Hypergeometric Functions, Character Sums and Applications, Part III

Ling Long Notes by Ling Long and Fang-Ting Tu University of Connecticut 2021 Summer Lecture Series

https://alozano.clas.uconn.edu/hypergeometric

July 1, 2021

Plan

Day 1. Hypergeometric functions over ${\mathbb C}$

- 1.1 Hypergeometric functions and differential equations
- 1.II Hypergeometric formulas and Legendre curves

Day 2. Over finite fields

- 2.1 Hypergeometric functions over finite fields
- 2.11 Point counts over finite fields
- Day 3. In Galois perspective
 - 3.1 Hypergeometric Galois representations
 - 3.II Modularity results
- Day 4. p-adic hypergeometric functions and supercongruences
 - 4.I Dwork unit roots
 - 4.II Supercongruences

Review

A multiset $\alpha = \{a_1, ..., a_n\}$ with $a_i \in \mathbb{Q}$ is called *defined* over \mathbb{Q} , if $\prod_{j=1}^n (X - e^{2\pi i a_j}) \in \mathbb{Z}[X]$. It is said to be *self-dual* if $\alpha \equiv -\alpha \mod \mathbb{Z}$.

A set of hypergeometric parameters consists of

$$\alpha = \{a_1, ..., a_n\}, \beta = \{b_1 = 1, b_2, ..., b_n\}$$

with $a_i, b_j \in \mathbb{Q}$. It is called *primitive* if $a_i - b_j \notin \mathbb{Z}$ for any i, j. A hypergeometric datum is a triple

$$\{\alpha,\beta;\lambda\}$$

where $\lambda \in \mathbb{Z}$, or \mathbb{Q} , or $\overline{\mathbb{Q}}$.

We introduced $\mathbb{P}, \mathbb{F}, H_q$ -functions over finite fields in Lecture II.

Two perspectives

We will consider now how to go horizontally in a compatible way.

Basic setup

- Degree $M := Icd(\alpha, \beta)$
- Field $K = \mathbb{Q}(\zeta_M)$
- $\blacktriangleright \operatorname{Ring} \mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\zeta_{\mathcal{M}}]$
- Group $G(M) := \operatorname{Gal}(\overline{\mathbb{Q}}/K), \ G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}).$
- \wp any nonzero prime ideal of $\mathbb{Z}[\zeta_M, 1/M]$
- $\blacktriangleright \ k_{\wp} := \mathcal{O}_{\mathcal{K}}/\wp, \text{ size } q(\wp) := |k_{\wp}| \equiv 1 \mod M$
- ► Frob_℘ the Frobenius conjugacy class of G(M) at ℘

Notation

For a finite field \mathbb{F}_q containing a primitive *M*th root of 1 and any $\lambda \in \mathbb{F}_q$, recall that we write

$$\mathbb{P}(\alpha,\beta;\lambda;\mathbb{F}_q;\omega) := {}_{n}\mathbb{P}_{n-1}\begin{bmatrix} \omega^{(q-1)a_1} & \omega^{(q-1)a_2} & \cdots & \omega^{(q-1)a_n} \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Similarly

$$\mathbb{F}(\alpha,\beta;\lambda;\mathbb{F}_q;\omega) := {}_{n}\mathbb{F}_{n-1}\begin{bmatrix} \omega^{(q-1)a_1} & \omega^{(q-1)a_2} & \cdots & \omega^{(q-1)a_n} \\ & & \omega^{(q-1)b_2} & \cdots & \omega^{(q-1)b_n}; \lambda;q \end{bmatrix},$$

where $\widehat{\mathbb{F}_q^{\times}} = \langle \omega \rangle$.

The Legendre curves

Let $\lambda \in \mathbb{Q} \setminus \{0,1\}$ be fixed and ℓ be a fixed prime number.

$$L_{\lambda}: \quad y^2 = x(1-x)(1-\lambda x).$$

It gives rise to a continuous representation

$$\rho_{\lambda,\ell}: G_{\mathbb{Q}} \to GL_2(\mathbb{Q}_\ell).$$

For $p \nmid Cond(L_{\lambda})$,

$$\mathsf{Tr}\rho_{\lambda,\ell}(\mathsf{Frob}_p) = p - \#(L_\lambda/\mathbb{F}_p)$$
$$\#(L_\lambda/\mathbb{F}_p) = \sum_{x \in \mathbb{F}_p} (1 + \phi(x(1-x)(1-\lambda x))) = p + \mathbb{P}(\{\frac{1}{2}, \frac{1}{2}\}, \{1, 1\}; \lambda; \mathbb{F}_p; \omega)$$

It is independent of the choice of ω .

$$\begin{aligned} \mathsf{Tr}\rho_{\lambda,\ell}(\mathsf{Frob}_p) &= -\mathbb{P}(\{\frac{1}{2},\frac{1}{2}\},\{1,1\};\lambda;\mathbb{F}_p) \\ &= \phi(-1)\mathbb{F}(\{\frac{1}{2},\frac{1}{2}\},\{1,1\};\lambda;\mathbb{F}_p). \end{aligned}$$

Let ζ_M be a fixed primitive *M*the root of unity. For a prime ideal \wp of $\mathbb{Z}[\zeta_M, 1/M]$, $\zeta_M \mod \wp$ in the residue field κ_{\wp} of \wp has order *M*, and it generates the cyclic group $(\kappa_{\wp}^{\times})^{(N(\wp)-1)/M}$. Put

$$\mathbb{P}(\alpha,\beta;\lambda;\kappa_{\wp}) = \mathbb{P}(\alpha,\beta;\lambda;\kappa_{\wp};\omega_{\wp})$$

where ω_{\wp} is a generator of κ_{\wp}^{\times} so that

$$\omega_{\wp}(\zeta_M \mod \wp) = \zeta_M^i, \quad i \in (\mathbb{Z}/M\mathbb{Z})^{\times}.$$

We choose i = -1 by default. Note that $\mathbb{P}(\alpha, \beta; \lambda; \kappa_{\wp})$ is independent of the choice of ω_{\wp} , but depends on the choice of i on ζ_M^i .

When $|\alpha| = |\beta| = 2$,

$$_{2}F_{1}\begin{bmatrix}a&b\\&c\end{bmatrix}=\frac{1}{B(b,c-b)}\int_{0}^{1}x^{b-1}(1-x)^{c-b-1}(1-zx)^{-a}dx,$$

Normalized periods on

$$C_{\lambda}^{[N;i,j,k]}: \quad y^{N} = x^{i}(1-x)^{j}(1-\lambda x)^{k}, \quad \text{where}$$

$$N = \operatorname{lcd}(a, b, c), \quad i = N \cdot (1-b), \quad j = N \cdot (1+b-c), \quad k = N \cdot a,$$
If α, β are primitive, $N \nmid i, j, k, i+j+k$, assume $0 < i, j, k < N$.
$$C_{\lambda}^{[N;i,j,k]} \text{ admits an automorphism}$$

$$\zeta:(x,y)\mapsto(x,\zeta_N^{-1}y).$$

Let $X(\lambda)$ be its smooth model.

Jacobians and Galois representations

Use $J_{\lambda}^{[N;i,j,k]}$ to denote the Jacobian of $X_{\lambda}^{[N;i,j,k]}$. For each proper divisor d of N, $J_{\lambda}^{[N;i,j,k]}$ contains a factor which is isogenous to $J_{\lambda}^{[d;i,j,k]}$ over $\mathbb{Q}(\lambda, \zeta_N)$. Use $J_{\lambda}^{\text{prim}}$ to denote the primitive part of $J_{\lambda}^{[N;i,j,k]}$, which is of dimensional $\varphi(N)$, by Archinard.

If $\lambda \in \mathbb{Q} \setminus \{0,1\}$, there is a $2\varphi(N)$ -dimensional ℓ -adic Galois representation $\rho_{\lambda,\ell}$ of $G_{\mathbb{Q}}$ arising from $J_{\lambda}^{\text{prim}}$. Using the action induced from

$$\zeta:(x,y)\mapsto(x,\zeta_N^{-1}y),$$

 $\rho_{\lambda,\ell}|_{G(M)}$ decomposes as a direct sum of $\varphi(N)$ copies of 2-dimensional Galois representations.

Theorem (Fuselier, Long, Ramakrishna, Swisher, Tu)

Let $a, b, c \in \mathbb{Q}$ with least common denominator N such that $a, b, a - c, b - c \notin \mathbb{Z}$ and $\lambda \in \mathbb{Q} \setminus \{0, 1\}$. Set $K = \mathbb{Q}(\zeta_N)$ and denote its ring of integers \mathcal{O}_K . Let ℓ be any prime. Then there exists a representation

$$\sigma_{\lambda,\ell}: \mathsf{G}_{\mathsf{K}} := \mathsf{Gal}(\overline{\mathsf{K}}/\mathsf{K}) \to \mathsf{GL}_2(\overline{\mathbb{Q}}_\ell),$$

depending on a, b and c, that is unramified at all nonzero prime ideals \wp of $\mathbb{Z}[\zeta_N, 1/N\ell]$ and satisfy $\operatorname{ord}_{\wp}(\lambda) = 0 = \operatorname{ord}_{\wp}(1-\lambda)$. Furthermore, the trace of Frobenius at \wp in the image of $\sigma_{\lambda,\ell}$ is the well-defined algebraic integer

$$-\mathbb{P}(\{a,b\},\{1,c\};\lambda;\kappa_{\wp}).$$

When $\varphi(N) = 2$

Let $\overline{\sigma}_{\lambda,\ell}$ be its complex conjugate, namely the requirement for the generator is changed to

$$\omega_{\wp}(\zeta_M \mod \wp) = \zeta_M.$$

Question

When does J_{λ}^{prim} admit quaternionic multiplication (QM)? Or when do $\sigma_{\lambda,\ell}$ and $\overline{\sigma}_{\lambda,\ell}$ differ by a finite order character.

It is in part motivated by a modularity theorem on 4-dimensional Galois representations of $G_{\mathbb{Q}}$ admitting QM by Atkin, Li, Liu and Long.

Theorem (Deines, Fuselier, Long, Swisher, Tu)

Let N = 3, 4, 6 and other notations and assumptions as above, in particular, $N \nmid i + j + k, i, j, k$. Then for each $\lambda \in \overline{\mathbb{Q}}$, $End_0(J_{\lambda}^{prim})$ contains a quaternion algebra over \mathbb{Q} if and only if

$$B\left(\frac{N-i}{N},\frac{N-j}{N}\right) \Big/ B\left(\frac{k}{N},\frac{2N-i-j-k}{N}\right) \in \overline{\mathbb{Q}}$$

Idea of the proof: The traces of $\sigma_{\lambda,\ell}$ are $-_2\mathbb{P}_1 = -J \cdot {}_2\mathbb{F}_1$ functions. Due to Euler transformation, ${}_2\mathbb{F}_1$ and ${}_2\overline{\mathbb{F}}_1$ in the current context only differ by a finite character. So we want to know when J/\overline{J} is a finite order character. Yamaoto's result says if it is the case then the above ratio is algebraic. Conversely, we use a result of Wüstholz. Katz, Exponential sums and Differential Equations, 1990 Katz, Another look at Dwork family, 2009

Theorem (Katz)

Let ℓ be a prime. Given a primitive pair of multi-sets $\alpha = \{a_1, \dots, a_n\}, \beta = \{1, b_2, \dots, b_n\}$ with $M = lcd(\alpha \cup \beta)$, for any datum $HD = \{\alpha, \beta; \lambda\}$ with $\lambda \in \mathbb{Z}[\zeta_M, 1/M] \setminus \{0\}$, the followings hold.

i). There exists an ℓ -adic Galois representation $\rho_{HD,\ell}: G(M) \to GL(W_{\lambda})$ unramified almost everywhere such that at each prime ideal \wp of $\mathbb{Z}[\zeta_M, 1/(M\ell\lambda)]$ with norm $N(\wp) = |\kappa_{\wp}|,$

$$Tr\rho_{HD,\ell}(Frob_{\wp}) = (-1)^{n-1} \omega_{\wp}^{(N(\wp)-1)a_1}(-1) \mathbb{P}(\alpha,\beta;1/\lambda;\kappa_{\wp}),$$

where $Frob_{\wp}$ stands for the Frobenius conjugacy class of G(M) at \wp .

iia). When $\lambda \neq 0, 1$, the dimension $d := \dim_{\overline{\mathbb{Q}}_{\ell}} W_{\lambda}$ equals n and all roots of the characteristic polynomial of $\rho_{DH,\ell}(\operatorname{Frob}_{\wp})$ are algebraic integers and have the same absolute value $N(\wp)^{(n-1)/2}$ under all archimedean embeddings.

iib). When $\lambda \neq 0, 1$ and *HD* is self-dual, then W_{λ} admits a symmetric (resp. alternating) bilinear pairing if *n* is odd (resp. even).

iii). When $\lambda = 1$, dimension d equals n - 1. In this case if HD is self-dual, then $\rho_{HD,\ell}$ has a subrepresentation $\rho_{HD,\ell}^{prim}$ of dimension $2\lfloor \frac{n-1}{2} \rfloor$ whose representation space admits a symmetric (resp. alternating) bilinear pairing if n is odd (resp. even). All roots of the characteristic polynomial of $\rho_{HD,\ell}^{prim}$ (Frob_{\wp}) have absolute value $N(\wp)^{(n-1)/2}$, the same as (iia).

Recall

Theorem (Katz, Beukers-Cohen-Mellit)

Assumption as before and further $HD = \{\alpha, \beta; \lambda\}$ is defined over \mathbb{Q} . Assume that exactly *m* elements in β are in \mathbb{Z} . Then, for each prime ℓ , there exists an ℓ -adic representation ρ_{HD}^{BCM} of $G_{\mathbb{Q}}$ s.t.:

i).
$$\rho_{HD,\ell}^{BCM}|_{G(M)} \cong \rho_{HD,\ell}$$

ii). For any prime $p \nmid \ell \cdot M$ such that $ord_p \lambda = 0$,

$$Tr \rho_{HD,\ell}^{BCM}(Frob_p) = \phi(M, a_1)(Frob_p)\chi(\alpha, \beta; \mathbb{F}_p)H_p(\alpha, \beta; 1/\lambda) \cdot p^{(n-m)/2} \in \mathbb{Z}.$$

where φ(M, a₁) is a character of G_Q, depending on a₁.
iii). When λ = 1, ρ^{BCM}_{HD,ℓ} is (n − 1)-dimensional and it has a subrepresentation, denoted by ρ^{BCM,prim}_{HD,ℓ}, of dimension 2 [n-1/2] whose representation space admits a symmetric (resp. alternating) bilinear pairing if n is odd (resp. even). All roots of the characteristic polynomial of ρ^{BCM,prim}_{HD,ℓ}(Frob_p) have absolute value p^{(n-1)/2}.

A *p*-adic detour to derive a step function

$$H_q(\alpha,\beta;\lambda) \\ := \frac{1}{1-q} \sum_{k=0}^{q-2} \prod_{j=1}^n \frac{\mathfrak{g}(\omega^{k+(q-1)a_j})\mathfrak{g}(\omega^{-k-(q-1)b_j})}{\mathfrak{g}(\omega^{(q-1)a_j})\mathfrak{g}(\omega^{-(q-1)b_j})} \, \omega^k \big((-1)^n \lambda \big).$$

The Gross-Koblitz formula says for integer 0 $\leq k$

$$\mathfrak{g}(\omega^{-k}) = -\pi_{\rho}^{k} \Gamma_{\rho}\left(\frac{k}{\rho-1}\right),$$

where ω is the Teichmuller character of \mathbb{F}_{p}^{\times} , $\Gamma_{p}(\cdot)$ is the *p*-adic Gamma function, π_{p} is a fixed root of $x^{p-1} + p = 0$ in \mathbb{C}_{p} , where ζ_{p} is a primitive *p*th root of unity which is congruent to $1 + \pi_{p}$ modulo π_{p}^{2} .

A step function

Given $\alpha = \{a_1, ..., a_n\}$ and $\beta = \{b_1, ..., b_n\}$ with $a_i, b_j \in \mathbb{Q} \cap [0, 1)$ and $M = lcd(\alpha \cup \beta)$, let

$$e_{lpha,eta}(x):=\sum_{i=1}^n - \lfloor a_i - x
floor - \lfloor x + b_i
floor$$
 . for $0 \leq x < 1$.

For $p \nmid lcd(\alpha, \beta)$ and $0 \leq k is an integer, <math>e_{\alpha,\beta}(\frac{k}{p-1})$ gives the collective exponent of p in the *k*th summand of $H_p(\alpha, \beta; \lambda)$.

The graph of $e_{\alpha,\beta}(x)$ is a step function. The value of $e_{\alpha,\beta}(x)$ jumps up (resp. down) only at a_i (resp. $1 - b_j$). (If α, β not defined over \mathbb{Q} , the step function will also depends on p.) We will compare it with the plot consisting of $\{e^{2\pi i a_j}\}_{j=1}^n$ and $\{e^{2\pi i b_j}\}_{j=1}^n$ on the unit circle mentioned in Lecture I.

 $\alpha = \{1/5, 2/5, 3/5, 4/5\}, \beta = \{0, 0, 0, 0\}$

The weight function and the adjustment factor

► The weight w(HD) of a datum HD = {α, β; λ} is defined as $w(HD) := w(α, β) := \max e_{α,β}(x) - \min e_{α,β}(x).$

The adjustment factor

$$t := -\min\{e_{\alpha,\beta}(x) \mid 0 \le x < 1\} - \frac{n-m}{2},$$
 (1)

where $n = |\alpha|, m = \#\{b_j \mid b_j \in \mathbb{Z}\}.$

 $\alpha = \{ \frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6} \} \text{ and } \beta = \{ 0, 0, \frac{1}{3}, \frac{2}{3} \}$

$$max = 2, min = 0, max - min = 2, n = 4, m = 2, t = -1$$

$\alpha = \{ \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3} \} \text{ and } \beta = \{ 0, 0, 0, 0, \frac{1}{6}, \frac{5}{6} \}$

$$max = 5, min = -1, max - min = 6, t = -(-1) - (6 - 4)/2 = 0.$$

Magma package implemented by Watkins

For *HD* defined over \mathbb{Q} , there is an efficient Magma program called "Hypergeometric Motives over \mathbb{Q} " implemented by Watkins which computes the characteristic polynomial of $\rho_{\{\alpha,\beta,\lambda\}}^{BCM}[t]$ (resp.

 $\rho_{\{\alpha,\beta;\lambda\},\ell}^{BCM,prim}[t]$) at Fr_p, the inverse of Frob_p, for $p \nmid M\ell$ efficiently when $\lambda \neq 0, 1$ (resp. $\lambda = 1$), where $\rho[t]$ denotes the weight-t Tate twist of a representation ρ of $G_{\mathbb{Q}}$.

Example

H:=HypergeometricData([1/5,2/5,3/5,4/5],[1,1,1,1]); [w = 4, t = 0]

Factorization(EulerFactor(H,1,7)); The output is < 343 *\$.1² - 6 * \$.1 + 1,1 >

Factorization(EulerFactor(H,-1,7)); The output is $<117649*\$.1^{4}+8575*\$.1^{3}+350*\$.1^{2}+25*\$.1+1,1>[117649=7^{6}]$ H2:=HypergeometricData([1/2,1/2,1/6,5/6],[0,0,1/3,2/3]); [w = 2, t = -1]

 $\label{eq:Factorization(EulerFactor(H2,1,5));} The output is < 5*\$.1^2+2*\$.1+1,1>$

Factorization(EulerFactor(H2,-1,5)); The output is < 5 *\$.1² - 4 * \$.1 + 1, 1 >, < 5 *\$.1² + 2 * \$.1 + 1, 1 >

Hypergeometric Galois representations

Note that Theorem by Katz, Beukers-Cohen-Mellit implies that one can study a whole category of Galois representations that can be explicitly computed. Roberts, Rodriguez-Villegas and Watkins use them to test standard conjectures on L-functions. For instance, according to Langlands general philosophies, these Galois representations are automorphic.

Question

When do we get degree-2 subrepresentations from hypergeometric data $HD = \{\alpha, \beta; \lambda\}$?

Here are some candidates.

- When $|\alpha| = |\beta| = 2$.
- When $|\alpha| = |\beta| = 3$, self-dual, $\lambda = 1$.
- When $|\alpha| = |\beta| = 4$, self-dual, $\lambda = 1$.

A special construction by Li, Long and Tu using a Whipple's formula over finite field in which cases |α| = |β| = 6, (well-posed), λ = 1.

Modularity theorems

Theorem

Given a prime ℓ and a 2-dimensional absolutely irreducible representation ρ of $G_{\mathbb{Q}}$ over $\overline{\mathbb{Q}}_{\ell}$ that is odd, unramified at almost all primes, and its restriction to a decomposition subgroup D_{ℓ} at ℓ is crystalline with Hodge-Tate weight $\{0, r\}$ where $1 \leq r \leq \ell - 2$ and $\ell + 1 \nmid 2r$, then ρ is modular and corresponds to a weight r + 1holomorphic Hecke eigenform.

The actual identification of the target modular form can be carried out using

Theorem (Serre)

Let f be an integral weight holomorphic Hecke eigenform with coefficients in \mathbb{Z} . Then the p-exponents of the level of f are bounded by 8 for p = 2, by 5 for p = 3, and by 2 for all other bad primes.

Back to rigid Calabi-Yau 3folds

For $HD = \{ \alpha = \{r_1, r_2, 1 - r_1, 1 - r_2\}, \beta = \{1, 1, 1, 1\}; \lambda = 1\},\$ where $r_1, r_2 \in \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}\}$ or $(r_1, r_2) = (\frac{1}{5}, \frac{2}{5}),\$ $(\frac{1}{10}, \frac{3}{10}), (\frac{1}{8}, \frac{3}{8}), (\frac{1}{12}, \frac{5}{12}).$ For these, $\rho_{HD,\ell}^{BCM}$ of $G_{\mathbb{Q}}$ are 3-dimensional, which decomposes into a direct sum of 2 subrepresentations $\rho_{HD,\ell}^{BCM,prim} \oplus \rho_{HD,\ell}^{BCM,1}$. Among them $\rho_{HD,\ell}^{BCM,prim}$ is 2-dimensional and $\rho_{HD,\ell}^{BCM,1}$ is 1-dimensional.

Theorem (Long, Tu, Yui and Zudilin)

Let p > 5 be a prime and α and β as above. Then the following equality holds:

$$H_{p}(\boldsymbol{\alpha},\boldsymbol{\beta};1) = a_{p}(f_{\boldsymbol{\alpha}}) + \chi_{\boldsymbol{\alpha}}(p) \cdot p,$$

where $a_p(f_{\alpha})$ is the p-th coefficient of the normalized Hecke eigenform and χ_{α} is a Dirichlet character of order at most 2, whose precise description is given in the following table.

(r_1, r_2)	$f_{lpha}(au)$	level	LMFDB label	$\chi_{\boldsymbol{\alpha}}$
$\left(\frac{1}{2},\frac{1}{2}\right)$	$\eta_2^4 \eta_4^4$	8 = 2 ³	8.4.a.a	χ1
$\left(\frac{1}{2},\frac{1}{3}\right)$		$36 = 2^2 \cdot 3^2$	36.4.a.a	<i>χ</i> з
$\left(\frac{1}{2},\frac{1}{4}\right)$	$\eta_4^{16}/(\eta_2^4\eta_8^4)$	$16 = 2^4$	16.4.a.a	χ2
$\left(\frac{1}{2},\frac{1}{6}\right)$			72.4.a.b	χ1
$\left(\frac{1}{3},\frac{1}{3}\right)$		$27 = 3^3$	27.4.a.a	χ1
$\left(\frac{1}{3},\frac{1}{4}\right)$	η_3^8	9 = 3 ²	9.4.a.a	χ_6
$\left(\frac{1}{3},\frac{1}{6}\right)$		$108 = 2^2 \cdot 3^3$	108.4.a.a	<i>χ</i> з
$\left(\frac{1}{4},\frac{1}{4}\right)$			32.4.a.a	χ1
$\left(\frac{1}{4},\frac{1}{6}\right)$			144.4.a.f	χ2
$\left(\frac{1}{6},\frac{1}{6}\right)$		$216 = 2^3 \cdot 3^3$	216.4.a.c	χ1
$\left(\frac{1}{5},\frac{2}{5}\right)$		$25 = 5^2$	25.4.a.b	χ_5
$\left(\frac{1}{8},\frac{3}{8}\right)$			128.4.a.b	χ2
$\left(\frac{1}{10},\frac{3}{10}\right)$		$200 = 2^3 \cdot 5^2$	200.4.a.f	χ1
$\left(\frac{1}{12},\frac{5}{12}\right)$		$864 = 2^5 \cdot 3^3$	864.4.a.a	χ1

Other formulas in light of Galois representations

Clausen formula

$${}_{2}F_{1}\begin{bmatrix}c-s-\frac{1}{2} & s\\ & c\end{bmatrix}^{2} = {}_{3}F_{2}\begin{bmatrix}2c-2s-1 & 2s & c-\frac{1}{2}\\ & 2c-1 & c\end{bmatrix}$$

Theorem (Evans-Greene) Let $C, S \in \widehat{\mathbb{F}_q^{\times}}$. Assume that $C \neq \phi$, and $S^2 \notin \{\varepsilon, C, C^2\}$. Then for $\lambda \neq 1$,

$${}_{2}\mathbb{F}_{1}\begin{bmatrix} C\overline{S}\phi & S \\ & C \end{bmatrix}; \lambda \end{bmatrix}^{2} = {}_{3}\mathbb{F}_{2}\begin{bmatrix} C^{2}\overline{S}^{2} & S^{2} & C\phi \\ & C^{2} & C \end{bmatrix} + \phi(1-\lambda)\overline{C}(\lambda) \left(\frac{J(\overline{S}^{2}, C^{2})}{J(\overline{C}, \phi)} + \delta(C)(q-1)\right).$$

Whipple's formula

Theorem (Whipple)

$${}_7F_6 \begin{bmatrix} a & 1+\frac{a}{2} & c & d & e & f & g \\ & \frac{a}{2} & 1+a-c & 1+a-d & 1+a-e & 1+a-f & 1+a-g \\ & & & & \\ & & & = C \cdot {}_4F_3 \begin{bmatrix} a & e & f & g \\ & e+f+g-a & 1+a-c & 1+a-d \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

when both sides terminate

- The parameter set of $_7F_6(1)$ is imprimitive
- The ₇F₆(1) is well-posed, meaning the upper and lower parameters sum to 1 + a in each column. Namely α = {a₁, · · · , a₇}, β = {1 + a − a_i, i = 1, · · · , 7}
- It is widely known and used

Whipple's formula + self-dual

$${}_7F_6 \begin{bmatrix} a & 1+\frac{a}{2} & c & d & e & f & g \\ & \frac{a}{2} & 1+a-c & 1+a-d & 1+a-e & 1+a-f & 1+a-g & ; 1 \end{bmatrix} \\ & & = \frac{\Gamma(1+a-e)\Gamma(1+a-f)\Gamma(1+a-g)\Gamma(1+a-e-f-g)}{\Gamma(1+a)\Gamma(1+a-f-g)\Gamma(1+a-e-f)\Gamma(1+a-e-g)} \times \\ & & 4F_3 \begin{bmatrix} a & e & f & g \\ & e+f+g-a & 1+a-c & 1+a-d & ; 1 \end{bmatrix},$$

- Goal: to make $_{6}F_{5}(1)$ reduced from $_{7}F_{6}(1)$ self-dual
- α being self-dual, "means" if $a \in \alpha$, 1 a is also in α . c + d = 1, f + g = 1
- ▶ $\beta = \{1 + a a_i\}$ being self-dual requires $a = \frac{1}{2} \Rightarrow e = \frac{1}{2}$.

$$a = \frac{1}{2}, \quad c + d = 1, \quad f + g = 1, \quad \text{and } e = \frac{1}{2} \left(-\frac{p}{2} \right)$$

$${}_{7}F_{6}\begin{bmatrix} \frac{1}{2} & \frac{5}{4} & c & 1-c & \frac{1-p}{2} & f & 1-f \\ & \frac{1}{4} & \frac{3}{2}-c & \frac{1}{2}+c & 1+\frac{p}{2} & \frac{3}{2}-f & \frac{1}{2}+f \\ & & C \times \left(p \cdot {}_{4}F_{3} \begin{bmatrix} \frac{1}{2} & \frac{1-p}{2} & f & 1-f \\ & 1-\frac{p}{2} & \frac{3}{2}-c & \frac{1}{2}+c \\ & & 1-\frac{p}{2} & \frac{3}{2}-c & \frac{1}{2}+c \\ \end{bmatrix} \right),$$

 $C = \frac{\Gamma(\frac{p}{2})\Gamma(\frac{1}{2} - f)\Gamma(\frac{1}{2} + f)\Gamma(\frac{p}{2})}{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2})\Gamma(1 + \frac{p}{2} - f)\Gamma(\frac{p}{2} + f)}.$ Ignoring *p*, and canceling $\frac{5}{4}$ and $\frac{1}{4}$ which correspond to the same character in \mathbb{F}_q . L.H.S.

$$\begin{aligned} HD_1 &= \left\{ \alpha_6(c, f) := \left\{ \frac{1}{2}, c, 1 - c, \frac{1}{2}, f, 1 - f \right\}, \\ \beta_6(c, f) &= \left\{ 1, \frac{3}{2} - c, \frac{1}{2} + c, 1, \frac{3}{2} - f, \frac{1}{2} + f \right\}; \mathbf{1} \end{aligned}$$

R.H.S.

$$HD_{2} = \left\{ \alpha_{4}(f) := \left\{ \frac{1}{2}, \frac{1}{2}, f, 1 - f \right\}, \beta_{4}(c) := \left\{ 1, 1, \frac{3}{2} - c, \frac{1}{2} + c \right\}; \mathbf{1} \right\}.$$

Whipple's formula in terms of Galois representations

For $(c, f) \in \mathbb{Q}^2$ s.t. HD_1 , HD_2 both primitive. Let $M(c, f) := lcd(HD_2)$, $N(c, f) := lcd(\frac{1+2f-2c}{4}, \frac{3-2f-2c}{4})$. $HD_1 \mapsto \rho_{HD_1(c,f),\ell}$ of G(M) which is 6-1=5=4+1 dim'l. $HD_2 \mapsto \rho_{HD_2(c,f),\ell}$ of G(M) which is 4-1=3=2+1 dim'l. Theorem (Li, L. Tu) *Given any prime* ℓ ,

 $\rho_{HD_1(c,f),\ell}|_{G(N(c,f))} \cong (\epsilon_\ell \otimes \rho_{HD_2(c,f),\ell})|_{G(N(c,f))} \oplus \sigma_{sym,\ell}$

where ϵ_{ℓ} is the ℓ -adic cyclotomic character, and $\sigma_{sym,\ell}$ is a 2-dimensional representation of G(N) that can be computed explicitly.

$${}_{7}F_{6}\begin{bmatrix} \frac{1}{2} & \frac{5}{4} & c & 1-c & \frac{1-p}{2} & f & 1-f \\ & \frac{1}{4} & \frac{3}{2}-c & \frac{1}{2}+c & 1+\frac{p}{2} & \frac{3}{2}-f & \frac{1}{2}+f \\ & & C \times \left(p \cdot {}_{4}F_{3} \begin{bmatrix} \frac{1}{2} & \frac{1-p}{2} & f & 1-f \\ & 1-\frac{p}{2} & \frac{3}{2}-c & \frac{1}{2}+c \\ & & 1-\frac{p}{2} & \frac{3}{2}-c & \frac{1}{2}+c \\ \end{bmatrix} \right),$$

In Galois perspective.

Theorem (Li, Long, Tu) Given any prime ℓ ,

 $\rho_{HD_1(c,f),\ell}|_{G(N(c,f))} \cong (\epsilon_{\ell} \otimes \rho_{HD_2(c,f),\ell})|_{G(N(c,f))} \oplus \sigma_{sym,\ell}$

where ϵ_{ℓ} is the ℓ -adic cyclotomic character ($\epsilon_{\ell}(Frob_p) = p$, when $p \neq \ell$), and $\sigma_{sym,\ell}$ is a 2-dimensional representation of G(N) that can be computed explicitly.

Theorem (Li, Long, and Tu)

For each pair (c, f) in the list, $\rho_{HD_1(c,f),\ell}^{BCM}$ is modular (using LMFDB label).

(<i>c</i> , <i>f</i>)	$Tr ho_{HD_1(c,f),\ell}^{BCM}(Frob_p)$
$\left(\frac{1}{2},\frac{1}{2}\right)$	$a_p(f_{8.6.a.a}) + p \cdot a_p(f_{8.4.a.a}) + \left(rac{-1}{p} ight) p^2$
$\left(\frac{1}{2},\frac{1}{3}\right)$	$a_p(f_{4.6.a.a})+p\cdot a_p(f_{12.4.a.a})+\left(rac{3}{p} ight)p^2$
$\left(\frac{1}{3},\frac{1}{3}\right)$	$a_p(f_{6.6.a.a}) + p \cdot a_p(f_{18.4.a.a}) + \left(rac{-1}{p} ight) p^2$
$\left(\frac{1}{2},\frac{1}{6}\right)$	$p \cdot a_p(f_{8.4.a.a}) + p \cdot a_p(f_{24.4.a.a}) + \left(\frac{3}{p}\right)p^2$
$\left(\frac{1}{6},\frac{1}{6}\right)$	$p^2 \cdot a_p(f_{24.2.a.a}) + p^2 \cdot a_p(f_{72.2.a.a}) + \left(\frac{-1}{p}\right)p^2$
$\left(\frac{1}{5},\frac{2}{5}\right)$	$p \cdot a_p(f_{10.4.a.a}) + p \cdot a_p(f_{50.4.a.d}) + \left(\frac{-5}{p}\right) p^2$
$\left(\frac{1}{10},\frac{3}{10}\right)$	$p^2 \cdot a_p(f_{40.2.a.a}) + p^2 \cdot a_p(f_{200.2.a.b}) + \left(\frac{-5}{p}\right)p^2$

 $(c, f) = (\frac{1}{2}, \frac{1}{2})$, supercongruences for each odd prime p

$$H_p(HD_1) = a_p(f_{8.6.a.a}) + p \cdot a_p(f_{8.4.a.a}) + \left(\frac{-1}{p}\right) p^2$$
. First was conjectured by Koike and was shown by Frechette-Ono-Papanikolas.
Mortenson conjectured that for each odd prime p

$$_{6}F_{5}\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}_{p-1} \stackrel{?}{\equiv} a_{p}(f_{8.6.a.a}) \mod p^{5}.$$

Mod p^3 version was proved by Osburn-Straub-Zudilin.

 $(c, f) = (\frac{1}{2}, \frac{1}{2})$, Archmidean version

$${}_{6}F_{5}\begin{bmatrix}\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ & 1 & 1 & 1 & 1 & 1 \end{bmatrix}_{p-1} \stackrel{?}{\equiv} a_{p}(f_{8.6.a.a}) \mod p^{5}.$$

$${}_{7}F_{6}\begin{bmatrix}\frac{1}{2} & \frac{5}{4} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ & \frac{1}{4} & 1 & 1 & 1 & 1 \end{bmatrix}_{p-1} \stackrel{?}{\equiv} p \cdot a_{p}(f_{8.4.a.a}) \mod p^{4}.$$

Theorem (Li, L. Tu)

$${}_{6}F_{5}\begin{bmatrix}\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ & 1 & 1 & 1 & 1 & 1 \end{bmatrix} = 16\int_{1/2+i/2}^{-1/2+i/2} \tau^{2}f_{8.6.a.a}\left(\frac{\tau}{2}\right)d\tau$$
$${}_{7}F_{6}\begin{bmatrix}\frac{1}{2} & \frac{5}{4} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ & \frac{1}{4} & 1 & 1 & 1 & 1 \end{bmatrix} = \frac{32i}{\pi}\int_{1/2+i/2}^{-1/2+i/2} \tau f_{8.4.a.a}\left(\frac{\tau}{2}\right)d\tau,$$

where the path is the hyperbolic geodesic from $\frac{1+i}{2}$ to $\frac{-1+i}{2}$, clockwise.

Thank you!

Appendix

Theorem (Wüstholz)

Let A be an abelian variety isogenous over $\overline{\mathbb{Q}}$ to the direct product $A_1^{n_1} \times \cdots \times A_k^{n_k}$ of simple, pairwise non-isogenous abelian varieties A_{μ} defined over $\overline{\mathbb{Q}}$, $\mu = 1, \ldots, k$. Let $\Lambda_{\overline{\mathbb{Q}}}(A)$ denote the space of all periods of differentials, defined over $\overline{\mathbb{Q}}$, of the first kind and the second on A. Then the vector space \widehat{V}_A over $\overline{\mathbb{Q}}$ generated by 1, $2\pi i$, and $\Lambda_{\overline{\mathbb{Q}}}(A)$, has dimension

$$\dim_{\overline{\mathbb{Q}}} \widehat{V}_{\mathcal{A}} = 2 + 4 \sum_{\nu=1}^{k} \frac{\dim A_{\nu}^{2}}{\dim_{\mathbb{Q}}(End_{0}A_{\nu})},$$

where $End_0(A_{\nu}) = End(A_{\nu}) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Example

When dim A = 2, dim_{$\overline{\mathbb{Q}}$} $\widehat{V}_A = 4, 6, 10$.