Math 5020 - Galois Representations Suggested Exercises

- **P1** Let $L = \mathbb{Q}(\{\sqrt{-1}, \sqrt{p} : p \text{ prime}\})$. Then, $A = \operatorname{Aut}(L/\mathbb{Q}) = \prod_{k \ge 0} \{\pm 1\}$. Find a subgroup H of A of index 2 such that L^H , the subfield of L fixed by H, cannot correspond to a quadratic extension of \mathbb{Q} via the Galois correspondence.
- **P2** Prove that $\operatorname{Hom}(\mathbb{F}_2^{\infty}, \mathbb{F}_2)$ is uncountably infinite.
- **P3** Let $F = \mathbb{Q}(\sqrt{2})$ and $K = \mathbb{Q}(\sqrt[4]{2})$. Show that F/\mathbb{Q} and K/F are Galois, but K/\mathbb{Q} is not Galois.
- **P4** Let \mathbb{F} be a finite field of size $q = p^n$, where p is prime and $n \ge 1$, and let $\phi \colon \mathbb{F} \to \mathbb{F}$ such that $\phi(k) = k^p$ be the Frobenius map. Show that ϕ is an automorphism of \mathbb{F} .
- **P5** Show that $F = \mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a Galois extension of \mathbb{Q} and $\operatorname{Gal}(F/\mathbb{Q}) \cong \mathbb{Z}/4\mathbb{Z}$.
- **P6** Show that $K = \mathbb{Q}(\sqrt{2} + \sqrt{3})$ is Galois, with $\operatorname{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.
- **P7** Let $\pi \in \mathbb{C}$ be a transcendental number over \mathbb{Q} . Show that $\mathbb{Q}(\pi)/\mathbb{Q}$ contains infinitely many distinct intermediary subfields.
- **P8** Let p be a prime and let $K = \mathbb{F}_p(x, y)$ and $F = \mathbb{F}_p[x^p, y^p]$. Let $L_n = \mathbb{F}_p[x^p, y^p, x + x^{p^n}y]$.
 - (a) Show that $F \subsetneq L_n \subsetneq K$ and all L_n are distinct.
 - (b) Prove that K/F is finite of degree p^2 .
 - (c) Conclude that K/F is a finite extension that contains infinitely many distinct intermediary subfields.
- **P9** (Dummit and Foote, Ch. 14.5, Problem 8)
- P10 (Dummit and Foote, Ch. 14.7, Problem 19)
- **P11** Let p > 2 be a prime. Prove that the discriminant of the number field $\mathbb{Q}(\zeta_p)$ is $(-1)^{\frac{p-1}{2}} \cdot p^{p-2}$.
- **P12** Let K/\mathbb{Q} be a finite extension of \mathbb{Q} .
 - (a) Prove that $K \cap \mathbb{Q}(\zeta_p) = \mathbb{Q}$ for all but finitely many prime numbers p.
 - (b) Suppose K/\mathbb{Q} is Galois. Conclude that the cyclotomic character $\chi_p^K \colon \operatorname{Gal}(K/\mathbb{Q}) \to (\mathbb{Z}/p\mathbb{Z})^{\times}$ is trivial for all but finitely many prime numbers p.
- **P13** Let K be a Galois extension of \mathbb{Q} such that $\mathbb{Q}(\zeta_n) \subset K$ for some $n \geq 3$, and let $F \subseteq K$ be a subfield. Show that the restriction of the cyclotomic character $\chi_n^{K/F}$: $\operatorname{Gal}(K/F) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ is surjective if and only if $\mathbb{Q}(\zeta_n) \cap F = \mathbb{Q}$.
- **P14** Let \oplus be a binary operation defined on $\mathbb{Z}/p^n\mathbb{Z}$ by $k \oplus k' \equiv k + k' + kk'p \mod p^n$, for a fixed $n \ge 2$.
 - (a) Prove that $(\mathbb{Z}/p^n\mathbb{Z}, \oplus)$ is an abelian group.
 - (b) Show that $(\mathbb{Z}/p^n\mathbb{Z}, \oplus)$ is isomorphic to $(\mathbb{Z}/p^n\mathbb{Z}, +)$ with its usual addition of congruences.
 - (c) Let U_n be the subset of $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ formed by units that are congruent to 1 mod p. Show that U_n is a subgroup and that $U_n \cong \mathbb{Z}/p^{n-1}\mathbb{Z}$, where $\mathbb{Z}/p^{n-1}\mathbb{Z}$ comes equipped with \oplus .

- **P15** Let p be an odd prime and let K_p be the unique subfield of $\mathbb{Q}(\zeta_{p^2})$ such that $[K_p : \mathbb{Q}] = p$. For p = 3, 5, and 7, find a polynomial $f_p(x)$ such that K_p is the splitting field of $f_p(x)$. (You are welcome to use Magma to find these.)
- **P16** Let p be a prime. Let $G = GL(2, \mathbb{Z}_p)$ and $G_n = GL(2, \mathbb{Z}/p^n\mathbb{Z})$.
 - (a) Let π_n : GL $(2, \mathbb{Z}_p) \to$ GL $(2, \mathbb{Z}/p^n \mathbb{Z})$ be the reduction mod- p^n map. Let H_n be a subgroup of GL $(2, \mathbb{Z}/p^n \mathbb{Z})$. Show that $\pi_n^{-1}(H_n)$ is an open subgroup of GL $(2, \mathbb{Z}_p)$ of finite index.
 - (b) Let H be a subgroup of $\operatorname{GL}(2, \mathbb{Z}_p)$ of finite index, and let $H_n = \pi_n(H)$ for every $n \ge 1$. Show that the natural map $G/H \to G_n/H_n$ is surjective. Conclude that $[G:H] \ge [G_n: H_n]$.
 - (c) With notation as in (b), show that there is some number $N \ge 1$ such that $[G:H] = [G_n:H_n]$ for all $n \ge N$.
 - (d) With notation as in (b) and (c), show that $H = \pi_n^{-1}(H_N)$.