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Plan

Day 1. Hypergeometric functions over C
1.I Hypergeometric functions and differential equations

1.II Hypergeometric formulas and Legendre curves

Day 2. Over finite fields

2.I Hypergeometric functions over finite fields
2.II Point counts over finite fields

Day 3. In Galois perspective

3.I Hypergeometric Galois representations
3.II Modularity results

Day 4. p-adic hypergeometric functions and supercongruences

4.I Dwork unit roots
4.II Supercongruences



Morita p-adic Gamma function

Recall that the Mortita p-adic Gamma function Γp(x) is defined for
n ∈ N by

Γp(n) := (−1)n
∏

0<j<n
p -j

j ,

and extends to x ∈ Zp by defining Γp(0) := 1, and for x 6= 0,

Γp(x) := lim
n→x

Γp(n),

where n runs through any sequence of positive integers p-adically
approaching x .



Theorem

1). Γp(0) = 1

2).
Γp(x + 1)

Γp(x)
=

{
−x if |x |p = 1
−1 if |x |p < 1.

3). Γp(x)Γp(1− x) = (−1)a0(x) where a0(x) ∈ {1, 2, · · · , p}
satisfies x − a0(x) ≡ 0 mod p.

4). Γp

(
1

2

)2

= (−1)
p+1
2 .

There are also multiplication formulas for Γp.



Analytic properties of Γp(·)

Theorem (Morita, Barsky)

For a ∈ Zp the function x 7→ Γp(a + x) is locally analytic on Zp

and converges for vp(x) ≥ 1

p
+

1

p − 1
.

Recall the p-adic logarithm

logp(1 + x) =
∞∑
n=1

(−1)n+1xn

n
,

which converges for x ∈ Cp with |x |p < 1.
Set

Gk(a) = Γ
(k)
p (a)/Γp(a). (1)

In particular, G0(a) = 1.

Lemma
For a in Zp, G1(a) = G1(1− a), and G2(a) + G2(1− a) = 2G 2

1 (a).



G1 and partial harmonic sums

Proposition

Let x ∈ Z×p . Than

(1) G1(x + 1)− G1(x) = 1/x .

(2) G2(x + 1)− G2(x) = G1(x + 1)2 − G1(x)− 1/x2.

Corollary

If 1, 2, · · · , k ∈ Z×p , then

G1(k + 1)− G1(1) =
k∑

j=1

1

j
= Hk ,

the partial Harmonic sum. Similarly, if 1
2 ,

3
2 , · · · , k + 1

2 ∈ Z×p , then

G1

(
k +

1

2

)
− G1

(
1

2

)
=

k∑
j=1

1

2j − 1
.



Theorem
For p ≥ 5, r ∈ N, a ∈ Zp,m ∈ Cp satisfying vp(m) ≥ 0 and
t ∈ {0, 1, 2} we have

Γp(a + mpr )

Γp(a)
≡

t∑
k=0

Gk(a)

k!
(mpr )k mod p(t+1)r .

The above result also holds for t = 4 if p ≥ 11.



— the map Q ∩ Zp → Q ∩ Zp defined by

r ′ = (r + [−r ]0)/p, (2)

where [a]0 ∈ [0, 1, · · · , p − 1] and [a]0 ≡ a mod p, i.e. the first
p-adic digit of a ∈ Zp.

By definition 1′ = (1 + (p − 1))/p = 1, 12
′

= (12 + p−1
2 )/p = 1

2 , if p
odd.
==

Despite the appearance, it has nothing to do with the usual
derivative.



Converting Gamma quotients into p-adic Gamma quotients

Lemma
Let a ∈ (0, 1] ∩Q.

1) If vp(a) = 0 then ∀m, r ∈ N,

Γ(a + mpr )

Γ(a + mpr−1)
= (−1)mpmpr−1 Γp(a + mpr )

Γp(a)

(a′)mpr−1

(a)mpr−1

,

2) Suppose a + mpr ∈ N, ∀r ∈ N. Then

Γ(a + mpr )

Γ(a + mpr−1)
= (−1)a+mprpa+mpr−1−1Γp(a + mpr ).

3) Let a, b ∈ Q and suppose a− b ∈ Z and a, b /∈ Z≤0. If none
of the numbers between a and b that differ from both by an

integer are divisible by p then
Γ(a)

Γ(b)
= (−1)a−b

Γp(a)

Γp(b)
.



From character sums to truncated hypergeometric series
In Lecture III, we recalled how to use a Magma package
implemented by Watkins to evaluate hypergeometric character
sums when the hypergeometric datum is defined over Q.

Hq(α, β;λ;ω)

:=
1

1− q

q−2∑
k=0

n∏
j=1

g(ωk+(q−1)aj )g(ω−k−(q−1)bj )

g(ω(q−1)aj )g(ω−(q−1)bj )
ωk
(
(−1)nλ

)
.

Theorem (Gross and Koblitz)

For integer 0 ≤ k < p − 1

g(ω−k) = −πkpΓp

(
k

p − 1

)
, (3)

where ω is the Teichmuller character of F×p , Γp(·) is the p-adic
Gamma function, πp is a fixed root of xp−1 + p = 0 in Cp, where
ζp is a primitive pth root of unity which is congruent to 1 + πp
modulo π2p.



An example

Theorem (Long, Tu, Yui and Zudilin)

Let HD = {α = {r1, r2, 1− r1, 1− r2}, β = {1, 1, 1, 1};λ = 1},
where r1, r2 ∈ {12 ,

1
3 ,

1
4 ,

1
6} or (r1, r2) = (15 ,

2
5), ( 1

10 ,
3
10), (18 ,

3
8),

( 1
12 ,

5
12). Let p > 5 be a prime. Then :

Hp(α,β; 1) = ap(fα) + χα(p) · p,

where fα has weight-4.

Corollary

Notation as above,

4F3

[
r1 r2 1− r1 1− r2

1 1 1
; 1

]
p−1

≡ ap(fα) mod p.

Conjecture (Rodriguez-Villegas)

The above congruence holds when modulo p3.



Dwork’s (generic) congruences

Theorem (Dwork)

Let p be a fixed prime, α = {a1, · · · , an} with ai ∈ Q,
β = {1, · · · , 1}. Assume p - lcd(α) and denote {a′1, · · · , a′n} by α′.
Let Fm(α, β; x) :=

∑m
k=0 A(k)xk which is a polynomial in Zp[x ]

where A(k) =
∏n

i=1
(ai )k
(bi )k

=
∏n

i=1
(ai )k
k! then for any positive

integers s, t,m satisfying t ≥ s

Fmpt−1(α, β; x)Fmps−1−1(α′, β; xp)

≡ Fmpt−1−1(α′, β; xp)Fmps−1(α, β; x) mod psZp[[x ]].



Dwork unit root functions

Near x ∈ Zp such that Fp−1(α, β; x) 6= 0 mod p, which is called
the ordinary case, the quotient

γα,p(x) := lim
s→∞

Fmps−1(α, β; x)/Fmps−1−1(α′, β; xp) (4)

is a p-adic convergent function, referred to as the Dwork unit root
functions.

Dwork inspired many results, including unit root functions for
Dwork family by Yu and recent papers on Dwork Crystals by
Beukers and Vlasenko.



The role of γα,p(λ)
For the 14 one-parameter family of hypergeometric Calabi-Yau
3-folds, they can be given explicitly by algebraic equations.

V{ 1
5
, 2
5
, 3
5
, 4
5
}(ψ) : X 5

1 +X 5
2 +X 5

3 +X 5
4 +X 5

5 − 5ψ X1X2X3X4X5 = 0

V{ 1
3
, 2
3
, 1
3
, 2
3
}(ψ) : X 3

1 + X 3
2 + X 3

3 − 3ψX4X5X6 = 0

X 3
4 + X 3

5 + X 3
6 − 3ψX1X2X3 = 0

Using a formal group law theorem of Stienstra, it can be shown
that in the ordinary case, γα,p(λ) is a reciprocal root of the
numerator of the local Zeta function over Fp of Vα(ψ) computed
from H3

cris(Vα)(ψ)⊗Q. Here λ = ψ−5 and λ = ψ−6 respectively.
When ψ = 1, together with modularity result, this means γα,p(1) is
a root of T 2 − ap(fα)T + p3 = 0 in Z×p . Consequently,

γα,p(1) ≡ ap(fα) mod p3

for all ordinary primes p > 5.



Remark
I If α = {a1, · · · , an} is defined over Q and ai ∈ (0, 1), then for

any p - lcd(α), α is closed under the p-adic Dwork dash ’.

I When β 6= {1, 1, · · · , 1}, min of the step function may be
negative. More adjustment will be necessary. It was
considered by Long.

Example

p · 6F5

[
1
2

1
2

1
2

1
2

1
3

2
3

1 1 1 7
6

5
6

; λ

]
p−1

≡ p · Hp(α, β;λ) mod p.



pHp(α, β; 1) = ap(f4.6.a.a) + p · ap(f12.4.a.a) +

(
3

p

)
p2

p · 6F5

[
1
2

1
2

1
2

1
2

1
3

2
3

5
6

7
6 1 1 1

; 1

]
p−1

?≡ ap(f4.6.a.a) mod p5.

1

π
6F5

[
1
2

1
2

1
2

1
2

1
3

2
3

5
6

7
6 1 1 1

; 1

]

= 6i

∮
|t3|=1

(
1

3
+ τ + τ2

)
· (f4.6.a.a(τ/2)− 27f4.6.a.a(3τ/2))dτ,

where

t3(τ) = 4

(
1

3
√

3

η6(τ)

η6(3τ)
+ 3
√

3
η6(3τ)

η6(τ)

)−2



Some origins of “supercongruences”

I Beukers studied Apéry numbers for the proofs of
ζ(2), ζ(3) /∈ Q. One of them

un =
n∑

k=0

(
n

k

)2(n + k

k

)2

= 4F3

[
−n −n n + 1 n + 1

1 1 1
; 1

]

He showed that for m, r ≥ 1, p > 3,

umpr−1 ≡ umpr−1−1 mod p3r .

He conjectured that for each prime p > 3, modulo p2

u p−1
2

= 4F3

[
1−p
2

1−p
2

1+p
2

1+p
2

1 1 1
; 1

]
≡ ap(η(2τ)4η(4τ)4).

It was proved by Ahlgren and Ono using Greene version of
finite hypergeometric functions, inspired Kilbourn’s work.



Some origins of “supercongruences”

I Ramanujan-type formulas for 1/π, one of them

4

π
=
∞∑
n=0

(
1
2

)3
n

(n!)3
(6n + 1)

1

4n
= 4F3

[
1
2

1
2

1
2

7
6

1 1 1
6

;
1

4

]
.

I Van Hamme made a few conjectures. E.g., for primes p > 3,

4F3

[
1
2

1
2

1
2

7
6

1 1 1
6

;
1

4

]
p−1

=

(
−1

p

)
p mod p4.

I More results and conjectures from Z.W. Sun.

I Inspired by McCarthy-Osburn and Zudilin, Long proved it
using a p-adic perturbation method applied to a formula of
Gessel and Stanton. This method was expanded in a paper by
Long and Ramakrishna, adopted by Swisher to establish most
of Van Hamme conjectures and by other researchers.



Some origins of “supercongruences”

I Rodriguez-Villegas made a few supercongruences conjectures
regarding hypergeometric Calabi-Yau manifolds. (The 2F1(1)
and 3F2(1) cases are proved by Mortenson.) In particular, for
each α = {r1, 1− r1, r2, 1− r2} such that ri ∈ (0, 1) and α is
defined over Q, there exists a weight 4 modular form fα
satisfying all primes p > 5

4F3

[
r1 r2 1− r1 1− r2

1 1 1
; 1

]
p−1

≡ ap(fα) mod p3.

Results by Kilbourn, McCarthy and Fuselier-McCarthy.
This conjecture was proved by Long, Tu, Yui and Zudilin.

I Roberts and Rodriguez-Villegas made new supercongruence
conjectures in 2017.



The p-adic perturbation method
Goal: Truncated HGS (?) ≡ R(�) mod pn

1. Understand the nature of R. Namely is it ±p,Hp, γp, ap(f )?
(� = ♣?,♥?,♠?,♦?, say � = ♣)

2. Find a formula for R (put ♣ into its background)

♣
♣ ♣ ♣

3. Deform if necessary to peel off the desired truncated sum (?)
as the major term and organize error terms in layers if possible

♣
♣ ? ♣

4. Eliminate the error terms ·

♣
♣ ? ♣



The p-adic perturbation method in action

Van Hamme conjectured any odd prime p

p−1
2∑

k=0

(4k + 1)

(
(12)k
k!

)3

(−1)k ≡ (−1)
p−1
2 p mod p3.

It was first proved by Mortenson, another proof was by Zudilin
using the Wilf-Zeilberger (WZ) method.

Now we look for a formula

∂
∂ ♣
∂ ♣ ♣ ♣
∂ ∂ ∂



The p-adic perturbation method in action

Goal:

p−1
2∑

k=0

(4k + 1)

(
(12)k
k!

)3

(−1)k ≡ (−1)
p−1
2 p mod p3.

A Whipple formula says

4F3

[
a, 1 + a/2, c , d ; −1

a/2, 1 + a− c , 1 + a− d

]
=

Γ(1 + a− c)Γ(1 + a− d)

Γ(1 + a)Γ(1 + a− c − d)

Letting a = 1
2 , c = 1

2 + p
2 , d = 1

2 −
p
2 , the right hand side is

(−1)
p−1
2 p (Found one ♣ and its background).



The left hand side becomes

4F3

[
1
2

5
4

1+p
2

1−p
2

1
4 1− p

2 1 + p
2

; −1

]

=

p−1
2∑

k=0

(1 + 4k)
(12)k(1−p2 )k(1+p

2 )k
k!(1− p

2 )k(1 + p
2 )k

(−1)k

≡ 4F3

[
1
2

5
4

1
2

1
2

1
4 1 1

; −1

]
p−1

mod p2.

♣ = ? = ?



To achieve the congruence modulo p3, we consider

4F3

[ 1−p
2 , 5

4 ,
1−x
2 , 1+x

2 ; −1
1
4 , 1 + x

2 , 1− x
2

]

=

p−1
2∑

k=0

(4k + 1)

(
(12)k
k!

)3

(−1)k + A2x
2 + A3x

4 + · · · ,

as a function of x ∈ Z[1/2][[x ]], it is even. The goal next is to
show p | A2.

Now we look for another formula again.

∂
∂ ♣
∂ ♣ ♣ ♣
∂ ∂ ∂



Use another formula of Whipple.

6F5

[
a, 1 + a

2 , b, c , d , e; −1
a
2 , 1 + a− b, 1 + a− c , 1 + a− d , 1 + a− e

]
=

Γ(1 + a− d)Γ(1 + a− e)

Γ(1 + a)Γ(1 + a− d − e)
×

3F2

[
1 + a− b − c , d , e; 1

1 + a− b, 1 + a− c

]
.

Letting a = 1
2 , b = 1−x

2 , c = 1+x
2 , e = 1−p

2 , d = 1, we have

6F5

[
1
2 ,

5
4 ,

1−x
2 , 1+x

2 , 1−p
2 , 1; −1

1
4 , 1 + x

2 , 1− x
2 ,

1
2 , 1 + p

2

]
=

Γ(12)Γ(1 + p
2 )

Γ(32)Γ(p2 )
3F2

[
1
2 , 1, 1

2 −
p
2 ; 1

1 + x
2 , 1− x

2

]
.

(5)

Since
Γ(12)Γ(1 + p

2 )

Γ(32)Γ(p2 )
= p, every x-coefficient of the above is in

pZp. From which we conclude, p | A2.



Remarks

I It works pretty well if the right hand side is either a character
times a p-power or is an algebraic number which can be
written as p-adic Gamma values (such as CM periods).
E.g. Long and Ramakrishna showed the following conjectured
by Kibelbek. For any prime p ≡ 1 mod 4

3F2

[
1
2

1
2

1
2

1 1
; −1

8

]
p−1

≡ −
(
−2

p

)
Γp

(
1

4

)4

mod p3.

I Meanwhile, it replies on existing identities, which makes it
harder when the right hand side is more general.

I New identifies are found using the Wilf-Zeilberger (WZ)
method.

I We will mention an easier way using a reside-sum technique.



Theorem (Long, Tu, Yui and Zudilin)

Let HD = {α = {r1, r2, 1− r1, 1− r2}, β = {1, 1, 1, 1};λ = 1},
where r1, r2 ∈ {12 ,

1
3 ,

1
4 ,

1
6} or (r1, r2) = (15 ,

2
5), ( 1

10 ,
3
10), (18 ,

3
8),

( 1
12 ,

5
12). For each case there exists a weight-4 Hecke cuspidal

eigenform fα such that for any prime p > 5 be a prime. :

Hp(α,β; 1) = ap(fα) + χα(p) · p, (6)

4F3

[
r1 r2 1− r1 1− r2

1 1 1
; 1

]
p−1

≡ ap(fα) mod p3. (7)

There are two ways to look at the rigt hand side.

I If p is ordinary, it can be replaced by Dwork unit root

I In general, the Hp formula (6) plus the Gross-Koblitz formula
will work as long as the error terms can be eliminated.



From Dwork to supercongruence

Lemma
Let k ∈ Z≥0, a = [k]0 and b = (k − a)/p, that is, k = a + bp.
Then for any r ∈ Z×p

(r)k
(1)k

=
−Γp(r + k)

Γp(1 + k) Γp(r)

(r ′)b
(1)b

·
(
(r ′ + b)p

)ν(a,[−r ]0),
where

ν(a, x) = −
⌊
x − a

p − 1

⌋
=

{
0 if a ≤ x ,

1 if x < a < p.

Assume [k]0 = a, i.e. k = a + bp where a ∈ [0, p − 1]. Then we
get a key reduction formula

(r)a+bp

(1)a+bp
=

(r)a
a!

(r ′)b
(1)b

(
1 +

b

r ′

)ν(a,[−r ]0) Γp((r + a) + bp)Γp(1 + a)

Γp(r + a)Γp((1 + a) + bp)
.

(8)



Theorem (Long, Tu, Yui, and Zudilin)

Let α = {r1, r2, 1− r1, 1− r2} be one of the fourteen multi-sets
and p a prime such that r1, r2 ∈ Z×p . Let
Fs(α) := F (α, {1, 1, 1, 1}; 1)ps−1. Then for any integer s ≥ 1,

Fs+1(α) ≡ Fs(α)F1(α) mod p3.

Idea:

Fs+1(α) =

p−1∑
a=0

ps−1∑
b=0

∏4
j=1(rj)a+bp

(1)4a+bp

=

ps−1∑
b=0

∏4
j=1(r ′j )b

b!4

p−1∑
a=0

∏4
j=1(rj)a

a!4

× Λα(a + bp)

∏4
j=1 Γp((rj + a) + bp)

Γp((1 + a) + bp)4
. (9)

where Λα(a + bp) :=
∏4

j=1

(
1 + b

r ′j

)ν(a,[−rj ]0)



Putting together

Fs+1(α) =

p−1∑
a=0

ps−1∑
b=0

∏4
j=1(rj)a+bp

(1)4a+bp

≡
ps−1∑
b=0

∏4
j=1(r ′j )b

b!4

p−1∑
a=0

∏4
j=1(rj)a

a!4

× Λα(a + bp)
(
1 + J1(a) · bp + J2(a) · (bp)2

)
mod p3.

J1(a) = J1(a,α) :=
4∑

j=1

(
G1(rj + a)− G1(1 + a)

)
,

J2(a) = J2(a,α) := 10G1(1 + a)2 − 4G1(1 + a)
4∑

j=1

G1(rj + a)

+
∑

1≤j<`≤4

G1(rj + a)G1(r` + a) +
1

2

4∑
j=1

(
G2(rj + a)− G2(1 + a)

)
.



The error terms ·

C1 = p

a1∑
a=0

∏4
j=1(rj)a

a!4
J1(a) +

a2∑
a=a1+1

∏4
j=1(rj)a

a!4

(
1

r ′1
+ pJ1(a)

)

+

(
1

r ′1
+

1

r ′2

) a3∑
a=a2+1

∏4
j=1(rj)a

a!4
;

C2 = p2
a1∑
a=0

∏4
j=1(rj)a

a!4
J2(a) +

p

r ′1

a2∑
a=a1+1

∏4
j=1(rj)a

a!4
J1(a)

+
1

r ′1r
′
2

a3∑
a=a2+1

∏4
j=1(rj)a

a!4
,

We would like to show they are zero modulo p3.



An identity from the residue-sum method
For

R(t) =

∏n
i=1(t − i)2∏n
i=0(t + i)2

=
n∑

k=0

Bk

t + k
+

n∑
k=0

Ak

(t + k)2
,

Ak = R(t)(t + i)2|t=−k =
(k + 1)2n

k!2(n − k)2
=

(
n

k

)2(n + k

k

)2

.

Bk =
d
(
R(t)(t + k)2

)
dt

|t=−k = Ak (−2Hn+k − 2Hn−k + 4Hk) .

n∑
k=0

Bk =
n∑

k=0

Rest=−kR(t) = −Rest=∞R(t) = 0

n∑
k=0

(
n

k

)2(n + k

k

)2

(Hn+k + Hn−k − 2Hk) = 0. (10)



The identity (10) implies when (r1, r2) = (12 ,
1
2), C1 ≡ 0 mod p2.

Here is a refinement, for each case, the modified rational function
in action is

R(t) =

∏4
j=1

∏aj
i=1(t − i + pr ′j )∏p−1
i=0 (t + i)2

, aj = [−rj ]0.

The corresponding identity implies

C1 ≡ C2 ≡ 0 mod p3.



Second approach using character sums, which works for
almost all primes p

It has been done using modularity plus the Gross-Koblitz formula.
It turns out the error terms are more involved. We will need
identities like

n∑
k=1

(
n + k

k

)2(n
k

)2

(1 + 2kHn+k + 2kHn−k − 4kHk) = 0, (11)

which has already been already discovered via WZ, and used by
Ahlgren and Ono to prove Beukers’ conjecture.
It turns out for each (r1, r2) in the list,

tR(t) = t

∏4
j=1

∏aj
i=1(t − i + pr ′j )∏p−1
i=0 (t + i)2

, aj = [−rj ]0

is sufficient to eliminate the two graded error terms modulo p3.



Conjecture (Roberts and Rodriguez-Villegas)

Let α = {a1, · · · , an}, β = {1, · · · , 1} be multi-sets satisfying
defined over Q and ai ∈ (0, 1), λ = ±1. Let A be the unique
submotive of the hypergeometric motive corresponding to
{α, β;λ} with hodge number h0,n−1(A) = 1 and r the smallest
positive integer such that hr ,n−1−r (A) = 1. For any p - lcd(α, β)
and ordinary for {α, β;λ}, there is a p-adic unit µα,β;λ,p depending
on the hypergeometric datum such that for any integer s ≥ 1

F (α, β;λ)ps−1/F (α, β;λ)ps−1−1 ≡ µα,β;λ,p mod prs .

Question
How to find such kinds of special hypergeometric data?

One recent approach by Li, Long and Tu was to use a Whipple

7F6(1)-formula and its finite field analogue, as mentioned in
Lecture III.



α = {1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
3 ,

2
3}, β = {1, 1, 1, 1, 7

6 ,
5
6}

pHp(α, β; 1) = ap(f4.6.a.a) + p · ap(f12.4.a.a) +

(
3

p

)
p2

p · 6F5

[
1
2

1
2

1
2

1
2

1
3

2
3

1 1 1 7
6

5
6

; λ

]
p−1

≡ p · Hp(α, β;λ) mod p.

p · 6F5

[
1
2

1
2

1
2

1
2

1
3

2
3

5
6

7
6 1 1 1

; 1

]
p−1

?≡ ap(f4.6.a.a) mod p5.



Take-aways

I Hypergeometric functions have a lot of symmetries.

I There are compatible hypergeometric perspectives which shed
lights to each other.

I They are explicit and can be explored theoretically or
computationally.



Thank you!


