
Math 3230 - Abstract Algebra I
Summary of terms and theorems

1 Binary operations

Definitions and Theorems

1. Associativity of a binary operation ◦ on a set A means (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ A.

2. Commutativity of a binary operation ◦ on a set A means a ◦ b = b ◦ a for all a, b ∈ A.

3. An identity element for a binary operation ◦ on a set A is an e ∈ A such that e ◦ a = a and

a ◦ e = a for all a ∈ A.

4. If the binary operation ◦ on A has identity e, an inverse of a ∈ A is a′ ∈ A such that a ◦a′ = e

and a′ ◦ a = e. Note: the inverse is in A and depends on the particular element. If there is

no identity element, inverses make no sense.

Examples

1. In R, addition and multiplication are both associative and commutative, with respective iden-

tities 0 and 1: for all a, b, and c in R,

(a+ b) + c = a+ (b+ c) (ab)c = a(bc)

a+ b = b+ a ab = ba

a+ 0 = 0 + a = a a · 1 = 1 · a = a.

In R the additive inverse of a is −a, and for non-zero a in R its multiplicative inverse is 1/a

(0 has no multiplicative inverse).

2. In C addition and multiplication are both associative and commutative, with respective iden-

tities 0 and 1 (formulas in the previous example remain valid with real numbers replaced by

complex numbers). In C the additive inverse of z = x+yi is −x−yi, and for non-zero z = x+yi

in C its multiplicative inverse is (x− yi)/(x2 + y2).

3. Matrix multiplication on Mn(R) is associative with identity In. It is not commutative when

n ≥ 2. A matrix in Mn(R) has an inverse for multiplication precisely when its determinant is

not 0. In the 2× 2 case, the inverse of ( a b
c d ) is 1

ad−bc
(

d −b
−c a

)
when ad− bc 6= 0.

4. For any set X, composition of functions X → X is associative: if f : X → X, g : X → X, and

h : X → X are all functions then (f ◦ g) ◦ h = f ◦ (g ◦ h) as functions X → X. Composition

is usually not commutative: for most pairs of functions X → X the order of composition

matters. The identity function i : X → X for composition is i(x) = x for all x ∈ X. A

function f : X → X has an inverse for composition precisely when it is a bijection (injective

and surjective).
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5. For any set X, the functions X → R (not to be confused with the functions X → X in the

previous example) can be added or multiplied pointwise: if f : X → R and g : X → R then we

define f + g : X → R and fg : X → R by (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x) for

x ∈ X. Both addition and multiplication of functions X → R are commutative and associative.

For functions X → R the identity for addition is the constant function 0 and the identity for

multiplication is the constant function 1. Every function f : X → R has additive inverse −f ,

where (−f)(x) = −(f(x)) for all x ∈ X, and f has a multiplicative inverse precisely when it

never takes the value 0, in which case its multiplicative inverse is the function g(x) = 1/f(x)

for all x ∈ X.

Non-examples

Because associativity and commutativity are properties on all pairs in a set, to prove a binary

operation is not associative or not commutative it suffices to find a single counterexample: the

property might hold some of the time but it has to fail at least once.

1. Subtraction on Z is not associative or commutative: 1 − (2 − 3) = 2 while (1 − 2) − 3 = −4

and 1− 2 = −1 while 2− 1 = 1. There is no identity element for subtraction: if e ∈ Z satisfies

e − a = a for all a in Z then at a = 0 we see e − 0 = 0, so e = 0 and then 0 − a = a for all

a ∈ Z, which is false nearly all the time (indeed for every non-zero a).

2. Division on R − {0} is not associative or commutative: 1/(2/3) = 3/2 while (1/2)/3 = 1/6

and 1/2 6= 2/1. There is no identity element either (why?).

3. On R>0, exponentiation (a◦ b = ab) is not associative or commutative. For example, (21)2 = 4

and 2(1
2) = 2, while 21 = 2 and 12 = 1.

4. The cross product on R3 (x◦y = x×y) is not associative: find your own example of x, y, and

z in R3 such that (x×y)×z 6= x×(y×z). It is not commutative either: since y×x = −(x×y)

for all x and y in R3, if x × y = y × x then x × y = 0, which (by the geometric meaning of

the cross product) says x and y lie along the same line through 0. So the cross product of any

pair of vectors in R3 not on the same line through 0 depends on the order of multiplication.

5. Addition on R>0 is associative and commutative, but there is no identity.

6. Addition on R≥0 is associative and commutative with identity 0, but there are no inverses for

non-zero elements: if a ∈ R≥0 and a 6= 0, there is no a′ ∈ R≥0 such that a+ a′ = 0.
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2 Groups

Definitions and Theorems

1. A group is a set G with a binary operation ◦ on it that is associative, has an identity (in G!),

and each element of G has an inverse (in G!). For a general group G its operation is usually

written multiplicatively: g ◦ h is written as gh, g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
n times

is written as gn, and the inverse

of g is written as g−1.

2. When the operation on a group G is commutative, the group is called commutative or abelian.

In an abstract abelian group additive notation is often used: the identity is 0, the operation is

g+h, g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
n times

is written as ng, and the inverse of g is written as −g. (Do not use additive

notation if a group is not abelian.)

3. Groups that are not commutative are called non-commutative or non-abelian. Non-commutativity

means gh 6= hg at least once, not always (e.g., ge = eg for all g in a group).

4. A group G is called cyclic if there is some element g ∈ G such that (using multiplica-

tive notation) every element of G has the form gn for n ∈ Z. We then write G = 〈g〉 =

{. . . , g−2, g−1, e, g, g2, . . .} and say g is a generator of G. Cyclic groups must be abelian, but

the converse is false (see Non-examples below).

Note. For groups where the operation is written additively, we write ng for n copies of g

added together instead of gn (n copies of g multiplied together), so 〈g〉 = {ng : n ∈ Z} =

{. . . ,−2g,−g, 0, g, 2g, . . .}.

Examples

1. The sets Z, Q, R, and C with the operation of addition are abelian groups. Other abelian

groups are the set of n-tuples Zn, Qn, Rn, and Cn using componentwise addition and the set

of n× n matrices Mn(Z), Mn(Q), Mn(R) and Mn(C) with matrix addition.

2. Three groups under multiplication are Q×, R×, and C×, which are the non-zero rational

numbers, non-zero real numbers, and non-zero complex numbers.

3. The set Zm with the operation of addition modulo m is a finite abelian group.

4. The set µm of mth roots of unity in C with the operation of multiplication is a finite abelian

group.

5. The set U(m) of integers modulo m that are relatively prime to m, with the operation of

multiplication modulo m, is a finite abelian group.

6. The set of n× n real matrices with non-zero determinant is a non-abelian group under multi-

plication. This group is denoted GLn(R).
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7. Some finite non-abelian groups include Sn (all permutations of {1, 2, . . . , n}) for n ≥ 3 and Dn

(all rigid motions of a regular n-gon) for n ≥ 3, both under the operation of composition. In

Sn every pair of disjoint permutations commute, but non-disjoint permutations may or may

not commute: in S3, (12) and (13) don’t commute while (123) and (132) do commute (they

are inverses).

8. The group Z is cyclic, with generator 1 or −1.

9. The group Zm is cyclic, with generator 1 mod m or more generally a mod m when (a,m) = 1.

For instance, additive generators of Z8 are 1, 3, 5, or 7 mod 8.

10. The group µm is cyclic, with a generator cos(2π/m) + i sin(2π/m).

Non-examples

1. The sets Z, Q, R, C, and Zm under multiplication are not groups since 0 has no inverse.

2. The non-zero integers Z−{0} under multiplication are not a group since most integers (in fact

all of them except ±1) have no inverse for multiplication in Z− {0}.

3. The set of 2×2 integer matrices with non-zero determinant is not a group under multiplication

because some (in fact most) such matrices don’t have a matrix inverse with integer entries.

4. The group Q under addition is not cyclic: no fraction has all its (additive) multiples equal to

all of Q.

5. Every cyclic group is abelian but many abelian groups are not cyclic. For instance, all U(m)

are abelian and many are not cyclic; the first three non-cyclic U(m) are U(8), U(12), and

U(15).
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3 Subgroups

Definitions and Theorems

1. A subgroup of a group G is a subset H of G that is a group using the same operation that G

has. (Associativity on a subset is automatic, and if G is an abelian group then commutativity

of the operation on a subset is automatic. The identity element and inverses in a subgroup

have to be the same as in G.)

2. A cyclic subgroup H is a subgroup that is a cyclic group in its own right: H = 〈a〉 = {an : n ∈
Z} for some a ∈ H.

3. An abelian subgroup H is a subgroup that is an abelian group in its own right: hk = kh for all

h, k ∈ H.

4. The center Z(G) of a group G is all elements of G that commute with everything in G:

Z(G) = {z ∈ G : zg = gz for all g ∈ G}.

5. Theorem. Every subgroup of an abelian group is abelian and every subgroup of a cyclic group

is cyclic. The first result only relies on some very simple reasoning (and knowing what the

words mean), but the second result requires a clever idea (using division algorithm in Z).

Examples

1. In S4, (12) and (34) commute and H = {(1), (12), (34), (12)(34)} is an abelian subgroup of S4

that is not cyclic (every element squares to (1)).

2. In S4 let g = (1234). Then g2 = (13)(24), g3 = (1432) = (4321), and g4 = (1), so 〈g〉 =

{(1), (1234), (13)(24), (4321)}.

3. Subgroups of Z include the even integers 2Z = {2m : m ∈ Z}, and more generally aZ = {am :

m ∈ Z} for a ∈ Z. (In fact it is a theorem that every subgroup of Z is aZ for some integer a.)

4. In R×, the subset R>0 of positive numbers is a subgroup.

5. In R×, the subset 〈2〉 = {2n : n ∈ Z} = {. . . , 1/4, 1/2, 1, 2, 4, . . .} is a subgroup.

6. In C×, the subset S1 = {z ∈ C : |z| = 1} is a subgroup.

7. In GL2(R), one cyclic subgroup is {( 1 n
0 1 ) : n ∈ Z} = {( 1 1

0 1 )
n

: n ∈ Z} = 〈( 1 1
0 1 )〉 .

8. Subgroups of GL2(R) include Aff(R) = {( a b
0 1 ) : a ∈ R×, b ∈ R} and SL2(R) = the 2×2 matrices

with determinant 1. These are both non-abelian, but the subgroup of diagonal matrices ( a 0
0 d )

where a, b ∈ R× is an abelian subgroup.

9. The alternating group An, which is all even permutations in Sn, is a subgroup of Sn.

10. Every group G has the subgroups G and {e}. If a subgroup contains a then it must at least

contain 〈a〉, but could be larger.
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11. The group Sn is not cyclic for n ≥ 3 since it is non-abelian for n ≥ 3. While Sn for n ≥ 3 does

not have a single generator, it is generated by all the transpositions (ij).

12. The center of a group is a subgroup of G. If G is abelian then Z(G) = G, and conversely.

Having Z(G) be a “small” subgroup of G is a measure of G being highly non-abelian.

13. The center of GL2(R) is the scalar diagonal matrices {( a 0
0 a ) : a ∈ R×}.

Non-examples

1. In Z, while the even integers 2Z are a subgroup, the odd integers 1 + 2Z are not a subgroup

(no identity, not closed under addition).

2. In R×, while the positive numbers R>0 are a subgroup, the negative numbers R<0 are not a

subgroup (no identity, not closed under multiplication).

3. Even though R× is a subset of R and each is a group under a suitable operation (addition for

R, multiplication for R×), we do not consider R× to be a subgroup of R since the operations

are not the same.

4. In the group R, the subset of positive real numbers is closed under addition but is not a

subgroup of R since there is no additive identity. The subset R≥0 of non-negative numbers is

not a group (under addition) even though it has an identity since additive inverses generally

fail to exist in R≥0.
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4 Order

Definitions and Theorems

1. The order of a subgroup H ⊂ G is the size of H and is denoted |H|. When H is infinite, often

we write |H| =∞.

2. The order of an element g ∈ G is the size of 〈g〉 and is denoted |g|, so |g| = |〈g〉|.

3. Theorem. If |g| <∞ then |g| is the smallest n ≥ 1 such that gn = e. If |g| =∞ there is no

n ≥ 1 such that gn = e.

4. Theorem. If |g| = n is finite then 〈g〉 = {1, g, . . . , gn−1} and gi = gj ⇐⇒ i ≡ j mod n. We

have |gk| = n when (k, n) = 1 and |gd| = n/d if d | n.

Examples

1. We have |Zm| = m, |Sn| = n!, |An| = n!/2, and |Dn| = 2n. The order of U(m) is denoted

ϕ(m), so ϕ(4) = |{1, 3 mod 4}| = 2 and ϕ(5) = |{1, 2, 3, 4 mod 5}| = 4.

2. In Z, every integer besides 0 has infinite order under addition, while 0 has order 1.

3. In the group R×, 1 has order 1, −1 has order 2 (because (−1)2 = 1 while (−1)1 6= 1), and

every non-zero real number besides ±1 has infinite order.

4. In C×, −1 has order 2 and i has order 4. The complex number cos(2π/n) + i sin(2π/n) has

order n. Most non-zero complex numbers, like most non-zero real numbers, have infinite

multiplicative order.

5. In S4, |(1234)| = 4: (1234)2 = (13)(24), (1234)3 = (1432) = (4321), and (1234)4 = (1). More

generally, in Sn a k-cycle (i1i2 . . . ik) has order k.

6. In a finite group every element has finite order. In Zm the order of a mod m is m/(a,m). In

U(m) there is no simple formula for the order of an element (other than ±1 mod m).

Non-examples

1. If gn = e in a group, this does not imply |g| = n. Consider (−1)4 = 1 in R× and −1 has order

2, not 4. What gn = e implies is that |g| ≤ n. In fact, gn = e⇐⇒ |g| | n.

2. In S3, |(12)| = |(23)| = 2 and |(12)(23)| = |(123)| = 3, so |(12)(23)| 6= |(12)||(23)|.

3. In GL2(R),
(−1 0

0 1

)
and

(−1 −1
0 1

)
both have order 2, but their product

(−1 0
0 1

) (−1 −1
0 1

)
= ( 1 1

0 1 )

has infinite order (for n ∈ Z, ( 1 1
0 1 )

n
= ( 1 n

0 1 )), so in some groups two non-commuting (!)

elements with finite order can have a product with infinite order.
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