γ( 1

2 )Γ(1+ p
2 −f )Γ( p

2 +f )
. Ignoring p, and canceling 5

4 and 1
4 which

correspond to the same character in Fq.
L.H.S.

HD1 = {α6(c , f ) :=

{
1

2
, c , 1− c ,

1

2
, f , 1− f

}
,

β6(c , f ) =

{
1,

3

2
− c ,

1

2
+ c , 1,

3

2
− f ,

1

2
+ f

}
; 1}

R.H.S.

HD2 =

{
α4(f ) :=

{
1

2
,

1

2
, f , 1− f

}
, β4(c) :=

{
1, 1,

3

2
− c ,

1

2
+ c

}
; 1

}
.



Whipple’s formula in terms of Galois representations

For (c , f ) ∈ Q2 s.t. HD1,HD2 both primitive.
Let M(c, f ) := lcd(HD2),N(c , f ) := lcd( 1+2f−2c

4 , 3−2f−2c
4 ).

HD1 7→ ρHD1(c,f ),` of G (M) which is 6− 1 = 5 = 4 + 1 dim’l.
HD2 7→ ρHD2(c,f ),` of G (M) which is 4− 1 = 3 = 2 + 1 dim’l.

Theorem (Li, L. Tu)

Given any prime `,

ρHD1(c,f ),`|G(N(c,f ))
∼= (ε` ⊗ ρHD2(c,f ),`)|G(N(c,f )) ⊕ σsym,`

where ε` is the `-adic cyclotomic character, and σsym,` is a
2-dimensional representation of G (N) that can be computed
explicitly.



I Over C.

7F6

[
1
2

5
4 c 1− c 1−p

2 f 1− f
1
4

3
2 − c 1

2 + c 1 + p
2

3
2 − f 1

2 + f
; 1

]
=

C ×

(
p · 4F3

[
1
2

1−p
2 f 1− f

1− p
2

3
2 − c 1

2 + c
; 1

])
,

I In Galois perspective.

Theorem (Li, Long, Tu)
Given any prime `,

ρHD1(c,f ),`|G(N(c,f ))
∼= (ε` ⊗ ρHD2(c,f ),`)|G(N(c,f )) ⊕ σsym,`

where ε` is the `-adic cyclotomic character (ε`(Frobp) = p, when p 6= `),
and σsym,` is a 2-dimensional representation of G (N) that can be
computed explicitly.



Theorem (Li, Long, and Tu)

For each pair (c , f ) in the list, ρBCMHD1(c,f ),` is modular (using

LMFDB label).

(c , f ) Tr ρBCMHD1(c,f ),`(Frobp)

( 1
2 ,

1
2 ) ap(f8.6.a.a) + p · ap(f8.4.a.a) +

(
−1
p

)
p2(

1
2 ,

1
3

)
ap(f4.6.a.a) + p · ap(f12.4.a.a) +

(
3
p

)
p2

( 1
3 ,

1
3 ) ap(f6.6.a.a) + p · ap(f18.4.a.a) +

(
−1
p

)
p2

( 1
2 ,

1
6 ) p · ap(f8.4.a.a) + p · ap(f24.4.a.a) +

(
3
p

)
p2

( 1
6 ,

1
6 ) p2 · ap(f24.2.a.a) + p2 · ap(f72.2.a.a) +

(
−1
p

)
p2

( 1
5 ,

2
5 ) p · ap(f10.4.a.a) + p · ap(f50.4.a.d) +

(
−5
p

)
p2

( 1
10 ,

3
10 ) p2 · ap(f40.2.a.a) + p2 · ap(f200.2.a.b) +

(
−5
p

)
p2



(c , f ) = (1
2 ,

1
2), supercongruences for each odd prime p

Hp(HD1) = ap(f8.6.a.a) + p · ap(f8.4.a.a) +
(
−1
p

)
p2. First was

conjectured by Koike and was shown by
Frechette-Ono-Papanikolas.
Mortenson conjectured that for each odd prime p

6F5

[
1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1 1
; 1

]
p−1

?≡ ap(f8.6.a.a) mod p5.

Mod p3 version was proved by Osburn-Straub-Zudilin.



(c , f ) = (1
2 ,

1
2), Archmidean version

6F5

[
1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1 1
; 1

]
p−1

?≡ ap(f8.6.a.a) mod p5.

7F6

[
1
2

5
4

1
2

1
2

1
2

1
2

1
2

1
4 1 1 1 1 1

; 1

]
p−1

?≡ p · ap(f8.4.a.a) mod p4.

Theorem (Li, L. Tu)

6F5

[
1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1 1
; 1

]
= 16

∫ −1/2+i/2

1/2+i/2

τ 2f8.6.a.a
(τ

2

)
dτ

7F6

[
1
2

5
4

1
2

1
2

1
2

1
2

1
2

1
4 1 1 1 1 1

; 1

]
=

32i

π

∫ −1/2+i/2

1/2+i/2

τ f8.4.a.a(
τ

2
)dτ,

where the path is the hyperbolic geodesic from 1+i
2 to −1+i

2 , clockwise.



Thank you!



Appendix

Theorem (Wüstholz)

Let A be an abelian variety isogenous over Q to the direct product
An1

1 × · · · × Ank
k of simple, pairwise non-isogenous abelian varieties

Aµ defined over Q, µ = 1, . . . , k. Let ΛQ(A) denote the space of

all periods of differentials, defined over Q, of the first kind and the
second on A. Then the vector space V̂A over Q generated by 1,
2πi , and ΛQ(A), has dimension

dimQ V̂A = 2 + 4
k∑
ν=1

dimA2
ν

dimQ(End0Aν)
,

where End0(Aν) = End(Aν)⊗Z Q.

Example

When dimA = 2, dimQ V̂A = 4, 6, 10.


