MATH 5020

Galois Representations

SPRING 2022

INSTRUCTOR: Álvaro Lozano-Robledo
Mont 233
alozano.clas.uconn.edu/MAth5020S22
alvaro.lozano-roBleD0@uconn.edu
§ Separation axioms

Let X be a top. sp.

(i) X is a T_0-space if $a \neq b$ in X then \exists neigh. of a
not containing b. (If every one-point subset is closed)

X has a min of open sets

(ii) X is a T_1-space (or Hausdorff) if $a \neq b$ in X

\exists neigh U, V, a cell, be V st. $U \cap V = \emptyset$.

Proof:

TPAE:

(i) X is Hausdorff

(ii) $f : X \rightarrow X \times X$, $x \rightarrow (x, x)$ is a closed map

(iii) $\forall f, g : Y \rightarrow X$ cont. maps, $Z = \{(x, y) : \exists z \in Y \mid f(y) = g(z) \}

\text{is closed in } X.
Prop Let G be a top. gr., F a Fson of $e \in G$

TFAE:
(i) G is Hausdorff

(ii) $f: G \to G \times G$ is a closed map

(iii) $f_g, g: H \to G$ in T_G, $h: f(g) = g(h)$ is a closed subset of H.

(iv) $f_H, g: H \to G$ in T_G, $Ker f$ is a closed subset of H.

(v) F is a closed subset of G

(vi) G is T4, i.e., every one-point subset of G is closed.

(vii) $\bigcap F = \{e\}$

(viii) The inters. of all weight of e is $\{e\}$

$\Rightarrow Z_p, \ F = \{p^n\}_{n \geq 1}, \ \bigcap F = \{0\} \Rightarrow \Rightarrow Z_p \ is \ Hausdorff.$
Proof

If \(\{X_i\}_{i \in I} \) is a family of non-empty spaces, then

\[X = \prod X_i \text{ is Hausdorff} \iff \text{all the } X_i \text{ are Hausdorff.} \]

Proof

Let \(G, G_i \) be top. gps., \(H \leq G \). Then

(i) \(G \text{ Hausdorff } \implies H \text{ Hausdorff} \)

(ii) \(G/\mathcal{H} \) is Hausdorff \(\iff H \text{ is a closed subgps.} \)

(iii) \(H, G/\mathcal{H} \text{ Hausdorff } \implies G \text{ is Hausdorff} \)

(iv) \(\prod G_i \text{ is Hausdorff } \iff \text{every } G_i \text{ is Hausdorff.} \)

(v) \(\mathbb{Z}_p \text{ is Hausdorff } \implies \text{all its subgps are Hausdorff} \)

(vi) \(G_i \text{ finite } \implies \text{Hausdorff } \Rightarrow \prod G_i \text{ is Hausdorff } \Rightarrow \exists i, G_i, f_i \)

\[\text{Thus } G_i \leq \prod G_i \text{ also Hausdorff!} \]
6. Open subgroups

Proof. Let \(G \) be a top. grp. Then:

(i) every open subgroup of \(G \) is closed. \((\text{open} \implies \text{closed}) \)
(ii) every closed subgroup of finite index is open. \((\text{closed} \implies \text{finite index} \implies \text{open}) \)
(iii) every subgroup of \(G \) containing a neighborhood of \(e \) is open
(iv) if \(H \) is a subgroup of \(G \) then \(G/H \) is discrete \(\iff \) \(H \) is open.

Pf. (i) \(H \) open \(\implies \ gH \) open \(\implies G-H = U gH \) is open \(\implies H \) is closed.
\[gH \]
(ii) \(H \in G \) closed of finite index \(\implies G-H = U \) \(gH \) is closed \(\implies H \) is open.
\[gH \]
(iii) \(e \in U \subseteq H \implies H = U \cdot H \) \((e \in U \implies eH = H \subseteq UH) \)
\[U \cdot H \] \(\text{open} \)
\[\text{finite index} \implies \text{finite index} \]
(iv) \(G/H \) is discrete if all points of \(G/H \) are open in \(G/H \)
\(\Rightarrow \) \(H \) is left open in \(G \)
\(\Rightarrow \) \(H \) is open in \(G \).

\[U = \{ z = 6 \text{ mod } 2 \pi t \leq Z, t = 0 \text{ mod } 2 \pi \} \]
\[U = B(6, \frac{1}{2}) \cup \prod \]
\[Z_3 - U = \bigcup_{n=0}^{26} \{ z = n \text{ mod } 2 \pi t = 0 \} \]
\[B(n, \frac{1}{2}) \cup \prod \]
\[Z_3 - U \text{ is open} \]
\[U \text{ is open and closed.} \]
\S Connectedness

Def. X is connected if $X \neq \emptyset$ and $X \neq A \cup B$

$A \cap B = \emptyset$, A, B open in X

\iff only sets that are open and closed are \emptyset, X.

Cor.

(i) A connected top. \Rightarrow has no proper open subtops.

(ii) A connected top. \Rightarrow is generated \mathfrak{g} as an abstract \mathfrak{g}

by any weight of \mathfrak{e}.

Prgp.

(i) If X is connected, $f: X \to Y$ is cont. $\Rightarrow f(X)$ is connected.

(ii) ΠX_i connected \iff every X_i is connected.
Prop Let G, G_i be top. sets. $H \leq G$ a subgroup. Then
(i) G connected $\implies G/H$ connected
(ii) H connected $\iff G/H$ connected $\iff G$ connected.
(iii) TG conn. \iff every G_i is conn.

Def A space X is totally disconnected if each component of X has just one point.

Cor Any product of discrete spaces is totally disconnected.
Prop Let G, G' be top. grps., $H \subseteq G$ subgrp. Then

(i) If G is tot. disconnected, then so is H.
(ii) $H, G/H$ are tot. disc. $\Rightarrow G$ tot. disc.
(iii) $\prod G_i$ is tot. disc \Rightarrow each G_i is tot. disconnected.

\mathbb{Z}_p is tot. disconnected

(ii) $\mathbb{Z}/p\mathbb{Z}$ direct, finite \Rightarrow tot. disconnected

$\Rightarrow \prod \mathbb{Z}/p\mathbb{Z}$ is tot. disc.

$\Rightarrow \mathbb{Z}_p \subseteq \prod \mathbb{Z}/p\mathbb{Z}$ is tot. disc.

(iv) $a, b \in \mathbb{Z}_p, a \neq b \Rightarrow$ there st. $a \not\equiv b \mod p^n$
§ 6. Compactness

Def. A space X is compact if it has the Heine-Borel property:

- every open cover of X, $X = \bigcup_{i \in I} X_i$, X_i is open, can be reduced to a finite subcover $\{X_{i_1}, \ldots, X_{i_n}\}$ s.t.

 \[X = X_{i_1} \cup \cdots \cup X_{i_n} \]

(equiv. every family of closed subspaces \mathcal{C}_f has the finite intersection property: if each finite sub. of \mathcal{C}_f has non-empty int., then the whole family has non-empty int.)

- X is sequentially compact if it has the Bolzano-Weierstrass property:

 (every infinite subset of X has a pt. of accumulation in X)
Fact. If (a) \(X \) is a metric space or
(b) \(X \) has a countable basis of open sets the compact \(\rightarrow \) reg. compact.

- A discrete space is compact \(\iff \) it is finite.

Prop. (i) Any closed subspace of a compact space is compact.
(ii) Any compact subspace of a Hausdorff space is closed.
(iii) The image of a compact space under a cont. map is compact.
(iv) The sum of a finite union of compact subspaces is compact.
(v) If \(C \) is compact and Hausdorff, \(f: C \to H \) cont. \(\iff \) \(f \) is a closed map.
(vi) If \(f : C \to H \) as in (v) is a bijection \(\Rightarrow \) homeomorphism.

(vii) If \(f : C \to H \) as in (v) is a surj \(\Rightarrow \) \(H \) has quot top.

\[U \subseteq H \text{ open} \iff f^{-1}(U) \text{ open} \]

\[T^n = \mathbb{R}^n / \mathbb{Z}^n \text{ is compact (quot top)} \]

\[\mathbb{R}^n \to \mathbb{R}^n / \mathbb{Z}^n \text{ cont.} \]

Here-Borel \(\Rightarrow \) compact \(\Rightarrow \) new \(G \) is compact \(\Rightarrow \) \(\mathbb{R}^n / \mathbb{Z}^n \) is compact.
Then (Tychonoff’s Theorem)
Any product of compact spaces is compact.
(Converse is also true: \(\prod X_i \text{ compact} \rightarrow X_i \text{ compact} \))
\[
\pi_i : \prod X_i \rightarrow X_i
\]
\text{cont.}

Proof
Let \(G, G_i \in \mathcal{T}_G \), \(H \leq G \) is a subgp.
(i) \(G \) compact \(\Rightarrow \) \(H \) closed \(\Rightarrow \) \(H \) is compact
(ii) \(G \) compact \(\Rightarrow \) \(G/H \) is compact
(iii) \(H \) compact, \(G/H \) compact \(\Rightarrow \) \(G \) is compact
(iv) \(\prod G_i \) compact \(\Rightarrow \) each \(G_i \) is compact.
\mathbb{Z}_p is compact.

$\mathbb{Z}_p \subseteq \prod_{n=1}^{\infty} \mathbb{Z}/p^n \mathbb{Z}$

Closed, hence compact.

Compact \implies Tychonoff's \implies compact.

Q: \mathbb{Z}_p closed in $\prod \mathbb{Z}/p^n \mathbb{Z}$?

$X - \mathbb{Z}_p = \text{non-coherent sequences!}$

$a = (a_1, a_2, \ldots, a_n, \ldots)$ s.t. $\forall n \exists i \text{ s.t. } a_n \neq a_{n+i}$ and $p^n \nmid a_{n+i} - a_n$ $\in \prod_{n=1}^{\infty} (\mathbb{Z}/p^n \mathbb{Z}) = \bigcap_{n=1}^{\infty} \prod_{m=1}^{n} (\mathbb{Z}/p^m \mathbb{Z}) = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{n} \mathbb{Z}/p^m \mathbb{Z}$ open $U = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{n} \mathbb{Z}/p^m \mathbb{Z}$ open

$a \in U \subseteq X - \mathbb{Z}_p$ so a stably in $X - \mathbb{Z}_p$ $\implies X - \mathbb{Z}_p$ is open $\implies \mathbb{Z}_p$ closed.