Math 3230 - Abstract Algebra I Summary of terms and theorems

1 Binary operations

Definitions and Theorems

- 1. Associativity of a binary operation \circ on a set A means $(a \circ b) \circ c = a \circ (b \circ c)$ for all $a, b, c \in A$.
- 2. Commutativity of a binary operation \circ on a set A means $a \circ b = b \circ a$ for all $a, b \in A$.
- 3. An *identity* element for a binary operation \circ on a set A is an $e \in A$ such that $e \circ a = a$ and $a \circ e = a$ for all $a \in A$.
- 4. If the binary operation \circ on A has identity e, an *inverse* of $a \in A$ is $a' \in A$ such that $a \circ a' = e$ and $a' \circ a = e$. **Note**: the inverse is in A and depends on the particular element. If there is no identity element, inverses make no sense.

Examples

1. In \mathbb{R} , addition and multiplication are both associative and commutative, with respective identities 0 and 1: for all a, b, and c in \mathbb{R} ,

$$(a+b) + c = a + (b+c) \qquad (ab)c = a(bc)$$
$$a+b = b+a \qquad ab = ba$$
$$a+0 = 0+a = a \qquad a \cdot 1 = 1 \cdot a = a$$

In \mathbb{R} the additive inverse of a is -a, and for non-zero a in \mathbb{R} its multiplicative inverse is 1/a (0 has no multiplicative inverse).

- 2. In \mathbb{C} addition and multiplication are both associative and commutative, with respective identities 0 and 1 (formulas in the previous example remain valid with real numbers replaced by complex numbers). In \mathbb{C} the additive inverse of z = x + yi is -x - yi, and for non-zero z = x + yiin \mathbb{C} its multiplicative inverse is $(x - yi)/(x^2 + y^2)$.
- 3. Matrix multiplication on $M_n(\mathbb{R})$ is associative with identity I_n . It is **not** commutative when $n \geq 2$. A matrix in $M_n(\mathbb{R})$ has an inverse for multiplication precisely when its determinant is not 0. In the 2 × 2 case, the inverse of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ when $ad bc \neq 0$.
- 4. For any set X, composition of functions $X \to X$ is associative: if $f: X \to X$, $g: X \to X$, and $h: X \to X$ are all functions then $(f \circ g) \circ h = f \circ (g \circ h)$ as functions $X \to X$. Composition is usually not commutative: for most pairs of functions $X \to X$ the order of composition matters. The identity function $i: X \to X$ for composition is i(x) = x for all $x \in X$. A function $f: X \to X$ has an inverse for composition precisely when it is a bijection (injective and surjective).

5. For any set X, the functions X → R (not to be confused with the functions X → X in the previous example) can be added or multiplied pointwise: if f: X → R and g: X → R then we define f + g: X → R and fg: X → R by (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x) for x ∈ X. Both addition and multiplication of functions X → R are commutative and associative. For functions X → R the identity for addition is the constant function 0 and the identity for multiplication is the constant function 1. Every function f: X → R has additive inverse -f, where (-f)(x) = -(f(x)) for all x ∈ X, and f has a multiplicative inverse precisely when it never takes the value 0, in which case its multiplicative inverse is the function g(x) = 1/f(x) for all x ∈ X.

Non-examples

Because associativity and commutativity are properties on all pairs in a set, to prove a binary operation is not associative or not commutative it suffices to find a single counterexample: the property might hold some of the time but it has to fail at least once.

- 1. Subtraction on \mathbb{Z} is not associative or commutative: 1 (2 3) = 2 while (1 2) 3 = -4and 1 - 2 = -1 while 2 - 1 = 1. There is no identity element for subtraction: if $e \in \mathbb{Z}$ satisfies e - a = a for all a in \mathbb{Z} then at a = 0 we see e - 0 = 0, so e = 0 and then 0 - a = a for all $a \in \mathbb{Z}$, which is false nearly all the time (indeed for every non-zero a).
- 2. Division on $\mathbb{R} \{0\}$ is not associative or commutative: 1/(2/3) = 3/2 while (1/2)/3 = 1/6and $1/2 \neq 2/1$. There is no identity element either (why?).
- 3. On $\mathbb{R}_{>0}$, exponentiation $(a \circ b = a^b)$ is not associative or commutative. For example, $(2^1)^2 = 4$ and $2^{(1^2)} = 2$, while $2^1 = 2$ and $1^2 = 1$.
- 4. The cross product on \mathbb{R}^3 ($\mathbf{x} \circ \mathbf{y} = \mathbf{x} \times \mathbf{y}$) is not associative: find your own example of \mathbf{x} , \mathbf{y} , and \mathbf{z} in \mathbb{R}^3 such that ($\mathbf{x} \times \mathbf{y}$) × $\mathbf{z} \neq \mathbf{x} \times (\mathbf{y} \times \mathbf{z})$. It is not commutative either: since $\mathbf{y} \times \mathbf{x} = -(\mathbf{x} \times \mathbf{y})$ for all \mathbf{x} and \mathbf{y} in \mathbb{R}^3 , if $\mathbf{x} \times \mathbf{y} = \mathbf{y} \times \mathbf{x}$ then $\mathbf{x} \times \mathbf{y} = \mathbf{0}$, which (by the geometric meaning of the cross product) says \mathbf{x} and \mathbf{y} lie along the same line through $\mathbf{0}$. So the cross product of any pair of vectors in \mathbb{R}^3 not on the same line through $\mathbf{0}$ depends on the order of multiplication.
- 5. Addition on $\mathbb{R}_{>0}$ is associative and commutative, but there is no identity.
- 6. Addition on $\mathbb{R}_{\geq 0}$ is associative and commutative with identity 0, but there are no inverses for non-zero elements: if $a \in \mathbb{R}_{>0}$ and $a \neq 0$, there is no $a' \in \mathbb{R}_{>0}$ such that a + a' = 0.

2 Groups

Definitions and Theorems

1. A group is a set G with a binary operation \circ on it that is associative, has an identity (in G!), and each element of G has an inverse (in G!). For a general group G its operation is usually written multiplicatively: $g \circ h$ is written as gh, $\underbrace{g \circ g \circ \cdots \circ g}_{n \text{ times}}$ is written as g^n , and the inverse

of g is written as g^{-1} .

- 2. When the operation on a group G is commutative, the group is called *commutative* or *abelian*. In an abstract abelian group additive notation is often used: the identity is 0, the operation is $g+h, \underbrace{g \circ g \circ \cdots \circ g}_{n \text{ times}}$ is written as ng, and the inverse of g is written as -g. (Do not use additive notation if a group is not abelian.)
- 3. Groups that are not commutative are called *non-commutative* or *non-abelian*. Non-commutativity means $gh \neq hg$ at least once, not always (e.g., ge = eg for all g in a group).
- 4. A group G is called *cyclic* if there is some element $g \in G$ such that (using multiplicative notation) every element of G has the form g^n for $n \in \mathbb{Z}$. We then write $G = \langle g \rangle = \{\dots, g^{-2}, g^{-1}, e, g, g^2, \dots\}$ and say g is a *generator* of G. Cyclic groups must be abelian, but the converse is false (see Non-examples below).

Note. For groups where the operation is written additively, we write ng for n copies of g added together instead of g^n (n copies of g multiplied together), so $\langle g \rangle = \{ng : n \in \mathbb{Z}\} = \{\dots, -2g, -g, 0, g, 2g, \dots\}$.

Examples

- 1. The sets \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} with the operation of addition are abelian groups. Other abelian groups are the set of *n*-tuples \mathbb{Z}^n , \mathbb{Q}^n , \mathbb{R}^n , and \mathbb{C}^n using componentwise addition and the set of $n \times n$ matrices $M_n(\mathbb{Z})$, $M_n(\mathbb{Q})$, $M_n(\mathbb{R})$ and $M_n(\mathbb{C})$ with matrix addition.
- 2. Three groups under multiplication are \mathbb{Q}^{\times} , \mathbb{R}^{\times} , and \mathbb{C}^{\times} , which are the non-zero rational numbers, non-zero real numbers, and non-zero complex numbers.
- 3. The set \mathbb{Z}_m with the operation of addition modulo *m* is a finite abelian group.
- 4. The set μ_m of *m*th roots of unity in \mathbb{C} with the operation of multiplication is a finite abelian group.
- 5. The set U(m) of integers modulo m that are relatively prime to m, with the operation of multiplication modulo m, is a finite abelian group.
- 6. The set of $n \times n$ real matrices with non-zero determinant is a non-abelian group under multiplication. This group is denoted $\operatorname{GL}_n(\mathbb{R})$.

- 7. Some finite non-abelian groups include S_n (all permutations of $\{1, 2, ..., n\}$) for $n \ge 3$ and D_n (all rigid motions of a regular *n*-gon) for $n \ge 3$, both under the operation of composition. In S_n every pair of disjoint permutations commute, but non-disjoint permutations may or may not commute: in S_3 , (12) and (13) don't commute while (123) and (132) do commute (they are inverses).
- 8. The group \mathbb{Z} is cyclic, with generator 1 or -1.
- 9. The group \mathbb{Z}_m is cyclic, with generator 1 mod m or more generally $a \mod m$ when (a, m) = 1. For instance, additive generators of \mathbb{Z}_8 are 1, 3, 5, or 7 mod 8.
- 10. The group μ_m is cyclic, with a generator $\cos(2\pi/m) + i\sin(2\pi/m)$.

Non-examples

- 1. The sets $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, and \mathbb{Z}_m under multiplication are not groups since 0 has no inverse.
- 2. The non-zero integers $\mathbb{Z} \{0\}$ under multiplication are not a group since most integers (in fact all of them except ± 1) have no inverse for multiplication in $\mathbb{Z} \{0\}$.
- 3. The set of 2×2 integer matrices with non-zero determinant is not a group under multiplication because some (in fact most) such matrices don't have a matrix inverse with integer entries.
- 4. The group \mathbb{Q} under addition is not cyclic: no fraction has all its (additive) multiples equal to all of \mathbb{Q} .
- 5. Every cyclic group is abelian but many abelian groups are not cyclic. For instance, all U(m) are abelian and many are not cyclic; the first three non-cyclic U(m) are U(8), U(12), and U(15).

3 Subgroups

Definitions and Theorems

- 1. A subgroup of a group G is a subset H of G that is a group using the same operation that G has. (Associativity on a subset is automatic, and if G is an abelian group then commutativity of the operation on a subset is automatic. The identity element and inverses in a subgroup have to be the same as in G.)
- 2. A cyclic subgroup H is a subgroup that is a cyclic group in its own right: $H = \langle a \rangle = \{a^n : n \in \mathbb{Z}\}$ for some $a \in H$.
- 3. An abelian subgroup H is a subgroup that is an abelian group in its own right: hk = kh for all $h, k \in H$.
- 4. The center Z(G) of a group G is all elements of G that commute with everything in G: $Z(G) = \{z \in G : zg = gz \text{ for all } g \in G\}.$
- 5. Theorem. Every subgroup of an abelian group is abelian and every subgroup of a cyclic group is cyclic. The first result only relies on some very simple reasoning (and knowing what the words mean), but the second result requires a clever idea (using division algorithm in \mathbb{Z}).

Examples

- 1. In S_4 , (12) and (34) commute and $H = \{(1), (12), (34), (12)(34)\}$ is an abelian subgroup of S_4 that is not cyclic (every element squares to (1)).
- 2. In S_4 let g = (1234). Then $g^2 = (13)(24)$, $g^3 = (1432) = (4321)$, and $g^4 = (1)$, so $\langle g \rangle = \{(1), (1234), (13)(24), (4321)\}.$
- 3. Subgroups of \mathbb{Z} include the even integers $2\mathbb{Z} = \{2m : m \in \mathbb{Z}\}$, and more generally $a\mathbb{Z} = \{am : m \in \mathbb{Z}\}$ for $a \in \mathbb{Z}$. (In fact it is a theorem that every subgroup of \mathbb{Z} is $a\mathbb{Z}$ for some integer a.)
- 4. In \mathbb{R}^{\times} , the subset $\mathbb{R}_{>0}$ of positive numbers is a subgroup.
- 5. In \mathbb{R}^{\times} , the subset $\langle 2 \rangle = \{2^n : n \in \mathbb{Z}\} = \{\dots, 1/4, 1/2, 1, 2, 4, \dots\}$ is a subgroup.
- 6. In \mathbb{C}^{\times} , the subset $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ is a subgroup.
- 7. In GL₂(\mathbb{R}), one cyclic subgroup is $\{\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{Z}\} = \{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^n : n \in \mathbb{Z}\} = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$.
- 8. Subgroups of $\operatorname{GL}_2(\mathbb{R})$ include $\operatorname{Aff}(\mathbb{R}) = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{R}^{\times}, b \in \mathbb{R} \}$ and $\operatorname{SL}_2(\mathbb{R}) = \text{the } 2 \times 2 \text{ matrices}$ with determinant 1. These are both non-abelian, but the subgroup of diagonal matrices $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ where $a, b \in \mathbb{R}^{\times}$ is an abelian subgroup.
- 9. The alternating group A_n , which is all *even* permutations in S_n , is a subgroup of S_n .
- 10. Every group G has the subgroups G and $\{e\}$. If a subgroup contains a then it must at least contain $\langle a \rangle$, but could be larger.

- 11. The group S_n is not cyclic for $n \ge 3$ since it is non-abelian for $n \ge 3$. While S_n for $n \ge 3$ does not have a single generator, it is generated by all the transpositions (ij).
- 12. The center of a group is a subgroup of G. If G is abelian then Z(G) = G, and conversely. Having Z(G) be a "small" subgroup of G is a measure of G being highly non-abelian.
- 13. The center of $\operatorname{GL}_2(\mathbb{R})$ is the scalar diagonal matrices $\{\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in \mathbb{R}^{\times}\}$.

Non-examples

- 1. In \mathbb{Z} , while the even integers $2\mathbb{Z}$ are a subgroup, the odd integers $1 + 2\mathbb{Z}$ are not a subgroup (no identity, not closed under addition).
- 2. In \mathbb{R}^{\times} , while the positive numbers $\mathbb{R}_{>0}$ are a subgroup, the negative numbers $\mathbb{R}_{<0}$ are not a subgroup (no identity, not closed under multiplication).
- Even though ℝ[×] is a subset of ℝ and each is a group under a suitable operation (addition for ℝ, multiplication for ℝ[×]), we do not consider ℝ[×] to be a subgroup of ℝ since the operations are not the same.
- 4. In the group ℝ, the subset of positive real numbers is closed under addition but is not a subgroup of ℝ since there is no additive identity. The subset ℝ_{≥0} of non-negative numbers is not a group (under addition) even though it has an identity since additive inverses generally fail to exist in ℝ_{≥0}.

4 Order

Definitions and Theorems

- 1. The order of a subgroup $H \subset G$ is the size of H and is denoted |H|. When H is infinite, often we write $|H| = \infty$.
- 2. The order of an element $g \in G$ is the size of $\langle g \rangle$ and is denoted |g|, so $|g| = |\langle g \rangle|$.
- 3. Theorem. If $|g| < \infty$ then |g| is the smallest $n \ge 1$ such that $g^n = e$. If $|g| = \infty$ there is no $n \ge 1$ such that $g^n = e$.
- 4. Theorem. If |g| = n is finite then $\langle g \rangle = \{1, g, \dots, g^{n-1}\}$ and $g^i = g^j \iff i \equiv j \mod n$. We have $|g^k| = n$ when (k, n) = 1 and $|g^d| = n/d$ if $d \mid n$.

Examples

- 1. We have $|\mathbb{Z}_m| = m$, $|S_n| = n!$, $|A_n| = n!/2$, and $|D_n| = 2n$. The order of U(m) is denoted $\varphi(m)$, so $\varphi(4) = |\{1, 3 \mod 4\}| = 2$ and $\varphi(5) = |\{1, 2, 3, 4 \mod 5\}| = 4$.
- 2. In \mathbb{Z} , every integer besides 0 has infinite order under addition, while 0 has order 1.
- 3. In the group \mathbb{R}^{\times} , 1 has order 1, -1 has order 2 (because $(-1)^2 = 1$ while $(-1)^1 \neq 1$), and every non-zero real number besides ± 1 has infinite order.
- In C[×], −1 has order 2 and i has order 4. The complex number cos(2π/n) + i sin(2π/n) has order n. Most non-zero complex numbers, like most non-zero real numbers, have infinite multiplicative order.
- 5. In S_4 , |(1234)| = 4: $(1234)^2 = (13)(24)$, $(1234)^3 = (1432) = (4321)$, and $(1234)^4 = (1)$. More generally, in S_n a k-cycle $(i_1i_2...i_k)$ has order k.
- 6. In a finite group every element has finite order. In \mathbb{Z}_m the order of $a \mod m$ is m/(a, m). In U(m) there is no simple formula for the order of an element (other than $\pm 1 \mod m$).

Non-examples

- 1. If $g^n = e$ in a group, this does **not** imply |g| = n. Consider $(-1)^4 = 1$ in \mathbb{R}^{\times} and -1 has order 2, not 4. What $g^n = e$ implies is that $|g| \leq n$. In fact, $g^n = e \iff |g| \mid n$.
- 2. In S_3 , |(12)| = |(23)| = 2 and |(12)(23)| = |(123)| = 3, so $|(12)(23)| \neq |(12)||(23)|$.
- 3. In $\operatorname{GL}_2(\mathbb{R})$, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$ both have order 2, but their product $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has infinite order (for $n \in \mathbb{Z}$, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$), so in some groups two non-commuting (!) elements with finite order can have a product with infinite order.