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PREFACE

Why are numbers beautiful? It’s like asking why is
Beethoven’s Ninth Symphony beautiful. If you don’t
see why, someone can’t tell you. I know numbers
are beautiful. If they aren’t beautiful, nothing is.

Paul Erdős

Geometry and the theory of numbers are as old as some of the oldest historical
records of humanity. Since Euclid’s Elements and Diophantus’s Arithmetica, many
excellent geometry and number theory texts have been written, including timeless
classics such as [HW38]. As we shall lay out in more detail in Chapter 1, the
approach of this book is slightly different from more traditional sources, in that
the emphasis is in the interactions of number theory with geometry. The field of
arithmetic geometry, which appears in the subtitle of this book, is indeed the study
of the intersection of number theory (arithmetic) and algebraic geometry. The au-
thor’s reason for this more geometric point of view is the following. Some of the
traditional number theory textbooks may seem (to the student) a list of topics, each
of which may be of important historical value but that do not readily appear to
form a coherent set of topics, well integrated with each other (e.g., prime numbers,
congruences, perfect numbers, quadratic reciprocity, and continued fractions). Of
course, number theorists understand that these topics are deeply interconnected,
and one way to highlight the interwoven nature of number theory is through ge-
ometry. In this text, the goal is to use geometry as the motivation to prove the
main theorems in the book. For example, the fundamental theorem of arithmetic
(the fact that every integer n ≥ 2 has a unique factorization as a product of prime
numbers) is a consequence of the tools we develop in order to find all the integral
points on a line in the plane (i.e., the points (x0, y0) on a line L : ax+ by = c with
integer coordinates x0 and y0). Similarly, Gauss’s law of quadratic reciprocity and
the theory of continued fractions naturally arise when we attempt to determine the
integral points on a curve in the plane given by a quadratic polynomial equation.

xiii
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xiv Preface

In Chapter 1 we give a brief overview of the types of diophantine equations
(i.e., systems of equations given by polynomials) that are the objects of study. The
rest of the book is structured in three acts that correspond to linear, quadratic,
and cubic curves, respectively.

(I) In Part 1 we introduce the basic tools of number theory. In particular, we
discuss the integers and prime numbers and develop the theory of (linear) con-
gruences. We also introduce some basic concepts of abstract algebra (groups,
rings, fields) using congruence classes as a motivating example. These tools
are applied to determine rational solutions of polynomials in one variable and
the integral and rational points on lines in the plane.

(II) In Part 2 we study quadratic equations in one and two variables. We de-
velop the theory of quadratic congruences, we describe the theorem of Hasse
and Minkoswki (without a proof), and we also introduce continued fractions.
The material is then used to find the integral and rational points on conics:
parabolas, ellipses, and hyperbolas.

(III) Part 3 is a brief introduction to the theory of cubic curves. After discussing
the projective line and projective space and learning how to work with singular
cubic curves, we concentrate on non-singular cubics, and we give a summary
of the theory of elliptic curves (projective non-singular cubic curves with at
least one rational point).

A number of chapters end with applications of the theory to other topics and,
in particular, we highlight the cryptographic applications in Sections 4.6.4, 7.5.3,
8.9.1, 10.7.2, and 16.9.

The book contains much more material than can be covered in a one-semester
undergraduate course. For a first course in number theory or arithmetic geometry,
we recommend covering Chapters 1 through 10 (Chapter 6 on finite fields is op-
tional). For a second course in arithmetic (or diophantine) geometry, the instructor
can cover Chapters 9 through 16 (Chapter 11 on the Hasse–Minkowski theorem is
optional). The text assumes that the student has had a sequence of courses in
calculus, up to multivariable calculus (a familiarity with matrices is assumed in
some exercises). It is recommended that the student has seen an introduction to
proofs before reading this book. However, the first few chapters have the secondary
goal of providing practice in proof-writing, and they include a review of proofs by
induction, in particular.

The material in this text ends where [Loz11] begins. There are, of course,
many other undergraduate sources on number theory that are highly recommended:
[AC95], [Bur10], [Chi95], [Con1], [Gou97], [HW38], [HPS14], [Ros10],
[ST92], [Sil12], [Ste08], [Was08], and [Wei17], among many others. At the grad-
uate level, the volumes [DF03], [IR98], [Lor96], [Mil06], [Ser73], and [Sil86] are
excellent introductions to various aspects of algebra, number theory, and arithmetic
geometry.

I started writing my own notes when I taught elementary number theory courses
at Cornell University (in the fall of 2006 and 2007) and at the University of Con-
necticut (in the fall of 2008 and 2011 and the spring of 2014). This book grew out
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of these notes and the lectures of a special topics course (on diophantine geometry)
that I taught at UConn in the fall of 2012. I would like to thank Keith Conrad for
many suggestions and corrections. Also, I would like to thank the UConn under-
graduate students in my class “MATH 3240Q: Introduction to Number Theory” for
carefully reading my notes and providing useful feedback and criticism. In particu-
lar, I would like to thank Lia Bonacci, Heather Clinton, Jeremy Driscoll, Randolph
Forsyth, Carly Gaccione, Taylor Garboski, Tom Jones, Gregory Knight, David
Khondkaryan, Pravesh Mallik, Nicole Raymond, Heather Risley, Antonio Rossini,
and Rachel Tangard for their comments, and special thanks go to Michael Lau and
Byron Sitaras for their many and very detailed comments. Finally, I would like to
thank Jason Dorfman (CSAIL/MIT), the Wikimedia Commons, and the Archives
of the Mathematisches Forschungsinstitut Oberwolfach for their permission to use
the images from their collections that appear in this book.
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CHAPTER 1

INTRODUCTION

As long as algebra and geometry have been
separated, their progress have been slow and their
uses limited; but when these two sciences have been
united, they have lent each mutual forces, and have
marched together towards perfection.

Joseph-Louis Lagrange, 1795

The main goal of this book is to study N, Z, and Q, i.e., the natural numbers,
the integers, and the rational numbers:

N = {1, 2, 3, . . .},
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .},

Q =
{m
n

: m,n ∈ Z, n �= 0
}
.

In the next chapter, we will be much more careful defining these sets using axioms,
but, for now, we appeal to our intuition of the properties that these numbers satisfy.
One can study these sets of numbers from their intrinsic properties, and much can
be gained from such an endeavor, but in this book we study these sets from the
point of view of their interaction with geometric objects (graphs of polynomials,
lines in the plane, conics, elliptic curves, etc.).

Our generic approach will be as follows: we will define a geometric object G
and then we will try to find all the points in the geometric object with coordinates
in N, Z, or Q, which we will denote by G(N), G(Z), and G(Q), respectively. As
we attempt to find the natural, integral, or rational points, we will develop the
theory that is usually called “elementary number theory”. Our approach will use
the problem of finding arithmetic points on a geometric object as the motivation
for the definitions and techniques of elementary number theory. Let us begin with
our first example.

1
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2 1. Introduction

1.1. Roots of Polynomials

We begin this section with a discussion about polynomials and, in particular, which
polynomials have roots in a given number system. Roots of polynomials will be
treated in more detail in Part 1, and in particular in Section 2.8. We will also
discuss polynomials (as a ring) in Section 5.5.

A polynomial p(x) is an expression of the form

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where n ≥ 0 is a non-negative integer and a0, a1, . . . , an are constants (in Z or Q

or R, for example). By a polynomial equation, we mean an equation that can be
expressed in the form p(x) = 0, for some polynomial p(x). A root of the polynomial
equation p(x) = 0 is a number α such that p(α) = 0.

For humans, it is natural to work with the natural numbers N = {1, 2, 3, . . .}
as we often need to count things in our daily routine. However, as soon as we try
to solve the simplest linear polynomial equations using only natural numbers, we
run into problems. An equation of the form

(1.1) 3 + x = 5

has a (unique!) solution in N, namely x = 2. But the similar equation

(1.2) 5 + x = 3

has no solutions in N, since 5 + x > 5 > 3, for any x ∈ N. Indeed, if a and b are
natural numbers, then an equation a+x = b has a solution in N if and only if a < b.
Thus, in order to solve (1.2), we need to augment N to include all numbers of the
form −n, where n ∈ N. Notice that we also need to include 0 to be able to solve an
equation of the form 5+ x = 5. Thus, we define Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
and every equation of the form

(1.3) a+ x = b,

where a, b ∈ Z, has a (unique!) solution x = b− a in Z. The integers, however, are
not enough to solve an equation of the form

(1.4) 5x = 3

as there is no integer n such that 5n = 3 (indeed, the number 3 is prime and its only
positive divisors are 1 and 3). More generally, an equation of the form ax+ b = 0,
with a, b ∈ Z and a �= 0, has solutions in Z if and only if a is a divisor of b. In
order to be able to solve all equations of the form ax+ b = 0, we need to augment
Z to be a number system such that every non-zero number has a multiplicative
inverse. And so, we define Q = {m

n : m,n ∈ Z, n �= 0}. Now every linear equation
ax+ b = c, with a, b, c ∈ Q and a �= 0, has a unique solution x = c−b

a ∈ Q.
How about quadratic polynomials? Do they all have roots in Q? Of course not.

For instance, the polynomial x2 − 2 = 0 does not have any rational roots because√
2 is not a rational number. (In order to rigorously prove that

√
2 �∈ Q we will

first need to prove the fundamental theorem of arithmetic! See Theorems 2.10.2
and 2.10.6 and Section 2.10.1.) We usually represent numbers such as

√
2 by their

decimal expansion, i.e.,
√
2 = 1.41421356237309 . . . . The decimal expansion of a
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1.1. Roots of Polynomials 3

rational number has a period, i.e., the expansion eventually repeats a given pattern
of finitely many digits (why?). For example,

13

17
= 0.76470588235294117647058823529411 . . . 7647058823529411 . . . .

Conversely, any decimal expansion that has a period represents a rational number
(see Section 8.9.2). The expansion of

√
2 has no period, as we have already men-

tioned that
√
2 �∈ Q. In order to be able to solve quadratic equations (and other

higher-degree polynomial equations), one can augment Q to include all decimal ex-
pansions and not only those that are periodic. This leads to an informal definition
of the real numbers:

R = {set of all decimal expansions},

with the usual identification of decimals with “trailing nines”; e.g., the expan-
sion 0.9999 . . ., with infinitely many nines, is equal to the decimal expansion 1 =
1.0000 . . . (see Exercise 1.8.1).

Unfortunately, not all quadratic polynomial equations ax2 + bx + c = 0, with
a, b, c ∈ R and a �= 0, have a solution in R. In fact, ax2 + bx + c = 0, with
a, b, c ∈ R and a �= 0, has a solution in R if and only if b2−4ac ≥ 0. Similarly, there
are higher-degree polynomials with no roots in R. For instance, the polynomial
equation x4 + x3 + x2 + x+ 1 = 0 has no real roots.

In order to ameliorate the “shortcomings” of R, we would like to augment R

so that, at least, all quadratic polynomials have a root. In order to accomplish
this, it is sufficient to add a square root of −1 to R, which we shall denote by i, an
imaginary number such that i2 = −1. Indeed, a polynomial p(x) = ax2+bx+c = 0,
with a, b, c ∈ R and a �= 0, with b2 − 4ac ≥ 0 has real roots

x =
−b±

√
b2 − 4ac

2a
,

and if b2 − 4ac < 0, then p(x) = 0 has roots

x =
−b± i

√
|b2 − 4ac|
2a

.

Therefore, if we define the complex numbers as

C = {a+ bi : a, b ∈ R, i2 = −1},

then all linear and quadratic polynomials with coefficients in C have roots in C (the
reader needs to verify that every complex number α ∈ C has a square root

√
α also

in C; see Exercise 1.8.6). Perhaps one of the most surprising and beautiful theorems
in algebra is that, in fact, every non-constant polynomial (of arbitrary degree ≥ 1)
with coefficients in C has a root in C. This is known as the fundamental theorem
of algebra.

Theorem 1.1.1 (Fundamental theorem of algebra). Let p(x) be a polynomial of
degree ≥ 1 with coefficients in C. Then, there is α ∈ C such that p(α) = 0.

For example, let p(x) = x4 + x3 + x2 + x + 1. As we mentioned above, p(x)
is a polynomial that has no real roots. The number α = cos( 2π5 ) + i sin( 2π5 ) is a
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4 1. Introduction

complex root of p(x). Indeed, by Euler’s formula

eix = cosx+ i · sin x,
we have that α = e2πi/5. Moreover,

x4 + x3 + x2 + x+ 1 =
x5 − 1

x− 1
,

and α5 − 1 = (e2πi/5)5 − 1 = e2πi − 1 = 1− 1 = 0. Thus, p(α) = 0 as well.
Complex numbers are fascinating in their own right, and there is a whole area

of mathematics dedicated to the study of C and complex-valued functions, namely
the area known as complex analysis. Here, however, we are (mostly) interested in,
and shall concentrate on, the study of N, Z, and Q. Let us try to find out when a
polynomial with integer coefficients has a rational root.

Example 1.1.2. Let p(x) = 3x3 − 44x2 − 257x+ 190 be a polynomial. We would
like to find the natural (N), integral (Z), or rational (Q) roots of p(x); i.e., we want
to find those natural, integral, or rational numbers x that satisfy p(x) = 0. Suppose
that the natural number n ∈ N is a root of p(x). Then,

p(n) = 3n3 − 44n2 − 257n+ 190 = 0,

and we may rewrite this expression as n(3n2 − 44n − 257) = −190. Since n is a
natural number, the number 3n2 − 44n − 257 is an integer (not necessarily in N)
and we may conclude that n would necessarily be a divisor of −190. The list of
natural divisors of −190 is L = {1, 2, 5, 10, 19, 38, 95, 190}. Thus, we can try to see
whether any of these numbers n ∈ L is a root of p(x) by calculating p(n). After
carrying this out, we find that the only natural number that is a root of p(x) is
n = 19.

Are there any integral roots of p(x) that are not natural numbers? If n ∈ Z

and p(n) = 0, the expression n(3n2 − 44n − 257) = −190 is still valid, and we
may also conclude that n must be a divisor of −190. The integer divisors of −190
are those in the list L′ = {±1,±2,±5,±10,±19,±38,±95,±190}. Since we have
already checked that the only natural root is 19, we only need to check whether any
of the negative divisors is a root. In this manner, we find that n = 19 and n = −5
are the only integral roots of p(x).

Finally, we wish to find out whether p(x) has any rational roots. Since we know
that 19 and −5 are roots, we deduce that f(x) = (x+5)(x− 19) is a factor of p(x)
as polynomials (here we are using the so-called root theorem, Corollary 5.5.15). We
may divide p(x) by f(x) to find a third linear factor, and therefore the value of the
third root of p(x). Instead, we shall approach this using a divisibility method that
works more generally. Suppose m

n ∈ Q is a reduced fraction (i.e., m and n share no
common divisors) and it is a root of p(x). Then,

p
(m
n

)
= 3

(m
n

)3
− 44

(m
n

)2
− 257

m

n
+ 190 = 0.

If we multiply this expression by n3, we obtain

3m3 − 44m2n− 257mn2 + 190n3 = 0.

This expression can be rewritten as m(3m2 − 44mn − 257n2) = −190n3. This is
an equality of integer numbers and we may deduce that m is a divisor of −190n3.
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1.2. Lines 5

Since m and n share no common divisors, it follows that m is a divisor of −190; i.e.,
m ∈ L′ with L′ as defined above. The same displayed expression can be rewritten
as 3m3 = n(44m2 + 257mn− 190n2) and, once again, we may deduce a divisibility
property. In this case, we deduce that n is a divisor of 3m3. Since m and n share no
common divisors, we conclude that n is an integer divisor of 3 and so n ∈ {±1,±3}.
Therefore, if m/n ∈ Q is a rational root of p(x), we have shown that m ∈ L′ and
n ∈ {±1,±3}. Now it is a matter of checking whether any of these rational numbers
are actually roots, and we find that m

n = 2
3 is indeed the third root we were looking

for. Hence, the roots of p(x) are 19 ∈ N, −5 ∈ Z, and 2
3 ∈ Q.

The previous example motivates some of our first definitions and theorems in
the book (in Part 1). In the course of finding the roots of a polynomial, we have
relied heavily upon the theory of divisibility of natural and integer numbers (and
we alluded to divisibility of polynomials too). It is likely that the reader is perfectly
comfortable with many of the steps in the example, but one needs to carefully prove
some of them. For instance, at some point we used the following fact:

• If m,n, a, b are integers such that ma = nb and m and n share no common
factors (i.e., gcd(m,n) = 1), then m is a divisor of b and n is a divisor of a.

Although this fact may be intuitively true, we need a proof! In order to provide
a proof, we will need to establish first a number of basic facts about divisibility (see
Corollary 2.7.6). But, for now, let us see how our next two examples motivate the
study of the greatest common divisor of two integers.

1.2. Lines

In this section we discuss examples of the most basic 1-dimensional object: a line
in the plane. We will come back to studying points on a line in detail in Section
2.9.

Example 1.2.1. Let L : 5x+17y = 1 be a line in the plane. See Figure 1.1. There
are infinitely many rational points in this line, and they can be found by solving
for one of the variables. For example, we may write

y =
1− 5x

17
,

and it follows that Q =
(
x0,

1−5x0

17

)
is a point in L with rational coordinates, for

each rational number x0. In fact, every rational point Q in L is of this form.
For instance, the points (0, 1/17) and (1,−4/17) are in L. Are there any points
(x0, y0) ∈ L with integer coefficients, with x0, y0 ∈ Z? A quick search for points
(using trial and error) reveals at least one point: (7,−2).

Are there more? Yes, in fact, there are infinitely many integral points of the
form Pk = (7 + 17k,−2 − 5k) where k ∈ Z. Let us check that these points belong
to L:

5(7 + 17k) + 17(−2− 5k) = 35 + 5 · 17k − 34− 5 · 17k = 35− 34 = 1.

Interestingly, the points {Pk : k ∈ Z} are all the integral points on L, but this is
not so easy to prove (try!). This will be shown in Theorem 2.9.4.
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6 1. Introduction

−2 −1 1 2 3 4 5 6 7 8

−2

−1

1

2

0

L : 5x + 17y = 1 (7, -2)

Figure 1.1. The line 5x+ 17y = 1 passes through infinitely many integral points.

Example 1.2.2. Let L′ be the line in the plane with equation 5x + 15y = 1 (see
Figure 1.2).

−3 −2 −1 1 2 3

−2

−1

1

2

0

L′ : 5x + 15y = 1

Figure 1.2. The line 5x+ 15y = 1 does not pass through any integral point.

As in our previous example, there are infinitely many rational points on L′

given by (x0,
1−5x0

15 ) for any x0 ∈ Q. Are there any integral points on L′? It turns
out that there are none. Suppose m and n are integers with 5m+ 15n = 1. Then,
5(m+ 3n) = 1 and we have reached a contradiction because this equation implies
that 1 has a non-trivial factorization into integers (other than 1 = 1·1 = (−1)(−1)).
Another way to see this is that, in the integers, 5 is not a divisor of 1 (however, the
number 5 is a divisor of 1 in the rational numbers: 1 = 5 · 1

5 ).

Examples 1.2.1 and 1.2.2 show two lines L and L′ that behave very differently
when we look for integral points on them. Why is their behavior so different?
The reason, as we shall see, is that gcd(5, 17) = 1 while gcd(5, 15) = 5. Using an
argument similar to that in Example 1.2.2, one can show that a line L′′ : ax+by = c,
with gcd(a, b) = d and d not a divisor of c, will have no integral points. Indeed,
if m,n ∈ Z satisfy am + bn = c, then d would be a divisor of c and that is a
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1.3. Quadratic Equations and Conic Sections 7

contradiction to one of our assumptions. However, if gcd(a, b) = 1, why should
there be integral points on L′′? For example, consider L′′ : 1234x+5007y = 1. Are
there integral points on L′′? The greatest common divisor of 1234 and 5007 is 1
and, as we shall see, this implies the existence of integral points and, moreover, we
will describe an efficient algorithm to find these points (see Sections 2.6 and 2.7).
Here is one such point P = (−1481, 365):

1234(−1481) + 365(5007) = −1827554 + 1827555 = 1.

All other integral points are of the form (−1481+5007k, 365−1234k) for any k ∈ Z.

1.3. Quadratic Equations and Conic Sections

In this section we discuss several examples of rational and integral points on qua-
dratic equations in two variables, i.e., equations of the form

ax2 + bxy + cy2 + dx+ ey + f = 0,

where a, b, c, d, e, f are integers and a, b, or c is non-zero. When the graph of a
quadratic equation is smooth (non-singular; see Section 15.1.5), we call them conic
sections (because they arise as sections of cones; see Figure 9.5). We will discuss
quadratic equations and conic sections at length in Part 2.

Figure 1.3. Muhammad ibn Musa al-Khwarizmi (c. 780 – c. 850) was a
Persian mathematician, astronomer, and geographer. His treaty on algebra
contained the first systematic treatment of linear and quadratic equations, in-
cluding the first demonstration of the “completing the square” method. Image
source: Wikimedia Commons.

In our next example, we find rational points on a conic section (a hyperbola,
in this case).

Example 1.3.1. Let C : x2−7y2 = 1 be a hyperbola in the plane. Can we find all
the rational points on C? Yes, and we will do so using a little bit of geometry. First,
notice that there are two (integral) points which are easily found, namely (±1, 0).
If we trace a line L that goes through P = (1, 0), it will intersect the hyperbola
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8 1. Introduction

at exactly two points: the point P and a second point Q (since C is given by a
quadratic equation, the intersection with a line is formed by either no points or two
points). Let us find the second point of intersection, Q, in terms of the slope of L.
The equation of L is given by

L : y − 0 = m(x− 1),

where m is the slope of L.

−2 −1 1 2

−1

1

0

x2 − 7y2 = 1

(1, 0)
(-4/3, 1/3)

x + 7y = 1

Figure 1.4. The hyperbola x2 − 7y2 = 1 passes through infinitely many
rational points and also through infinitely many integral points.

Notice that L passes through P = (1, 0), as desired. Now we may find the
intersection of L and C by solving the system:{

x2 − 7y2 = 1,

y = m(x− 1).

Plugging the equation of L into the equation for C, we obtain

1 = x2 − 7(m(x− 1))2 = (1− 7m2)x2 + 14m2x− 7m2,

or, equivalently, (1−7m2)x2+14m2x−(1+7m2) = 0. Now we can use the quadratic
formula to solve for x:

x =
−14m2 ±

√
142m4 − 4(1− 7m2)(−(1 + 7m2))

2(1− 7m2)

=
−14m2 ±

√
142m4 + 4(1− 72m4)

2(1− 7m2)

=
−14m2 ±

√
4

2(1− 7m2)
=

−14m2 ± 2

2(1− 7m2)

=
−7m2 ± 1

1− 7m2
=

{
1 or
7m2+1
7m2−1 .
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1.3. Quadratic Equations and Conic Sections 9

As we expected, x = 1 is a solution (since L passes through P = (1, 0)). The
second point of intersection, Qm, has x-coordinate x = (7m2 + 1)/(7m2 − 1). The
y-coordinate of Qm is given by

y = m(x− 1) = m

(
7m2 + 1

7m2 − 1
− 1

)
=

2m

7m2 − 1
.

Thus, the point Qm =
(

7m2+1
7m2−1 ,

2m
7m2−1

)
is a rational point on C for every rational

slope m ∈ Q. For instance, when m = −1/7 (see Figure 1.4), the point Q1 =
(− 4

3 ,
1
3 ) is in C: (

−4

3

)2

− 7

(
1

3

)2

=
16− 7

9
=

9

9
= 1.

It is not difficult to see that this construction yields all the rational points on C;
i.e., C(Q) = {Qm : m ∈ Q}. Indeed, if Q′ is a rational point on C and the line
PQ′ has slope m, then Q′ = Qm (notice that the slope cannot be infinite, as there
is only one point on C with x = 1, namely P ).

We have found all the rational points on C : x2 − 7y2 = 1. Are there integral
points on C? If so, how many? It turns out that, in this particular case, there
are infinitely many integral points (m,n) ∈ C(Z) and these points are intimately
related with the rational approximations of

√
7. More concretely, if (m,n) is an

integral point on C, then m
n is a (very) good rational approximation of

√
7. Indeed,

m2 − 7n2 = 1

implies that

7 =
m2

n2
− 1

n2
=
(m
n

)2
− 1

n2
,

so that |7− (mn )2| = 1
n2 . For instance, (m,n) = (8, 3) is an integral point on C, and

8
3 = 2.666 . . . while

√
7 = 2.645751 . . .. We will explain later on that, once we have

one rational solution (m,n), there is a method to find infinitely many solutions, by
squaring the number m + n

√
7 (see Section 14.3.1). More concretely, if (m,n) is

an integral point on C and (m+ n
√
7)2 = a + b

√
7, then (a, b) is another integral

point on C. In our case,

(8 + 3
√
7)2 = 64 + 48

√
7 + 63 = 127 + 48

√
7,

and we can verify that (127, 48) is another point on C. Also, 127
48 = 2.6458333 . . .

is another approximation of
√
7 (see Chapter 13 and Theorem 14.2.3).

Example 1.3.2. Let us now consider the hyperbola C ′ : x2 − 7y2 = 3. Are there
any integral points? We will show that, in fact, this hyperbola does not have any
integral points. Let us assume, for a contradiction, that (m,n) is an integral point
on C. It follows that m2 = 3+7n2 and, in particular, the remainder when we divide
m2 by 7 is 3. This is impossible, as the only remainders that occur when we divide
a perfect square by 7 are 0, 1, 2, or 4, and 3, 5 and 6 never occur as remainders.
Let us prove this last claim.

Indeed, every number m ∈ Z has a remainder of 0, 1, 2, 3, 4, 5, or 6 when we
divide by 7. In other words, we can always write m = 7k + r, where k ∈ Z and

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



10 1. Introduction

r = 0, 1, 2, 3, 4, 5, or 6. Let us see what happens when we square m = 7k + r, for
each possible remainder r:

(7k + 0)2 = 49k2 = 7(7k2) + 0,

(7k + 1)2 = 49k2 + 14k + 1 = 7(7k2 + 2k) + 1,

(7k + 2)2 = 49k2 + 28k + 4 = 7(7k2 + 4k) + 4,

(7k + 3)2 = 49k2 + 42k + 9 = 7(7k2 + 6k) + 9 = 7(7k2 + 6k + 1) + 2,

(7k + 4)2 = 49k2 + 56k + 16 = 7(7k2 + 8k) + 16 = 7(7k2 + 8k + 2) + 2,

(7k + 5)2 = 49k2 + 70k + 25 = 7(7k2 + 10k) + 25 = 7(7k2 + 10k + 3) + 4,

(7k + 6)2 = 49k2 + 84k + 36 = 7(7k2 + 12k) + 36 = 7(7k2 + 12k + 5) + 1.

Thus, we have just shown that the remainder of m2 = (7k + r)2 when we divide
by 7 is 0, 1, 2, or 4, and never 3, 5, or 6. Hence, m2 = 3 + 7n2 is impossible
and C does not have any integral points. Similarly, C does not have any rational
points either. Suppose (ma ,

n
b ) is a rational point. Then (ma )

2 − 7(nb )
2 = 3 and it

follows that (mb)2 − 7(na)2 = 3(ab)2, or, equivalently, (mb)2 = 3(ab)2 + 7(na)2.
Suppose that the remainder of dividing (ab)2 by 7 is r; i.e., there is a k ∈ Z such
that (ab)2 = 7k + r. Then, as before, r = 0, 1, 2, or 4 and

(mb)2 = 3(7k + r) + 7(na)2 = 3r + 7((na)2 + 3k).

In particular, 3r = 0, 3, 6, or 12. If 3r = 12, then we may write (mb)2 = 5 +
7((na)2 + 3k + 1). Hence, the remainder of dividing (mb)2 by 7 is 0, 3, 6, or 5.
We have shown above that it cannot be 3, 5, or 6, so it must be 0 (so that 3r = 0.
Hence, (mb)2 = 7((na)2 + 3k), or A2 = 7B2, where A = mb and B = (na)2 + 3k
are integers. However, the equation A2 = 7B2 has no solutions in the integers as
the left-hand side is a perfect square but the right-hand side is not a square (a
consequence of the fundamental theorem of arithmetic, Theorem 2.10.6; see two
paragraphs below).

In Example 1.3.1 we have seen that a little bit of geometry can go a long way.
The trick of intersecting a curve with a line passing through a known point is very
useful. We will see similar tricks in the examples that follow. Another theme that
Example 1.3.1 has introduced is that of the approximation of irrational numbers
by rationals (e.g.,

√
7 ≈ 127

48 ), usually referred to as diophantine approximation.
In Example 1.3.2 we have claimed that A2 = 7B2 is impossible, for A,B ∈ N.

This fact relies on the so-called fundamental theorem of arithmetic: every natural
number has a unique factorization as a product of prime numbers. Also in Example
1.3.2, we have seen for the first time that working with the remainders of long
division can be a very effective technique. This tool will lead us to the study of
congruences modulo an integer (see Chapter 4). In particular, we were interested
in the remainder left out when dividing a perfect square n2 by a fixed number m.
This will lead us to the study of quadratic residues and Gauss’s law of quadratic
reciprocity—one of the theorems in all of mathematics with the largest number of
known distinct proofs (Gauss alone published six different proofs; there are now
over 200 published proofs). Quadratic congruences and quadratic reciprocity will
be dealt with in Chapter 10.
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1.4. Cubic Equations and Elliptic Curves 11

1.4. Cubic Equations and Elliptic Curves

In this section we discuss our first examples of cubic equations in the plane, i.e.,
equations in two variables of the form

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ jy + k = 0,

for some integers a, b, c, . . . , k ∈ Z such that not all of a, b, c, d are zero. Cubic
equations will be studied in Part 3.

An elliptic curve is a smooth cubic curve in the plane, which is also smooth
“at infinity”, and such that it contains at least one rational point (we will discuss
elliptic curves in Chapter 16). Smooth means that the curve has a well-defined
tangent line at every point. We will not describe in detail here what is the meaning
of the smoothness at infinity condition (see Section 15.1.5 instead). It is sufficient
to say that, after an appropriate change of variables, every elliptic curve (defined
over Q) can be written in the simpler form

y2 = x3 +Ax+B

where A,B ∈ Z and the polynomial x3 +Ax+B has no repeated roots (which, in
turn, is equivalent to 4A3 + 27B2 �= 0). For example, we have drawn the graph of
the elliptic curve y2 = x3 + 1 in Figure 1.5.

Example 1.4.1. Let E be the elliptic curve given by the equation y2 = x3 + 1. A
quick inspection for points reveals two integral points P = (−1, 0) and Q = (0, 1).
By symmetry, there is one additional point Q′ = (0,−1). Now, in order to find
new points, we may use a trick we have already seen. Let L be the line that goes
through P and Q. With a little bit of basic plane geometry, we find an equation
for L : y = x− 1 (see Exercise 1.8.8). In order to find the intersection points of E
and L, we need to solve the system{

y2 = x3 + 1,

y = x+ 1.

Thus, we plug the equation for L into the equation for E and obtain a polynomial
of degree 3 whose roots are the x-coordinates of the points of intersection of E and
L:

(x+ 1)2 = x3 + 1, or x3 − x2 − 2x = x(x2 − x− 2) = 0.

The roots are x = −1, 0, 2, and the corresponding y-coordinates are 0, 1, 3, respec-
tively. Hence, we have found a new point R = (2, 3) on E, with natural coordinates.
By symmetry, there is an additional point (2,−3) on E.

So far, we have found one natural point, (2, 3), and four additional integral
points, (−1, 0), (0,±1), and (2,−3). It turns out that these are all the rational
points on E, but this is fairly hard to prove.

Example 1.4.2. Let E′ be the elliptic curve given by the equation y2 = x3− 2. A
quick inspection reveals one integral point, P = (3, 5), but no other integral point
is easily found. We can modify our previous geometric trick by finding the line L
that is tangent to E′ at P . A little bit of calculus (e.g., implicit differentiation; see
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−1 1 2

−2

−1

1

2

3

0

y2 = x3 + 1

(−1, 0)

(0, 1)

(2, 3)

Figure 1.5. The elliptic curve y2 = x3 + 1.

Exercise 1.8.20) yields that the slope of a tangent line to E at a point (x, y) ∈ E is
given by

dy

dx
=

3x2

2y
.

In our case, L has slope 27/10 and passes through P = (3, 5), so it is given by the
equation L : y = 27

10 (x − 3) + 5. Now we can find the intersection points of L and
E′ by solving the system {

y2 = x3 − 2,

y = 27
10 (x− 3) + 5.

Plugging the equation for L into the equation for E′ yields a polynomial equation(
27

10
(x− 3) + 5

)2

= x3 − 2,

or, equivalently,

x3 − 729

100
x2 +

837

50
x− 1161

100
= 0.

We know that x = 3 is a root of this polynomial (and, in fact, it must be a
double-root, because L is tangent to E′ at P ). Thus, this polynomial factors as
(x − 3)2(x − α) = 0. Hence, we can find the value of α and this turns out to be
α = 129

100 . In particular, the x-coordinates of the points of intersection of L and E′

are 3 and 129
100 , and their y-coordinates are 5 and − 383

100 , respectively. Hence, we have
found a new rational point on E′, namely Q = ( 129100 ,−

383
100 ). By symmetry of the

graph of E′ with respect to the y-axis, there is an additional point Q′ = ( 129100 ,
383
100 ).

This construction of a rational point can be repeated to find other points. For
instance, we can trace the line L′ that goes through P and Q′. This line will
intersect E′ at a third rational point. We leave it to the reader to verify that the
points of intersection of E′ and L′ are P , Q′ and

Q′′ =

(
164323

29241
,
66234835

5000211

)
.
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1 2 3

y2 = x3 − 2

(3, 5)

(129/100, -383/100)

Figure 1.6. The elliptic curve y2 = x3 − 2.

The previous examples illustrate the method of chords and tangents that can
be used on cubic curves to find new rational points (see Section 16.3). The most
important theorem in the theory of elliptic curves is the following result, proved by
Louis Mordell, and vastly generalized by André Weil (see Figure 1.7). The so-called
Mordell–Weil theorem says that there is a finite set of rational points S such that
every other rational point can be obtained from the points in S, using the method
of chords and tangents.

Theorem 1.4.3 (Mordell–Weil theorem). Let E be an elliptic curve (a smooth
cubic curve, together with a given rational point O). Then, there is a set formed by
finitely many rational points P1, . . . , Pn on E such that if R is any other rational
point on E, then R can be obtained from P1, . . . , Pn using the method of chords and
tangents.

Example 1.4.4. All the rational points on E : y2 = x3 + 1 can be generated from
the point P1 = (2, 3) using chords and tangents. In this case, there are only five
rational points on E (plus a point at “infinity”).

The rational points on E′ : y2 = x3−2 are generated from the point P1 = (3, 5)
using chords and tangents. In this case, however, the curve has infinitely many
distinct rational points.

The rational points on the curve E′′ : y2 + y = x3 − 7x+6 are generated using
three points P1 = (1, 0), P2 = (2, 0), and P3 = (0,−3). These three points generate
infinitely many distinct rational points on E′′.
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14 1. Introduction

Figure 1.7. Louis Mordell (1888–1972) and André Weil (1906–1998). Images
author: Konrad Jacobs (Erlangen). Source: Archives of the Mathematisches
Forschungsinstitut Oberwolfach.

1.5. Curves of Higher Degree

By a curve of higher degree we refer to equations of the form

f(x, y) = 0,

where f(x, y) is a polynomial in two variables, with integer coefficients, and such
that the largest degree of a monomial is greater than or equal to 4 (here we define
the degree of a monomial xayb as a+ b). For instance, the curves of the form

y2 = p(x),

with p(x) a polynomial of degree ≥ 4, are called hyperelliptic curves.

Example 1.5.1. The following is problem 17 in Book VI of Diophantus’s Arith-
metica:

Find three squares which when added give a square, and such that the
first one is the side of the second, and the second is the side of the third.

Let A,B,C be integers, and let A2, B2, C2 be the squares mentioned in the problem.
Then, Y 2 = A2 + B2 + C2, for some Y ∈ Z, and the first one is the side of the
second (so A2 = B) and the second one is the side of the third (so B2 = C). It
follows that if A = x, then B = x2 and C = x4. Therefore, we are trying to find x
and Y integers such that

Y 2 = x2 + x4 + x8.

If we exclude the unique solution with x = 0, i.e., (0, 0), then we can write Y = xy,
and therefore we are looking for a rational point on the curve

x2y2 = x2 + x4 + x8,

with x �= 0. Thus, we can divide through by x and simplify the equation to

C : y2 = 1 + x2 + x6,
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1.5. Curves of Higher Degree 15

and we are looking for all the rational solutions with x �= 0. In his work, Diophantus
finds one rational solution of C, namely (x, y) = (1/2, 9/8), which corresponds to
(x, Y ) = (1/2, 9/16), and therefore

A =
1

2
, B =

1

4
, and C =

1

16
,

so that

A2 +B2 + C2 =
1

4
+

1

16
+

1

256
=

81

256
=

(
9

16

)2

.

A natural question arises: are there any other solutions to the problem? In
other words, are there any other rational points in C? In 1998, Joseph Wetherell
showed in his Ph.D. thesis [Wet98] that the only rational points on C are pre-
cisely (0,±1), (1/2,±9/8), and (−1/2,±9/8). Hence, the solution (A,B,C) equal
to (1/2, 1/4, 1/16) is the only solution with positive rational numbers to the original
problem posed by Diophantus.

Example 1.5.2. The curve C : y2 = x6 − 6x5 + 11x4 − 8x3 + 11x2 − 6x + 1 has
exactly four rational points, namely (0,±1) and (1,±2). The proof of this fact was
the subject of a Ph.D. thesis by Harris Daniels [Dan13]. The rational points on
C classify elliptic curves that satisfy a certain property, and the fact that C(Q) is
finite implies that only finitely many such elliptic curves exist.

In general, when studying rational points, the degree is not the most relevant
invariant to classify curves. Instead, we classify curves according to their genus
(from now on we assume that every curve is smooth). A curve defined over Q may
be regarded as a curve defined over C and the graph of C in C×C is a 1-complex-
dimensional curve (a Riemann surface), which can be viewed as a 2-real-dimensional
surface (compact and orientable). Loosely speaking, the genus of C is the number
of “holes” in this surface.

Figure 1.8. Curves of genus 1, 2, and 3, defined over C. Images source:
Wikipedia Commons.

If C : f(x, y) = 0 is a smooth equation for the curve C defined over Q and the
highest degree of a monomial in the polynomial f(x, y) is d, then the genus of C is
given by the formula

genus(C) =
(d− 1)(d− 2)

2
.

For instance, a smooth curve C given by a quadratic equation (a conic, such as an
ellipse or a hyperbola) has genus 0, because

genus(C) =
(2− 1)(2− 2)

2
= 0.
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16 1. Introduction

Thus, conics correspond to compact orientable surfaces with no holes, such as a
sphere.

An elliptic curve E (as in Section 1.4) is given by an equation y2 = x3+Ax+B,
with 4A3 + 27B2 �= 0 to ensure smoothness, so

genus(E) =
(3− 1)(3− 2)

2
= 1.

Thus, every elliptic curve is a curve of genus 1; i.e., it corresponds to a compact
orientable surface with one hole (a torus).

A curve of genus 0 or 1 may have infinitely many rational points (see Examples
1.3.1 and 1.4.4). In contrast, in 1922, Louis Mordell conjectured that any curve
with genus > 1 can only have finitely many rational points. This was proved by
Gerd Faltings in 1983 (see Figure 1.9).

Figure 1.9. Gerd Faltings (born 1954) is a German mathematician known
for his work in arithmetic geometry. Image source: Archives of the Mathema-
tisches Forschungsinstitut Oberwolfach.

Theorem 1.5.3 (Faltings’s theorem). Let C be a smooth curve defined over Q of
genus g > 1. Then, C has only finitely many rational points.

There is some progress on methods to find the rational points on curves of
genus 2, but very little is known about how to find the rational points on a curve
of genus ≥ 3.

1.6. Diophantine Equations

. . . his boyhood lasted 1
6
th of his life; he married after

1
7
th more; his beard grew after 1

12
th more, and his son

was born 5 years later; the son lived to half his
father’s age, and the father died 4 years after the son.

Metrodorus (∼ 600 AD), from the Greek Anthology,
in reference to Diophantus of Alexandria’s life
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1.6. Diophantine Equations 17

In previous sections, we have discussed examples of finding integral and rational
points on polynomials, and curves. More generally, we may ask ourselves how to
find integral and rational points on a surface, or on a higher-dimensional algebro-
geometric object V (called a variety), which, in general will be given by a set of
equations

V :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,
...
fr(x1, x2, . . . , xn) = 0,

where, for each 1 ≤ i ≤ r, the polynomial fi has n variables x1, . . . , xn, and integer
coefficients. In this case, we are interested in the integral and rational points of V ,
namely,

V (Z) = {(a1, . . . , an) ∈ Zn : f1(a1, . . . , an) = · · · = fr(a1, . . . , an) = 0} and
V (Q) = {(t1, . . . , tn) ∈ Qn : f1(t1, . . . , tn) = · · · = fr(t1, . . . , tn) = 0}.

Each of the equations above is usually called a diophantine equation.

Definition 1.6.1. A polynomial equation of the form C : f(x1, . . . , xn) = 0, where
f is a polynomial in n variables with integer coefficients, is called a diophantine equa-
tion. A rational (resp. integral, resp. natural) solution of C is an n-tuple (a1, . . . , an)
of rational numbers ai ∈ Q (resp. integers ai ∈ Z, resp. natural numbers ai ∈ N)
such that

f(a1, . . . , an) = 0.

The term “diophantine” was coined in honor of Diophantus of Alexandria, whose
treaties are the first records of a systematic approach to the study of the rational
solutions of algebraic equations. We will write more about Diophantus in Section
1.6.1 below.

Example 1.6.2. Problem 28 in Book II of Diophantus’s Arithmetica reads as
follows:

To find two square numbers such that their product added to either gives
a square.

If we write x2 and y2 for the squares, then the problem is equivalent to finding
rational solutions of the system of equations{

x2y2 + x2 = u2,

x2y2 + y2 = v2.

Diophantus finds one rational solution, namely (x, y) = (3/4, 7/24). Let us find all
the integral solutions first. From the first equation we see that x2(y2 + 1) = u2.
Therefore, either x = u = 0 or y2+1 itself is a square. Since the only two consecutive
squares are 0 and 1 (see Exercise 1.8.14), it follows that (x, y, u, v) = (n, 0,±n, 0)
and (0,m, 0,±m), for some integers m,n, are the only integral solutions of the
problem.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



18 1. Introduction

Now, let us find the rational solutions. As before, x = u = 0 or y2 + 1 is a
square. Thus, there is t ∈ Q, with t �= ±1, such that y = 2t

1−t2 (this follows from
parametrizing y2 + 1 = w2; see Exercise 1.8.14). Now the second equation says
y2(x2 + 1) = v2, so either y = 0 or x2 + 1 is a square. We similarly conclude that
x = 2s

1−s2 for some s ∈ Q with s �= ±1. Hence, the rational solutions of the problem
are given by

(xs, yt) =

(
2s

1− s2
,

2t

1− t2

)
,

and there is one solution for each s and t in Q, other than ±1. Indeed,

x2
sy

2
t + x2

s = x2
s(y

2
t + 1)

=

(
2s

1− s2

)2

·
(
1 + t2

1− t2

)2

=

(
2s(1 + t2)

(1− s2)(1− t2)

)2

,

and, similarly, x2
sy

2
t + y2t = (2t(1 + s2))2/((1− s2)(1− t2))2, for any s ∈ Q and any

t ∈ Q not equal to ±1.

1.6.1. About Diophantus of Alexandria. Diophantus of Alexandria (born be-
tween AD 201 and 215 and died between 285 and 299 at, apparently, age 84) is
sometimes called “the father of algebra”. He was an Alexandrian Greek mathe-
matician and the author of a series of books called Arithmetica (see Figure 1.10), a
tract On Polygonal Numbers, and a collection of results under the title of Porisms.
Of the original 13 books that formed Arithmetica, only six were thought to have
survived and it was also thought that the others must have been lost quite soon
after they were written. However, in 1968, F. Sezgin made a remarkable discovery
of an Arabic manuscript in the library Astan-i Quds in Meshed (The Holy Shrine
library of Iran). The book seems to be a translation by Qusta ibn Luqa, who died
in 912, of Books IV to VII of the Arithmetica by Diophantus of Alexandria.

The Arithmetica is not only the major work of Diophantus, but also the most
prominent work on algebra in Greek mathematics. The books form a collection of
about 130 problems giving numerical solutions of algebraic equations. Here is the
dedication at the beginning of Arithmetica:

Knowing, my most esteemed friend Dionysius, that you are anxious to
learn how to investigate problems in numbers, I have tried, beginning
from the foundations on which the science is built up, to set forth to you
the nature and power subsisting in numbers.

Perhaps the subject will appear rather difficult, inasmuch as it is not
yet familiar (beginners are, as a rule, too ready to despair of success); but
you, with the impulse of your enthusiasm and the benefit of my teaching,
will find it easy to master; for eagerness to learn, when seconded by
instruction, ensures rapid progress.
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Figure 1.10. Title page of the 1621 edition of Diophantus’s Arithmetica,
translated from Greek into Latin by Claude Gaspard Bachet de Méziriac.
Image source: Wikipedia Commons.
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20 1. Introduction

What follows is an example of the exposition in the Arithmetica, quoted from
[Hea10].

Example 1.6.3 (Diophantus’s Arithmetica, Book I, Problem 1). To divide a given
number into two having a given difference.

Given number 100, given difference 40.
Lesser number required x. Therefore

2x+ 40 = 100,

x = 30.

The required numbers are 70, 30.

In more modern terminology, the problem is as follows: given natural numbers
N and n, find integers x and y, with x < y such that x + y = N and y − x = n.
Diophantus solves the problem by subtracting both equations, to obtain 2x+n = N ,
and therefore 2x = N − n. If N − n is even, then x = (N − n)/2 and y = x+ n =
(N + n)/2. For instance, if N = 100 and n = 40, then x = (100− 40)/2 = 30 and
y = x+ n = 70.

Perhaps the most famous of all problems proposed by Diophantus in his Arith-
metica is Problem 8 in Book II, which says

8. To divide a given square number into two squares.

It is next to this proposition that, hundreds of years later, Fermat scribbled his
famous note in which he enunciates what is known as “Fermat’s last theorem”.
Pierre de Fermat (1601–1665) was a French lawyer at the Parlement of Toulouse
and an amateur mathematician who is given credit for early developments that led
to infinitesimal calculus and also for notable contributions to analytic geometry,
probability, and optics. Nonetheless, he is particularly famous for his contributions
to number theory.

During his lifetime Fermat proposed many challenges to other mathematicians,
some of them quite difficult to solve. One by one, his challenges were resolved,
except for one claim that took over 350 years to solve (it was proved by Andrew
Wiles in 1995). Fermat’s original claim was made in 1637, in an intriguing note in
the margin of a copy of Diophantus’s Arithmetica:

Cubum autem in duos cubos, aut quadratoquadratum in duos quadra-
toquadratos, et generaliter nullam in infinitum ultra quadratum potes-
tatem in duos eiusdem nominis fas est dividere cuius rei demonstra-
tionem mirabilem sane detexi. Hanc marginis exiguitas non caperet.

Or, in English:

It is impossible to separate a cube into two cubes, or a fourth power into
two fourth powers, or in general, any power higher than the second, into
two like powers. I have discovered a truly marvelous proof of this, which
this margin is too narrow to contain.
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1.7. Hilbert’s Tenth Problem 21

In more modern notation, Fermat’s last theorem can be stated as follows.

Theorem 1.6.4 (Fermat’s last theorem). The equation xn+yn = zn does not have
any solutions x, y, z ∈ Z with xyz �= 0, if n ≥ 3.

Figure 1.11. Pierre de Fermat (1601–1665). Image source: Wikimedia Commons.

The diophantine equation xn + yn = zn is, perhaps, the most studied in the
theory of numbers, and it has generated thousands of pages of research articles.
Notice that a non-trivial integral solution of xn + yn = zn corresponds to a non-
trivial rational point (xz ,

y
z ) on the curve Fn : Xn + Y n = 1 and, conversely, a

rational point on Fn provides an integral solution of xn + yn = zn. The curve Fn

is known as the nth Fermat curve.
The curve F2 : X2 + Y 2 = 1 corresponds to the circle of radius 1 (which is

a genus 0 curve), and it has infinitely many rational points. When n = 3, the
Fermat curve F3 : X3 + Y 3 = 1 is an elliptic curve (a curve of genus 1), with no
rational points other than (1, 0) and (0, 1) (and one point at “infinity”). For n ≥ 4,
the Fermat curve Fn has genus ≥ 2. Thus, by Faltings’s theorem (Theorem 1.5.3)
for each n ≥ 4, the curve Fn can have at most finitely many rational points. The
proof of the fact that Fn for all n ≥ 3 has no non-trivial rational points had to
wait until 1995, when Andrew Wiles announced the first complete proof of Fermat’s
last theorem and published it in [Wil95]. See [Loz11] for an introduction to the
concepts that go into Wiles’s proof.

1.7. Hilbert’s Tenth Problem

Suppose C : f(x1, . . . , xn) = 0 is a diophantine equation, as in Definition 1.6.1.
The goal of the field of arithmetic geometry is to systematically study the integer
and rational solutions of diophantine equations, so we ask ourselves three basic
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22 1. Introduction

questions:

(a) Can we determine if C has any integral solutions, or rational solutions?

(b) If so, can we find any of the integral or rational solutions of C?

(c) Finally, can we find all solutions and prove that we have found all of them?

The first question was formalized by David Hilbert (see Figure 1.12): to devise
a process according to which it can be determined in a finite number of opera-
tions whether the equation is solvable in rational integers. This was Hilbert’s tenth
problem out of 23 fundamental questions that he proposed to the mathematical
community during the Second International Congress of Mathematicians in Paris
in the year 1900.

Figure 1.12. David Hilbert (1862–1943) was one of the most influential math-
ematicians of the 19th and early 20th centuries. Image source: Wikimedia
Commons.

Julia Robinson’s work in the late 1940s on Hilbert’s tenth problem (using Pell’s
equation, a type of equation that we will discuss in Chapter 14) was central to the
formulation of a mathematical-logic approach to the problem (see Figure 1.13).
Further collaboration among Davis, Matiyasevich, Putnam, and Robinson led to
the surprising discovery and proof that, in fact, there is no such general algorithm
that decides whether a diophantine equation has integer solutions (see [Mat93]).

However, if we restrict our attention to solving diophantine equations of certain
types, e.g., lines, conics, elliptic curves, then we can answer questions (a), (b), and
(c) posed above, and this book is dedicated to describing the techniques that are
known in these simpler (but fundamental) cases.
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Figure 1.13. Julia Hall Bowman Robinson (1919–1985) was an American
mathematician renowned for her contributions to computability theory and
computational complexity theory. Her work on Hilbert’s tenth problem played
a crucial role in its ultimate resolution. Image author: George M. Bergman
(Berkeley). Source: Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

1.8. Exercises

Exercise 1.8.1. Show that the decimal expansion 0.9999 . . ., with infinitely many
nines, is equal to the decimal expansion 1 = 1.0000 . . .. In other words, show that
the infinite series

∑∞
k=1 9/10

k converges and the sum equals 1. (Hint: use the
geometric series test.)

Exercise 1.8.2. Find all the natural, integral, and rational roots of the following
polynomial equations:

(1) x5 − 9x4 − 5x3 + 45x2 + 4x− 36 = 0.

(2) 3x4 + 5x3 − 3x2 − 5x = 0.

(3) x4 + 5x3 − 16x2 − 17x− 21 = 0.

(4) x4 + x3 + 21 = 0.

Exercise 1.8.3. Find k ∈ Z such that x = 5 is a root of x3 + kx2 +23x+285 = 0.

Exercise 1.8.4. Find integers m and n such that x = −2 and x = 3 are roots of
the polynomial equation x3 + 10x2 +mx+ n = 0.

Exercise 1.8.5. Let p(x) and q(x) be polynomials, and let α ∈ Q be a root of
p(x) = 0 and β ∈ Q a root of q(x) = 0. Show the following statements:

(1) The numbers α and β are roots of the polynomial equation p(x) · q(x) = 0.

(2) If α = β, then α is a root of the polynomial equation p(x) + q(x) = 0.
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Exercise 1.8.6. The goal of this exercise is to show that every complex number
α ∈ C has a square root within the complex numbers; i.e., there is some

√
α ∈ C.

Recall the definition of the complex numbers:

C = {a+ bi : a, b ∈ R and i2 = −1}.
(1) Find a square root of α = 1+ i, within C; i.e., find β ∈ C such that β2 = 1+ i.

(Hint: write β = c+ di and find a similar expression for its square β2.)
(2) Find a square root of α = a + bi, within C; i.e., find β = c + di such that

β2 = α. In fact, show that

β = ±

⎛⎝√√
a2 + b2 + a

2
+

⎛⎝ b

|b|

√√
a2 + b2 − a

2

⎞⎠ · i

⎞⎠ .

(3) For any real number θ, we define

eiθ = cos(θ) + sin(θ) · i.
Show that any complex number α can be written uniquely as α = reiθ, for
some r ≥ 0 and some θ ∈ [0, 2π). (Hint: find a geometric interpretation of r
and θ in the complex plane.)

(4) Show that if α = reiθ, then the square roots of α are β =
√
reiθ/2 and

−β =
√
rei(θ/2+π).

Exercise 1.8.7. Find all natural numbers n such that its cube minus its square
plus itself equals 1.

Exercise 1.8.8. Let P = (x0, y0) and Q = (x1, y1) be two points in the plane,
with x0 �= x1, and let m = (y1 − y0)/(x1 − x0). Show that the line L that passes
through P and Q is given by

y − y0 = m · (x− x0).

Exercise 1.8.9. Let P = (1, 4) and Q = (4,−2) be points on the plane.

(1) Find the equation y = ax+ b of a line L that passes through P and Q.
(2) Find a formula for all the rational points on L.
(3) Find a formula for all the integral points on L.
(4) How many points on L have natural coordinates; i.e., how many points R =

(x0, y0) on L are there with x0, y0 ∈ N?

Exercise 1.8.10. Find all the rational points on the circle x2 + y2 = 2.

Exercise 1.8.11. Let C be the ellipse given by x2 + 3y2 = 784.

(1) Find all the integral points on C.
(2) Find a parametrization of all the rational points on C.

Exercise 1.8.12. Let C be the hyperbola given by the equation x2 − 7y2 = 2.

(1) Find all the rational points on the hyperbola x2 − 7y2 = 2.
(2) Find 3 distinct integral points with positive x-coordinate.

Exercise 1.8.13. Show that the hyperbola C ′ : x2−5y2 = 3 has no integral points.
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Exercise 1.8.14. (1) Are there two perfect squares (i.e., integers of the form n2,
where n itself is an integer) that differ by 1? Write the problem in terms of
a diophantine equation, find all integral solutions to the equation, and prove
that you have found them all. (Hint: write one square as n2 and the other
square as (n+m)2.)

(2) Find a parametrization of all the rational squares (i.e., rational numbers of
the form t2 for some t ∈ Q) that differ by 1.

(3) Are there two consecutive integers such that their product is a perfect square?
If so, find all such integers.

(4) Are there three consecutive integers such that their product is a perfect square?
If so, find all such integers. (This is hard! Here it suffices to find one diophan-
tine equation in two variables that represents this problem.)

(5) Are there three integers u < v < w that differ by 5 (i.e., u + 5 = v and
v+5 = w) and such that their product is a perfect square? If so, find all such
integers. (There are some . . . . Can you find any? Finding all solutions is
hard! Again, here it suffices to find one diophantine equation in two variables
that represents this problem.)

Exercise 1.8.15. We say that a natural number n ≥ 1 is a congruent number if
there is a right triangle with rational sides and area equal to n. Is n = 5 a congruent
number? If so, find a right triangle with rational sides and area equal to 5.

Exercise 1.8.16. A triple (a, b, c) of natural numbers a, b, c ∈ N is said to be
pythagorean if they satisfy a2 + b2 = c2.

(1) Show that (a, b, c) = (n2 −m2, 2nm, n2 +m2) is a pythagorean triple for any
two non-zero distinct integers n > m > 0.

(2) Show that if n and m satisfy (i) one of n and m is even and the other one is odd
and (ii) n and m are relatively prime, then (a, b, c) = (n2−m2, 2nm, n2+m2)
is a primitive pythagorean triple; i.e., a, b, and c are pairwise relatively prime.

(3) Use (b) to find five distinct primitive pythagorean triples.

Exercise 1.8.17. An Euler brick is just a rectangular box in which all of the edges
(length, depth, and height) have integer dimensions and in which the diagonals on
all three sides are also integers.

(1) Find the dimensions of two distinct Euler bricks.
(2) A perfect cuboid is an Euler brick in which the space diagonal, that is, the

distance from any corner to its opposite corner, is also an integer. Can you
find a perfect cuboid? (This is an open problem. Here, it suffices to find a
system of diophantine equations that represents this problem.)

Exercise 1.8.18 (Diophantus’s Arithmetica, Book II, Problem 30). Find two num-
bers such that their product plus or minus their sum gives a square; i.e., find a pair
of rational numbers x and y such that there are u, v ∈ Q with{

xy + x+ y = u2,

xy − (x+ y) = v2.

Can you find all such rational numbers x and y?
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Exercise 1.8.19. Find a copy of Book II of the Arithmetica by Diophantus of
Alexandria and quote two problems (other than numbers 8, 29, or 30). Reproduce
Diophantus’s solution, and then rewrite it in a more modern language and notation.

Exercise 1.8.20. Let E be the elliptic curve given by y2 = x3 +Ax+B, for some
A,B ∈ Z.

(1) Use implicit differentiation to show that

y′ =
dy

dx
=

3x2 +A

2y
.

(2) Let E be y2 = x3−2 and P = (3, 5). Find
dy

dx
(P ), i.e., the slope of the tangent

line to E at the point P .
(3) Let E be y2 = x3 − x and P = (0, 0). What is the slope of the tangent line to

E at the point P?

Exercise 1.8.21. Let f(a, b, c, d) = ad− bc and let C : ad− bc = 1.

(1) Let SL(2,Z) be the set of 2× 2 matrices with integer coefficients and determi-
nant 1. Show that the set C(Z) of integral points on the diophantine equation
C is in bijection with SL(2,Z).

(2) Show that S =

(
0 −1

1 0

)
and T =

(
1 1

0 1

)
belong to SL(2,Z).

(3) Show that if A and B are matrices in SL(2,Z), then A ·B is also in SL(2,Z),
where · here denotes matrix multiplication (see Example 5.2.5).

(4) Show that Qn = (S · T 2)n = (S · T 2) · · · (S · T 2) is a matrix in SL(2,Z) for
all n ≥ 1. Describe the points on C that correspond to the matrices Qn for
1 ≤ n ≤ 6.

(5) Show that there are infinitely many integral points (a, b, c, d) in C(Z) with all
non-zero coordinates.

Note: this problem continues in Exercises 2.11.12 and 5.6.4.
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CHAPTER 2

THE INTEGERS

God made the integers, all else is the work of man.
(Die ganzen Zahlen hat der liebe Gott gemacht,
alles andere ist Menschenwerk.)

Leopold Kronecker

In order to build a solid mathematical theory of the integers that does not rely
on our intuition, we need to establish a basic set of axioms that define the integers
(and the natural numbers).

2.1. The Axioms of Z

The integers, denoted by Z, are a set with the following properties:

(1) There are two operations on elements of Z, namely addition + and multipli-
cation × (also denoted by ·), and Z is closed under these operations; that is,
if a, b ∈ Z, then a+ b and a · b are also in Z.

(2) Properties of + and ×. For all a, b, c ∈ Z, we have:
(2.a) (Commutativity): a+ b = b+ a and a · b = b · a.
(2.b) (Associativity): (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c).
(2.c) (Distributivity): c · (a+ b) = c · a+ c · b and (a+ b) · c = a · c+ b · c.

(3) Existence axioms:
(3.a) (Additive identity) There exists 0 ∈ Z such that a + 0 = 0 + a = a, for

all a ∈ Z.
(3.b) (Additive inverses) For all a ∈ Z there is −a ∈ Z such that a + (−a) =

0 = (−a) + a.
(3.c) (Multiplicative identity) There exists 1 ∈ Z such that a · 1 = 1 · a = a,

for all a ∈ Z.

29
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30 2. The Integers

(4) There exists a subset N ⊆ Z satisfying the following properties:
(4.a) (Non-triviality) N is non-empty.
(4.b) (Closure) N is closed under + and ·; that is, if a, b ∈ N, then a + b and

a · b ∈ N.
(4.c) (Trichotomy) For all a ∈ Z, precisely one and only one of the following

statements is true: a ∈ N or a = 0 or −a ∈ N.
(4.d) (Well-ordering principle) Every non-empty subset of N has a least element

with respect to the ordering defined by a > b if a+ (−b) ∈ N.

Remark 2.1.1. The integers Z satisfy axioms (1) through (3), but many other
number systems satisfy these axioms. For instance, these axioms are satisfied by
Q, R, and C (in general, any commutative ring satisfies axioms (1)–(3)). However,
the rationals, reals, and complex numbers do not satisfy the axioms in (4), as there
is no subset of Q, R, or C that could replace the subset N as in the case of Z.

Note, however, that there are other number systems that come close to satis-
fying axioms (1)–(4). For instance, let Z = {0}, with operations + and · defined
by 0 + 0 = 0 and 0 · 0 = 0. Clearly, Z satisfies axiom (1) and the group of ax-
ioms in (2). Moreover, putting 1 = 0, the reader can check that Z also satisfies
(3.a), (3.b), and (3.c). By setting N = {0} = Z, we see that axioms (4.a), (4.b),
and (4.d) are trivially satisfied. However, Z does not satisfy the trichotomy axiom
(4.c), because it follows from trichotomy that 0 is not a natural number. Indeed,
trichotomy implies that a number a is in N or a = 0 or −a ∈ N, but only one of the
three statements occurs for each a. Thus, if a = 0, then neither a nor −a is in N.

Remark 2.1.2. The axioms (3.a) and (3.c) declare the existence of at least two
elements in Z, namely 0 and 1. The reader, though, should be aware that the axioms
do not explicitly say that 1 is a natural number! However, one can deduce this fact
from the axioms. Indeed, suppose for a contradiction that 1 is not a natural number.
Then, trichotomy (axiom (4.c)) says that −1 ∈ N (since our previous remark shows
that 0 = 1 is impossible). In Lemma 2.2.2 (together with Exercise 2.11.1) we will
show that (−1) · (−1) = 1. Since N is closed under multiplication by axiom (4.b),
it follows that 1 ∈ N as well. But this is a contradiction with trichotomy since a
and −a cannot be simultaneously in N. Hence, we have reached a contradiction,
and we must have 1 ∈ N. We will prove below in Theorem 2.2.4 that 1 is, in fact,
the smallest natural number.

Since 1 ∈ N and N is closed under addition, there is a number 1+1 ∈ N ⊆ Z that
we denote by 2; the number (1+ 1)+1 is called 3; etc. Note that 3 = (1+1)+1 =
1 + (1 + 1) by (2.b).

Let us introduce some more notation to ease the discussions about the ordering
in the integers and natural numbers.

Definition 2.1.3. Let a, b be integers. The symbol a−b stands for a+(−b), where
−b is the additive inverse of b. We say that a is greater than b, or a > b if a− b ∈ N.
Similarly, we say that a is greater than or equal to b, or a ≥ b, if a > b or a = b.
Conversely, we say that a is less than b if b > a and a ≤ b if b ≥ a.

Example 2.1.4. The number 5 is greater than 4 because 5− 4 = 1 is in N.
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In this book, we will pay close attention to divisibility properties of integers.
Here is the formal definition of divisibility.

Definition 2.1.5. Let a, b be integers. If there is an integer m such that b = a ·m,
then we say that a is a divisor of b, or a divides b, or, equivalently, b is divisible by
a. We also write a | b.

Example 2.1.6. Let a = 5 and b = 15. Then, 15 = 5 · 3 and therefore a = 5 is a
divisor of b = 15. We write 5 | 15.

Definition 2.1.7. A natural number n ≥ 2 is called a prime if it has exactly two
positive divisors, namely 1 and n. A number n ≥ 2 that is not prime is called a
composite number.

The first few prime numbers are 2, 3, 5, 7, 11, 13, . . . . Later we will show that
there are infinitely many prime numbers (Theorem 3.2.1). As of January 2018, the
largest known prime number is p = 277232917 − 1, a number with 23,249,425 digits
(p is the 50th Mersenne prime; see Exercise 3.5.23).

2.2. Consequences of the Axioms

There are a number of statements that may seem axiom-like but, in fact, they are
consequences of the axioms, i.e., theorems. For instance, the fact that if a, b ∈ Z

and ab = 0, then a = 0 or b = 0, is a direct consequence of the axioms. Before we
prove this, first we need two lemmas that show other basic facts that follow from
the axioms.

Lemma 2.2.1. For all a ∈ Z, we have that a · 0 = 0 · a = 0.

Proof. Let us show that a · 0 = 0 for any a ∈ Z. The fact that 0 · a = 0 will follow
from the commutative law. Notice that 0 = 0+0, because 0 is the additive identity
(axiom (3.a)). Thus,

(2.1) a · 0 = a · (0 + 0) = a · 0 + a · 0,
where in the last equality we have used the distributive law (axiom (2.c)). The
number a · 0 is an integer (by closure, axiom (1)), and therefore it has an additive
inverse (axiom (3.b)), which we call −(a · 0). Adding −(a · 0) to both sides of (2.1)
we obtain

0 = a · 0 + (−(a · 0)) = (a · 0 + a · 0) + (−(a · 0))
= a · 0 + (a · 0 + (−(a · 0))) = a · 0 + 0

= a · 0,
where we have used axioms (2.c), (3.b), and (3.a). Hence, 0 = a · 0, as claimed. �

Lemma 2.2.2. Let a, b be integers. Then, a · (−b) = −(a · b). Similarly, (−a) · b =
−(a · b).

Proof. In order to show that a · (−b) = −(a · b), it suffices to show that a · (−b) is
the additive inverse of a · b. Hence, we need to show that a · b+a · (−b) = 0. Indeed,

a · b+ a · (−b) = a · (b+ (−b)) = a · 0 = 0,
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where we have used the distributive law (axiom (2.c)), the defining property of the
additive inverse −b (axiom (3.b)), and Lemma 2.2.1. �

Theorem 2.2.3. Let a, b be integers such that a · b = 0. Then a = 0 or b = 0.

Proof. Let a, b ∈ Z such that a · b = 0. By trichotomy (axiom (4.c)), we have that
a ∈ N, a = 0, or −a ∈ N. Similarly, b ∈ N, b = 0, or −b ∈ N. We analyze all the
possible cases:

• If a and b are in N, by closure (axiom (4.b)), it would follow that a · b ∈ N

but, by trichotomy, this is impossible, since we know that a · b = 0.

• If a ∈ N and −b ∈ N, then a · (−b) = −(a · b) ∈ N (by Lemma 2.2.2) but,
again, this is a contradiction with trichotomy, since we know that a · b = 0.
Similarly, if −a ∈ N and b ∈ N, we have that (−a) · b = −(a · b) ∈ N and we
reach the same contradiction.

• If −a and −b are in N, then (−a) · (−b) = −(a · (−b)) = −(−(a · b)) = a · b ∈ N

by closure (the reader should verify that −(−c) = c, for all c ∈ Z). This is a
contradiction with trichotomy, since we have assumed that a · b = 0.

Thus, the only possibilities that remain satisfy that a or b is 0 (and by Lemma
2.2.1, we know that a · 0 = 0 or 0 · b = 0). �

Finally, we conclude this section by showing that 1 is the smallest natural
number.

Theorem 2.2.4. The number 1 is the smallest natural number; i.e., if n is a
natural number, then either n = 1 or 1 < n.

Proof. In Remark 2.1.2 we have shown that 1 is a natural number, so it remains
to show that it is the smallest natural number. By the well-ordering principle, the
set of all natural numbers has a least element a ∈ N. Suppose for a contradiction
that a < 1. Since a is natural, then 0 < a because a− 0 = a ∈ N. Hence, we have
0 < a < 1.

Now, consider b = a2. Since b = a2 = a ·a, then b ∈ N by axiom (1). Moreover,
a is the smallest natural number, so either a = b or a < b. If a < b, then b− a ∈ N,
but

b− a = a2 − a = a · (a− 1)

and since a < 1, the number a− 1 is not natural. In particular, a · (a− 1) cannot
be natural (by Exercise 2.11.2). Thus, we reach a contradiction to the fact that
a(a− 1) = b− a ∈ N.

Finally, if a = b, then a = a2, and therefore a(a− 1) = 0. Hence, by Theorem
2.2.3, we have a = 0 or a = 1, both of which would be contradictory since we have
shown that 0 < a < 1.

Thus, we have reached a contradiction in all cases, and we must have that the
smallest natural number is a = 1. �
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2.3. The Principle of Mathematical Induction

In this section, we shall prove the principle of mathematical induction using the
axioms of the integers that we established in the previous sections. In particular,
induction is a consequence of the well-ordering principle.

Theorem 2.3.1 (Mathematical induction). Let P (n) be a statement such that

(1) the statement P (n0) is true, for some n0 ∈ N, and
(2) if P (k) is true for some k ≥ n0, then P (k + 1) is also true.

Then, P (n) is true for all n ≥ n0.

Proof. Let S be the set of all natural numbers n ≥ n0 such that P (n) is false; that
is,

S = {n ∈ N : n ≥ n0 and P (n) is false}.
We would like to show that S is empty, so let us assume, for a contradiction, that
there is some natural number n greater than or equal to n0 such that P (n) is false.
Thus, S is non-empty. By the well-ordering principle, there is a minimum element
of S which we shall call m. Since m ∈ S, it follows that m ≥ n0. However P (n0) is
true, so m > n0. Notice that m > m− 1 ≥ n0 so P (m− 1) must be true, since m
is the minimum of S. But our assumptions on the statement of the theorem imply
that if P (m − 1) is true and m − 1 ≥ n0, then P ((m − 1) + 1) = P (m) must be
true as well. This is a contradiction, for m is an element of S and therefore P (m)
is false. Hence, S must be empty and P (n) is true for all n ≥ n0, as claimed. �
Remark 2.3.2. In order to prove a result using the principle of mathematical
induction, by Theorem 2.3.1, one needs to check two things: (1) is called the base
case, and one needs to check by hand that the statement P (n0) is true; (2) is called
the induction step, and one needs to prove P (k + 1) while assuming that P (k)
is true, for some k ≥ n0 (the assumption of P (k) is usually called the induction
hypothesis).

Let us see some examples of proofs that use the principle of mathematical
induction.

Example 2.3.3. Let us show that, for all n ≥ 1, one has

(2.2) 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

The formula in (2.2) is what in Theorem 2.3.1 we referred to as the statement
P (n). We shall prove this formula using the principle of mathematical induction
(Theorem 2.3.1). Let us first show that the statement is true for the base case
n0 = 1. This is clear since

1 =
1(1 + 1)

2
=

2

2
.

Next, we need to prove the induction step, i.e., P (k) implies P (k + 1). Let us
assume that the statement is true for k; i.e., 1 + 2+ 3+ · · ·+ k = k(k+1)

2 . We need
to show the statement in the k + 1 case, which reads:

1 + 2 + 3 + · · ·+ k + (k + 1) =? (k + 1)((k + 1) + 1)

2
=

(k + 1)(k + 2)

2
.
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Let us begin working with the left-hand side of the equation to be shown:

1 + 2 + 3 + · · ·+ k + (k + 1) = (1 + 2 + 3 + · · ·+ k) + (k + 1)

=
k(k + 1)

2
+ (k + 1).

In the last step, we have used the induction hypothesis P (k); i.e., we have used the
fact that 1 + 2 + · · ·+ k = k(k + 1)/2. Now we may continue, as follows,

1 + 2 + 3 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
,

as desired. This shows that the truth of P (k) implies the truth of P (k+1). Hence,
we have shown the base case and the induction step, and by the principle of math-
ematical induction, the formula in (2.2) is true for all n ≥ 1.

Example 2.3.4. Let us show the following inequality, using mathematical induc-
tion:

2n ≥ n+ 1, for all n ≥ 1.

Let us begin with the base case, n0 = 1. Clearly, we have 21 = 2 ≥ 1 + 1, so
the base case is true. Next, we show the induction step; i.e., if we assume that
2k ≥ k + 1, then we need to show that 2k+1 ≥ (k + 1) + 1, as well. Let us begin
with the left-hand side of the (k + 1)th equation:

2k+1 = 2 · 2k ≥ 2(k + 1) = 2k + 2 ≥ k + 2 = (k + 1) + 1,

where, in the second inequality, we have used our induction hypothesis, 2k ≥ k+1.
Hence, the induction step is shown, and by the principle of mathematical induction,
we have that 2n ≥ n+ 1, for all n ≥ 1.

Example 2.3.5. In this example we show that n! ≥ 2n, for all n ≥ 4, using
induction. The base case is n0 = 4, and 4! = 24 ≥ 16 = 24, so the base case is true.
Now, let us assume that the inequality is true for k; i.e., we assume that k! ≥ 2k.
Then, for any k ≥ 4,

(k + 1)! = (k + 1)k! ≥ (k + 1)2k ≥ 2 · 2k ≥ 2k+1.

Hence, we have shown the induction step, and by the principle of mathematical
induction, n! ≥ 2n, for all n ≥ 4.

Example 2.3.6. If n ∈ N, then n3 + 2n is divisible by 3. Clearly, the base case
n0 = 1 is true, since 13 + 2 · 1 = 3 is divisible by 3. Let us assume as our induction
hypothesis that k3 + 2k is divisible by 3 for some k ≥ 1; i.e., there is some m ∈ Z

such that k3 + 2k = 3m. Thus,

(k + 1)3 + 2(k + 1) = k3 + 3k2 + 3k + 1 + 2k + 2

= (k3 + 2k) + 3(k2 + k + 1)

= 3(m+ k2 + k + 1),
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2.3. The Principle of Mathematical Induction 35

and so, (k + 1)3 + 2(k + 1) is divisible by 3. This settles the induction step, and
the principle of mathematical induction implies that n3 + 2n is divisible by 3, for
all n ≥ 1.

Example 2.3.7. Let us show that n2 − 1 is a natural number divisible by 8, for
all odd numbers n ≥ 3. We shall use induction. Let us first check the base case,
which, in this instance, would be n0 = 3. We know that

32 − 1 = 8,

so it is clear that 32 − 1 = 8 is divisible by 8. Next, we need to verify the induction
step. More concretely, we need to show that if the statement is true for an odd
number k ≥ 3, then the statement is also true for the next odd number. Note that
if k is odd, then the next odd number is k + 2 (and not k + 1).

Suppose that k ≥ 3 is an odd number and k2 − 1 is divisible by 8. By the
definition of divisibility (Definition 2.1.5), there is an integer m such that k2 − 1 =
8m. Now we need to show that (k + 2)2 − 1 is also divisible by 8. Notice that

(k + 2)2 − 1 = (k2 + 4k + 4)− 1 = (k2 − 1) + 4k + 4 = 8m+ 4(k + 1).

Since k is odd, the number k + 1 is even, and so there is a number t such that
k + 1 = 2t. Hence,

(k + 2)2 − 1 = 8m+ 4(k + 1) = 8m+ 4(2t) = 8m+ 8t = 8(m+ t).

Thus, (k + 2)2 − 1 = 8(m + t) and, by definition, this shows that (k + 2)2 − 1
is divisible by 8. This proves the induction step. Therefore, by the principle of
mathematical induction, the number n2 − 1 is divisible by 8 for all odd numbers
n ≥ 3.

Remark 2.3.8. Here is another way to prove that if n ≥ 3 is odd, then n2 − 1
is divisible by 8, without using induction. Note that every odd number n can be
written in the form n = 2m+ 1, for some m ≥ 0. Thus,

n2 − 1 = (2m+ 1)2 − 1 = 4m2 + 4m = 4m(m+ 1).

If m is even, then m = 2m′, for some m′ ∈ N. Thus, n2 − 1 = 8m′(m + 1) is
divisible by 8. Otherwise, if m is odd, then m = 2m′ + 1 for some m′ ∈ N and
m+ 1 = (2m′ + 1) + 1 = 2(m′ + 1) is even. Thus, n2 − 1 = 8m(m′ + 1) is divisible
by 8. Hence, in all cases, n2 − 1 is divisible by 8 when n ≥ 3 is odd.

Example 2.3.9. Let us show that a 2n × 2n chessboard with one corner removed
from the board can be tiled with L-shaped pieces for all n ≥ 1, where each L piece
has 3 square tiles (2 high, 2 wide). In Figure 2.1, we show the case n = 1 (this is
our base case for induction) and the case n = 2.

Let us assume that a 2k × 2k chessboard can be tiled with L-shaped pieces,
and consider a 2k+1 × 2k+1 chessboard C with the top-right corner removed. Since
2k+1 = 2 ·2k, the board C can be covered with 4 smaller chessboards of size 2k×2k,
which we will name clockwise and starting with the top-right chessboard by C1,
C2, C3, and C4. The chessboard C1 has the top-right corner removed and by our
induction hypothesis, C1 can be tiled with the L-shaped pieces. Moreover, if we
remove one tile from each of C2, C3, and C4 (as in the case n = 2 in the figure), each
one of them can be tiled with L-shaped pieces (by our induction hypothesis), and
the three removed corner pieces can be filled back in with an L-shaped piece. Hence,
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Figure 2.1. A 2× 2 and a 4× 4 chessboard, with one corner removed, can be
tiled with L-shaped pieces.

this shows the induction step, and by the principle of mathematical induction, every
2n × 2n chessboard with one corner removed can be tiled with L-shaped pieces, for
all n ≥ 1.

The following theorem is usually referred to as “complete induction”. It is
another form of induction; however, it is logically equivalent to the regular mathe-
matical induction of Theorem 2.3.1.

Theorem 2.3.10 (Complete (or strong) induction). Let P (n) be a statement such
that

(1) the statement P (n0) is true, for some n0 ∈ N, and
(2) if the statement P (t) is true for all values of t in the range n0 ≤ t ≤ k, then

P (k + 1) is also true.

Then, P (n) is true for all n ≥ n0.

Proof. Let S be the set of all natural numbers n ≥ n0 such that P (n) is false; that
is,

S = {n ∈ N : n ≥ n0 and P (n) is false}.
Let us assume, for a contradiction, that there is some natural number n greater
than or equal to n0 such that P (n) is false. Thus, S is non-empty. By the well-
ordering principle, there is a minimum element of S which we shall call m. Since
m ∈ S, it follows that m ≥ n0. However P (n0) is true, so m > n0. Notice that
if m − 1 ≥ t ≥ n0, then P (t) must be true, since m is the minimum of S. But
our assumptions on the statement of the theorem imply that if P (t) is true for all
m − 1 ≥ t ≥ n0, then P ((m − 1) + 1) = P (m) must be true as well. This is a
contradiction, for m ∈ S and therefore P (m) is false. Hence, S must be empty and
P (n) is true for all n ≥ n0, as claimed. �

Example 2.3.11. Let us show that every number n ≥ 12 can be written in the
form 4a+ 5b, for some a, b ≥ 0. For instance,

12 = 4 · 3, 13 = 4 · 2 + 5, 14 = 4 + 5 · 2, 15 = 5 · 3, 16 = 4 · 4, . . . .
Notice, however, that n = 11 cannot be written in the form 4a + 5b. We shall use
complete induction (Theorem 2.3.10). Our base case n = 12 = 4 · 3 + 5 · 0 is true.
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Now let us fix some k ≥ 12, and suppose that the statement is true for every t with
12 ≤ t ≤ k; i.e., there are some a and b ≥ 1 such that t = 4a + 5b. We would like
to show that the result is also true for k + 1.

If k = 12, 13, or 14, then the result is also true for k+ 1, as we have seen that,
respectively, the result is true for k + 1 = 13, 14, and 15 in the examples above.
Thus, we may assume that k ≥ 15, and let t = k − 3. Consequently, we have that
12 ≤ t ≤ k and by the induction hypothesis, there are a′ and b′ ≥ 1 such that
t = 4a′ + 5b′. Therefore,

k + 1 = k + (4− 3) = (k − 3) + 4 = t+ 4 = 4a′ + 5b′ + 4 = 4(a′ + 1) + 5b′.

Hence, there exist a = a′ +1 and b = b′ such that k+1 = 4a+5b, as desired. This
proves the induction step, and the (complete) principle of mathematical induction
shows that the statement is true for all n ≥ 12.

Before we provide our next example, we need to establish one lemma about
composite numbers.

Lemma 2.3.12. If n ≥ 1 is a composite number, then there are a, b ∈ Z such that
n = a · b and 1 < a, b < n.

Proof. If n ≥ 1 is a composite number, then, by definition, it is not a prime, so it
must have an additional divisor a, other than 1 and n; that is, n = a · b, for some
b ∈ Z and a �= 1 or n. Thus, b �= 1 or n, because if b = 1, then a = n, and if b = n,
then a = 1. Hence, n = a · b, and 1 < a, b < n. �

Example 2.3.13. Let us show, using complete induction, that each natural number
n ≥ 2 is divisible by at least one prime number. The base case n0 = 2 is prime, and
every prime is divisible by a prime, namely itself. Let us assume that each natural
number t with 2 ≤ t ≤ k is divisible by a prime number, and consider the natural
number k + 1.

• If k + 1 is prime, then we are done, because k + 1 is divisible by itself.
• Otherwise, if k + 1 is a composite number, it has a non-trivial factorization
k + 1 = a · b, with 1 < a, b < k + 1. In particular, since 1 < a < k + 1, our
induction hypothesis implies that t = a is divisible by a prime number p, i.e.,
a = p · a′ for some a′ ∈ Z. Hence,

k + 1 = a · b = (p · a′) · b = p · (a′ · b),

and this implies that the prime p is also a divisor of k + 1.

In both cases, we have shown that k+1 has a prime divisor. Therefore, by complete
induction, it follows that all natural numbers n ≥ 2 are divisible by at least one
prime number.

2.3.1. The Pigeonhole Principle. In this section we present an application of
induction that is a very useful theorem with surprising consequences. It is usually
referred to as the “pigeonhole principle”, because in its most colloquial version, it
says that if you have more than n pigeons but only n pigeonholes, then there must
be at least one pigeonhole with at least two pigeons in it.
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Theorem 2.3.14 (Pigeonhole principle). Let n ≥ 1 be a natural number. Let S be a
set with more than n elements, and define n subsets of S denoted by S1, S2, . . . , Sn,
such that

⋃n
i=1 Si = S; that is, the union of all subsets Si is equal to S. Then, there

is at least one subset Sj, for some 1 ≤ j ≤ n, such that Sj contains two or more
elements of S.

Proof. We shall prove the pigeonhole principle using mathematical induction. Let
us begin with the base case n0 = 1. Let S be a set with more than 1 element, and
let S1 be a subset of S, such that S1 = S. Then, clearly, S1 = S has more than 1
element, and the theorem is true for n0 = 1.

Next, let us show the induction step. Let us assume that the theorem is true for
sets with more than k elements, and let S be a set with more than k+ 1 elements.
Let S1, S2, . . . , Sk, Sk+1 be k + 1 subsets of S, such that

⋃k+1
i=1 Si = S. If the set

Sk+1 has more than two elements, then we are done. Otherwise, suppose that Sk+1

contains only one element of S, or Sk+1 = ∅. Then, the union S′ =
⋃k

i=1 Si contains
at least k elements (since S contains k + 1 elements, and the missing subset Sk+1

contains ≤ 1 elements, so S′ contains ≥ k + 1− 1 = k elements). Hence, using our
induction hypothesis on the set S′, we conclude that one of S1, . . . , Sk contains at
least two elements.

Hence, we have shown the base case and the induction step, and by the principle
of mathematical induction, the theorem is true for all n ≥ 1. �
Example 2.3.15. We can demonstrate that there must be at least two people in
Boston with the same number of hairs on their heads. A typical head has around
150,000 hairs; therefore it is reasonable to assume that no one has more than
1,000,000 hairs on his or her head. Since there are more than 1,000,000 people in
the Greater Boston area (there are about 4.5 million people), we can let S be the
set of all people in the Boston area (so S has more than 1,000,000 elements) and
we may write Si for the subset of S formed by people in the Boston area with i
hairs on their heads, for each 0 ≤ i ≤ 999,999. Thus, by the pigeonhole principle
(Theorem 2.3.14) there must be at least two people with the same number of hairs
on their heads.

2.4. The Division Theorem

Now that we have established the basic building blocks of the integers, i.e., the
axioms, we turn to the arithmetic-geometric problems that we are interested in.
The goal of this chapter is to prove the following two theorems about roots of
polynomials and rational points on lines in the plane.

Theorem. Let p(x) = cnx
n + cn−1x

n−1 + · · · + c2x
2 + c1x + c0 be a polynomial

with ci ∈ Q, for all 0 ≤ i ≤ n. If a
b ∈ Q is a rational number in reduced form (i.e.,

gcd(a, b) = 1) and a
b is a root of p(x) = 0 (that is, p(ab ) = 0), then c0 is divisible

by a and cn is divisible by b.

Theorem. Let L : ax+ by = c be a line in the plane, with a, b, c ∈ Z and ab �= 0.
Then, L(Z) is non-empty if and only if c is divisible by gcd(a, b). In other words,
the line L has a point with integer coordinates if and only if gcd(a, b)|c. Moreover,
L(Z) is non-empty if and only if L(Z) is infinite.
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In order to prove these theorems (in Sections 2.8 and 2.9, respectively), we
begin our study of the basic divisibility properties of the integers. Recall that, by
Definition 2.1.5, we say that an integer a is a divisor of another integer b if there is
a third integer m such that b = a ·m. Our first theorem is a rigorous proof of the
method of “long division” of two integers, also known as division with quotient and
remainder. Let us see some examples before we state the theorem.

Example 2.4.1. The number 37 is not divisible by 13. Indeed,

13 · 0 = 0, 13 · 1 = 13, 13 · 2 = 26, and 13 · 3 = 39.

Thus, there is no integer m such that 13 ·m = 37. The largest multiple of 13 below
37 is 13 · 2 = 26, and there is a remainder of 11 until 37; i.e., 37− 13 · 2 = 11. We
write

37 = 13 · 2 + 11,

and we remark that 11 is the smallest positive remainder over all numbers of the
form 37 − 13m and 0 ≤ 11 < 13. Notice also that q = 2 is the only integer such
that 37− 13 · q = 11, and there is no m ∈ Z with r0 = 37− 13 ·m and 0 ≤ r0 < 11,
since 11 is the smallest positive remainder possible.

Example 2.4.2. The number 127 is not divisible by 4. What is the remainder of
division of 127 by 4? In order to find the remainder, we mentally find the largest
multiple of 4 below 127 which, in this case, is 4 · 31 = 124. Thus, the remainder is
127− 4 · 31 = 3. We write

127 = 4 · 31 + 3.

Notice that in order to find the appropriate multiple, we run over all possible
numbers of the form r = 127−4 ·m, with m ∈ Z, until we find the smallest positive
r ≥ 0. Note that we must have a remainder satisfying 0 ≤ r < 4, since we are
dividing by 4.

Example 2.4.3. The integer −37 is not divisible by 13. As we did in our previous
examples, we can consider all the numbers of the form r = −37 − 13 · q and find
the smallest positive r. In this case, such r ≥ 0 is given by r = −37 − 13 · (−3) =
−37 + 39 = 2. Hence, we write

−37 = 13 · (−3) + 2,

and we remark that 0 ≤ 2 < 13. Notice also that q = −3 is the only integer such
that −37− 13 · q = 2.

We are now ready to state the division theorem.

Theorem 2.4.4 (The division theorem). Let a, b be integers with a > 0. Then,
there are unique integers q, r ∈ Z such that

b = aq + r,

with 0 ≤ r < a.

Proof. Let a, b ∈ Z with a > 0. Let us first show that there are q and r in Z with
the desired properties, and we will prove the uniqueness later. Let S be the set of
integers defined by

S = {b− a · t : with t ∈ Z and b− a · t ≥ 0}.
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If 0 ∈ S, then there exists t0 ∈ Z such that b− a · t0 = 0, and therefore b = a · t0.
In this case a is a divisor of b, and we may pick q = t0 and r = 0. Otherwise, if
0 �∈ S, then S ⊆ N. Moreover, S is non-empty (just pick t ∈ Z such that b−at > 0,
i.e., any t ∈ Z with t < b/a). Therefore, by the well-ordering principle (axiom (4.d)
in Section 2.1), the set S has a least element r1. Since r ∈ S, there must be a
t1 ∈ Z such that b− a · t1 = r1. We claim that q = t1 and r = r1 satisfy the desired
property; i.e., b = at1 + r1 (this follows from the definition of S) and 0 ≤ r1 < a.

By definition, every element of S is ≥ 0 and so r1 ≥ 0. Let us suppose, for a
contradiction, that r1 ≥ a (or r1 − a ≥ 0). Then,

b = at1 + r1 = a(t1 + 1) + (r1 − a).

In particular, r1 − a = b− a(t1 + 1) ∈ S, and 0 ≤ r1 − a < r1. However, r1 is the
least element of S, but r1 − a < r1. This is the desired contradiction. Thus, we
must have r1 < a.

Finally, let us show that q and r such that b = aq+r and 0 ≤ r < a are unique.
Suppose that q′, r′ is another pair of integers with b = aq′ + r′ and 0 ≤ r′ < a. We
shall show that q = q′ and r = r′. From the properties of q, r and q′, r′ we have
that

b = aq + r = aq′ + r′,

and this implies that a(q − q′) = r′ − r. The left-hand side is a multiple of a, but
the right-hand side satisfies −a < r′ − r < a, since 0 ≤ r′, r < a. Thus, r′ − r
is a multiple of a, strictly between −a and a, and therefore r′ − r = 0 · a = 0
(in particular, this implies r′ = r). It follows that a(q − q′) = 0 as well but, by
assumption, a �= 0. Hence, q = q′ and r = r′. �

Remark 2.4.5. It is worth noting that a is a divisor of b if and only if the remainder
when dividing b by a is 0. Indeed, if a is a divisor of b, then there is k ∈ Z such
that b = a · k. Hence, q = k and r = 0 are the unique quotient and remainder, as
in Theorem 2.4.4. Conversely, if r = 0, then b = aq, and therefore a divides b.

The following well-known fact, which is used so often in proofs, is a consequence
of our previous remark.

Lemma 2.4.6. Every even integer n (i.e., divisible by 2) is of the form n = 2s,
for some s ∈ Z. Similarly, every odd integer m (i.e., not divisible by 2) is of the
form m = 2t+ 1, for some t ∈ Z. In particular, every integer is either of the form
2k or 2k + 1, for some k ∈ Z.

Proof. Suppose that n is even, i.e., divisible by 2. Then, by the definition of
divisibility, there is s ∈ Z such that n = 2s. If m is odd, i.e., not divisible by 2,
then our Remark 2.4.5 implies that the remainder when dividing m by 2 is non-zero.
But the remainder r satisfies 0 ≤ r < 2, so it must be the case that r = 1. Hence,
m = 2q + 1, and there is t = q ∈ Z such that m = 2t + 1. Finally, since every
number is even or “not even” (i.e., odd), it follows that every number is of the form
2k or 2k + 1, for some k ∈ Z. �
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2.5. The Greatest Common Divisor

Definition 2.5.1. Let a, b be integers, not both zero. The greatest common divisor
of a and b, denoted by d = gcd(a, b) or simply d = (a, b), is a natural number d ≥ 1
with the following properties:

(1) The number d is a common divisor of a and b; i.e., d|a and d|b.
(2) The number d is the largest common positive divisor: if n is another common

positive divisor of a and b, that is, n ≥ 1 and n|a and n|b, then n ≤ d.

If gcd(a, b) = 1, then we say that a and b are coprime, or relatively prime.

Example 2.5.2. The numbers 3 and 5 are relatively prime, as they do not share
any common positive divisors other than 1. Indeed, the lists of positive divisors of
3 and 5 are, respectively, {1, 3} and {1, 5}. Thus, gcd(3, 5) = 1.

Example 2.5.3. The numbers −8 and 40 are not relatively prime, as they share
some divisors ≥ 1. The list of positive divisors of −8 is {1, 2, 4, 8}, while the list
of positive divisors of 40 is given by {1, 2, 4, 5, 8, 10, 20, 40}. Thus, the greatest
common divisor is 8. We write gcd(−8, 40) = 8 or simply 8 = (−8, 40).

Example 2.5.4. If a �= 0 is an integer, then gcd(a, 0) = |a|, the absolute value of
a, where

|a| =
{
a if a ≥ 0,

−a if a < 0.

Indeed, every positive divisor n of a is also a divisor of zero (because 0 = n · 0).
This implies that the largest common divisor of a and 0 is the largest divisor of a,
and that would be |a|.

One can always find the greatest common divisor of two integers a and b by
simply listing the positive divisors of each of them and comparing the lists, as in
our previous examples. However, this can be extremely time consuming (just try
to find gcd(7920, 5040) this way). Luckily, there is an excellent algorithm to find a
gcd that is usually attributed to Euclid of Alexandria (about 325 BC to about 265
BC). Let us first see some examples of usage, and then we will explain why this
method works to calculate a greatest common divisor (see Lemma 2.5.7 if you just
cannot wait!).

Example 2.5.5. Let us find the greatest common divisor of b = 7920 and a = 5040,
using Euclid’s algorithm. The method is based on repeated long division, until we
reach a remainder of 0. The first long division is that of b by a (where b is the
largest of the two integers):

7920 = 5040 · 1 + 2880.

In the second step, we perform the long division of b = 5040 and the remainder of
a divided by b, in this case r = 2880:

5040 = 2880 · 1 + 2160.
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In the next step, we divide 2880 by the previous remainder 2160, and so on until
we reach a remainder of 0:

2880 = 2160 · 1 + 720,

2160 = 720 · 3 + 0.

Then, the greatest common divisor of the numbers 7920 and 5040 is the last
positive reminder that we found in our chain of long divisions. In this case,
gcd(7920, 5040) = 720.

Example 2.5.6. Let us calculate the GCD of 321 and 123 using Euclid’s algorithm:

321 = 123 · 2 + 75,

123 = 75 · 1 + 48,

75 = 48 · 1 + 27,

48 = 27 · 1 + 21,

27 = 21 · 1 + 6,

21 = 6 · 3 + 3,

6 = 3 · 2 + 0.

The GCD is the last non-zero remainder in this chain, so gcd(321, 123) = 3.

The main ingredient for the formal justification of Euclid’s algorithm is the
following lemma.

Lemma 2.5.7. Let a, b be integers, and let q, r be integers such that b = aq + r.
Then, gcd(b, a) = gcd(a, r).

Proof. Let d = gcd(a, b) and d′ = gcd(a, r). We claim that d = d′. First, let n
be a common positive divisor for a, b, with a = nk and b = nj, for some k, j ∈ Z.
Then, n|a, and r = b − aq = nj − nkq = n(j − kq), so n|r as well. Thus, n is a
common positive divisor of a and r.

Conversely, suppose that m ≥ 0 is a common divisor of a and r, with a = mh
and r = ml, for some h, l ∈ Z. Then b = aq+ r = mhq+ml = m(hq+ l), and m is
also a divisor of b. Thus, m is also a positive divisor of a and b.

We have shown that the common positive divisors of the pairs of integers a, b
and a, r are the same. Thus, the greatest common positive divisor of a, b and a, r
must be the same or, in other words, d = d′, as desired. �

2.6. Euclid’s Algorithm to Calculate a GCD

Let a, b ∈ Z, not both zero, and let us assume that b > a.

(E1) Find q1, r1 ∈ Z such that b = aq1 + r1 and 0 ≤ r1 < a. By Euclid’s lemma,
Lemma 2.5.7, we have gcd(a, b) = gcd(a, r1).

(E2) Find q2, r2 ∈ Z such that a = r1q2+r2 and 0 ≤ r2 < r1. As before, gcd(a, r1) =
gcd(r1, r2).

(E3) Given rk−1 and rk, find qk+1, rk+1 ∈ Z such that

rk−1 = rkqk+1 + rk+1 and 0 ≤ rk+1 < rk.
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By Lemma 2.5.7, we have

gcd(rk, rk+1) = gcd(rk−1, rk) = · · · = gcd(a, r1) = gcd(a, b).

Moreover,
rk+1 < rk < rk−1 < · · · < r1 < r0 = a.

(E4) Since each ri ≥ 0 and rk+1 < rk, we must have rn = 0 for some n ≥ 1. In
particular,

gcd(a, b) = gcd(rn−1, rn) = gcd(rn−1, 0) = rn−1.

Hence, gcd(a, b) = rn−1 or, in other words, the GCD of a and b is the last
non-zero remainder in the chain of long divisions.

Example 2.6.1. Let us revisit Example 2.5.6 and see how what we did fits the
theoretical description of Euclid’s algorithm given above. Let us calculate the GCD
of 321 and 123 using Euclid’s algorithm. We shall use Lemma 2.5.7 to keep track
of the gcds involved:

321 = 123 · 2 + 75; thus, (321, 123) = (123, 75),

123 = 75 · 1 + 48; thus, (123, 75) = (75, 48),

75 = 48 · 1 + 27; thus, (75, 48) = (48, 27),

48 = 27 · 1 + 21; thus, (48, 27) = (27, 21),

27 = 21 · 1 + 6; thus, (27, 21) = (21, 6),

21 = 6 · 3 + 3; thus, (21, 6) = (6, 3),

6 = 3 · 2 + 0; thus, (6, 3) = (3, 0) = 3.

The GCD is the last non-zero remainder in this chain, so gcd(321, 123) = 3.

Example 2.6.2. Let us calculate the GCD of 337 and 271 using Euclid’s algorithm.

337 = 271 · 1 + 66; thus, (337, 271) = (271, 66),

271 = 66 · 4 + 7; thus, (271, 66) = (66, 7),

66 = 7 · 9 + 3; thus, (66, 7) = (7, 3),

7 = 3 · 2 + 1; thus, (7, 3) = (3, 1),

3 = 1 · 3 + 0; thus, (3, 1) = (1, 0) = 1.

The GCD is the last non-zero remainder in this chain, so gcd(337, 271) = 1.

2.7. Bezout’s Identity

Let a, b ∈ Z, not both zero, and suppose that gcd(a, b) = d. Suppose we have found
d using Euclid’s algorithm. Then, the steps in the algorithm can be used backwards
to find r, s ∈ Z such that ar + bs = d. The identity

ar + bs = gcd(a, b)

is known as Bezout’s identity. Before we write a formal algorithm, let us see one
example.
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Example 2.7.1. Let a = 5 and b = 7. Clearly, gcd(5, 7) = 1. Let us run Euclid’s
algorithm to find this gcd:

7 = 5 · 1 + 2,

5 = 2 · 2 + 1,

2 = 1 · 2 + 0.

As we expected, the algorithm tells us that gcd(5, 7) = 1. In order to find a solution
to 5r + 7s = 1, we use the steps produced by Euclid’s algorithm backwards. More
concretely, we recursively plug in each equation into the previous one, as follows:

1 = 5− 2 · 2
= 5− 2 · (7− 5 · 1)
= (1 + 2) · 5− 2 · 7
= 3 · 5− 2 · 7.

Thus, we have found that 1 = 3 · 5 − 2 · 7. In other words, if a = 5, b = 7, r = 3,
and s = −2, then Bezout’s identity ar + bs = gcd(a, b) is satisfied.

Figure 2.2. Étienne Bézout (1730–1783) was a French mathematician who
was well known for his work on algebraic equations and for his mathematics
textbooks. Image source: Wikimedia Commons.

The algorithm to find a solution to Bezout’s identity is the following.

Bezout’s identity algorithm. Let a, b ∈ Z, with gcd(a, b) = d ≥ 1.

(B1) Run Euclid’s algorithm to find gcd(a, b) = d. Label each step in Euclid’s
algorithm E1, E2, . . .. The last three lines Ek−2, Ek−1, and Ek should look
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like this:

Ek−2 : rk−2 = rk−1qk + rk,

Ek−1 : rk−1 = rkqk+1 + rk+1,

Ek : rk = rk+1qk+2 + 0.

Notice that gcd(a, b) = rk+1. We rewrite line Ek−1 to obtain gcd(a, b) as a
Z-linear combination of rk−1 and rk, as follows:

gcd(a, b) = rk+1 = rk−1 − rkqk+1.

(B2) Solve for rk in line Ek−2 of Euclid’s algorithm, to write gcd(a, b) as a Z-linear
combination of rk−2 and rk−1, as follows:

gcd(a, b) = rk−1 − rkqk+1

= rk−1 − (rk−2 − rk−1qk)qk+1

= (1 + qkqk+1)rk−1 − qk+1rk−2.

(B3) At each step, we have an equation of the form gcd(a, b) = cri+dri−1, for some
c, d ∈ Z. Solve for ri in line Ei+2, to write gcd(a, b) as a Z-linear combination
of ri−1 and ri−2, as follows:

gcd(a, b) = cri + dri−1

= c(ri−2 − ri−1qi) + dri−1

= cri−2 + (d− cqi)ri−1.

(B4) After several repetitions of step (B3) and noticing that r−1 = b and r0 = a,
we will finish by writing gcd(a, b) as a Z-linear combination of a and b; i.e.,
gcd(a, b) = ar + bs, for some r, s ∈ Z, as desired.

Let us see some examples.

Example 2.7.2. In Example 2.6.2, we have found that the greatest common divisor
of 337 and 271 is 1:

337 = 271 · 1 + 66; thus, (337, 271) = (271, 66),

271 = 66 · 4 + 7; thus, (271, 66) = (66, 7),

66 = 7 · 9 + 3; thus, (66, 7) = (7, 3),

7 = 3 · 2 + 1; thus, (7, 3) = (3, 1),

3 = 1 · 3 + 0; thus, (3, 1) = (1, 0) = 1.

Let us work our way backwards to find a solution to 337r + 271s = 1:

1 = 7− 3 · 2
= 7− (66− 7 · 9) · 2
= 19 · 7− 2 · 66
= 19 · (271− 66 · 4)− 2 · 66
= 19 · 271− 78 · 66
= 19 · 271− 78 · (337− 271)

= −78 · 337 + 97 · 271.
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Hence, we have achieved our goal and written 1 = −78 · 337 + 97 · 271. In other
words, r = −78 and s = 97 satisfy Bezout’s identity 337r + 271s = 1.

Example 2.7.3. Let us find r, s ∈ Z such that 13 = 91r+221s. First, we find the
GCD of 221 and 91 using Euclid’s algorithm:

221 = 91 · 2 + 39,

91 = 39 · 2 + 13,

39 = 13 · 3 + 0.

Therefore, gcd(221, 91) = 13. Now we can run Euclid’s algorithm backwards to
find r and s:

13 = 91− 39 · 2
= 91− (221− 91 · 2) · 2
= 5 · 91− 2 · 221.

Hence, r = 5 and s = −2 solve 13 = 91r + 221s.

Let us write the result of the Bezout’s identity algorithm as a theorem, for later
use.

Theorem 2.7.4 (Bezout’s identity). Let a, b ∈ Z, not both zero, such that gcd(a, b)
= d. Then, there exist r and s ∈ Z such that ar + bs = d.

The previous theorem turns out to be extremely useful in the theory of divis-
ibility of integers. Let us see some consequences. First, we note that from the
definition of GCD (Definition 2.5.1) it follows that if gcd(a, b) = d and n divides
a and b, then n ≤ d. However, it is not directly obvious that n divides d. Let us
show that this is indeed the case.

Corollary 2.7.5. Let a, b ∈ Z, not both zero, with gcd(a, b) = d. Suppose that n
is a common positive divisor of a and b. Then, n is a divisor of d.

Proof. Let a, b, and d = gcd(a, b) be as above. Let n ∈ Z such that n|a and
n|b; i.e., there are h, k ∈ Z such that a = nh and b = nk. By Bezout’s identity
(Theorem 2.7.4), there exist r, s ∈ Z such that ar + bs = d. Thus,

d = ar + bs = (nh)r + (nk)s = n(hr + ks),

and this shows that n is a divisor of d. �

The following corollary will be a key ingredient in the proof of the fundamental
theorem of arithmetic and other applications to arithmetic geometry.

Corollary 2.7.6. Let a, b, c ∈ Z such that a divides bc and gcd(a, b) = 1. Then, a
divides c.

Proof. Suppose that gcd(a, b) = 1. Then, by Bezout’s identity, there are r, s ∈ Z

such that ar + bs = 1. In particular,

c = c · 1 = c · (ar + bs) = acr + bcs.
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If we further assume that a is a divisor of bc, then there is some m ∈ Z such that
bc = am. Hence,

c = acr + bcs = acr + ams = a(cr +ms),

and this shows that a is a divisor of c, as desired. �

2.8. Integral and Rational Roots of Polynomials

In this section we apply Bezout’s identity, and more concretely Corollary 2.7.6, to
the problem of finding natural, integral, and rational roots of a polynomial with
integer coefficients. The following theorem generalizes and formalizes the results
that we already used in Example 1.1.2.

Theorem 2.8.1. Let p(x) be a polynomial of degree n ≥ 1 given by

p(x) = cnx
n + cn−1x

n−1 + · · ·+ c2x
2 + c1x+ c0,

with c0, c1, . . . , cn ∈ Z. Suppose that a
b is a rational number written in reduced

form; i.e., a ∈ Z and b ∈ N with gcd(a, b) = 1. Further, suppose that p(ab ) = 0 or,
in other words, a

b is a root of p(x). Then,

• the numerator a ∈ Z is a divisor of c0, and
• the denominator b ∈ N is a divisor of cn.

Example 2.8.2. Let p(x) = 12x3 +11x2 − 208x+185. The rational number 37
12 is

a root of p(x) = 0 and, indeed, 37 is a divisor of 185 = 5 · 37 and the coefficient of
x3 is divisible by 12 (it is equal to 12 in this case).

Proof of Theorem 2.8.1. Let p(x) = cnx
n + cn−1x

n−1 + · · · + c2x
2 + c1x + c0

be a polynomial with integer coefficients ci ∈ Z, for 0 ≤ i ≤ n, and let a
b ∈ Q be a

root, with a ∈ Z, b ∈ N, and gcd(a, b) = 1. Then,

cn

(a
b

)n
+ cn−1

(a
b

)n−1

+ · · ·+ c2

(a
b

)2
+ c1

(a
b

)
+ c0 = 0.

If we multiply both sides of this expression by bn, we obtain an equality of integers

(2.3) cna
n + cn−1a

n−1b+ · · ·+ c2a
2bn−2 + c1ab

n−1 + c0b
n = 0.

It follows that

a(cna
n−1 + cn−1a

n−2b+ · · ·+ c2ab
n−2 + c1b

n−1) = −c0b
n and(2.4)

b(cn−1a
n−1 + · · ·+ c2a

2bn−3 + c1ab
n−2 + c0b

n−1) = −cna
n.(2.5)

Hence, by (2.4) and (2.5), there exist u and v ∈ Z such that au = −c0b
n and

bv = −cna
n, respectively. In particular, a|c0bn and b|cnan. Since gcd(a, b) = 1, this

implies that gcd(a, bn) = 1 and gcd(b, an) = 1 (see Exercise 2.11.24). Thus, a|c0bn
and gcd(a, bn) = 1, and this implies that a|c0, by Corollary 2.7.6. Similarly, b|cnan
and gcd(b, an) = 1 implies b|cn, as desired. �

Example 2.8.3. Let p(x) = x2−2. Suppose x0 = a/b is a rational root of p(x) = 0,
with gcd(a, b) = 1. Then, by Theorem 2.8.1, a is a divisor of 2 and b is a divisor
of 1. Hence, x0 = ±2, but 22 − 2 = (−2)2 − 2 = 2 �= 0. Hence, p(x) = 0 has no
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rational roots. Since the roots of p(x) = 0 are precisely those x0 with x2
0 = 2, i.e.,

the square roots of 2, this implies that x0 = ±
√
2 are not rational numbers. See

also Section 2.10.1.

Remark 2.8.4. A polynomial p(x) may not have rational roots but still factor into
polynomials of smaller degrees. For instance, let p(x) = x4 + 2x2 + 1. Theorem
2.8.1 implies that the only possible roots of p(x) are ±1, but 14 + 2 · 12 + 1 =
(−1)4 + 2 · (−1)2 + 1 = 3 �= 0. Hence, p(x) has no rational root. However,

p(x) = x4 + 2x2 + 1 = (x2 + 1)2.

Clearly, Theorem 2.8.1 also tells us how to find the integral and natural roots
of a given polynomial. We record this in the form of a corollary, for later use.

Corollary 2.8.5. Let p(x) be a polynomial of degree n ≥ 1 given by

p(x) = cnx
n + cn−1x

n−1 + · · ·+ c2x
2 + c1x+ c0,

with c0, c1, . . . , cn ∈ Z. If N ∈ Z is an integer root of p(x), i.e., p(N) = 0, then N
is a divisor of c0.

Example 2.8.6. Is there an integer N such that the difference of its cube and its
square equals its square minus 1? In other words, is there N such that

N3 −N2 = N2 − 1.

If so, N is a root of p(x) = x3 − 2x2 + 1 and, therefore, by Corollary 2.8.5, the
number N must be a divisor of 1. Thus, N = ±1. We have p(−1) = −2 and
p(1) = 0, and so the only such integer is N = 1.

2.9. Integral and Rational Points in a Line

Our second application of Bezout’s identity is to the problem of finding all the
integral points in a line L : ax + by = c. Finding all rational points in L is much
easier, and it will be done at the end of the section.

Proposition 2.9.1. Let a, b, c ∈ Z such that a and b are not both zero. The line in
the plane L : ax+ by = c has an integral point (r, s) ∈ L(Z); i.e., there are integers
r, s ∈ Z such that ar + bs = c if and only if gcd(a, b) is a divisor of c.

Proof. Let us first assume that there exist r, s ∈ Z such that ar + bs = c. If n
is a common divisor of a and b, then a = nh and b = nk, for some h, k ∈ Z, and
therefore c = ar+ bs = n(hr+ ks) is also divisible by n. Since the GCD of a and b
is a common divisor, it follows that gcd(a, b) is also a divisor of c.

Conversely, suppose that d = gcd(a, b) is a divisor of c, with c = dk for some
k ∈ Z. By Bezout’s identity, there are r′, s′ ∈ Z such that ar′+ bs′ = gcd(a, b) = d.
Hence,

c = dk = (ar′ + bs′)k = a(r′k) + b(s′k).

Hence, r = r′k and s = s′k satisfy the desired property ar + bs = c. �
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Example 2.9.2. The line L : 15x+ 12y = 1 does not contain any integral points,
because gcd(15, 12) = 3 and 3 is not a divisor of 1. Of course, this line contains
infinitely many rational points (see Proposition 2.9.6 below),

L(Q) =

{(
t,
1− 15t

12

)
: t ∈ Q

}
,

but none of them are integral points; i.e., none of the points in L(Q) have simulta-
neously integer x- and y-coordinates.

Example 2.9.3. Let L be the line in the plane with equation 3x + 11y = 5. The
GCD of 3 and 11 is 1, so the previous proposition implies that L has at least one
integral point. Let us find it using Euclid’s algorithm and Bezout’s identity:

11 = 3 · 3 + 2,

3 = 2 · 1 + 1,

2 = 1 · 2 + 0.

Now, we work backwards,

1 = 3− 2 = 3− (11− 3 · 3) = 4 · 3− 1 · 11,
to find 1 = 4 · 3− 1 · 11. If we multiply both sides of this identity by 5, we obtain

5 = 20 · 3− 5 · 11,
and this shows that (20,−5) is an integral point on L. Are there other integral
points on L? Yes. Indeed, there are infinitely many points, given by the formula
Pk = (xk, yk), where xk = 20− 11k and yk = −5 + 3k, for any k ∈ Z. Let us verify
that Pk belongs to L(Z). The coordinates are integers, and

3xk + 11yk = 3(20− 11k) + 11(−5 + 3k) = 60− 33k − 55 + 33k = 5,

and so Pk ∈ L(Z). It turns out that all the integral points on L are of the form Pk

for some k ∈ Z. This will be shown in the following theorem.

Theorem 2.9.4. Let a, b ∈ Z, not both zero, with gcd(a, b) = d. Let c be an integer
divisible by d and let L be the line in the plane with equation ax+ by = c. Suppose
that (x0, y0) is an integral point on L. Then, the point Pk = (xk, yk) with

xk = x0 +
bk

d
, yk = y0 −

ak

d
is an integral point on L, for any k ∈ Z. Furthermore, every integral point on L is
of the form Pk, for some k ∈ Z.

Proof. Let us first show that Pk ∈ L(Z). Clearly, the coordinates of Pk are in Z,
so it suffices to verify that axk + byk = c:

axk + byk = a

(
x0 +

bk

d

)
+ b

(
y0 −

ak

d

)
= ax0 + by0 +

abk

d
− abk

d
= c,

where we have used our assumption that ax0 + by0 = c.
It remains to show that every integral point on L is of the form Pk for some

k ∈ Z. Let (x′, y′) be an integral point on L; i.e., x′, y′ ∈ Z and ax′+ by′ = c. Since
ax0 + by0 = c, we may subtract these equations to obtain

a(x′ − x0) + b(y′ − y0) = 0,
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which, in turn, implies that a(x′ − x0) = −b(y′ − y0). The GCD of a and b, the
number d = gcd(a, b), is a common divisor of a and b, so we can divide both sides
by d to obtain an equality of integers (and not just rational numbers):

a

d
(x′ − x0) = − b

d
(y′ − y0),(2.6)

and we remark again that a
d and b

d are integers. Also, by Exercise 2.11.25, we have
gcd(ad ,

b
d ) = 1. Thus, by Corollary 2.7.6, the integer b

d is a divisor of x′ − x0 and,
similarly, the integer a

d is a divisor of y′−y0. In particular, there is an integer k ∈ Z

such that

x′ − x0 = k · b
d
.

In other words, x′ = x0 +
bk
d and we may use this fact in (2.6) to obtain

− b

d
(y′ − y0) =

a

d
(x′ − x0) =

a

d
· b
d
· k,

and therefore ak
d = −(y′−y0). Hence, y′ = y0− ak

d and (x′, y′) = Pk, as claimed. �

Example 2.9.5. Let us find all the integral points on the line L : 15x+ 12y = 3.
Clearly, (1,−1) is one integral solution. Thus, by our previous theorem, all the
points are of the form

Pk =

(
1 +

12k

3
,−1− 15k

3

)
= (1 + 4k,−1− 5k), for some k ∈ Z.

For instance, P0 = (1,−1), P1 = (5,−6), P2 = (9,−11), and P−1 = (−3, 4).

Now that we know how to find all the integral points in a line, we note that a
line in the plane always has infinitely many rational points.

Proposition 2.9.6. Let a, b, c ∈ Z such that a and b are not both zero. The rational
points in the line in the plane L : ax+ by = c are given by

L(Q) =

{(
s,

c− as

b

)
: s ∈ Q

}
if b �= 0 and by

L(Q) =
{( c

a
, t
)
: t ∈ Q

}
if b = 0 (and a �= 0).

Proof. Assume first that b �= 0 and (s, t) ∈ L(Q), for some s, t ∈ Q. Then,
as + bt = c and, therefore, t = (c − as)/b, as claimed. Otherwise, if b = 0, then
a �= 0 and as = c, so s = c/a and t can take any value in Q. �

Example 2.9.7. The rational points in the line L : 15x+ 12y = 3 are given by

L(Q) =

{(
s,

3− 15s

12

)
: s ∈ Q

}
=

{(
s,

1− 5s

4

)
: s ∈ Q

}
.

Notice that it is not immediately obvious which of these rational points are actually
integral points. Thus, we need Theorem 2.9.4 to find the integral points in L (see
Example 2.9.5).
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2.10. The Fundamental Theorem of Arithmetic

In this final section we present our third and most important application of Bezout’s
identity: the fundamental theorem of arithmetic.

Example 2.10.1. The numbers 7919, 7927, 7933, and 7937 are prime numbers
(Definition 2.1.7). Is it possible that there is an equality

7919 · 7937 = 7927 · 7933?
Of course, this is false since

7919 · 7937 = 62853103 �= 62884891 = 7927 · 7933.
But this example raises an interesting question. Is it possible to find distinct primes
p, q, r, s such that pq = rs? The answer is no, but in order to prove why there are
no such primes, we need to invoke a corollary of Bezout’s identity (Corollary 2.7.6).
Indeed, if p, q, r, s are distinct primes, then gcd(p, r) = 1. Since we are assuming
pq = rs, this implies that p divides rs. Hence, by Corollary 2.7.6, p divides s. But
p and s are distinct primes, and this is impossible.

We will extend the argument in the previous example to show the fundamental
theorem of arithmetic: every natural number n ≥ 2 has a unique factorization as a
product of primes. Let us first show that every natural number can be factored as
a product of primes.

Theorem 2.10.2 (Fundamental theorem of arithmetic: existence). Every natural
number n ≥ 2 has a factorization as a product of primes.

Proof. We will use complete induction (Theorem 2.3.10) to prove this result. The
base case n = 2 has a factorization as a product of primes as 2 itself is a prime
number.

Suppose as our induction hypothesis that the theorem is true for all natural
numbers t with 2 ≤ t ≤ k and consider the number k + 1. If k + 1 is prime,
then we are done as k+ 1 would have a trivial factorization as a product of primes
k+ 1 = k+1. Otherwise, assume that k+1 is not prime. Then k+ 1 is composite
and, by Lemma 2.3.12, there are a, b ∈ N with k + 1 = a · b and 1 < a, b < k + 1.
In particular, 2 ≤ a, b ≤ k so the induction hypothesis applies for a and b. Thus, a
and b have factorizations as products of primes. That is, there are primes p1, . . . , pi
and q1, . . . , qj such that

a = p1 · · · pi, b = q1 · · · qj .
Thus,

k + 1 = a · b = (p1 · · · pi) · (q1 · · · qj) = p1 · · · pi · q1 · · · qj .
Hence, k+1 also has a factorization as a product of primes. This completes the proof
of the induction step, and by the principle of (complete) mathematical induction,
every natural number n ≥ 2 satisfies the theorem. �

We say that two factorizations as a product of primes are the same if they are
equal up to a reordering of the prime factors. For instance, 2 · 3 · 52 and 2 · 5 · 3 · 5
are the same factorization as a product of primes. In order to show the uniqueness
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of the factorization, we first need a key lemma that settles a key property of the
prime numbers.

Lemma 2.10.3. If p ≥ 2 is a prime and p divides a ·b, then p divides a or p divides
b. In other words, if a prime divides a product, then the prime divides (at least)
one of the factors.

Proof. Let a, b ∈ Z and let p be a prime such that p|ab. If p divides a, we are
done. Otherwise, we claim that gcd(p, a) = 1. Indeed, if e is a positive common
divisor of a and p, then e = 1 or e = p, but p does not divide a, so we must have
e = 1. Hence, 1 is the only positive common divisor of a and p and gcd(a, p) = 1.

Thus, we have that p divides ab and gcd(a, p) = 1. By Corollary 2.7.6, we
conclude that p divides b, as claimed. �

As a corollary of Lemma 2.10.3 one can show that if p|a1 · · · an, then p divides
at least one ai, for some 1 ≤ i ≤ n (see Exercise 2.11.26).

Remark 2.10.4. The conclusion of Lemma 2.10.3 does not hold if p is not prime.
For instance, 6 divides 4 · 15 = 60, but 6 does not divide 4 or 15.

Example 2.10.5. It remains to show that the factorization of a number n as a
product of primes is unique. Let us see why this is true in one particular case: let
us assume that n is prime. Then, n is written already as a product of primes, as n
itself is prime. Let us suppose that we also have

n = p1p2 · · · pt
for some t ≥ 1 and for some primes pi for 1 ≤ i ≤ t. If t > 1, then n would have
more than two positive divisors. For instance, 1, p1, p2, and p1p2 would be distinct
positive divisors of n. But n is prime and it should have only two positive divisors.
Thus, t = 1 and n = p1. It follows that there is only one factorization of n as a
product of primes.

Theorem 2.10.6 (Fundamental theorem of arithmetic: uniqueness). Every natural
number n ≥ 2 has a unique factorization as a product of prime numbers.

Proof. By Theorem 2.10.2, every natural number n ≥ 2 has at least one factor-
ization as a product of primes. It only remains to show that this factorization is
unique, up to a reordering of the factors. We will show this using complete induc-
tion. It is clear that n = 2 has a unique prime factorization, since 2 is a prime
itself (see Example 2.10.5). Let us assume, as our induction hypothesis, that ev-
ery number 2 ≤ t ≤ k has a unique factorization as a product of primes, up to a
reordering.

Let us consider k + 1. If k + 1 is prime, then it has a unique factorization into
primes, given by k+1 = k+1. Otherwise, suppose that k+1 has two factorizations
into primes:

k + 1 = p1p2 · · · pr = q1q2 · · · qs,
for some primes pi and qj and r, s ≥ 2. In particular, p1 divides q1 · · · qs. By Lemma
2.10.3 (and more concretely by Exercise 2.11.26), there is some j, with 1 ≤ j ≤ s,
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such that p1 divides qj . After a reordering of the primes qj , we may assume qj = q1
and p1|q1. Since p1 and q1 are primes, it follows that p1 = q1. Therefore,

k + 1

p1
= p2 · · · pr = q2 · · · qs.

Since p1 is a (prime) divisor of k + 1, the quotient k+1
p1

∈ N is a natural number.
Since p1 ≥ 2, we know that k+1

p1
< k + 1. Finally, k+1

p1
�= 1, because k + 1 was

assumed to be composite. Thus, 2 ≤ k+1
p1

< k + 1, and our induction hypothesis
implies that k+1

p1
has a unique prime factorization. Hence, the equality

p2 · · · pr = q2 · · · qs
is only possible if these two factorizations are the same, up to a reordering (i.e.,
r = s and pi = qi for all 2 ≤ i ≤ r). Hence, p1p2 · · · pr and q1q2 · · · qs are also the
same factorization. Thus, we have shown that any two prime factorizations of k+1
are the same, and therefore k+1 has a unique factorization as a product of primes.
This proves the induction step and, by the principle of mathematical induction, the
theorem is true for all n ≥ 2. �

Remark 2.10.7. It should now be clear why we do not consider the number 1
a prime number. If 1 was a prime number, then Theorem 2.10.6 would be false!
Indeed, if 1 was a prime, then 15 = 3 · 5 and 15 = 1 · 1 · 3 · 5 would be two distinct
factorizations of 15 as a product of primes (notice that 3 · 5 is a factorization as
a product of 2 primes, while 1 · 1 · 3 · 5 would be a factorization as a product of
4 primes). Thus, we define a prime p to be a number with precisely two distinct
positive divisors, 1 and p, and 1 �= p.

The fundamental theorem of arithmetic implies that there is a canonical way
to write numbers as a product of primes, and this representation is unique.

Corollary 2.10.8. Let n ≥ 2 be a natural number. Then, there is a unique factor-
ization of n as a product of prime numbers of the form

n = pe11 pe22 · · · pett ,

where t ≥ 1, the numbers p1 < p2 < · · · < pt are the prime divisors of n, and
e1, e2, . . . , et ≥ 1 are unique.

Example 2.10.9. The number 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 can be expressed uniquely as

7! = 24 · 32 · 5 · 7.

2.10.1. Irrational Numbers. Let us apply the fundamental theorem of arith-
metic to prove that

√
2 is an irrational number.

Definition 2.10.10. A real number α ∈ R is said to be irrational if α is not
rational. In other words, α �= m

n for all m ∈ Z and n ∈ N.

Theorem 2.10.11. The real number
√
2 = 1.41421356237309 . . . is irrational.

Proof. Suppose for a contradiction that
√
2 is rational; i.e., there are m ∈ Z and

n ∈ N such that
√
2 = m

n . Without loss of generality, we may assume that the
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fraction m
n is in reduced form; i.e., gcd(m,n) = 1. In particular,

2 = (
√
2)2 =

(m
n

)2
=

m2

n2
.

Hence, 2n2 = m2. By Lemma 2.10.3 and since 2 is a prime and 2|m2 = m ·m, it
follows that 2 divides m. Let us write m = 2m′, for some m′ ∈ Z. Then,

2n2 = (2m′)2 = 4(m′)2,

and so, n2 = 2(m′)2. As before, by Lemma 2.10.3, this implies that 2 divides
n. Since 2 also divides m, we conclude that gcd(m,n) ≥ 2. However, this is a
contradiction, as we had assumed that gcd(m,n) = 1. Therefore,

√
2 cannot be

rational. �

Here is a similar proof.

Alternative proof of Theorem 2.10.11. Suppose for a contradiction that
√
2

is rational; i.e., there are m ∈ Z and n ∈ N such that
√
2 = m

n . In particular,

2 = (
√
2)2 =

(m
n

)2
=

m2

n2
.

Hence, 2n2 = m2. By Corollary 2.10.8, we may write

n = pe11 pe22 · · · pett and m = qf11 qf22 · · · qfss
for some distinct primes p1 < p2 < · · · < pt and q1 < q2 < · · · < qs and integers
ei, fi ≥ 1. Since 2n2 = m2, we obtain

2p2e11 p2e22 · · · p2ett = q2f11 q2f22 · · · q2fss .(2.7)

By the fundamental theorem of arithmetic (Theorem 2.10.6), these two factoriza-
tions must be the same. In particular, 2 divides the right-hand side and therefore
we must have q1 = 2. But this implies that the power of 2 in the right-hand side
of (2.7) is 22f1 ≥ 22, so the right-hand side is divisible by at least 4. Thus, 4 also
divides the left-hand side, and we must have p1 = 2. Hence,

21+2e1p2e22 · · · p2ett = 22f1q2f22 · · · q2fss .

Since these two factorizations must be identical, we must have 2f1 = 1+ 2e1, with
e1, f1 ≥ 1, but this is impossible since it implies that 1 = 2f1 − 2e1 = 2(f1 − e1)

and 2 is not a divisor of 1. Thus, we have reached a contradiction, and
√
2 cannot

be a rational number. �

Remark 2.10.12. Many other well-known constants have been shown to be irra-
tional, but the proofs of these facts can be quite involved. For example:

• The first proof of the irrationality of π is due to Johann Heinrich Lambert in
the 18th century. Later, in the 19th century, Charles Hermite found a proof
that π2 (and therefore π) is irrational. In 1945 and 1947, respectively, Dame
Mary Cartwright and Ivan Niven published simplified versions of Hermite’s
proof, which are the proofs that are usually taught nowadays (see Figure 2.3.)

• The irrationality of e was first shown by Euler in 1737. The most well-known
proof of this fact was given by Joseph Fourier in 1815.
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It is worth pointing out that both Lambert’s and Euler’s proofs of the irra-
tionality of π and e, respectively, use continued fractions. We will discuss continued
fractions and some of their applications to irrationality in Chapter 13. For proofs
of the irrationality of π and e, see [Con4].

Figure 2.3. Dame Mary Cartwright (1900–1998) and Ivan Niven (1915–
1999) simplified Hermite’s proof of the irrationality of π to an el-
ementary level. Image author (left): Anitha Maria S, used under
Creative Commons Attribution-Share Alike 4.0 International license. Image
author (right): Konrad Jacobs (Erlangen). Source: Archives of the Mathe-
matisches Forschungsinstitut Oberwolfach.

2.11. Exercises

Exercise 2.11.1. Show that (−1) · (−1) = 1, using the axioms of Z and Lemma
2.2.2.

Exercise 2.11.2. Let a and b be integers, such that a is a natural number but b
is not natural. Show that a · b is not a natural number. (Hint: use Lemmas 2.2.1
and 2.2.2.)

Exercise 2.11.3. In this exercise we show the basic properties of divisibility. Prove
the following statements, directly from the axioms of Z and Definition 2.1.5. Here
a, b, and c are arbitrary integers.

(1) For every a ∈ Z, the number a is a divisor of a.
(2) Every integer a is a divisor of 0.
(3) If a is a divisor of b and c, then a is a divisor of b+ c and b− c.
(4) More generally, show that if a divides b and c, then a divides br + cs, for any

integers r and s.
(5) If a divides b and b divides c, then a divides c.

Exercise 2.11.4. Prove that 13 + 23 + · · ·+ n3 =
(

n(n+1)
2

)2
, for all n ≥ 1.
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Exercise 2.11.5. Use induction to prove the following statements:

(1) Prove that, for all n ≥ 1, we have
1

1− x
= 1 + x+ x2 + · · ·+ xn−1 +

xn

1− x
.

(2) Prove that, for all n ≥ 1, we have 1 + 2 + 22 + · · ·+ 2n−1 = 2n − 1.

Exercise 2.11.6. Prove that 5 divides 34n − 1, for all n ≥ 1.

Exercise 2.11.7. Prove that for any odd number m ≥ 1, the number 4m + 5m is
divisible by 9.

Exercise 2.11.8. The Tower of Hanoi is a mathematical puzzle that consists of
three rods and a number of disks of different sizes, which can slide onto any rod (see
Figure 2.4). The puzzle starts with the disks in a neat stack in ascending order of
size on one rod, the smallest at the top, thus making a conical shape. The objective
of the puzzle is to move the entire stack to another rod. The player is allowed to
move only one disk at a time, and only smaller disks can be on top of a bigger disk.

Find and prove a formula for the least number of moves required to move a
Tower of Hanoi with n disks to another rod. (Hint: find the least number of moves
for n = 1, n = 2, and n = 3; then conjecture a formula, and prove your formula
using induction.)

Figure 2.4. The Tower of Hanoi puzzle, with n = 5 disks.

Exercise 2.11.9. Use induction to prove the following statements.

(1) n! ≤ nn for all n > 0.
(2) (n+ 1)(n−1) ≤ nn for all n > 0.

Exercise 2.11.10. What is wrong with the following proof?
Theorem. All babies have the same color eyes.
“Proof” . The base case is clear: one baby has the same color eyes as herself

or himself. In order to prove the induction step, let us assume as our induction
hypothesis that any set of n babies has the same color eyes, and suppose that we
have n+1 babies, say {B1, . . . , Bn, Bn+1}. By the induction hypothesis, the babies
in sets {B1, . . . , Bn} and those in {B2, . . . , Bn+1} have the same color eyes. Since
B2 is in both sets, we conclude that all of the babies B1, . . . , Bn+1 have the same
color eyes.
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Exercise 2.11.11. Prove that the sum of the interior angles of an n-sided convex
polygon is 180(n− 2) degrees, for any n ≥ 3.

Exercise 2.11.12. Let S =

(
0 −1

1 0

)
and T =

(
1 1

0 1

)
be the matrices in

the set SL(2,Z) that we previously defined in Exercise 1.8.21. Use induction to
show that

(S · T 2)n = (S · T 2) · · · (S · T 2) =

(
−(n− 1) −n

n n+ 1

)
,

for all n ≥ 1, where the operation here is matrix multiplication (see Example 5.2.5).

Exercise 2.11.13. Prove that any natural number n ≥ 2 is either a prime or
factors into a product of primes.

Exercise 2.11.14. Let 0 ≤ k ≤ n be integers, and let(
n

k

)
=

n!

k!(n− k)!

be the usual binomial (or combinatorial “n-choose-k”) coefficient.

(1) Show that for all 1 ≤ k ≤ n, the binomial coefficients satisfy the identity(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
.

(2) Use induction to show the binomial theorem; i.e., if n ≥ 1 and x, y are real
numbers, then

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

Exercise 2.11.15. Prove that out of any set of 52 integers, two can always be
found such that the difference of their squares is divisible by 100. (Hint: use the
pigeonhole principle, Theorem 2.3.14. See also Exercise 10.8.9.)

Exercise 2.11.16. Let n ≥ 1 be an integer.

(1) Show that n and n+ 1 are coprime for all n ≥ 1.
(2) Prove that if n is odd, then n and n+ 2 are relatively prime.
(3) Prove that if n is even, then the greatest common divisor of n and n+ 2 is 2.

Exercise 2.11.17. Prove that if k ≥ 1, the integers 6k+5 and 7k+6 are relatively
prime.

Exercise 2.11.18. Prove that every odd natural number is the difference of two
squares.

Exercise 2.11.19. Use Euclid’s algorithm to find the following GCDs:

(1) gcd(121, 365),
(2) gcd(89, 144),
(3) gcd(295, 595),
(4) gcd(1001, 1309).
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Exercise 2.11.20. Find the GCD of 17017 and 18900 using Euclid’s algorithm.

Exercise 2.11.21. Find d, the GCD of a and b, i.e., d = (a, b), and r, s ∈ Z such
that ar + bs = d:

(1) a = 267 and b = 112,

(2) a = 242 and b = 1870.

Exercise 2.11.22. Find all solutions with integer coefficients x and y:

(1) 267x+ 112y = 3,

(2) 376x+ 72y = 18.

Exercise 2.11.23. Find all solutions with integer coefficients x and y:

(1) 203x+ 119y = 47, 48, or 50,

(2) 203x+ 119y = 49.

Exercise 2.11.24. Let c, d ∈ Z such that gcd(c, d) = 1. Prove by induction that
gcd(c, dn) = 1, for all n ≥ 1. (Hint: use Corollary 2.7.6.)

Exercise 2.11.25. Show that if gcd(a, b) = d, then gcd(ad ,
b
d ) = 1.

Exercise 2.11.26. Let a1, . . . , an ∈ Z and let p be a prime number such that
p|a1 · · · an. Show (using induction on n) that p divides at least one ai, for some
1 ≤ i ≤ n.

Exercise 2.11.27. Let a, b ∈ N. We define the least common multiple of a and b
as the number t ∈ N such that (i) a|t and b|t and (ii) if s ∈ N is another number
such that a|s and b|s, then t ≤ s. We write t = lcm(a, b). Prove the following
statements:

(1) If k is a common multiple of a and b, then lcm(a, b) divides k. In other words,
every common multiple of a and b is a multiple of lcm(a, b).

(2) Prove that a · b = gcd(a, b) · lcm(a, b), or, equivalently, lcm(a, b) = ab
gcd(a,b) .

Exercise 2.11.28. You take a 12-quart jug and a 17-quart jug to a stream and
want to bring back 8 quarts of water. How do you do it?

Exercise 2.11.29 (Proposed by the Indian mathematician Bhaskara, c. 600–680
AD). Two men are equally rich. One has 5 rubies, 5 pearls, and 90 gold coins; the
other has 8 rubies, 9 pearls, and 48 gold coins. If rubies cost more than pearls, find
the price in gold coins of each kind of gem.
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Exercise 2.11.30. Find all the natural, integral, and rational roots of the polyno-
mial equation

5x3 + 27x2 − 153x+ 81 = 0.

Exercise 2.11.31. Find all the natural, integral, and rational solutions for the
equation

6x4 − 23x3 − 132x2 − 13x+ 42 = 0.

Exercise 2.11.32. (1) Is there an integer n such that (n+1)(n−2)(n+3) equals
(n− 4)(n+ 5)(n− 6)? If so, find all such n, or prove there are none.

(2) Is there an integer n such that (n + 1)(n − 2)(n + 3)(n − 4) is equal to the
quantity (n+5)(n− 6)(n+7)(n− 8)? If so, find all such n, or prove there are
none.

Exercise 2.11.33. Is 44497 prime? Why or why not?

Exercise 2.11.34. Prove the following statements.

(1) A natural number is a square if and only if the exponent of each prime factor
is even.

(2) If a number n is not a square, then
√
n is irrational.

Exercise 2.11.35. Show that 100(1/3) is irrational.

Exercise 2.11.36. Show that if a, b are natural numbers with gcd(a, b) = 1 and
ab is a square, then a and b are also squares.

Exercise 2.11.37. Let n, a, b, c, d be natural numbers.

(1) Show that if d2 is a divisor of n2, then d is a divisor of n.

(2) Suppose a2 + b2 = c2. Show that if d is a common divisor of any two of a, b, c,
then it is also a divisor of the third number. Conclude that

gcd(a, b) = gcd(b, c)

= gcd(a, c)

= gcd(a, b, c).

Exercise 2.11.38. We define the Fibonacci numbers by the following recursive re-
lationship: F0 = 1, F1 = 1, and Fn+1 = Fn+Fn−1. Prove that any two consecutive
Fibonacci numbers are relatively prime.
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Figure 2.5. Leonardo di Pisa (c. 1175 – c. 1250), also known as Fibonacci,
was an Italian mathematician considered to be “the most talented Western
mathematician of the Middle Ages”. Fibonacci popularized the Hindu-Arabic
numeral system in the Western world through his book Liber Abaci. Image
source: Wikipedia Commons.

Exercise 2.11.39. Let {Fn}n≥0 be the sequence of Fibonacci numbers, defined in
Exercise 2.11.38.

(1) Show that the sequence {Fn+1/Fn}n≥0 of ratios of consecutive Fibonacci num-
bers is convergent. (Hint: use the monotone convergence theorem.)

(2) Show that the limit of {Fn+1/Fn}n≥0 is ϕ = 1+
√
5

2 , the golden ratio. (Hint:
divide Fn+1 = Fn + Fn−1 through by Fn.)

(3) Show that the limit of {Fn/Fn+1}n≥0 is 1
ϕ =

√
5−1
2 .
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CHAPTER 3

THE PRIME NUMBERS

Then, just when you are about to surrender, when
you no longer have the desire to go on counting,
you come across another pair of twin primes,
clutching each other tightly.

Paulo Giordano, The Solitude of Prime Numbers

The fundamental theorem of arithmetic explains that the prime numbers ought
to be regarded as the fundamental building blocks of the natural numbers, when
we consider N from the multiplicative point of view. Recall that we have defined
a prime number as a natural number with exactly two positive divisors. The first
few prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, . . . .

From the definition of prime, we immediately deduce an algorithm to check whether
a number n is prime:

A number n > 1 is prime if and only if n is not divisible by any number
between 1 and n− 1.

This algorithm can be improved by noticing that every number n is divisible by
at least one prime number (this was shown in Example 2.3.13). Thus, if n is not
prime, then n has a positive divisor d �= 1, n, and d itself has a prime divisor p. It
follows that n has a prime divisor p �= 1, n. Hence:

A number n > 1 is prime if and only if n is not divisible by any prime
number between 1 and n− 1.

Furthermore, if n is composite, then it has a prime divisor p ≤ √
n (this is Exercise

3.5.2). Hence, we have shown the following criterion for primality.

Theorem 3.0.1. A number n > 1 is prime if and only if n is not divisible by any
prime number between 1 and

√
n.

61
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Figure 3.1. Eratosthenes of Cyrene (c. 276 BC – c. 194 BC). Image source:
Wikimedia Commons.

Example 3.0.2. Let us show that 97 is a prime number. Suppose for a contra-
diction that 97 is composite. Then, it has a prime divisor p ≤

√
97 ≤

√
100 = 10.

Hence, 97 is divisible by 2, 3, 5, or 7. However,

97 = 2 · 48 + 1 = 3 · 32 + 1 = 5 · 19 + 2 = 7 · 13 + 6.

It follows that the remainder when dividing 97 by 2, 3, 5, or 7, respectively, is 1, 1, 2,
or 6. Hence, 97 is not divisible by 2, 3, 5, or 7, and it must be prime.

In the next section we discuss a method (due to Eratosthenes of Cyrene; see
Figure 3.1) to list all the prime numbers below a bound N .

3.1. The Sieve of Eratosthenes

The following algorithm is named after Eratosthenes, an ancient Greek mathemati-
cian (and also a geographer, poet, astronomer, and music theorist). Although none
of Eratosthenes’s works have survived, the sieve was described and attributed to
Eratosthenes in the Introduction to Arithmetic by Nicomachus. The goal of the
algorithm is to find all primes p ≤ N , for a fixed N ∈ N.

The sieve works as follows. We begin with a list all the numbers 2 ≤ n ≤ N .
The sieve works best if we organize the numbers consecutively, in ten columns. As
an example, we will demonstrate the sieve with N = 30:

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30

In our first step, we cross out all the multiples of 2, except 2 itself (i.e., all the
even numbers > 2). In the tables below we have removed the even numbers greater
than 2:
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2 3 5 7 9
11 13 15 17 19
21 23 25 27 29

Now, we find the next number in our list that has not been crossed out, in this
case 3, and we cross out all the multiples of 3 in the list, except 3 itself. In the
tables, the multiples of 3 that were not already crossed out for being a multiple of
2 have been removed:

2 3 5 7
11 13 17 19

23 25 29

As before, we find the next number in our list that has not been crossed out,
in this case 5, and we cross out all the multiples of 5 in the list, except 5 itself. The
remaining multiples of 5 have been eliminated (i.e., we removed the number 25):

2 3 5 7
11 13 17 19

23 29

We continue in this fashion, until we find a number n that has not been crossed
out but n >

√
N . Once we have reached this stage, we claim that all the numbers

that remain intact in the list are all the primes ≤ N . Indeed, suppose that n is
a composite number ≤ N . Then, by Theorem 3.0.1, we know that n has a prime
divisor p ≤

√
N ; i.e., there is some k ∈ N such that n = pk. In particular, n is a

multiple of p and p ≤
√
n ≤

√
N (by Exercise 3.5.2), but all such multiples have

been previously crossed out in our list. It follows that all the numbers ≤ N that
remain intact in the list are prime numbers.

In our example, if N = 30, then
√
30 < 6. Thus, we need to cross out all the

multiples of 2, 3, and 5, but once we reach the number n = 7, we can stop and we
do not need to cross out any other numbers. The prime numbers ≤ 30 are those
that remain intact in our list, namely

2, 3, 5, 7, 11, 13, 17, 19, 23, and 29.

3.2. The Infinitude of the Primes

The sieve of Eratosthenes is a fairly efficient method to find all the primes below a
given bound. However, a question remains. Is it possible that there is some n0 ∈ N

such that each number n ≥ n0 is a multiple of some prime p ≤ n0 and therefore all
numbers n ≥ n0 have been crossed out using the sieve method? In other words, is
it possible that the set of prime numbers is finite?

The following theorem and proof are due to Euclid of Alexandria (born 325
BC, died 265 BC), one of the most prominent mathematicians of ancient Greece.

Theorem 3.2.1. There exist infinitely many prime numbers.
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Figure 3.2. Euclid of Alexandria (c. 325 BC – c. 265 BC). Image source:
Wikimedia Commons.

Proof. Suppose for a contradiction that there exist only finitely many primes
p1, p2, . . . , pn, where pn is the largest of them. Let N be defined by

N = (p1 · p2 · . . . · pn) + 1.

Since N ≥ 2 is a natural number, it must have a prime divisor p (by Example
2.3.13 or by the fundamental theorem of arithmetic, Theorem 2.10.6), and since p
is prime, it is one in the list p1, . . . , pn. However, if some prime number pi divides
N , it must also divide N − (p1 · . . . · pn) since both numbers are multiples of pi.
Therefore pi divides 1, which is impossible. Thus, our first assumption must be
false and there exist infinitely many prime numbers. �

The proof of Euclid’s theorem also indicates how to find new primes out of a
set of known primes.

Corollary 3.2.2. Let p1, p2, . . . , pn be prime numbers. Then, N = p1p2 · · · pn + 1
is divisible by a new prime number p; i.e., there is a prime number p such that
p | N and p �= pi for all 1 ≤ i ≤ n.

Example 3.2.3. For instance,

2 · 3 + 1 = 7,

2 · 3 · 5 + 1 = 31,

2 · 3 · 5 · 7 + 1 = 211,

2 · 3 · 5 · 7 · 11 + 1 = 2311,

and 7, 31, 211, and 2311 are prime numbers. It is worth stressing that Euclid’s
proof does not imply that N = p1p2 · · · pn +1 is a prime number. It simply implies
that N is divisible by a new prime number not in the list {p1, p2, . . . , pn}. For
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instance,

2 · 3 · 5 · 7 · 11 · 13 + 1 = 59 · 509,
2 · 3 · 5 · 7 · 11 · 13 · 17 + 1 = 19 · 97 · 277,

where 59, 509, 19, 97, and 277 are prime numbers.

Example 3.2.4. Imagine that we only knew of one prime, p = 2. Then, Euclid’s
proof tells us that 2 + 1 = 3 must be either prime or divisible by new primes.
Indeed, 3 is a prime. Now we know two primes {2, 3}. Once again, Euclid’s trick,
computing 2 · 3 + 1 = 7, reveals a new prime, namely 7. We may continue in this
fashion, adding to our list the smallest prime that divides the product of those
already in our list, plus one:

2 · 3 + 1 = 7,

2 · 3 · 7 + 1 = 43,

2 · 3 · 7 · 43 + 1 = 13 · 139,
2 · 3 · 7 · 43 · 13 + 1 = 53 · 443,

2 · 3 · 7 · 43 · 13 · 53 + 1 = 5 · 248867,
and so on, so that our list of primes, as they appear in the sequence above, is given
by

{2, 3, 7, 43, 13, 53, 5, . . .}.
In 1963, Albert A. Mullin asked whether every prime appears in this sequence, at
some point, and this question remains open to this day.

Finding large primes is an extremely difficult task. A method such as the
sieve of Eratosthenes will produce primes as large as we want, but it requires a
huge amount of computer time. There are formulas that produce primes, but these
formulas either need a lot of initial input (often including the knowledge of a large
number of large primes) or the formulas require a large number of calculations to
produce one large prime.

Example 3.2.5. Let us define one real number α given by

α =
∞∑

n=1

1

10pn
,

where pn is the nth prime number. Since the infinite sum only contains positive
terms and α ≤

∑∞
i=1

1
10i = 1

9 , we conclude that the infinite series that defines α is
convergent and α ∈ R. Notice that the decimal expansion of α has a 1 as the ith
digit after the period if and only if i is prime. That is,

α = 0.0110101000101000101000100000101 . . . .

A number such as α is no more than a curiosity, since we need prior knowledge of
all primes in order to construct α. However, if one found an alternative formula for
α, one could find its digits and therefore primes.

Example 3.2.6. Let us define a sequence {an : n ≥ 1} recursively by setting
a1 = 7 and

an = an−1 + gcd(n, an−1).
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For instance,

a1 = 7, a2 = 7 + gcd(2, 7) = 8, a3 = 8 + gcd(3, 8) = 9,

a4 = 9 + gcd(4, 9) = 10, a5 = 10 + gcd(5, 10) = 15,

a6 = 15 + gcd(6, 15) = 18, a7 = 18 + gcd(7, 18) = 19, . . . .

Now let us define a sequence {bn : n ≥ 1} by bn = an+1 − an, so that

b1 = 8− 7 = 1, b2 = 9− 8 = 1, b3 = 10− 9 = 1, b4 = 15− 10 = 5,

b5 = 18− 15 = 3, b6 = 19− 18 = 1, . . . .

In 2008, Eric Rowland showed that the value of bn is either 1 or a prime number,
for all n ≥ 1 (see [Row08]).

There are also famous cases of formulas that fail to produce primes.

Example 3.2.7. In or about the year 1630, Fermat (see Section 1.6.1) claimed
that each number

F (n) = 22
n

+ 1, for each n ≥ 0,

is a prime number. For instance,

F (0) = 2 + 1 = 3, F (1) = 22 + 1 = 5, F (2) = 24 + 1 = 17,

F (3) = 257, and F (4) = 65537

are all primes. The numbers F (n) are usually called Fermat numbers, and if F (n)
is prime, it is called a Fermat prime. However, in 1732, Euler showed that

F (5) = 232 + 1 = 4294967297 = 641 · 6700417.
And since then, no other Fermat number has been found to be a prime number.
The Fermat numbers F (5) through F (32) are known to be composite numbers.

Surprisingly, Fermat primes are relevant in other areas of mathematics. We
remind the reader that a straightedge is an idealized ruler, infinite in length, with
no markings on it and only one edge.

Theorem 3.2.8 (Gauss–Wantzel theorem; [DF03], §14.5, Prop. 29). A regular
polygon with n sides can be constructed with compass and straightedge if and only
if n is the product of a power of 2 and any number of distinct Fermat primes; i.e.,

n = 2k · p1 · p2 · · · pt,
for some k ≥ 0 and distinct Fermat primes p1, p2, . . . , pt.

For instance, one can construct a regular 65537-sided polygon using a compass
and straightedge, but the regular 19-sided polygon cannot be constructed in this
manner, because 19 is not a Fermat prime.

One direction of Theorem 3.2.8 was proven by Carl Friedrich Gauss in 1801,
and he claimed the other direction to be true but did not provide a proof. In 1837,
Pierre Wantzel published a complete proof of the theorem. Although Gauss proved
that the regular 17-gon is constructible, he did not actually show how to do it. The
first construction is due to Erchinger, a few years after Gauss’s work. The first
explicit constructions of a regular 257-gon were given by Magnus Georg Paucker
(1822) and Friedrich Julius Richelot (1832). A construction for a regular 65537-gon
was first given by Johann Gustav Hermes (1894).
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3.3. Theorems on the Distribution of Primes

Mathematicians have tried in vain to this
day to discover some order in the sequence
of prime numbers, and we have reason to
believe that it is a mystery into which the
human mind will never penetrate.

Leonhard Euler

When we display the prime numbers on the number line, at first glance several
patterns seem apparent. Some of these patterns dissipate as we consider larger
numbers, and some patterns seem to appear somewhat periodically. In general, it
is very difficult to prove any of these patterns. In this section we present some of
the most important and famous theorems about the distribution of prime numbers.
Unfortunately the proofs of these theorems are beyond the scope of this book.

3.3.1. Bertrand’s Postulate. The following statement was first conjectured in
1845 by Joseph Bertrand (1822–1900).

Theorem 3.3.1 (Bertrand’s postulate). For all n > 1 there is a prime number p
with n < p < 2n.

Bertrand himself verified his statement for all numbers in the interval [2, 3·106].
His postulate (or conjecture) was completely proved by Chebyshev (1821–1894) in
1850 and so Bertrand’s postulate is sometimes called the Bertrand–Chebyshev theo-
rem or Chebyshev’s theorem. The result is still sometimes referred to as “Bertrand’s
postulate” for historical reasons, even though we now have a proof.

Example 3.3.2. The prime 3 is between 2 and 4, the prime 5 is between 3 and 6,
and the prime 5 is between 4 and 8 (in fact, 5 and 7 are between 4 and 8).

Sylvester (1814–1897) proved the following generalization of Bertrand’s pos-
tulate. We will leave it to the reader to verify that Sylvester’s theorem implies
Bertrand’s postulate (see Exercise 3.5.13).

Theorem 3.3.3 (Sylvester’s theorem). Let k ≥ 1 be a natural number. Then, the
product of any k consecutive integers greater than k is divisible by a prime number
greater than k.

Example 3.3.4. Let k = 3. Then, for instance, 5 · 6 · 7 is divisible by 5 (a prime
greater than 3). Or 12 · 13 · 14 is divisible by 7.

In 1952, Jitsuro Nagura proved the following strengthened version of the pos-
tulate.

Theorem 3.3.5 (Nagura’s theorem). If n ≥ 25, then there is always a prime p
between n and (1 + 1/5) · n.

For instance, if n = 25, then Nagura’s theorem says that there is a prime
between 25 and (1 + 1/5)25 = 30 and, indeed, p = 29 is such a prime. If n = 30,
then there is a prime p = 31 between 30 and 36, and so on.
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Further improvements of Bertrand’s postulate have been shown by Schoenfeld,
Dusart, Baker, Harman, and Pintz, among others. Legendre proposed the following
conjecture, which is still open.

Conjecture 3.3.6 (Legendre’s conjecture). For all n ≥ 1, there is a prime number
p such that n2 < p < (n+ 1)2.

3.3.2. The Prime Number Theorem. In order to study the distribution of
prime numbers in more detail, we define two functions.

Definition 3.3.7. Let P ⊂ N be the set of all prime numbers among the natural
numbers. We define a function p : N → P such that p(n) is the nth prime number,
so that P = {p(1) = 2, p(2) = 3, p(3) = 5, . . .}. Sometimes we will write p(n) = pn.

We also define the prime counting function π(x) as the number of primes p ≤ x,
for any given real number x ≥ 0; i.e.,

π(x) = #{primes p ≤ x}.

For instance, π(2) = 1, π(5) = 3, π(6.7) = 3, and π(10) = 4. In general,
π(p(n)) = n as there are n primes less than or equal to the nth prime. The
following table provides some values of π(x):

n 102 103 104 105 106 107

π(n) 25 168 1229 9592 78498 664579

The first mathematicians to find a pattern in the values of π(x) were Carl
Friedrich Gauss (1777–1855) in 1793 and, independently, Adrien-Marie Legendre
(1752–1833) in 1798. They conjectured a certain asymptotic behavior for π(x),
which was proved (simultaneously) in 1896.

Theorem 3.3.8 (Prime number theorem; Hadamard, de la Vallée-Poussin, 1896).

lim
x→∞

π(x)
x

log x

= 1.

In other words, if we define a function π′(x) = x
log x , then the prime number

theorem says that the quotient of π(x) by π′(x) can be made arbitrarily close to 1
as x goes to ∞. Or, in less technical terms, π(x) is approximately x

log x for large
values of x. In 1838, Dirichlet (see Figure 3.3), in a letter to Gauss, suggested that
the logarithmic integral, or li for short, given by

li(x) =

∫ x

2

dt

log t
,

would be an even better approximation of π(x). In 1899, de la Vallée-Poussin
showed that π(x) is also asymptotic to li(x) and gave a precise error estimate. We
compare the values of π(x), π′(x), and li(x) in Table 3.1.

One can also use the prime number theorem to obtain an asymptotic expression
for the nth prime number. Here is a heuristic argument. By definition π(p(n)) = n.
Thus, by the prime number theorem, we obtain

n = π(pn) ≈
pn

log pn
,(3.1)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



3.3. Theorems on the Distribution of Primes 69

Table 3.1. Comparison of values of the prime counting function π(x), the
approximating function π′(x) = x/ log x, and the logarithmic integral li(x).

n 102 103 104 105 106 107

π(n) 25 168 1229 9592 78498 664579

π′(n) 21.7 . . . 144.7 . . . 1085.7 . . . 8685.8 . . . 72382.4 . . . 620420.6 . . .

li(n) 30.1 . . . 177.6 . . . 1246.1 . . . 9629.8 . . . 78627.5 . . . 664918.4 . . .

or pn ∼= n log pn for large n. One can also show that

lim
x→∞

log x

log( x
log x )

= 1.

In particular, log x ∼= log( x
log x ) for large x, and therefore

log n ∼= log

(
pn

log pn

)
∼= log pn.

It follows that pn ∼= n log pn ∼= n logn. The previous heuristic argument can be
made into a formal proof and can show the following theorem, which is an equivalent
formulation of the prime number theorem.

Theorem 3.3.9.
lim
n→∞

pn
n logn

= 1.

In Table 3.2 we compare values of p(n) = pn with values of n logn.

Table 3.2. Comparison of the values of the nth prime and n logn.

n 102 103 104 105

pn 541 7919 104729 1294709

n logn 460.5 . . . 6907.7 . . . 92103.4 . . . 1151292.5 . . .

While the approximate formula pn ∼= n log n cannot be used to find primes, it
does provide a quick way to find out the approximate order of magnitude of the
nth prime.

Remark 3.3.10. The prime number theorem can also be used to estimate the
average gap between two consecutive primes. Let pn and pn+1 be two consecutive
primes, for some (large) number n > 0. By Theorem 3.3.9, we have

pn ∼= n log n and pn+1
∼= (n+ 1) log(n+ 1).

Moreover, for large n we can approximate log n ∼= log(n+ 1). Thus,

pn+1 − pn ∼= (n+ 1) log(n+ 1)− n log n

∼= (n+ 1) logn− n logn ∼= log n.

Hence, according to the prime number theorem, the gap between two consecutive
primes is typically pn+1 − pn ∼= log n or, in other words, pn+1 is typically of size
∼= pn + log n. Notice that Bertrand’s postulate (Theorem 3.3.1) shows that pn+1

can be found in the interval (pn, 2pn).
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3.3.3. Primes in Arithmetic Progressions. An arithmetic progression is a se-
quence of natural numbers such that the difference of any two consecutive numbers
in the sequence is constant. In other words, an arithmetic progression is a sequence
of numbers of the form

{a, a+m, a+ 2m, a+ 3m, . . .} = {a+mk : k ≥ 0},
for some fixed a ≥ 0 and m > 0. For instance,

{1, 6, 11, 16, 21, 26, 31, . . .} = {1 + 5k : k ≥ 0}
is an arithmetic progression. We immediately see that this progression contains at
least two prime numbers, namely 11 and 31, and, in fact, it contains many prime
numbers. If p = 1 + 5k is prime, then k must be even because otherwise 1 + 5k is
even and p is not a prime. Thus, the primes in the progression {1+ 5k} are in fact
in the subarithmetic progression {1+10k : k ≥ 0}. Here are all the prime numbers
below 300 that form part of the progression {1 + 10k : k ≥ 0}:

11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281.(3.2)

Suppose that we fix an arbitrary arithmetic progression Sa,m = {a+mk : k ≥ 0}.
Are there necessarily infinitely many primes in Sa,m? The answer is no because if
a and m share a common prime factor, then Sa,m can contain at most one prime.
For instance, if m = 10 and a = 5, then

S5,10 = {5, 15, 25, 35, . . .} = {5 + 10k : k ≥ 0},
and therefore every number in S5,10 is divisible by 5. Thus, the only prime in S5,10

is p = 5. However, if a and m are relatively prime, then Sa,m contains infinitely
many prime numbers. This important theorem was first shown in 1837 by Johann
Peter Gustav Lejeune Dirichlet (1805–1859).

Figure 3.3. Johann Peter Gustav Lejeune Dirichlet (1805–1859) was a Ger-
man mathematician who made contributions to number theory and analysis.
Image source: Wikimedia Commons.
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Theorem 3.3.11 (Dirichlet’s theorem on primes in arithmetic progressions). Let
m > 0 and a ≥ 0 be fixed integers such that gcd(a,m) = 1. Then, there are infinitely
many primes of the form a+mk. That is, there are infinitely many natural numbers
k1, k2, . . . such that pi = a+mki is a prime number. Or, equivalently, the arithmetic
progression {a+mk : k ≥ 0} ⊆ N contains infinitely many prime numbers.

The proof of Dirichlet’s theorem is beyond the scope of this book. The reader
can find a proof in Chapter 7 of [Apo76].

Example 3.3.12. Let us use Dirichlet’s theorem to show that there are infinitely
many primes whose decimal representation ends in . . . 321. Here are all such primes
below 30000:

1321, 7321, 10321, 11321, 14321, 17321, 23321, 25321, 26321.

Notice that those numbers that end in 321 form an arithmetic progression {321 +
1000k : k ≥ 0} and gcd(321, 1000) = 1. Thus, by Dirichlet’s theorem, the arithmetic
progression S321,1000 contains infinitely many prime numbers.

Example 3.3.13. If q is a prime, then there are primes pr ≥ q, one for each
r = 0, 1, . . . , q − 1, such that the remainder when we divide pr by q is exactly r.

Indeed, when r = 0, the prime p0 = q has a remainder of r = 0. If 1 ≤ r ≤ q−1,
then gcd(q, r) = 1, and Dirichlet’s theorem implies that the arithmetic progression
{r + qk : k ≥ 0} contains infinitely many primes. It follows that there is a prime
p in Sr,q larger than q. If p = qk + r and 1 ≤ r ≤ q − 1, then the remainder of p
divided by q must be r, so we can pick pr = p = qk + r.

For example, if q = 5, we can pick

p0 = 5, p1 = 11, p2 = 7, p3 = 13, and p4 = 19,

as the primes that leave a remainder of 0, 1, 2, 3, and 4 when divided by 5.

The arithmetic progression {1 + 10k : k ≥ 0} contains infinitely many prime
numbers, by Dirichlet’s theorem, and all the prime numbers in S1,10 below 300
were listed in (3.2). Notice that the subsequence S of primes in S1,10 belongs to an
arithmetic progression, but on their own they do not form an arithmetic progression.
For example, 31−11 = 20 but 41−31 = 10 and 181−151 = 30; thus, their difference
is not constant and the sequence S is not an arithmetic progression.

One can show that there cannot be infinitely many primes in arithmetic pro-
gression; i.e., there is no sequence of primes {q1, q2, . . .} such that qi−qi−1 = m > 0
is constant, for all i ≥ 2 (see Exercise 3.5.20). However, we can find finite arithmetic
progressions of primes. For instance,

3, 5, 7

is an arithmetic progression of three primes because 7− 5 = 5− 3 = 2. Also,

5, 11, 17, 23, 29

is an arithmetic progression of five primes because the difference of consecutive
primes in the sequence is constant, equal to 6. Is there an arithmetic progression
of k primes, for all k ≥ 2? In other words, if we fix k ≥ 2, are there k primes
q1, q2, . . . , qk such that qi − qi−1 = m > 0 is constant for all i = 2, . . . , k? The
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answer to these questions had been conjectured to be yes for a long time, until the
statements were proved in 2004 by Benjamin Green and Terence Tao.

Theorem 3.3.14 (Green–Tao theorem). For every k ≥ 2, we can find a set of k
primes in arithmetic progression. In other words, if we fix k, then there exist k
primes q1, q2, . . . , qk such that qi − qi−1 = m > 0 is a constant for all i = 2, . . . , k.

3.4. Famous Conjectures about Prime Numbers

There are many properties of prime numbers that are believed to be true but that
no one knows how to prove. Here we present some of them.

3.4.1. The Twin Prime Conjecture. The numbers 2 and 3 are the only con-
secutive primes. Indeed, if p and p + 1 were primes, then one needs to be even,
so one of them is 2. Thus, p = 2 and p + 1 = 3. Hence, except for 2 and 3, the
difference of any two prime numbers is at least 2. For instance, 3 and 5 differ by 2,
and so do the following pairs of prime numbers:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61) . . . .

Two primes p and q whose difference is 2, i.e., q = p + 2, are called twin primes.
Here is a list of all twin primes below 1000:

(71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193),

(197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349),

(419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619),

(641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883).

The twin prime conjecture claims that there are infinitely many twin primes.

Conjecture 3.4.1 (Twin prime conjecture). There are infinitely many primes p
such that p+ 2 is also a prime number.

In fact, there is another conjecture, known as the Hardy–Littlewood conjecture,
which predicts an asymptotic estimate for the number of twin primes below a given
x > 0, just as the prime number theorem gives an asymptotic estimate for the
number of primes below x.

Conjecture 3.4.2 (Hardy–Littlewood twin prime conjecture, [HL23]). Let π2(x)
denote the number of primes p ≤ x such that p+ 2 is also a prime. Then, there is
a constant

C = 2
∏
p≥3

(
1− 1

(p− 1)2

)
= 1.320323631 . . .

such that

lim
x→∞

π2(x)
Cx

(log x)2

= 1.

In particular, the Hardy–Littlewood conjecture may be used to give a rough
estimate of π2(x) as, approximately, given by Cx

(log x)2 . For instance, there are 35
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prime pairs (p, p + 2) with p ≤ 1000, so π2(1000) = 35. The asymptotic estimate
predicts about 28 pairs of twin primes below 1000:

C · 1000
(log 1000)2

= 27.6698311973002 . . . .

The twin prime conjecture can be restated as follows: there are infinitely many
primes p such that the next prime is in the interval (p, p + 2]. Thus, one can
formulate a weaker conjecture, for any N ≥ 2.

Conjecture 3.4.3 (Infinitely many prime gaps of size ≤ N). Let N ≥ 2 be fixed.
Then, there are infinitely many primes p such that the next prime is in the interval
(p, p+N ]. More precisely,

pn+1 − pn ≤ N

occurs for infinitely many values of n ≥ 1, where pn is the nth prime number.

Figure 3.4. Yitang Zhang is a Chinese-born American mathematician. He
was awarded a 2014 MacArthur Award for his work on the least gap between
consecutive primes. Image source: Wikimedia Commons.

In 2013, the mathematics community was surprised when Yitang Zhang
([Zha13]) announced a proof of Conjecture 3.4.3 for N = 7 · 107, i.e., a proof
of the fact that there are infinitely many pairs of prime numbers that are at most
70 million units apart, or, equivalently,

pn+1 − pn ≤ 7 · 107

occurs infinitely often. Following this groundbreaking result, one of the first “crowd-
sourced” projects in mathematics (the so-called PolyMath 8a and 8b projects) set
as a goal improving Zhang’s results in order to prove Conjecture 3.4.3 for the small-
est value of N possible (where N = 2 would prove the twin prime conjecture). As
of this writing, the conjecture has been shown for N = 246; i.e., there are infinitely
many pairs of prime numbers that differ by at most 246.
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Remark 3.4.4. Even though the twin prime conjecture claims that there are in-
finitely many small gaps between two consecutive primes, i.e., there are infinitely
many consecutive primes pn and pn+1 that only differ by pn+1 − pn = 2, the gaps
between primes can be arbitrarily large; i.e., for any N ≥ 1, there are consecutive
primes pn and pn+1 such that pn+1 − pn > N (see Exercise 3.5.6 for a proof of this
fact). For instance, 3 − 2 = 1, 5 − 3 = 2, 11 − 7 = 4, 29 − 23 = 6, 97 − 89 = 8,
127− 113 = 14, etc.

3.4.2. Prime Constellations and the Bateman–Horn Conjecture. The twin
prime conjecture (as in Section 3.4.1) can be restated as follows: both coordinates
of the tuple (n, n+ 2) are prime numbers for infinitely many values of n ≥ 3. It is
natural, then, to consider other possible tuples that may yield simultaneous prime
numbers, for instance (n, n + 4) yields (3, 7), (7, 11), (13, 17), etc. One can also
increase the length of the tuple and ask the same question; for example, is there
a natural number n such that (n, n + 2, n + 4) is a triple of primes? The answer
is yes, but this only occurs when n = 3 and the triple is (3, 5, 7), because one can
show that if n is an integer, then one of n, n + 2, and n + 4 is divisible by 3 (see
Exercise 3.5.16). However, the triple (n, n + 2, n + 6) seems to take prime values
for infinitely many values of n ≥ 3; e.g., n = 5 yields the triple (5, 7, 11). In other
words, we conjecture that the numbers p, p+ 2, and p+ 6 are primes for infinitely
many (prime) numbers p ≥ 3. The tuples (n, n+ 2) or (n, n+ 2, n + 6) are called
constellations of primes when all the coordinates are prime numbers.

Definition 3.4.5. Let k ≥ 0, let 0 = a0 < a1 < · · · < ak−1, and let n ≥ 2 be
integers. Let c = (n+ a0, n+ a1, . . . , n+ ak−1).

(1) If c is a k-tuple of prime numbers, then we say that c is a prime constellation
of length k. The number ak−1 is called the diameter of the constellation.

(2) Let p be a prime number, and let ri be the remainder of division of ai by p,
for 0 ≤ i ≤ k − 1. We say the k-tuple T = (0 = a0, . . . , ak−1) of integers is
p-admissible if the set {r0, . . . , rk−1} does not contain all possible remainders
{0, . . . , p− 1}.

(3) Finally, we say that the k-tuple T = (0 = a0, . . . , ak−1) is admissible if it is
admissible for all primes p.

Example 3.4.6. The triple (0, 2, 4) is 2-admissible, because the set of remainders
when dividing by 2 is just {0}, but it is not 3-admissible, because the remainders
of 0, 2, and 4 when dividing by 3 are respectively 0, 2, and 1, which is a complete
set.

In [HL23], Hardy and Littlewood conjectured a specific asymptotic formula
for the number of twin primes (Conjecture 3.4.2), but they also conjectured the
following result about admissible k-tuples and constellations of prime numbers.

Conjecture 3.4.7 (Hardy–Littlewood k-tuple conjecture, [HL23]). Let k ≥ 0 be
an integer, and let (0 = a0, . . . , ak−1) be an admissible k-tuple of integers. Then,
there are infinitely many natural numbers n ≥ 2 such that (n, n+a1, . . . , n+ak−1) is
a prime constellation. Moreover, a conjectural asymptotic formula for the number
of such constellations can be explicitly formulated.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



3.4. Famous Conjectures about Prime Numbers 75

In 1962, building on previous work and conjectures of Bunyakovsky and Schinzel,
mathematicians Paul T. Bateman and Roger A. Horn proposed a generalization of
the Hardy–Littlewood conjecture to a much broader context of simultaneous prime
values of polynomials. The twin prime conjecture can be rephrased in terms of
polynomial values as follows: let f(x) = x and let g(x) = x + 2. Then, the twin
prime conjecture claims that there are infinitely many integer values n1, n2, . . . such
that f(ni) and g(ni) are both prime numbers, for all i ≥ 1. In other words, the con-
jecture says that there are infinitely many integers n ∈ Z such that the polynomials
f(x) and g(x) take simultaneously prime numbers as values, when evaluated at
x = n. It is now natural to replace f(x) and g(x) by other irreducible polynomials
f1(x), . . . , fm(x) and ask whether they take prime values at a common argument
x = n.

Example 3.4.8. Let f1(x) = x, f2(x) = x + 2, and f3(x) = x + 6. Then, these
polynomials take simultaneous prime values at x = n if and only if (n, n+2, n+6)
is a prime constellation. For instance, n = 5 yields the triple (f1(5), f2(5), f3(5)) =
(5, 7, 11).

Example 3.4.9. Let f1(x) = x and f2(x) = 2x + 1. Then, f1 and f2 take simul-
taneous prime values at x = p if p and q = 2p+ 1 are both primes. Such a prime p
is called a Sophie Germain prime. See Exercise 3.5.17 and Figure 3.8.

The Bateman–Horn conjecture, which we state next, predicts what sets of
polynomials can take simultaneous prime values, and it also gives a conjectural
asymptotic density for how often these coincidences can occur.

Conjecture 3.4.10 (Bateman–Horn conjecture, [BH62]). Let m ≥ 1 be an in-
teger, and let f1(x), . . . , fm(x) be irreducible polynomials with integer coefficients.
Also define:

• f(x) = f1(x) · · · fm(x), their product,
• Df = (deg f1(x)) · (deg f2(x)) · · · (deg fm(x)),
• for a prime p, let Nf (p) be the number of solutions of f(x) ≡ 0 mod p, and

• Cf =
∏
p

(1−Nf (p)/p)

(1− 1/p)m
, where the product is over all primes p.

Let πf (x) be the number of values n ≤ x such that (f1(n), . . . , fm(n)) is an m-tuple
of prime numbers. Then,

lim
x→∞

πf (x)
Cf

Df
·
∫ x

2
1

(log t)m dt
= 1.

In other words, the Bateman–Horn conjecture says that the counting function
πf (x) is asymptotic to Cf

Df
· (
∫ x

2
1

(log t)m dt). Let us see some examples.

Example 3.4.11. Let m = 1 and f1(x) = f(x) = x. Then, Df = 1, and Nf (p) = 1
for every prime number p. Thus, Cf = 1, and πf (x) is the usual prime counting
function π(x). The Bateman–Horn conjecture then predicts that π(x) is asymptotic
to
∫ x

2
1

log tdt, which is in fact the logarithmic integral function li(x) that Dirichlet
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defined (see Section 3.3.2). The result limx→∞ π(x)/ li(x) = 1 is an equivalent for-
mulation of the prime number theorem, and therefore the Bateman–Horn conjecture
is known to hold in this case.

Example 3.4.12. Let m = 2 and let f1(x) = x and f2(x) = x+ 2. Then, Df = 1.
Moreover, Nf (2) = 1, and Nf (p) = 2 for all p > 2. Thus,

Cf =
(1− 1/2)

(1− 1/2)2

∏
p≥3

(1− 2/p)

(1− 1/p)2
= 2

∏
p≥3

(1− 2/p)

(1− 1/p)2
= 2

∏
p≥3

(
1− 1

(p− 1)2

)
.

In this case, πf (x) coincides with π2(x), the counting function for twin primes
(p, p+2) with p ≤ x, and the Bateman–Horn conjecture is the logarithmic integral
version of Conjecture 3.4.2 on the distribution of twin primes:

lim
x→∞

πf (x)

Cf ·
∫ x

2
1

(log t)2

dt = 1.

This version is equivalent to that of the Hardy–Littlewood conjecture on twin
primes. Therefore, the Bateman–Horn conjecture is not known in this case.

The Bateman–Horn conjecture can be used to formulate an asymptotic conjec-
ture on the number of Sophie Germain primes. We will leave this to be worked out
by the reader, in Exercise 3.5.18.

Figure 3.5. A letter from Christian Goldbach to Leonhard Euler on June 7,
1742. Image source: Wikimedia Commons.

3.4.3. Goldbach’s Conjecture. In 1742, the German mathematician Christian
Goldbach wrote a letter to Leonhard Euler in which he proposed the following
conjecture.
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Conjecture 3.4.13. Every even number n > 2 can be written as the sum of two
prime numbers.

For instance, 4 = 2 + 2 and 6 = 3 + 3. Also,

8 = 3 + 5, 10 = 3 + 7 = 5 + 5, 12 = 5 + 7, 14 = 3 + 11 = 7 + 7, . . .

and, in fact, large even numbers should have many (distinct) representations as
the sum of two primes (we consider p + q = q + p the same representation). For
example, n = 100 has six distinct representations:

100 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53,

and n = 1000 has 28 representations as a sum of two primes.
Several mathematicians (Chudakov, Van der Corput, Estermann, Montgomety,

and Vaughan) have shown results that prove an asymptotic version of Goldbach’s
conjecture or, in other words, that “almost all” even numbers can be written as the
sum of two primes. More concretely, it has been shown that

lim
x→∞

{2n ∈ N : 2n ≤ x and 2n = p+ q for some prime numbers p, q}
{2n ∈ N : 2n ≤ x} = 1.

In 2013, Harald Helfgott proved a version of Goldbach’s conjeture, the so-called
ternary (or odd or weak) Goldbach’s conjecture.

Figure 3.6. Harald Helfgott is a Peruvian mathematician who proved the
ternary Goldbach conjecture. Image source: Archives of the Mathematisches
Forschungsinstitut Oberwolfach.

Theorem 3.4.14 (Helfgott, 2013). Every odd number greater than 7 is the sum of
three odd primes.

Goldbach’s conjecture implies the ternary version proved by Helfgott. Indeed,
if n > 7 is odd, then n − 3 is even, larger than 4, and, therefore, if we assume
Goldbach’s conjecture, then n − 3 = p + q for some odd primes p and q. Thus,
n = 3 + p+ q.
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3.4.4. The Riemann Hypothesis.
Hiervon wäre allerdings ein strenger Beweis zu wünschen; ich
habe indess die Aufsuchung desselben nach einigen flüchtigen
vergeblichen Versuchen vorläufig bei Seite gelassen, da er für
den nächsten Zweck meiner Untersuchung entbehrlich schien.

Bernhard Riemann (a translation follows in the text below)

Perhaps one of the most famous conjectures in number theory (and perhaps
in all of mathematics) is the Riemann hypothesis. Bernhard Riemann (Figure 3.7)
proposed this conjecture in 1859 while studying the distribution of prime numbers.

Figure 3.7. Georg Friedrich Bernhard Riemann (1826–1866) was a German
mathematician who made fundamental contributions to analysis, number the-
ory, and differential geometry. Image source: Wikimedia Commons.

The conjecture is usually stated (as Riemann did) in terms of the zeros of the
Riemann zeta function ζ(s), which is defined as follows:

ζ(s) =
∑
n≥1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · ·

for any complex number s ∈ C with real part greater than 1. The zeta function
ζ(s) may be extended and defined for any complex number s �= 1 (the function has
a different definition for complex number with real part ≤ 1; we will not do this
here). The conjecture then says that the only “non-trivial” zeros of ζ(s) are in the
line s = 1

2 + it for some t ∈ R; i.e., the non-trivial zeros have real part equal to
1/2 (the trivial zeroes occur at negative even integer values s = −2, −4, −6, etc.).
Riemann tried to prove this statement but could not find such a proof:

Of course one would wish for a rigorous proof here; I have for the time be-
ing, after some fleeting vain attempts, provisionally put aside the search
for this, as it appears dispensable for the immediate objective of my in-
vestigation.
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The Riemann hypothesis was number 8 of the 23 unsolved problems that David
Hilbert listed as fundamental in 1900 (and it continues to be unsolved today). It is
also one of the seven Clay Mathematics Institute’s Millennium (one million dollar)
Prize Problems.

Instead of writing a precise statement for the conjecture in terms of ζ(s), we
will write an equivalent statement to the Riemann hypothesis (due to von Koch in
1901) that makes the connection to prime numbers explicit.

Conjecture 3.4.15 (Riemann hypothesis). There is a constant c such that

|π(x)− li(x)| < c ·
√
x log(x)

for all sufficiently large x, where π(x) is the prime number counting function and
li(x) =

∫ x

2
1

log(t) dt.

In 1976, Schoenfeld gave this explicit version of the Riemann hypothesis:

|π(x)− li(x)| <
√
x log(x)

8π
for all x ≥ 2657.(3.3)

For example π(104) = 1229 and li(104) = 1246.1 . . ., so

|π(104)− li(104)| < 18

and the Riemann hypothesis says that the difference is less than
√
104 log(104)

8π
= 36.646 . . .

so the bound in (3.3) holds for x = 104.

3.5. Exercises

Exercise 3.5.1. The author’s first daughter was born in January, and the second
daughter was born in November of the following year. How many times will their
ages be consecutive primes before the first daughter turns 100? For instance, their
ages are currently 5 and 7.

Exercise 3.5.2. Show that if n is not prime, then n has a prime divisor p ≤
√
n.

Exercise 3.5.3. Prove that there are infinitely many primes of the form 4n − 1.
(Hint: suppose that there are only finitely many of them, say p1, p2, . . . , pt. Now
consider N = 4p1p2 · · · pt − 1.)

Exercise 3.5.4. Prove that there are infinitely many primes of the form 6n− 1.

Exercise 3.5.5. Let a1 = 2 and an+1 = an(an − 1) + 1. Prove that an+1 =
a1a2 · · · an + 1. Prove that for all m �= n, the numbers am and an are relatively
prime.

Exercise 3.5.6. Prove that for any N ≥ 1 there are N consecutive composite
numbers. (Hint: consider (N + 1)! + 2, (N + 1)! + 3,. . . , (N + 1)! +N + 1.)

Exercise 3.5.7. Prove that for any n ≥ 2 there is a prime p with n < p ≤ n! + 1.

Exercise 3.5.8. Use a sieve method to find all the prime numbers between 105
and 115. Explain how you did it.
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Exercise 3.5.9. Find all the primes between 200 and 250 by using the sieve of
Eratosthenes on the list of numbers in that range.

Exercise 3.5.10. Find all primes p such that 17p+ 1 is a square.

Exercise 3.5.11. Find all the primes p such that p+ 1 is a cube.

Exercise 3.5.12. Find all prime numbers x and y such that x − y and x + y are
also prime.

Exercise 3.5.13. Show that Sylvester’s theorem implies Bertrand’s postulate.
(Hint: let k = n, and consider (n+ 1) · · · (n+ k). Then, use Theorem 3.3.3.)

Exercise 3.5.14. Use Nagura’s theorem (Theorem 3.3.5) to show that if n ≥ 6,
then there are two distinct prime numbers between n and 2n. (Hint: verify this by
hand for 6 ≤ n ≤ 24 and then use Nagura’s theorem for n ≥ 25.)

Exercise 3.5.15. Use Exercise 3.5.14 to show that if pn denotes the nth prime
number, then pn+2 < pn + pn+1, for all n ≥ 1.

Exercise 3.5.16. Are there infinitely many primes p such that (p, p + 2, p + 4)
are all primes? Why? Are there infinitely many primes p such that (p, p + 2,
p+6, p+8, p+12, p+14) are all primes? Why? Make a generalization of the twin
prime conjecture for 6-tuples; i.e., make an educated conjecture for the existence of
6-tuples of primes. (In other words, make a concrete conjecture for the existence
of infinitely many primes in a constellation of size six.)

Exercise 3.5.17. A prime p is called a Sophie Germain prime if q = 2p+1 is also
a prime number. Find the first five Sophie Germain primes.
(Note: prime numbers of this type were introduced by Sophie Germain (see Figure
3.8) in order to prove certain cases of Fermat’s last theorem. Moreover, these primes
also have cryptographic applications. See also Exercises 4.7.38 and 10.8.32.)

Exercise 3.5.18. Let πG(x) be the number of Sophie Germain primes p ≤ x
(defined as in Exercise 3.5.17). Use the Bateman–Horn conjecture, Conjecture
3.4.10, to formulate a precise asymptotic formula for πG(x). (Hint: see Examples
3.4.9 and 3.4.12.)

Exercise 3.5.19. Two primes p and q are called sexy, or sexy primes, if they differ
by six (e.g., 5 and 11).

(1) Find the first five pairs of sexy primes.
(2) If p, q, r, and s are primes such that the pairs (p, q), (q, r), and (r, s) are

sexy primes, we say that (p, q, r, s) is a sexy prime quadruple. If p > 5 and
(p, q, r, s) is a sexy prime quadruple, show that the remainder of dividing p by
10 is 1; i.e., p is of the form 1 + 10k for some k ≥ 1.

(3) Find four sexy prime quadruples.

Exercise 3.5.20. Show that there cannot be an infinite sequence of prime numbers
in an arithmetic progression; i.e., if {q1, q2, . . .} is a sequence of integers in arithmetic
progression, then there is some k ≥ 0 such that qk is not a prime number.

Exercise 3.5.21. Suppose that {q1, . . . , qk} are k primes in arithmetic progression.
Show that q1 ≥ k.
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Figure 3.8. Marie-Sophie Germain (1776–1831) was a French mathematician,
physicist, and philosopher. Her brilliant approach to Fermat’s last theorem
inspired other mathematicians’ work for hundreds of years. Image source:
Wikimedia Commons.

Exercise 3.5.22. Show that if a > 0 and an + 1 is prime for some n > 1, then a
is even and n is a power of 2. (Hint: if k is odd, then we can find a factorization of
xk + 1.)

Exercise 3.5.23. Show that if a > 0 and an − 1 is prime for some n > 1, then
a = 2 and n is prime. (Hint: find a factorization of xk − 1, for any k ≥ 2.)

Exercise 3.5.24. Goldbach’s conjecture says that every even integer n ≥ 4 can
be expressed as the sum of two primes. Show that there exist infinitely many odd
integers that cannot be expressed as the sum of two prime numbers (for instance,
n = 3).
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CHAPTER 4

CONGRUENCES

If the Sun refused to shine,
I don’t mind, I don’t mind.
If the mountains fell in the sea,
Let it be, it ain’t me.
Now, if six turned out to be nine,
Oh I don’t mind, I don’t mind. . .

Jimi Hendrix, If Six Was Nine, from
the album Axis: Bold as Love, 1967

Before we give a formal definition of congruence, we will give two examples,
one from ordinary life and another one that we have already encountered during
our introduction in Chapter 1.

Example 4.0.1. Let us look at a clock. What will be the time after 27 hours?
Since it is difficult for the author to predict the time at the reader’s end, let us
assume that it is 2 pm. After 27 hours, one day and 3 hours will have passed and,
therefore, it will be 5 pm.

If, instead, 327 hours go by, what will be the time then? In order to solve
this problem, first we need to know how many complete days (24 hours) will pass.
Thus, we need to divide 327 by 24, using long division. Since 327 = 24 ·13+15 and
the current time is 2 pm, it follows that, after 327 hours, 13 days and 15 hours will
have passed. Thus, the time will be 2 pm plus 15 additional hours, and that brings
us to 5 am. This result could have also been obtained by finding the remainder of
dividing 341 = 327 + 14 (here 14 represents 2 pm) by 24:

341 = 24 · 14 + 5.

The remainder 5 tells us that the answer is the 5th hour of the day, i.e., 5 am.
In general, suppose that it is the mth hour of the day (where we are using

a 24-hour clock; that is, m = 0, 1, 2, . . . , 23), N hours go by and we want to find
out the time. In order to do so, we need to find the remainder of division of N +m

83
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by 24; i.e.,
N +m = 24q + r,

and r, with 0 ≤ r < 24, is the new time (in a 24-hour clock).

Example 4.0.2. Let us show that the hyperbola C : x2 − 5y2 = 2 does not have
any integral points. Suppose, for a contradiction, that C(Z) is not empty and
(m,n) ∈ C(Z). In other words, there are integers m,n ∈ Z such that m2−5n2 = 2.
In particular, m2 = 2 + 5n2 and the remainder when dividing m2 by 5 must be 2.
This is impossible. Indeed, by the division theorem (Theorem 2.4.4), we know that
m = 5q + r, for some unique q, r ∈ Z such that 0 ≤ r < 5. Thus, we can calculate
r′, the remainder of m2 modulo 5, according to the value of r.

• If r = 0, then m = 5q and m2 = 25q2 = 5(q2), so r′ = 0.
• If r = 1, then m = 5q + 1 and m2 = 5(5q2 + 2q) + 1, so r′ = 1.
• If r = 2, then m = 5q + 2 and m2 = 5(5q2 + 4q) + 4, so r′ = 4.
• If r = 3, then m = 5q + 3 and m2 = 5(5q2 + 6q + 1) + 4, so r′ = 4.
• If r = 4, then m = 5q + 4 and m2 = 5(5q2 + 8q + 3) + 1, so r′ = 1.

Hence, the remainder of m2 when divided by 5 is 0, 1, or 4, but never 2. It follows
that m2 = 2 + 5n2 is impossible and C(Z) must be empty.

In both of the previous examples, we were more interested in the remainder of a
number modulo some other number, rather than in the number itself. Congruences
will help us work with remainders in a much easier manner, and they will allow us
to solve problems that, without congruences, would be very difficult to solve.

Example 4.0.3. Is the number N = 43001 − 1 divisible by 5? If not, what is the
remainder of N when divided by 5? We will return to this problem after we have
defined congruences and shown a number of properties. (Can’t wait that long? See
Example 4.2.4.)

4.1. The Definition of Congruence

The invention of the symbol ≡ by Gauss affords a
striking example of the advantage which may be
derived from an appropriate notation, and marks an
epoch in the development of the science of arithmetic.

G. B. Matthews, in Theory of Numbers, 1892

Numerorum congruentiam hoc signo, ≡, in posterum
denotabimus, modulum ubi opus erit in clausulis
adiugentes, −16 ≡ 9(mod5), −7 ≡ 15(mod11).

C. F. Gauss, in Disquisitiones Arithmeticae, 1801

Definition 4.1.1. Let m > 1 be fixed. We say that two integers a and b are
congruent modulo m, and we write a ≡ b mod m if m divides a − b. If we fix an
integer a and a modulus m, the set of integers congruent to a modulo m is called
the congruence class of a mod m.
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Example 4.1.2. The congruence 8 ≡ 3 mod 5 holds because 8− 3 = 5. Similarly,
23 ≡ 3 mod 5 because 23− 3 = 20 = 5 · 4.

The number −3 is congruent to 18 mod 7. Indeed, −3 − 18 = −21 = 7 · (−3)
and it follows that −3 ≡ 18 mod 7. On the contrary, 55 �≡ 31 mod 7, because
55− 31 = 24 is not a multiple of 7.

Remark 4.1.3. If a is equal to b plus a multiple of m, then a ≡ b mod m. Indeed,
if a = b+km, for some k ∈ Z, then a− b = km and, therefore, m divides a− b; i.e.,
a ≡ b mod m. Hence, if we fix 3 mod 7, then

3 + 7 = 10, 3 + 2 · 7 = 17, 3 + 3 · 7 = 24, 3 + 4 · 7 = 31, . . .

are all numbers congruent to 3 modulo 7. Similarly,

3− 7 = −4, 3− 2 · 7 = −11, 3− 3 · 7 = −18, 3− 4 · 7 = −25, . . .

are also numbers congruent to 3 mod 7. The congruence class of 3 mod 7 is the
(infinite) set of integers

{. . . ,−25,−18,−11,−4, 3, 10, 17, 24, 31, . . .}.

Proposition 4.1.4. Let m > 1 be fixed. Every integer is congruent modulo m to
exactly one of the numbers in the set Cm = {0, 1, 2, . . . ,m−1}. In other words, for
every N there is a number r with 0 ≤ r ≤ m− 1 such that N ≡ r mod m.

Proof. Let m > 1 be fixed. By the division theorem (Theorem 2.4.4), there are
unique q, r ∈ Z, with 0 ≤ r < m, such that N = qm + r. Therefore, N − r = qm,
and this implies that N ≡ r mod m. Since 0 ≤ r < m, it follows that r ∈ Cm, and
the division theorem guarantees that r is unique with this property. �

Definition 4.1.5. Let m > 1 and N ∈ Z be fixed. The unique number r in the
set Cm = {0, 1, . . . ,m− 1} such that N ≡ r mod m is called the least non-negative
residue of N modulo m. We say that r is the reduction, or residue, of N modulo
m.

Corollary 4.1.6. Let m > 1 be fixed. Then, for any N ∈ Z, the remainder of
division of N by m is precisely the least non-negative residue of N modulo m. In
other words, if q and r are the unique integers with N = qm+r and 0 ≤ r ≤ m−1,
then r is the least non-negative residue of N mod m.

Proof. As we have seen in the proof of Proposition 4.1.4, the residue r satisfies
N ≡ r mod m and r ∈ {0, 1, . . . ,m− 1}. Thus, r is the least non-negative residue
of N modulo m. �

Example 4.1.7. Suppose that it is 2 pm and 327 hours go by. What is the time?
We can deduce the time of the day by finding the least non-negative residue of
14 + 327 = 341 modulo 24. Using long division, we find that 341 = 24 · 14 + 5, and
therefore 341 ≡ 5 mod 24. Hence, the time will be 5 am.

Definition 4.1.8. Let m > 1 be fixed. A complete residue system modulo m is
a set S = {s1, s2, . . . , sm} with m integers si ∈ Z, for 1 ≤ i ≤ m, such that each
integer N is congruent to exactly one element of S. In other words, for every N ∈ Z

there is an si ∈ S such that N ≡ si mod m and N �≡ sj mod m if i �= j.
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Example 4.1.9. By Proposition 4.1.4, the set Cm = {0, 1, 2, . . . ,m− 1} is a com-
plete residue system modulo m. Indeed, if N is an integer and r is the least
non-negative residue of N mod m, then r ∈ Cm; also N ≡ r mod m. Moreover, if
1 ≤ s ≤ m− 1 and s �= r, then N �≡ s mod m.

For instance, {0, 1, 2, 3, 4} is a complete residue system modulo 5. If N is an
arbitrary integer, say N = 1138, then N ≡ 3 mod 5, and N �≡ 0, 1, 2, 4 mod 5.

Example 4.1.10. The set S = {0, 2, 4, 6, 8} is also a complete residue system
modulo 5. Indeed, 6 ≡ 1 mod 5 and 8 ≡ 3 mod 5, so each possible residue modulo
5 is represented uniquely in the set S. Similarly, S′ = {1, 3, 5, 7, 9} is a complete
residue system modulo 5. Notice that S is formed by even integers, while S′ is
formed by odd integers, but both sets contain one unique representative for each
residue modulo 5. One can also write a complete residue system formed only by
primes; for instance, S′′ = {2, 3, 5, 11, 19} is such a system. However, there is no
complete residue system modulo 6 formed by 0 and prime numbers. (Why? See
Exercises 4.7.3 and 4.7.4.)

4.2. Basic Properties of Congruences

In this section we present several basic (but fundamental) properties of congruences.

Proposition 4.2.1. For all integers a, b, c, a′, b′, k and for all m > 1, the following
properties hold.

(i) If a ≡ b mod m, then ka ≡ kb mod m.
(ii) If a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m.
(iii) If a ≡ b mod m, then aj ≡ bj mod m, for all j ≥ 1.
(iv) If a ≡ b mod m and a′ ≡ b′ mod m, then

(a) a+ a′ ≡ b+ b′ mod m, and
(b) a · a′ ≡ b · b′ mod m.

Before we dive into proving these properties, let us illustrate their usefulness
with some examples.

Example 4.2.2. Suppose we want to reduce 70001 + 3504 modulo 7. In other
words, we want to calculate the least non-negative residue of 73505 mod 7. By
Proposition 4.2.1, in particular part (iv)(a), it suffices to reduce 70001 and 3504
separately modulo 7, then add their least non-negative residues, and reduce again.
We have

70001 ≡ 1 mod 7 and 3504 ≡ 4 mod 7,

because 70000 and 3500 are multiples of 7. Thus,

73505 = 70001 + 3504 ≡ 1 + 4 ≡ 5 mod 7.

The properties of congruences prove to be even more useful if we want to calculate
70001 · 3504 mod 7. Indeed, by Proposition 4.2.1 (iv)(b), it suffices to reduce each
factor separately and then multiply the least non-negative residues together. Thus,

245283504 = 70001 · 3504 ≡ 1 · 4 ≡ 4 mod 7.
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Example 4.2.3. Let us find the least non-negative residue of 10! mod 11. From
the definition of congruence, we would first calculate 10! = 3628800 and then use
the division theorem to write

3628800 = 329890 · 11 + 10.

Thus 10! ≡ 10 mod 11. Let us do this calculation again, using congruences and
their properties. We will use Proposition 4.2.1 (iv)(b) repeatedly, but we will also
use the fact that a ≡ a − m mod m. We remark that there are many ways to
perform this calculation, and this is only one of them:

10! = 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1
≡ (−1) · (−2) · (−3) · (−4) · (−5) · 5 · 4 · 3 · 2 · 1 mod 11

≡ −6 · 20 · 20 · 6 mod 11

≡ −6 · 9 · 9 · 6 mod 11

≡ −6 · (−2) · (−2) · 6 mod 11

≡ 12 · (−12) mod 11

≡ 1 · (−1) mod 11

≡ −1 mod 11

≡ 10 mod 11.

Example 4.2.4. Is the number N = 43001 − 1 divisible by 3? Is it divisible by
5? The number N has more than 1800 digits, so a direct computation is tricky.
However, property (iii) of congruences in Proposition 4.2.1 tells us that, since 4 ≡
1 mod 3, then

N = 43001 − 1 ≡ 13001 − 1 ≡ 1− 1 ≡ 0 mod 3.

Thus, N is a multiple of 3. Similarly, 4 ≡ −1 mod 5 and so

N = 43001 − 1 ≡ (−1)3001 − 1 ≡ (−1)− 1 ≡ −2 ≡ 3 mod 5,

and it follows that the residue of N modulo 5 is 3. Thus, the number N is not
divisible by 5.

Let us now tackle the proof of the proposition.

Proof of Proposition 4.2.1. (i) This is left for the reader as Exercise 4.7.6.
(ii) If a ≡ b mod m and b ≡ c mod m, then a − b and b − c are divisible by

m; i.e., there are h and k such that a − b = hm and b − c = km. Thus,
a− c = a− b+ b− c = (h+ k)m and, therefore, a ≡ c mod m.

(iv) (a) This is left for the reader as Exercise 4.7.6.
(b) Suppose that a ≡ b mod m and a′ ≡ b′ mod m; then there are h, k ∈ Z

such that a = b+ hm and a′ = b′ + km. Thus,

a · a′ = (b+ hm)(b′ + km)

= bb′ + bkm+ b′hm+ hkm2

= bb′ +m(bk + b′h+ hkm).

This implies that a · a′ ≡ b · b′ mod m.
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(iii) We will show this by induction on j ≥ 1. Suppose that a ≡ b mod m. The
base case j = 1 is clear. Let us now assume that aj ≡ bj mod m. Thus,

aj+1 ≡ aj · a ≡ bj · b ≡ bj+1 mod m,

as desired, where we have used property (iv)(b) and the induction hypothesis.
Hence, by the principle of mathematical induction, aj ≡ bj mod m for all
j ≥ 1. �

Remark 4.2.5. A congruence is an equivalence relation; that is, the congruence
relation (≡) satisfies three properties: reflexivity, symmetry, and transitivity. More
concretely, for all a, b ∈ Z and m > 1:

(1) ≡ is reflexive: a ≡ a mod m, for all a ∈ Z and m > 1. Indeed, a − a = 0 is
always divisible by m > 1.

(2) ≡ is symmetric: a ≡ b mod m if and only if b ≡ a mod m, because a − b is
divisible by m if and only if b− a is divisible by m.

(3) ≡ is transitive: if a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m. This is
Proposition 4.2.1, part (ii).

This will become useful later when we define congruence classes as the equivalence
classes of Z with respect to the congruence relation.

In the following two examples we illustrate how useful and efficient congruences
can be to calculate the remainders of high powers of a number. In both examples
we make repeated use of Proposition 4.2.1, particularly part (iii).

Example 4.2.6. What is the remainder of 3253 when divided by 7? In other words,
what is the least non-negative residue of 3253 mod 7? Let us first calculate some
small powers of 3 modulo 7:

32 ≡ 9 ≡ 2 mod 7,

33 ≡ 32 · 3 ≡ 2 · 3 ≡ 6 ≡ −1 mod 7.

It follows that 36 ≡ (33)2 ≡ (−1)2 ≡ 1 mod 7. Since the 6th power of 3 is congruent
to 1 mod 7, we calculate the long division 253 = 6 · 42 + 1 and, therefore,

3253 ≡ 36·42+1 ≡ (36)42 · 3 ≡ 142 · 3 ≡ 3 mod 7.

Hence, the remainder of 3253 when divided by 7 is 3.

Example 4.2.7. What is the least non-negative residue of 522 mod 11? We begin
calculating small powers of 5 mod 11 and square consecutively until we have enough
powers of 5 to build 522 mod 11, using the fact that 22 = 16 + 4 + 2:

52 ≡ 25 ≡ 3 mod 11,

54 ≡ (52)2 ≡ 32 ≡ 9 ≡ −2 mod 11,

58 ≡ (54)2 ≡ (−2)2 ≡ 4 mod 11,

516 ≡ (58)2 ≡ 42 ≡ 16 ≡ 5 mod 11.

Hence,

522 ≡ 516 · 54 · 52 ≡ 5 · (−2) · 3 ≡ −10 · 3 ≡ 1 · 3 ≡ 3 mod 11.

Thus, the least non-negative residue of 522 mod 11 is 3.
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We finish this section with an additional example that illustrates how congru-
ences are very useful for arguments about remainders of integers.

Example 4.2.8. In Example 4.0.2, we demonstrated that the conic C : x2−5y2 = 2
does not have any integral points. Let us repeat the same proof, but this time we
will use the language of congruences.

Suppose, for a contradiction, that C(Z) is not empty and (m,n) ∈ C(Z). In
other words, there are integers m,n ∈ Z such that m2 − 5n2 = 2. In particular,
m2 = 2 + 5n2 and m2 ≡ 2 mod 5. This is impossible. Indeed, by Proposition
4.1.4, we know that {0, 1, 2, 3, 4} is a complete residue system modulo 5. Thus,
m ≡ 0, 1, 2, 3, or 4 mod 5. Thus, we can calculate m2 mod 5 according to the value
of m mod 5.

• If m ≡ 0 mod 5, then m2 ≡ 02 ≡ 0 mod 5.
• If m ≡ 1 mod 5, then m2 ≡ 12 ≡ 1 mod 5.
• If m ≡ 2 mod 5, then m2 ≡ 22 ≡ 4 mod 5.
• If m ≡ 3 mod 5, then m2 ≡ 32 ≡ 9 ≡ 4 mod 5.
• If m ≡ 4 mod 5, then m2 ≡ 42 ≡ (−1)2 ≡ 1 mod 5.

Hence, the only possible values for m2 mod 5 are 0, 1, or 4 mod 5, but never 2 or
3 mod 5. It follows that m2 = 2 + 5n2 is impossible and C(Z) must be empty.

4.3. Cancellation Properties of Congruences

When we have an equality of integers ab = ac, for some a, b, c ∈ Z, such that a �= 0,
then it follows that b = c. Indeed, the equality ab = ac implies a(b − c) = 0, and
Theorem 2.2.3 implies that a = 0 or b − c = 0. Since we assume that a �= 0, it
follows that b − c = 0, or, equivalently, b = c. However, a congruence may not
satisfy this cancellation property. For example,

3 · 5 ≡ 3 · 7 mod 6

but 5 �≡ 7 mod 6. The problem is that the number being cancelled (3) is not
relatively prime with the modulus of the congruence (6). Here is another example
where cancellation works as in the case of equalities of integers:

3 · 5 ≡ 3 · 12 mod 7

and, indeed, 5 ≡ 12 mod 7 as well. This time cancellation worked because gcd(3, 7)
= 1. Let us see a result that explains when cancellation in congruences works as
we would hope.

Proposition 4.3.1. Let a, b, k ∈ Z and m,n > 1.

(1) If a ≡ b mod m and d > 1 is a divisor of m, then a ≡ b mod d.
(2) If ka ≡ kb mod m, then a ≡ b mod m

gcd(k,m) . In particular:
(a) If ka ≡ kb mod kn, then a ≡ b mod n.
(b) If ka ≡ kb mod m and gcd(k,m) = 1, then a ≡ b mod m.

Proof. (1) Suppose that a ≡ b mod m and d > 1 is a divisor of m; then m = dm′

for some m′ ∈ Z and b − a = hm = hdm′ for some h ∈ Z. Hence, d divides
b− a and a ≡ b mod d.
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(2) If ka ≡ kb mod m, then there is some h ∈ Z such that kb − ka = k(b − a)
= hm. Suppose that gcd(k,m) = g. Then, k = gk′ and m = gm′ and
k(b − a) = hm implies k′(b − a) = hm′. Hence, m′ divides k′(b − a). Since
gcd(kg ,

m
g ) = gcd(k′,m′) = 1 (by Exercise 2.11.25), it follows that m′ divides

b − a by Corollary 2.7.6. Thus, we have shown that a ≡ b mod m′, where
m′ = m

g = m
gcd(k,m) .

(a) If ka ≡ kb mod kn, then a ≡ b mod n. This is a direct consequence of
part (2): put m = kn, and then gcd(k, kn) = k.

(b) If ka ≡ kb mod m and gcd(k,m) = 1, then a ≡ b mod m. This is a direct
consequence of part (2). �

Example 4.3.2. The congruence 29 ≡ 44 mod 15 implies that 29 ≡ 44 mod 3 and
29 ≡ 44 mod 5, by Proposition 4.3.1, part (1), because 3 and 5 are divisors of 15.
Indeed, 29 ≡ 2 ≡ 44 mod 3 and 29 ≡ 4 ≡ 44 mod 5.

Example 4.3.3. The congruence 3 · 5 ≡ 3 · 7 mod 6 holds true, but 5 �≡ 7 mod 6.
Proposition 4.3.1 says that, instead, we can cancel the 3 on both sides if we consider
congruences modulo 6

gcd(3,6) = 6
3 = 2. Indeed, 3 · 5 ≡ 3 · 7 mod 6 implies that

5 ≡ 7 mod 2.
Similarly, the congruence 5 ·2 ≡ 5 ·9 mod 35 implies that 2 ≡ 9 mod 7, because

7 = 35
gcd(5,35) = 35

5 .

Example 4.3.4. If ka ≡ kb mod p, where p is a prime that does not divide k, then
a ≡ b mod p, as a consequence of Proposition 4.3.1, part (2)(b), because gcd(p, k) =
1. For instance, 33 ≡ 11 · 3 ≡ 11 · 16 ≡ 176 mod 13, and since gcd(11, 13) = 1,
it follows that we can cancel 11 on both sides of the congruence to obtain 3 ≡
16 mod 13 as well, without needing to change the modulus.

4.4. Linear Congruences

The goal of this section is to investigate whether a linear congruence of the form

ax ≡ b mod m

has solutions x ∈ Z and, if it is solvable, find all such integral solutions. We begin
with some examples that illustrate the possible scenarios.

Example 4.4.1. Consider the congruence

3x ≡ 5 mod 7.

The number x = 4 is a solution, because 3 ·4 = 12 ≡ 5 mod 7. Since the congruence
is modulo 4, if we replace x = 4 by any other number x′ congruent to 4 mod 7,
then x′ should also be a solution. For instance, x′ = 11 is also a solution, for
3 · 11 = 33 ≡ 5 mod 7. Similarly, the numbers

. . . , −10, −3, 4, 11, 18, . . .

are all solutions. In other words, if x is any integer such that x ≡ 4 mod 7, then x
must be a solution for 3x ≡ 5 mod 7.
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Is there any other solution x ∈ Z for 3x ≡ 5 mod 7 such that x �≡ 4 mod 7?
It turns out that there are no other solutions. We know that {0, 1, 2, 3, 4, 5, 6} is a
complete residue system modulo 7. Thus, any x ∈ Z is congruent to 0, 1, 2, 3, 4, 5,
or 6 mod 7. Now we can make a table of values of 3x mod 7, for each possible value
of x mod 7:

x 0 1 2 3 4 5 6
3x 0 3 6 2 5 1 4

Hence, if x ∈ Z and 3x ≡ 5 mod 7, then it follows that x ≡ 4 mod 7 necessarily.

Example 4.4.2. In stark contrast with the previous example, the congruence

3x ≡ 5 mod 6

has no solutions with x ∈ Z. As before, the set {0, 1, 2, 3, 4, 5} is a complete residue
system modulo 6. Thus, any x ∈ Z is congruent to 0, 1, 2, 3, 4, or 5 mod 6. Now we
can make a table of values of 3x mod 6, for each possible value of x mod 6:

x 0 1 2 3 4 5
3x 0 3 0 3 0 3

It follows that 3x ≡ 0 or 3 mod 6, but never ≡ 1, 2, 4, or 5 mod 6. The same table
implies that the congruence

3x ≡ 3 mod 6

has solutions x ≡ 1, x ≡ 3, and x ≡ 5 mod 6. In other words, the numbers

. . . ,−3,−1, 1, 3, 5, 7, 9, 11, 13, . . .

are all solutions for the congruence 3x ≡ 3 mod 6. Notice that these are all the odd
numbers. Indeed, by Proposition 4.3.1, the congruence 3x ≡ 3 mod 6 implies the
simpler congruence x ≡ 1 mod 2 (i.e., x is odd).

When we encounter a linear congruence, say 119x ≡ 14 mod 203, we can always
determine whether there is a solution by brute force; i.e., calculate 119x for each
x in the complete residue system {0, 1, 2, 3, . . . , 202} modulo 203. Obviously, this
method can be very long and tedious. Alas, the readers need not worry, as we
already have all the tools to solve a linear congruence efficiently, namely Euclid’s
algorithm and Bezout’s identity.

Theorem 4.4.3. Let a, b ∈ Z, with a �= 0, and let m > 1. Then, the following
statements are equivalent:

(1) The linear congruence ax ≡ b mod m has a solution x0 ∈ Z.

(2) There is a y0 ∈ Z such that (x0, y0) is an integral point on the line L : ax +
my = b.

(3) The number b is divisible by gcd(a,m).

Moreover, if ax ≡ b mod m has a solution, then it has exactly d = gcd(a,m) distinct
solutions modulo m, given by x ≡ x0 + (m/d) · k mod m, for k = 0, 1, . . . , d − 1,
where x0 is any solution of (a/d)x ≡ b/d mod (m/d).
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Proof. We need to show that (1), (2), and (3) are equivalent statements. In order
to do so, we will show that (1) implies (2), that (2) implies (3), and that (3) implies
(1).

Assume first that x0 is a solution for the congruence ax ≡ b mod m; that is,
we have that ax0 ≡ b mod m. By definition, this is equivalent to b − ax0 being
divisible by m. In other words, there is some y0 ∈ Z such that b − ax0 = my0, or
ax0 +my0 = b. Thus, the line L : ax+my = b has an integral point. This shows
(2).

Now suppose that (2) is true; that is, the line L : ax+my = b has an integral
point. By Proposition 2.9.1, the line L : ax+my = b has integral points if and only
if gcd(a,m) divides b. Thus, (3) is true. (Notice that Proposition 2.9.1 actually
says that (2) and (3) are equivalent.)

Finally, suppose that (3) holds and b is a multiple of gcd(a,m). Then, by
Proposition 2.9.1, the line L : ax + my = b has an integral point (x0, y0); i.e.,
ax0 +my0 = b. Therefore, b− ax0 = my0 and, by definition, ax0 ≡ b mod m.

We have shown that (1), (2), and (3) are equivalent. If ax ≡ b mod m has
a solution, then, by (3), b is divisible by d = gcd(a,m). Consider the equation
a′x ≡ b′ mod m′, where a′ = a/d, b′ = b/d, and m′ = m/d. By Exercise 2.11.25,
gcd(a′,m′) = 1, and by Theorem 2.9.4, all the solutions to a′x+m′y = b′ are given
by

xk = x0 +m′k, yk = y0 − a′k

for any k ∈ Z, where (x0, y0) is one fixed solution. In particular, the solutions
of a′x ≡ b′ mod m′ are all of the form xk = x0 + m′k, for some k ∈ Z. If xk ≡
xj mod m, then

x0 +m′k ≡ x0 +m′j mod m

and, therefore, m′k ≡ m′j mod m, and by Proposition 4.3.1, k ≡ j mod d. Hence,
the solutions to ax ≡ b mod m that are distinct modulo m are

xk ≡ x0 +m′k mod m

for k = 0, 1, . . . , d− 1, as claimed. �

Corollary 4.4.4. Let m ≥ 2, and let gcd(a,m) = 1. Then, the congruence ax ≡
b mod m has a unique solution modulo m.

Proof. Since d = gcd(a,m) = 1, any number b is divisible by d. By Theorem
4.4.3, the congruence ax ≡ b mod m has a solution, and, in fact, it has only d = 1
different solutions modulo m. �

The proof of Theorem 4.4.3 also outlines a method to solve any linear congru-
ence; namely, use Euclid’s algorithm and Bezout’s identity.

Example 4.4.5. Let us find all solutions to the congruence 11x ≡ 10 mod 35.
First, we find the greatest common divisor of 35 and 11, using Euclid’s algorithm:

35 = 11 · 3 + 2,

11 = 2 · 5 + 1,

2 = 1 · 2 + 0.
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Therefore, gcd(35, 11) = 1. Now, we reverse Euclid’s algorithm to find a solution
to Bezout’s identity 11x+ 35y = gcd(35, 11) = 1:

1 = 11− 2 · 5
= 11− (35− 11 · 3) · 5 = 16 · 11− 5 · 35.

Thus, we have found 1 = 16 · 11 + (−5) · 35, and if we multiply through by 10, we
find

10 = 160 · 11 + (−50) · 35.
Moreover, by Theorem 2.9.4, all the points in the line 10 = 11x+ 35y are given by

x = 160 +
35

gcd(35, 11)
k = 160 + 35k, y = −50− 11

gcd(35, 11)
k = −50− 11k,

for all k ∈ Z. It follows that all the solutions to 11x ≡ 10 mod 35 are given by
x = 160 + 35k, or, equivalently,

x ≡ 160 ≡ 20 mod 35.

Therefore, x ≡ 20 mod 35.

Example 4.4.6. Let us find all solutions to the congruence 119x ≡ 14 mod 203.
First, we find the greatest common divisor of 203 and 119, using Euclid’s algorithm:

203 = 119 · 1 + 84,

119 = 84 · 1 + 35,

84 = 35 · 2 + 14,

35 = 14 · 2 + 7,

14 = 7 · 2 + 0.

Therefore, gcd(203, 119) = 7. Now, we reverse Euclid’s algorithm to find a solution
to Bezout’s identity 119x+ 203y = gcd(203, 119) = 7:

7 = 35− 14 · 2
= 35− (84− 35 · 2) · 2 = 5 · 35− 2 · 84
= 5 · (119− 84)− 2 · 84 = 5 · 119− 7 · 84
= 5 · 119− 7 · (203− 119) = 12 · 119− 7 · 203.

Thus, we have found 7 = 12 · 119 + (−7) · 203, and if we multiply through by 2, we
find

14 = 24 · 119 + (−14) · 203.
Moreover, by Theorem 2.9.4, all the points in the line 14 = 119x+ 203y are given
by

x = 24 +
203

gcd(203, 119)
k = 24 + 29k, y = −14− 119

gcd(203, 119)
k = −14− 17k,

for all k ∈ Z. It follows that all the solutions to 119x ≡ 14 mod 203 are given by
x = 24+29k, or, equivalently, x ≡ 24 mod 29. Hence, the solutions modulo 203 are

x ≡ 24, 53, 82, 111, 140, 169, and 198 mod 203.
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4.5. Systems of Linear Congruences

In the previous section we have learned to solve a single linear congruence ax ≡
b mod m. What if we need to find the solutions of a system of linear congruences?

Example 4.5.1. Suppose we are trying to find a solution of the congruence

x2 ≡ 29 mod 35.

Since 35 = 5 · 7, it follows that

(S1)

{
x2 ≡ 29 ≡ 4 mod 5, and
x2 ≡ 29 ≡ 1 mod 7.

Each of these congruences has solutions that we can spot because the modulus
is relatively small. Namely, the solutions are x ≡ ±2 mod 5 and x ≡ ±1 mod 7,
respectively. Thus, if x2 ≡ 29 mod 35, then

(S2)

{
x ≡ ±2 mod 5,

x ≡ ±1 mod 7.

In this section we will learn how to solve a system of congruences such as (S2).
In particular, if x ≡ 2 mod 5 and x ≡ 1 mod 7, we shall find that x ≡ 22 mod 35.
Moreover, x ≡ 22 mod 35 is a solution of our initial quadratic congruence, because
222 = 484 ≡ 29 mod 35. In fact, we will show (in Lemma 4.5.4) that x2 ≡ 29 mod
35 if and only if x satisfies the system (S1), which in turn is equivalent to (S2).

This example shows that one can trade a congruence with a composite modulus
with a system of congruences with smaller modulus (that are often more tractable).

Example 4.5.2. Find the smallest positive integer x that satisfies the following
system of linear congruences:

(S)

{
x ≡ 3 mod 7,

x ≡ 7 mod 3.

In this section, we will learn two methods to solve systems of congruences. The
first method consists of solving each linear congruence separately and then finding
common solutions. In this particular example, we begin by solving x ≡ 3 mod 7,
which is equivalent to x = 3+7k, for some k ∈ Z. Now, we also need x ≡ 7 mod 3,
so 3+7k ≡ 7 ≡ 1 mod 3, or, equivalently, 7k ≡ 1−3 ≡ 1 mod 3. The latter implies
that there is some j ∈ Z such that 1− 7k = 3j. In other words, (k, j) is an integral
point in the line 1 = 7k+ 3j. By the theory we have developed (Proposition 2.9.1,
Theorem 2.9.4), we can find all the integral points in the line 1 = 7k + 3j. They
are given by

k = 1 + 3t, j = −2− 7t, for all t ∈ Z.

In particular, k = 1 + 3t, and

x = 3 + 7k = 3 + 7(1 + 3t) = 10 + 21t,

or, equivalently, x ≡ 10 mod 21. The smallest positive integer that satisfies x ≡
10 mod 21 is x = 10. Finally, we may check that x = 10 is indeed a solution to the
system of equations: 10 ≡ 3 mod 7 and 10 ≡ 7 mod 3.
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In our next example, we will solve the same system using an alternative method.
This new method is much more efficient for systems with more than two equations,
as we shall see in other examples to follow later in this section.

Example 4.5.3. We shall solve the system

(S)

{
x ≡ 3 mod 7,

x ≡ 1 mod 3

by solving two simpler systems first. (Notice that we have already simplified the
system (S) by replacing x ≡ 7 mod 3 with x ≡ 1 mod 3.) We will begin by solving
the systems

(S1)

{
x1 ≡ 1 mod 7,

x1 ≡ 0 mod 3
and (S2)

{
x2 ≡ 0 mod 7,

x2 ≡ 1 mod 3.

(S1) The congruence x1 ≡ 0 mod 3 means that x1 is a multiple of 3; i.e., x1 = 3m
for some m ∈ Z. In order to satisfy x1 ≡ 1 mod 7 as well, we need x1 =
3m ≡ 1 mod 7. Thus, we need to find an n such that 1 − 3m = 7n; that is,
1 = 7n+ 3m. It follows that

n = 1 + 3s, m = −2− 7s, for all s ∈ Z.

Hence, x1 = 3m = 3(−2− 7s) = −6− 21s, or, equivalently,

x1 ≡ −6 ≡ 15 mod 21.

(S2) In the system (S2), the first congruence x2 ≡ 0 mod 7 means x2 = 7u for some
u ∈ Z. In order to satisfy x2 ≡ 1 mod 3 as well, we need x2 = 7u ≡ 1 mod 3,
and if we reduce 7 ≡ 1 mod 3, we obtain u ≡ 1 mod 3. Thus, u = 1 + 3v for
any v ∈ Z, and

x2 = 7u = 7(1 + 3v) = 7 + 21v,

or, in other words, x2 ≡ 7 mod 21.

Once we have solved systems (S1) and (S2), we claim that

x ≡ 3 · x1 + 1 · x2 mod 21

is the solutions for the original system (S). Indeed, if we reduce x mod 7, we obtain

x ≡ 3 · x1 + 1 · x2 ≡ 3 · 1 + 1 · 0 ≡ 3 mod 7

because x1 and x2 were constructed so that x1 ≡ 1 and x2 ≡ 0 mod 7. And if we
reduce x mod 3, we obtain

x ≡ 3 · x1 + 1 · x2 ≡ 3 · 0 + 1 · 1 ≡ 1 mod 3

because x1 and x2 were constructed so that x1 ≡ 0 and x2 ≡ 1 mod 3. Thus, x
satisfies (S). We plug in the values of x1 and x2 mod 21, and we obtain

x ≡ 3 · 15 + 1 · 7 ≡ 52 ≡ 10 mod 21.

Therefore, all numbers of the form x ≡ 10 mod 21 are solutions for (S). The
Chinese remainder theorem will explain that these are, indeed, all the solutions for
(S). Before we state and prove the theorem, let us see one useful lemma and then
one additional example with a system of three linear congruences.
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Lemma 4.5.4. Let a, b,m, n ∈ Z such that gcd(m,n) = 1. Then,{
a ≡ b mod m,

a ≡ b mod n,

if and only if a ≡ b mod mn.

Proof. Suppose first that a ≡ b mod mn. Then, by Proposition 4.3.1, part (1), we
also have a ≡ b mod m and a ≡ b mod n.

Conversely, suppose that a ≡ b mod m and a ≡ b mod n. Then, m divides
a− b, and there is some k ∈ Z such that a− b = mk. Also, n divides a− b, and so
n divides mk. Since gcd(m,n) = 1 and n|mk, Corollary 2.7.6 implies that n is a
divisor of k; i.e., k = nk′ for some k′ ∈ Z. Thus, a − b = mk = mnk′ and mn is a
divisor of a− b. This means that a ≡ b mod mn, as desired. �

Example 4.5.5. The difference 103 − 33 = 70 implies the congruences 103 ≡
33 mod 5 and 103 ≡ 33 mod 7. In turn, these congruences and Lemma 4.5.4 imply
that 103 ≡ 33 mod 35.

See Exercise 4.7.29 for a generalization of Lemma 4.5.4. Using induction one
can show the analogue of Lemma 4.5.4 for a system of congruences.

Corollary 4.5.6. Suppose that a ≡ b mod m1,m2, . . . ,mr, for some mi such that
gcd(mi,mj) = 1. Then, a ≡ b mod M , where M = m1 ·m2 · · ·mr. Conversely, if
a ≡ b mod M , then a ≡ b mod mi, for each i = 1, . . . , r.

The following problem appeared in the 4th century AD, in the work of the
Chinese mathematician Sun Zi (see Figure 4.1). This is, essentially, Problem 26 in
Chapter 3 of Sun Zi Suanjing (this means “mathematical manual of Sun Zi”). This
is the earliest known occurrence of this type of problem.

Example 4.5.7. There are a certain number of horses, less than 100, but whose
exact number is unknown. When ordered in groups of 3 or in groups of 7, two
horses remain. When ordered in groups of 5, three horses remain. Find the number
of horses.

The statement of the problem amounts to finding a natural number x such that
x < 100 and x satisfies a system of congruences

(S)

⎧⎪⎨⎪⎩
x ≡ 2 mod 3,

x ≡ 3 mod 5,

x ≡ 2 mod 7.

One method to solve this system would be to first solve the system formed by the
first two congruences (as in Example 4.5.2), whose solution would be a congruence
x ≡ ∗ mod 15, and then solve the system formed by x ≡ ∗ mod 15 and x ≡ 2 mod 7.
Instead, we will employ the method of Example 4.5.3. We will first solve three
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Figure 4.1. A page from a Qing dynasty edition of Sun Zi Suanjing.
Image source: Wikimedia Commons.

simpler systems:

(S1)

⎧⎪⎨⎪⎩
x1 ≡ 1 mod 3,

x1 ≡ 0 mod 5,

x1 ≡ 0 mod 7,

(S2)

⎧⎪⎨⎪⎩
x2 ≡ 0 mod 3,

x2 ≡ 1 mod 5,

x2 ≡ 0 mod 7,

and (S3)

⎧⎪⎨⎪⎩
x3 ≡ 0 mod 3,

x3 ≡ 0 mod 5,

x3 ≡ 1 mod 7.

It will suffice to find one solution xi ∈ Z for each system (Si), for i = 1, 2, 3.

(S1) The second and third equations imply that x1 is a multiple of 5 and 7, respec-
tively. Thus, by Lemma 4.5.4, x1 is a multiple of 35; i.e., x1 = 35k. We also
require x1 ≡ 1 mod 3. Thus, 35k ≡ 1 mod 3. If we reduce 35 ≡ 2 mod 3, we
simply need 2k ≡ 1 mod 3. Since 2 · 2 = 4 ≡ 1 mod 3, it follows that k = 2
works, so x1 = 35k = 70 is a solution for (S1).

(S2) The solution x2 is a multiple of 21, so x2 = 21j. Moreover x2 = 21j ≡ 1 mod 5,
or, equivalently, j ≡ 1 mod 5. Clearly j = 1 works, so x2 = 21 is a solution
for (S2).

(S3) The number x3 = 15h for some h ∈ Z. Moreover, x3 = 15h ≡ 1 mod 7, so
h ≡ 1 mod 7 and h = 1 works. The number x3 = 15 is a solution for (S3).

Next, we claim that

x ≡ 2 · x1 + 3 · x2 + 2 · x3 mod (3 · 5 · 7)
is the solution set for (S). Indeed, notice that

x ≡ 2 · 1 + 3 · 0 + 2 · 0 ≡ 2 mod 3,

x ≡ 2 · 0 + 3 · 1 + 2 · 0 ≡ 3 mod 5,

x ≡ 2 · 0 + 3 · 0 + 2 · 1 ≡ 2 mod 7,
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and so, x mod 105 is a solution for (S). Simplifying the expression that defined x,
we obtain

x ≡ 2 · x1 + 3 · x2 + 2 · x3 mod 105

≡ 2 · 70 + 3 · 21 + 2 · 15 mod 105

≡ 23 mod 105.

Finally, we notice that the only number x ≡ 23 mod 105 that is a natural number
< 100 is x = 23, so the number of horses must be 23.

Example 4.5.8. Not every system of congruences has a solution. For instance,{
x ≡ 1 mod 2,

x ≡ 4 mod 6

cannot have any solutions. Indeed, the first equation says that x = 1+2k for some
k ∈ Z, or, in words, x is odd. However, x ≡ 4 mod 6 implies that x = 4 + 6j, for
some j ∈ Z, and in particular x ≡ 0 mod 2; i.e., x is even. Hence, the equations in
this system are incompatible.

4.5.1. The Chinese Remainder Theorem. We are ready to state and prove
the Chinese remainder theorem, which will tell us that congruence systems under
certain conditions have solutions. Moreover, the proof of the theorem outlines a
method to find the solutions (a method that we have already hinted at in Examples
4.5.3 and 4.5.7).

Theorem 4.5.9 (Chinese remainder theorem). Let m1,m2, . . . ,mr be natural num-
bers which are relatively prime in pairs; i.e., gcd(mi,mj) = 1 for all i �= j. Then,
for any a1, . . . , ar ∈ Z, the simplified system

(S)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x ≡ a1 mod m1,

x ≡ a2 mod m2,
...
x ≡ ar mod mr

has a common solution x0 ∈ Z. Moreover, if x0 and y0 are two solutions for (S),
then x0 ≡ y0 mod M where M = m1 · m2 · · ·mr. In other words, the system (S)
has a unique solution modulo M .

Proof. Let M = m1 ·m2 · · ·mr. We will begin by showing that (S) has a solution.
First, let us show that, for each i = 1, . . . , r, the system

(Si)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xi ≡ 0 mod m1,
...
xi ≡ 1 mod mi,
...
xi ≡ 0 mod mr
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has a solution xi ∈ Z. By Corollary 4.5.6, a number xi satisfies (Si) if and only if
it satisfies the more compact version

(S′
i)

{
xi ≡ 0 mod Mi,

xi ≡ 1 mod mi,

where Mi = M
mi

= m1 · · ·mi−1mi+1 · · ·mr. If xi satisfies (S′
i), then xi must be

a multiple of Mi; i.e., xi = Mibi, for some bi ∈ Z, and xi = Mibi ≡ 1 mod mi.
Since gcd(mi,mj) = 1, for all i �= j, it follows that gcd(mi,Mi) = 1, and therefore,
the congruence Mix ≡ 1 mod mi has a solution x ≡ ci mod mi, by Theorem 4.4.3.
Hence, xi = Mici ∈ Z is a solution for (S′

i) and also for (Si), for each i = 1, . . . , r.
Now, consider the congruence class of

x0 ≡ a1 · x1 + a2 · x2 + · · ·+ ar · xr mod M.

We claim that any such x0 mod M satisfies the original system (S). Indeed,

x0 ≡ a1 · x1 + · · ·+ ai · xi + · · ·+ ar · xr

≡ a1 · 1 + · · ·+ ai · 0 + · · ·+ ar · 0 ≡ a1 mod m1

...
≡ a1 · 0 + · · ·+ ai · 1 + · · ·+ ar · 0 ≡ ai mod mi

...
≡ a1 · 0 + · · ·+ ai · 0 + · · ·+ ar · 1 ≡ ar mod mr.

Thus, any x0 mod M satisfies (S). Moreover, suppose that x0 and y0 are two
solutions for (S). Then x0 ≡ ai ≡ y0 mod mi, for each i = 1, . . . , r. Thus, by
Corollary 4.5.6, it follows that x0 ≡ y0 mod m1 · · ·mr, as claimed. �

Example 4.5.10. Let us find all the integer solutions for the system

(S)

⎧⎪⎨⎪⎩
x ≡ 2 mod 3,

x ≡ 3 mod 4,

x ≡ 4 mod 5.

One way to do this would be to follow the method of the Chinese remainder theorem,
as outlined in the proof of the theorem and Examples 4.5.3 and 4.5.7. However,
there is a trick that allows for an immediate answer. Notice that (S) is equivalent
to

(S′)

⎧⎪⎨⎪⎩
x ≡ −1 mod 3,

x ≡ −1 mod 4,

x ≡ −1 mod 5.

Therefore, x = −1 is a solution for the system. The Chinese remainder theorem,
Theorem 4.5.9, says that there is a unique solution for (S) modulo 3 · 4 · 5 = 60
and, therefore, x ≡ −1 ≡ 59 mod 60 must be such a solution (the reader can verify
that indeed 59 satisfies all three specified congruences by (S)). Hence, all solutions
are of the form x ≡ 59 mod 60.
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One of the conditions in the statement of Theorem 4.5.9 is that the moduli
mi need to be relatively prime. However, the Chinese remainder theorem can be
applied, indirectly, to solve systems where the moduli are not relatively prime.

Example 4.5.11. Find all solutions for the system

(S)

{
x ≡ 4 mod 60,

x ≡ 10 mod 21.

The moduli 60 and 21 are not relatively prime, so we cannot use the Chinese
remainder theorem directly. However, the gcd(60, 21) = 3 and we can write 60 =
3 · 20 and 21 = 3 · 7, and we may expand each congruence in system (S) into two
congruences, using Lemma 4.5.4:

x ≡ 4 mod 60 ⇐⇒
{
x ≡ 4 mod 3,

x ≡ 4 mod 20
and x ≡ 10 mod 21 ⇐⇒

{
x ≡ 10 mod 3,

x ≡ 10 mod 7.

Equivalently, if we simplify each congruence, we obtain

x ≡ 4 mod 60 ⇐⇒
{
x ≡ 1 mod 3,

x ≡ 4 mod 20
and x ≡ 10 mod 21 ⇐⇒

{
x ≡ 1 mod 3,

x ≡ 3 mod 7.

Hence,

(S)

{
x ≡ 4 mod 60,

x ≡ 10 mod 21
⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x ≡ 1 mod 3,

x ≡ 4 mod 20,

x ≡ 1 mod 3,

x ≡ 3 mod 7.

The larger system contains two congruences modulo 3, which happen to be the
same, so this is a redundancy in the system and one congruence can be eliminated.
Thus,

(S)

{
x ≡ 4 mod 60,

x ≡ 10 mod 21
⇐⇒

⎧⎪⎨⎪⎩
x ≡ 1 mod 3,

x ≡ 4 mod 20,

x ≡ 3 mod 7.

The new system with three equations has moduli m1 = 3, m2 = 7, and m3 = 20,
which are relatively prime in pairs. Hence, the Chinese remainder theorem proves
the existence of a unique solution modulo 3 · 7 · 20 = 420. We leave it to the reader
to find and verify that the solution is x ≡ 304 mod 420.

Example 4.5.12. Find all solutions for the system

(S)

{
x ≡ 4 mod 60,

x ≡ 11 mod 21.

As in the previous example, we first need to modify the system so that the moduli
are relatively prime in pairs:

x ≡ 4 mod 60 ⇐⇒
{
x ≡ 1 mod 3,

x ≡ 4 mod 20
and x ≡ 11 mod 21 ⇐⇒

{
x ≡ 2 mod 3,

x ≡ 3 mod 7.
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Hence,

(S)

{
x ≡ 4 mod 60,

x ≡ 11 mod 21
⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x ≡ 1 mod 3,

x ≡ 4 mod 20,

x ≡ 2 mod 3,

x ≡ 3 mod 7.

Thus, a solution to the system (S) would have to satisfy two incompatible conditions
modulo 3, namely x ≡ 1 mod 3 and x ≡ 2 mod 3. This is impossible and the original
system has no solutions.

In the last example of this section, we use the Chinese remainder theorem to
solve a quadratic congruence. We will return to quadratic congruences and study
them in detail in Chapter 10.

Example 4.5.13. Is there a solution of the congruence x2 ≡ 214 mod 1155? Notice
that 1155 = 3 · 5 · 7 · 11. Therefore, by Corollary 4.5.6, x2 ≡ 214 mod 1155 has a
solution if and only if the following system has a solution:

(S)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x2 ≡ 214 mod 3,

x2 ≡ 214 mod 5,

x2 ≡ 214 mod 7,

x2 ≡ 214 mod 11.

The system (S) can be simplified by reducing 214 modulo 3, 5, 7, and 11:

(S)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x2 ≡ 1 mod 3,

x2 ≡ 4 mod 5,

x2 ≡ 4 mod 7,

x2 ≡ 5 mod 11.

Only the last congruence requires a little bit of work, but one soon realizes that
42 ≡ 16 ≡ 5 mod 11. Thus, every single congruence in (S) has a solution. One such
solution is given by

(S′)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x ≡ 1 mod 3,

x ≡ 2 mod 5,

x ≡ 2 mod 7,

x ≡ 4 mod 11.

Searching among numbers in the congruence class of 4 mod 11, we can easily find
that the smallest positive integer that solves (S′) is x = 37. By the Chinese
remainder theorem, the solution of (S′) is x ≡ 37 mod 1155. Therefore, x ≡ 37 mod
1155 is also a solution of (S) and a solution of x2 ≡ 214 mod 1155. Indeed, 372 =
1369 ≡ 214 mod 1155.

Notice that every solution of (S) gives a solution of the quadratic congruence
x2 ≡ 214 mod 1155, and x ≡ 37 mod 1155 is only one of the possibilities. The
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system

(S′′)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x ≡ ±1 mod 3,

x ≡ ±2 mod 5,

x ≡ ±2 mod 7,

x ≡ ±4 mod 11

offers 24 = 16 distinct possibilities, and each one forms a system that has a unique
solution and provides a new congruence class that solves the quadratic congruence.
The complete set of solutions of (S) is therefore

37, 103, 128, 257, 268, 422, 488, 502, 653, 667, 733, 887, 898, 1027, 1052, and 1118

modulo 1155.

4.6. Applications

In this section we discuss several applications of congruences to divisibility testing,
check digits, and factoring algorithms.

4.6.1. Divisibility Tests. It is easy to recognize even numbers. For instance,
2, 46, and 10201342338 are even numbers because their first digits (2, 6, and 8,
respectively) are even; that is, for each, the units digit (the first digit when we
start counting from the right-hand side) is even. However, multiples of 11 are not
immediately recognizable, unless we know some trick or divisibility test that allows
us to check whether a number n is divisible by 11.

Here is one such trick: a number n is divisible by 11 if the alternating sum of
its digits is divisible by 11; e.g., a number dcba (in base 10) is divisible by 11 if and
only if a− b+ c− d is a multiple of 11. For example, n = 10201342338 is divisible
by 11 because

8− 3 + 3− 2 + 4− 3 + 1− 0 + 2− 0 + 1 = 11.

And, indeed, 10201342338 = 11·927394758. But here is a warning! This divisibility
test only works when the number n is expressed in base 10. If we express a number
in base 2, for instance, this divisibility trick ceases to work. For example (11)2 =
1 + 1 · 21 = 3 is not divisible by 11, but the alternating sum of its digits 1− 1 = 0
is divisible by 11. In other words, the divisibility tricks are dependent on the basis
we are using to express our numbers.

Let us begin with a refresher of what it means to express a number in different
bases. Recall that when we write N = 54321 in the decimal system, we mean that

N = 1 + 2 · 10 + 3 · 102 + 4 · 103 + 5 · 104.
The following result explains that every number N ≥ 0 can be expressed uniquely
in base B > 1.

Proposition 4.6.1. Let B > 1 be fixed. Then, every number N ≥ 0 can be
expressed uniquely in the form

N = a0 + a1 ·B + a2 ·B2 + · · ·+ at ·Bt

for some t ≥ 0 and some 0 ≤ ai ≤ B − 1, for i = 0, . . . , t.
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Proof. We will show the following statement by induction on t ≥ 0: every number
0 ≤ N < Bt+1 can be represented uniquely in the form

N = a0 + a1 ·B + a2 ·B2 + · · ·+ at ·Bt

for some 0 ≤ ai ≤ B − 1, for i = 0, . . . , t.
The statement is clear for the case of t = 0; i.e., every number 0 ≤ N ≤ B−1 can

be expressed uniquely as N = a0 with a0 = N , since 0 ≤ a0 = N ≤ B− 1. Now let
us assume that the statement is true for t and suppose that N is a number < Bt+1.
By the division theorem, there are q ≥ 0 and 0 ≤ r ≤ B− 1 such that N = qB+ r.
Notice that q < Bt, because if q ≥ Bt, then N = qB + r ≥ Bt · B = Bt+1.
Hence, by the induction hypothesis, there is a unique representation of q with some
0 ≤ ai ≤ B − 1, for i = 1, . . . , t+ 1, such that

q = a1 + a2 ·B + a3 ·B2 + · · ·+ at+1 ·Bt.

Hence,

N = qB + r

= (a1 + a2 ·B + a3 ·B2 + · · ·+ at+1 ·Bt)B + r

= r + a1 ·B + a2 ·B2 + · · ·+ at+1 ·Bt+1.

If we put r = a0 (and we notice that 0 ≤ r ≤ B − 1), we have shown that the
statement is also true for t + 1. Hence, we have shown the induction step, and by
the principle of mathematical induction, the statement is true for all t ≥ 0. �

Definition 4.6.2. We say that a number N ≥ 1 is expressed in base B if it is
written in the (unique) form

N = a0 + a1 ·B + a2 · B2 + · · ·+ at ·Bt,

where 0 ≤ ai ≤ B−1, for i = 0, . . . , t. The expansion of N in base B is also written
as

N = (atat−1 · · · a2a1a0)B.
If the expansion of N is in the most common base, i.e., the decimal base B = 10, we
usually drop the parentheses (·)10 and simply write the digits N = atat−1 · · · a2a1a0.

Example 4.6.3. Here are some examples of numbers expressed in different bases:

(54321)10 = 1 + 2 · 10 + 3 · 102 + 4 · 103 + 5 · 104,
(54321)7 = 1 + 2 · 7 + 3 · 72 + 4 · 73 + 5 · 74 = (13539)10,

(10101)2 = 1 + 0 · 2 + 1 · 22 + 0 · 23 + 1 · 24 = (21)10.

We are now ready to state and prove several divisibility tests in base 10 and
base 1000.

Proposition 4.6.4. Let N ∈ N be a natural number whose representation in base
10 is given by

N = a0 + a1 · 10 + a2 · 102 + · · ·+ at · 10t,
for some t ≥ 0 and some 0 ≤ ai ≤ 9, for all 0 ≤ i ≤ t. Then:

(a) N ≡ a0 mod 2 and also mod 5. In particular, N is divisible by 2 (resp. 5) if
and only if a0 is divisible by 2 (resp. 5).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



104 4. Congruences

(b) N ≡ a0+ a1 + · · ·+ at mod 3 and also mod 9. In particular, N is divisible by
3 (resp. 9) if and only if the sum of the digits of N is divisible by 3 (resp. 9).

(c) N ≡ a0 − a1 + a2 − · · · + (−1)tat mod 11. In particular, N is divisible by 11
if and only if the alternating sum of the digits of N is divisible by 11.

(d) Suppose that N has the following representation in base 1000:

N = b0 + b1 · 1000 + b2 · 10002 + · · ·+ bs · 1000s,
for some s ≥ 0 and 0 ≤ bj ≤ 999 for all 0 ≤ j ≤ s. Then

N ≡ b0 − b1 + b2 − · · ·+ (−1)sbs

modulo 7, modulo 11, and modulo 13. In particular, N is divisible by 7 (resp.
11; resp. 13) if and only if the alternating sum of the digits of N in base 1000
is divisible by 7 (resp. 11; resp. 13).

Proof. (a) Since 10 ≡ 0 mod 2 and also ≡ 0 mod 5, it follows that

N = a0 + a1 · 10 + a2 · 102 + · · ·+ at · 10t

≡ a0 + a1 · 0 + a2 · 02 + · · ·+ at · 0t

≡ a0

modulo 2 and also modulo 5. Thus, N ≡ a0 mod 2 and mod 5. Hence,
a0 ≡ 0 mod 2 (resp. mod 5) if and only if N ≡ 0 mod 2 (resp. mod 5).

(b) Since 10 ≡ 1 mod 3 and also ≡ 0 mod 9, it follows that

N = a0 + a1 · 10 + a2 · 102 + · · ·+ at · 10t

≡ a0 + a1 · 1 + a2 · 12 + · · ·+ at · 1t

≡ a0 + a1 + a2 + · · ·+ at

modulo 3 and also modulo 9. Thus, N ≡ a0+a1+ · · ·+at mod 3 and also mod
9. Hence, a0+a1+· · ·+at ≡ 0 mod 3 (resp. mod 9) if and only if N ≡ 0 mod 3
(resp. mod 9).

(c) Since 10 ≡ −1 mod 11, it follows that

N = a0 + a1 · 10 + a2 · 102 + · · ·+ at · 10t

≡ a0 + a1 · (−1) + a2 · (−1)2 + · · ·+ at · (−1)t mod 11

≡ a0 − a1 + a2 − · · ·+ (−1)tat mod 11.

Thus, N ≡ a0 − a1 + a2 − · · ·+ (−1)tat mod 11. Hence, a0 − a1 + a2 − · · ·+
(−1)tat mod 11 if and only if N ≡ 0 mod 11.

(d) Suppose that N has the following representation in base 1000

N = b0 + b1 · 1000 + b2 · 10002 + · · ·+ bs · 1000s.
Since 1001 = 7 ·11 ·13, it follows that 1000 ≡ −1 mod 7, 11, and 13. It follows
that

N ≡ b0 − b1 + b2 − · · ·+ (−1)sbs

modulo 7, modulo 11, and modulo 13. Hence, b0 − b1 + b2 − · · ·+ (−1)sbs ≡
0 mod 7 (resp. mod 11; resp. mod 13) if and only if N ≡ 0 mod 7 (resp. mod
11; resp. mod 13). �
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Example 4.6.5. The number N = 13574 = 4 + 7 · 10 + 5 · 102 + 3 · 103 + 1 · 104 is
even, because the first digit, 4, is divisible by 2. The number N is not divisible by
3, because N ≡ 1+ 3+5+7+4 ≡ 2 mod 3. However, N is divisible by 11 because
N ≡ 4− 7 + 5− 3 + 1 ≡ 0 mod 11. Indeed, N = 11 · 1234.

Example 4.6.6. Let N = 95061659. We may express N in base 1000 as

N = 95061659 = 659 + 61 · 1000 + 95 · 10002.
Thus, N ≡ 659− 61+ 95 ≡ 693 mod 7, 11, and 13. Since 693 = 9 · 7 · 11 ≡ 0 mod 7
and 11, it follows that N is also divisible by 7 and by 11. However, 693 ≡ 4 mod 13
and so N is not divisible by 13. Indeed,

N = 95061659 = 7 · 11 · 1234567 = 7 · 11 · 127 · 9721.

Example 4.6.7 (“Casting out nines”). The method of casting out nines is a quick
way to provide some evidence that a large calculation is correct, without having to
repeat the whole computation. This method does not prove that the calculation is
correct but rather checks whether there are small inaccuracies in the calculation.
In particular, the method is based on reducing all numbers modulo 9 and checking
that the calculation is correct modulo 9.

For instance, suppose that we want some assurance that the multiplication

3325 · 182 = 605150

has been done correctly. The method of casting out nines amounts to redoing this
calculation modulo 9. Remember that a number N in base 10 is congruent to the
sum of its digits modulo 9, so

3325 · 182 ≡ (3+3+2+5) · (1+8+2) ≡ 13 · 11 ≡ (1+3) · (1+1) ≡ 4 · 2 ≡ 8 mod 9

and
605150 ≡ 6 + 0 + 5 + 1 + 5 + 0 ≡ 17 ≡ 1 + 7 ≡ 8 mod 9.

Thus, 3325 · 182 ≡ 605150 mod 9, and the method of casting out nines has not
found any errors. (The calculation is, in fact, correct!)

Now, suppose we have done a second multiplication

12345 · 678 = 8379910.

We verify our work modulo 9, as follows:

12345 · 678 ≡ (1 + 2 + 3 + 4 + 5) · (6 + 7 + 8)

≡ 15 · 21
≡ (1 + 5) · (2 + 1)

≡ 6 · 3 ≡ 18 ≡ 0 mod 9,

and

8379910 ≡ 8 + 3 + 7 + 9 + 9 + 1 + 0 ≡ 37 ≡ 3 + 7 ≡ 10 ≡ 1 mod 9.

Since 12345 · 678 ≡ 0 �≡ 1 ≡ 8379910 mod 9, we conclude that the multiplication is
wrong and we have made an error. In fact,

12345 · 678 = 8369910.
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Proposition 4.6.8 (Divisibility tests for powers of 2 and 5). Let N be a natural
number whose expression in base 10a, for some a ≥ 1, is given by

N = bn · (10a)n + · · ·+ b2 · (10a)2 + b1 · (10a) + b0,

for some 0 ≤ bi ≤ (10a − 1), for each i = 0, 1, . . . , n. Then, N ≡ b0 mod 2a and
mod 5a. In particular:

(1) A number N in base 10 is divisible by 2 (resp. 5) if and only if the first digit
is divisible by 2 (resp. 5).

(2) A number N in base 10 is divisible by 4 (resp. 25) if and only if the number
formed by the first two digits is divisible by 4 (resp. 25).

(3) A number N in base 10 is divisible by 2a (resp. 5a) if and only if the number
formed by the first a digits is divisible by 2a (resp. 5a).

Proof. Suppose that N can be written in base 10a as in the statement of the
proposition. Since 10a = 2a · 5a, it follows that 10a ≡ 0 mod 2a and also mod 5a.
Thus,

N = bn · (10a)n + · · ·+ b2 · (10a)2 + b1 · (10a) + b0 ≡ b0

modulo 2a and also mod 5a. Since b0 is the number formed by the first a digits
of N in base 10, it follows that N is divisible by 2a (resp. 5a) if and only if b0 is
divisible by 2a (resp. 5a), and the results of the proposition follow. �
Example 4.6.9. Let N = 34765296 (in base 10). Since N ends in 65296, we know
that:

• N is even, because 6 = 2 · 3 is divisible by 2;
• N is divisible by 4, because 96 = 4 · 24 (or, simply, 96 ≡ 0 mod 4 suffices);
• N is divisible by 8, because 296 = 8 · 37 (or, 296 ≡ 0 mod 8);
• N is divisible by 16, because 5296 = 16 · 331.

However, N is not divisible by 32, because 65296 ≡ 16 mod 32.

Example 4.6.10. Let N = 5276771250 (in base 10). Since N ends in 71250, we
know that:

• N is divisible by 5, because 0 = 5 · 0 is divisible by 5;
• N is divisible by 25, because 50 = 2 · 25 (or, simply, 50 ≡ 0 mod 25 suffices);
• N is divisible by 53 = 125, because 250 = 2 · 125 (or, 250 ≡ 0 mod 125);
• N is divisible by 54 = 625, because 1250 = 2 · 625.

However, N is not divisible by 55 = 3125, because 71250 ≡ 2500 mod 3125.

4.6.2. Congruences in Real Life: Check Digits. When a code is created, there
are several issues to be considered, for instance: versatility of the code, security of
the encryption, and reliability in the transmission of the code. In order to ensure
reliability, codes are usually built with redundancies so that a machine (or a very
perceptive human) can detect whether the code is valid. One way to incorporate
error detection into the code, sometimes the code contains a check digit or the code
verifies some sort of check sum. For example, credit card numbers, the International
Standard Book Number (ISBN), the Universal Product Code (UPC or UPC-A),
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the National Provider Identifier for the US healthcare industry, the routing transit
number in bank codes, and national identification numbers in certain countries,
among others, include a check digit to a check sum as part of the code. Let us see
some examples.

4.6.2.1. UPC-A. The Universal Product Code (UPC) is a barcode symbology
(i.e., a specific type of barcode) that is widely used in North America and in coun-
tries including the UK, Australia, and New Zealand, for tracking trade items in
stores. Its most common form, the UPC-A, consists of 12 numerical digits, which
are uniquely assigned to each trade item, plus a check digit. A UPC-A code is a
string of numbers

C a1a2a3a4a5a6 a7a8a9a10a11a12

where each digit is between 0 and 9 and C is a check digit such that

C ≡ −3

(
5∑

n=0

a2n+1

)
−

6∑
n=1

a2n mod 10.

For example, a certain (must-have) product has UPC-A number

9 780821 852422,

and the check digit C = 9 satisfies

C ≡ 9

≡ −3(7 + 0 + 2 + 8 + 2 + 2)− (8 + 8 + 1 + 5 + 4 + 2)

≡ −3 · 21− 28 ≡ −3− 8 ≡ −11 ≡ −1 ≡ 9 mod 10.

Figure 4.2. An example of a UPC-A code (below the barcode) and an
ISBN-13 code (above the barcode).

4.6.2.2. ISBN-10. The International Standard Book Number, or ISBN, is a
10-digit code used to identify books (here by ISBN we mean ISBN-10; the ISBN-13
has a different check digit system, very similar to that of the UPC-A). The 10-digit
ISBN has a check sum built in so that multiplying each digit by its position in the
number (counting from the right) and taking the sum of these products modulo 11
is 0. The digit in the first position is chosen so that the check sum works, and it may
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need to have the value 10, which is represented by the letter X. More concretely,
if we have an ISBN

a10a9a8a7a6a5a4a3a2a1

where 0 ≤ a1 ≤ 10 (if a1 = 10, then we write a1 = X) and 0 ≤ ai ≤ 9, for
i = 2, . . . , 10, then the code satisfies

10a10 + 9a9 + 8a8 + 7a7 + 6a6 + 5a5 + 4a4 + 3a3 + 2a2 + a1 ≡ 0 mod 11.

For instance, a certain (must-read) book has ISBN 0821852426, and

10 · 0 + 9 · 8 + 8 · 2 + 7 · 1 + 6 · 8 + 5 · 5 + 4 · 2 + 3 · 4 + 2 · 2 + 6 ≡ 198 ≡ 0 mod 11.

4.6.3. Factoring Large Numbers. One important application of congruences
is to factoring large numbers. Let us describe consecutive improvements on an
algorithm to factor a (large) number N . The algorithm succeeds if it finds one
divisor d of N (if d is a divisor, then we can repeat the algorithm replacing N by
d, and also by N/d, until we find the factorization of N into primes). The first
versions of our algorithm are very time consuming, so in each stage we improve the
efficiency of the algorithm by reducing the number of possible divisors we test.

(1.0) Check if d divides N , for all d = 2, 3, . . . , N − 1. In this method we may have
to check up to N − 1 possible divisors.

(1.1) Check if d divides N , for all 2 ≤ d ≤
√
N . Here we may have to check up to√

N possible divisors.
(1.2) Check if p divides N , for all primes 2 ≤ p ≤

√
N . Due to the prime num-

ber theorem, with this method we may be checking roughly
√
N

log
√
N

possible
divisors.

If N is large, however, in order to run our version (1.2) of the algorithm, we need
to know a large list of primes, which may not be available or which may be very
time consuming to produce. Instead, we will restrict our search to possible prime
numbers modulo M , for some fixed M > 1. For instance, if M = 6 and x ≥ 5 is a
prime, then x ≡ 1 or 5 mod 6. Indeed, if x ≡ 0, 2, or 4 mod 6, then x is even, and
if x ≡ 0 or 3 mod 6, then x is divisible by 3, so the only possibilities for a prime x
are 1 or 5 mod 6.

(2.0) Check if d divides N , for all 2 ≤ d ≤
√
N , such that d = 2, d = 3, or d ≡ 1

or 5 mod 6. In this version, we are checking 2/6 = 0.333 . . ., or about 33%, of
the numbers that were checked in version (1.1) of the algorithm.

If M = 30 and x ≥ 7 is a prime, then gcd(x, 30) = 1. Thus, the only congruence
classes modulo 30 that are possible for x are those numbers 1 ≤ n ≤ 30 such that
gcd(n, 30) = 1. Thus, x ≡ 1, 7, 11, 13, 17, 19, 23, or 29 mod 30. These represent 8
out of 30 possibilities mod 30.

(2.1) Check if d divides N , for all 2 ≤ d ≤
√
N , such that d = 2, 3 or d = 5 or

d ≡ 1, 7, 11, 13, 17, 19, 23, or 29 mod 30. In this version, we are checking about
8
√
N/30 = (0.2666 . . .)

√
N possible divisors, or about 26% of the numbers

that were checked in version (1.1) of the algorithm.

When M = 2 · 3 · 5 · 7 = 210, there are 48 numbers 1 ≤ n ≤ 210 such that
gcd(n, 210) = 1.
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(2.2) Check if d divides N , for all 2 ≤ d ≤
√
N , such that d = 2, 3, 5 or d =

7 or d ≥ 8 such that gcd(d, 210) = 1. In this version, we are checking
48
√
N/210 = (0.2285 . . .)

√
N possible divisors, or about 23% of the numbers

that were checked in version (1.1) of the algorithm.

Example 4.6.11. Let N = 2491. Let us see how different methods of factorization
work in this particular case.

(1.0) We would try dividing N = 2491, by d = 2, 3, 4, 5, 6, . . . , 2490. In practice, we
need to calculate N mod d, for each d = 2, 3, . . .. The method would stop at
d = 47, which is the smallest non-trivial positive divisor (after having tested
46 possible divisors). In fact N = 47 · 53 is the prime factorization for N .

(1.1) We would check if N = 2491 is divisible by d = 2, 3, 4, . . . , 49; i.e., test all the
numbers 2 ≤ d ≤

√
N =

√
2491 = 49.90991 . . .. The method would stop at

d = 47 after having tested 46 possible divisors.
(1.2) We would check if N = 2491 is divisible by p = 2, 3, 5, 7, 11, 13, 17, 19, 23,

29, 31, 37, 41, 43, or 47, which are all the primes below
√
N = 49.9 . . .. The

method would stop at p = 47, after having tested 15 possible (prime) divisors.
(2.0) We would check if N = 2491 is divisible by d in the set

{2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49},

which are all the numbers d such that d = 2 or 3, or d ≡ 1 or 5 mod 6, and
d ≤ 49 <

√
N . The method would stop at d = 47 after having tested 17

possible divisors.
(2.1) We would check if N = 2491 is divisible by d in the set

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49},

which are all the numbers d such that d = 2, 3 or 5, or d ≡ 1, 7, 11, 13, 17, 19,
23, or 29 mod 30, and d ≤ 49 <

√
N . The method would stop at d = 47 after

having tested 15 possible divisors (just as good as (1.2) but without having to
check that these numbers are primes!).

(2.2) We would check if N = 2491 is divisible by d in the set

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47},

which are all the numbers d such that d = 2, 3, 5 or 7, or gcd(d, 210) = 1,
and d ≤ 49 <

√
N . The method would stop at d = 47 after having tested 15

possible divisors (just as good as (2.1)).

For any n ≥ 1, one can test whether N is divisible by p1, . . . , pn or numbers
d ≤

√
N with gcd(d,M) = 1, where M = p1p2 · · · pn. This is a fine method, but it

can be improved. Next, we present another method to factor large numbers, of a
completely different nature, but that also relies on congruences.

4.6.3.1. The Pollard’s Rho Factorization Algorithm. Pollard’s rho factoring al-
gorithm is based on two facts:

• Euclid’s algorithm to find the greatest common divisor of two numbers is
efficient and fast.
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• If we have a p-sided die, where p is a prime, the expected value of consecutive
rolls before there are two repeated values is about (1.2)

√
p.

The idea of the method is the following. Let p be the smallest prime divisor of N .
If we can generate a list of integers x1, x2, . . . that behave as if they were random
modulo p, then we expect that after (1.2)

√
p values, there will be a repetition

(mod p) in the list. Suppose xi ≡ xj mod p; then xi − xj is divisible by p, and
gcd(xi − xj , N) should be at least p. Here are the steps in the algorithm:

(1) Generate a list of values modulo N recursively with x0 ≡ 6 mod N and xn+1 ≡
x2
n + 1 mod N .

(2) For each n ≥ 1, calculate d = gcd(x2n − xn, N). If 1 < d < N , then d is a
divisor of N , and the algorithm stops.

Remark 4.6.12. The function x2 + 1 is essentially random modulo N and also
modulo p for any prime p. Thus, the list of integers x0, x1, . . . is essentially ran-
dom modulo N and modulo p. The initial value x0 ≡ 6 mod N is called the seed
value and can be changed to any other value, therefore producing a different list of
integers, also random modulo N and p.

Example 4.6.13. Let us factor N = 2491 using Pollard’s rho algorithm.

(1) We calculate the sequence x0 ≡ 6 mod 2491 and xn+1 ≡ x2
n + 1 mod 2491:

6, 37, 1370, 1178, 198, 1840, 332, 621, 2028, 144, 809, 1840, 332, 621, 2028, . . . .

(2) Each time we calculate one value in an even position (e.g., the 2nd value x2,
the 4th value x4, the 6th value x6, etc.) we calculate gcd(x2n − xn, 2491):

gcd(x2 − x1, N) = gcd(1370− 37, 2491) = gcd(1333, 2491) = 1,

gcd(x4 − x2, N) = gcd(198− 1370, 2491) = gcd(−1172, 2491) = 1,

gcd(x6 − x3, N) = gcd(332− 1178, 2491) = gcd(−846, 2491) = 47.

The algorithm stops. We have found one divisor of N = 2491, namely d = 47.
Indeed, 47 is prime and N = 47 · 53 is its prime factorization.

4.6.4. Substitution and Vigenère Ciphers. In this section we introduce our
first applications of congruences to the art of communicating in secret, i.e., cryptog-
raphy. We will see more sophisticated applications in Sections 7.5.3, 8.9.1, 10.7.2,
and 16.9. For an introduction to mathematical cryptography, we highly recommend
[HPS14].

One of the simplest methods to encrypt a message is what we call a substitution
cipher. An example of substitution cipher is the so-called Caesar cipher, a type
of encryption that was used by Roman Emperor Julius Caesar (100 BC – 44 BC)
to secure his private communications. A substitution cipher simply replaces each
letter for another letter (or symbol). In other words, if A = {A,B, . . . , Z} is our
alphabet, a substitution cipher is just a bijection τ : A → A. In order to work with
a substitution cipher more efficiently, we will use congruences. First, we identify
each letter with a 2-digit number 0 ≤ N ≤ 25; i.e.,

Letter A B C D E F G H I · · · X Y Z

Number 00 01 02 03 04 05 06 07 08 · · · 23 24 25.
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For example, A = 00 and W = 22. The word “HELLO” would be transcribed as
the string of numbers “07 04 11 11 14”.

Since the alphabet now corresponds to numbers 0 ≤ N ≤ 25, a substitution
cipher is a bijective function between the numbers modulo 26.

Definition 4.6.14. Let C26 = {0, . . . , 25} be a complete residue system mod 26.

(1) A substitution cipher is a bijection τ : C26 → C26. The inverse function τ−1 is
called the deciphering map.

(2) Let k ≥ 0 be an integer and let τk : C26 → C26 be the function

τk(N) ≡ N + k mod 26.

Then, τk is called a shift cipher, or Caesar cipher. The deciphering map τ−1
k

is given by τ−1
k (M) ≡ M − k mod 26.

Let us show that a Caesar cipher is indeed a substitution cipher. In other
words, we need to show that τk is a bijection, for all k ≥ 1. First, τk is injective
because N +k ≡ N ′+k mod 26 implies that N ≡ N ′ mod 26, by Proposition 4.2.1.
Since C26 is a complete residue system mod 26, it follows that N = N ′, as desired.
Since C26 is finite and τk is injective, it must be surjective and therefore a bijection.
Alternatively, the reader can check that τk(τ−1

k (M)) = M and τ−1
k (τk(N)) = N for

all M,N ∈ C26.

Example 4.6.15. Let k = 1. Then, τ1 is the substitution cipher that sends each
letter to the next letter of the alphabet, and Z is replaced by A. Indeed, τ1(N) ≡
N +1 mod 26, so the Nth letter is sent to the (N +1)th letter for 0 ≤ N ≤ 24, and

τ1(25) ≡ 25 + 1 ≡ 26 ≡ 0 mod 26.

Thus, the letter Z is sent to A, as claimed.
We can now use τ1 to encrypt a message. Suppose our message is “HELLO”,

which is transcribed as “07 04 11 11 14”. Thus, using τ1 on each pair of numbers,
we obtain a number string “08 05 12 12 15” which corresponds to the encrypted
message “IFMMP”.

A substitution cipher is susceptible to attack by spies, using a method known
as (letter) frequency analysis. This type of attack is based on the fact that, in a
long piece of written language, some letters are more frequent than others. For
instance, the most frequent letter in the English language is E, followed by T , and
then A. See Figure 4.3 for a complete chart of frequencies. If a text is encrypted
using a substitution cipher, then every instance of the letter E will be transcribed
as a fixed letter, and this character will appear as often as E appears in the English
language.

In particular, if we intercept a long message that has been encrypted using a
substitution cipher, it is likely that the most common character corresponds to the
letter E. If this guess is correct and the cipher was a Caesar cipher, then a spy
can now break the entire code and translate the message (see Exercise 4.7.51). In
order to strengthen the encryption, the message can be encoded using a rotation
of Caesar ciphers. This method is called a Vigenère cipher, named after Blaise de
Vigenère (1523–1596), although the method was first described by Giovan Battista
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Figure 4.3. Relative frequency of letters in the English language. Image
source: Wikimedia Commons.

Bellaso in 1553. Before we write a formal definition of a Vigenère cipher, let us see
a simple example.

Example 4.6.16. Let us encrypt the message “HELLO” using a rotation of three
Caesar ciphers: τ1, τ2, and τ3. First, the message is written in numeric form as
“07 04 11 11 14” as before. Then, the encrypted message will be given by the string

τ1(07) τ2(04) τ3(11) τ1(11) τ2(14) = 08 06 14 12 16,

which in turn corresponds to the letters “IGOMQ”. Notice that the letter L has
been encrypted in two different ways, because the different positions corresponded
to different Caesar ciphers.

Definition 4.6.17. Let n ≥ 0 and let K = (k1, . . . , kn−1, kn = k0) be an n-tuple
of non-negative integers. Let τki

be the Caesar cipher corresponding to the integer
ki. Finally, let (N, i) be a pair formed by a number N ∈ C26 and a natural number
i that gives the position of N in a string. Then, a Vigenère cipher with key K is a
map

τK : C26 × N → C26

given by τK((N, i)) ≡ N + ki mod n mod 26 where i mod n is the least non-negative
residue of i modulo n.

For instance, in Example 4.6.16 we used a Vigenère cipher with key K =
(k1, k2, k3 = k0) = (1, 2, 3). The 5th letter of HELLO is O = 14, so the cipher will
replace it by

τK((14, 5)) ≡ 14 + k5 mod 3 ≡ 14 + k2 ≡ 14 + 2 ≡ 16 mod 26,

since 5 ≡ 2 mod 3, and we have k2 = 2. Thus, the cipher changes O by the letter
corresponding to the number 16, which is the letter Q. See Exercises 4.7.53 and
4.7.54 for some other examples of Vigenère-ciphered messages.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



4.7. Exercises 113

4.7. Exercises

Exercise 4.7.1. Find the least non-negative residues in the following congruence
classes:

(a) 365 mod 5.
(b) −3122 mod 3.

(c) 3122082546 mod 10.
(d) −2445678 mod 10.

Exercise 4.7.2. Find one integer a ∈ Z that satisfies, simultaneously, both con-
gruences a ≡ 5 mod 8 and a ≡ 3 mod 7.

Exercise 4.7.3. Let N > 4 be a composite number, and suppose {0, a2, . . . , aN}
is a complete residue system modulo N , for some integers ai, for 1 ≤ i ≤ N , where
we fix a1 = 0. Show that at least one of a2, . . . , aN is not a prime number.

Exercise 4.7.4. Let p be a prime number.

(a) Show that there is a complete residue system {q1, q2, . . . , qp} modulo p, such
that each qi is a prime number, for 1 ≤ i ≤ p. (Hint: use Dirichlet’s theorem
on primes in arithmetic progressions, Theorem 3.3.11.)

(b) Find a complete residue system {q1, . . . , q11} modulo 11 such that each qi is
a prime number.

Exercise 4.7.5. Show that if n > 4 is not prime, then (n− 1)! ≡ 0 mod n.

Exercise 4.7.6. Let a, b, a′, b′, k be arbitrary integers and let m > 1. Show that:

(a) If a ≡ b mod m, then ka ≡ kb mod m.
(b) If a ≡ b mod m and a′ ≡ b′ mod m, then a+ a′ ≡ b+ b′ mod m.

Exercise 4.7.7. Use congruences to show that 6 · 4n ≡ 6 mod 9 for any n ≥ 0.

Exercise 4.7.8. Find the least non-negative residues in the following congruence
classes:

(a) 518 mod 7.

(b) 68105 mod 13.
(c) 647 mod 12.

Exercise 4.7.9. Let a and b be odd numbers, and let m = a + b and n = a − b.
Show that either m or n is congruent to 0 mod 4 and the other one is congruent to
2 mod 4.

Exercise 4.7.10. Let a, b, c be non-zero integers such that gcd(a, b, c) = 1 and
a2 + b2 = c2 (that is, (a, b, c) is a pythagorean triple). Prove that one of a or b is
even and the other one is odd.

Exercise 4.7.11. Are there three consecutive numbers whose sum is divisible by
37? Either find an example or prove that such an example does not exist.
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Exercise 4.7.12. Let n > 1 be a natural number, and let S be a set formed by
n + 1 distinct integers. Show that there are two numbers of S such that their
difference is divisible by n. (Hint: consider the least non-negative residue modulo
n of each element in S and the pigeonhole principle, Theorem 2.3.14.)

Exercise 4.7.13. Show that 5e + 6e ≡ 0 mod 11 for all odd numbers e.

Exercise 4.7.14. Prove part (a) below, and then find the least non-negative residue
modulo 7, 11, and 13 in parts (b), (c), and (d).

(a) A number N is congruent modulo 7, 11, or 13 to the alternating sum of its
digits in base 1000. (For example, 123456789 ≡ 789− 456+123 ≡ 456 mod 7,
11, or 13.)

(b) 11233456.
(c) 58473625.
(d) 100,000,000,000,000,001.

Exercise 4.7.15. Find divisibility tests for numbers in base 34 for 2, 3, 5, 7, 11, and
17. Is (5368)34 divisible by 11 or 17?

Exercise 4.7.16. Show that 2560 ≡ 1 mod 561.

Exercise 4.7.17. Show that 36100 ≡ 16 mod 17.

Exercise 4.7.18. Show that 257 is a divisor of 100 · 225 − 57 = 3355443143.

Exercise 4.7.19. Show that 42 is a divisor of n7 − n for all positive n.

Exercise 4.7.20. Show that 55552222 + 22225555 is divisible by 7.

Exercise 4.7.21. Prove that for any natural number n ≥ 1, 36n − 26n is divisible
by 35 (Hint: work modulo 5 and modulo 7, separately).

Exercise 4.7.22. Find the remainder when 14! is divided by 17.

Exercise 4.7.23. Find the smallest number ≥ 120120 which is not divisible by any
prime p < 20, using congruences. (Hint: calculate 120120 mod p, for every prime
p < 20.)

Exercise 4.7.24. What time does a clock read 100 hours after it reads 2 o’clock?
If the time is now 2 pm, after 100 hours, will it be in the pm or in the am?

Exercise 4.7.25. Find all x ∈ Z that satisfy the following linear congruence or
explain why no integral solution exists (these are individual congruences and not a
system!).

(a) 6x ≡ 9 mod 11.
(b) 6x ≡ 11 mod 9.
(c) 6x ≡ 9 mod 15.

Exercise 4.7.26. Let p be a prime, and let k ∈ Z such that 1 ≤ k ≤ p. Define the
p-over-k binomial coefficient (or p-choose-k coefficient) by(

p

k

)
=

p!

k!(p− k)!
.

Prove that
(
p
k

)
is divisible by p. (You may assume that

(
p
k

)
is an integer.)
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Exercise 4.7.27. Let p be a prime, and let a and b be integers. Prove that

(a+ b)p ≡ ap + bp mod p.

(Hint: use the binomial theorem (a+ b)n =
∑n

k=0

(
n
k

)
akbn−k, Exercise 2.11.14, and

Exercise 4.7.26.)

Exercise 4.7.28. Let p be a prime, and let a, s, t be integers with s ≥ t ≥ 1. Prove
that there are ps−t integers congruent to a mod pt in the interval [1, ps].

Exercise 4.7.29. Let m,n be two integers greater than 1, and suppose a, b are
integers such that a ≡ b mod m and a ≡ b mod n.

(a) Show that a ≡ b mod lcm(m,n).
(b) Find values of m, n, a, and b such that a ≡ b mod m and a ≡ b mod n, but

a �≡ b mod mn.

Exercise 4.7.30. Find the smallest positive integer n that satisfies, simultaneously,
all three congruences

n ≡ 1 mod 3,

n ≡ 2 mod 4,

n ≡ 3 mod 5.

You must use the method that appears in the proof of the Chinese remainder
theorem (see also Example 4.5.7).

Exercise 4.7.31. Find the smallest positive integer that leaves remainders of 2, 4, 6
when divided by 3, 5, 7, respectively. You must use the Chinese remainder theorem.

Exercise 4.7.32. Find the smallest positive integer n such that

n ≡ 7 mod 3, n ≡ 5 mod 5, n ≡ 3 mod 7.

Exercise 4.7.33. Find three consecutive integers x, y, and z that are divisible by
3, 5, and 7, respectively (i.e., x is divisible by 3, y by 5, and z by 7).

Exercise 4.7.34. Solve each of the following systems:⎧⎪⎨⎪⎩
x ≡ 2 mod 7,

x ≡ 4 mod 8,

x ≡ 3 mod 9,

⎧⎪⎨⎪⎩
y ≡ 1 mod 7,

y ≡ 3 mod 8,

y ≡ 6 mod 9,

⎧⎪⎨⎪⎩
z ≡ 5 mod 7,

z ≡ 2 mod 8,

z ≡ 1 mod 9.

Exercise 4.7.35. Solve each of the following systems:⎧⎪⎨⎪⎩
x ≡ −3 mod 11,

x ≡ 103 mod 13,

x ≡ 3 mod 15,

⎧⎪⎨⎪⎩
y ≡ 25 mod 11,

y ≡ 35 mod 13,

y ≡ 31 mod 15.

Exercise 4.7.36. Determine if the following system is compatible and, if so, then
determine all the solutions in integers x ∈ Z:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x ≡ 1 mod 2,

x ≡ 2 mod 5,

x ≡ 5 mod 6,

x ≡ 5 mod 12.
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Exercise 4.7.37. A troop of 17 monkeys store their bananas in 11 piles of equal
size with a twelfth pile of 6 left over. When they divide the bananas into 17 equal
groups, none remain. What is the smallest number of bananas they can possibly
have?

Exercise 4.7.38. A prime p is a safe prime if p = 2q+1 where q is also prime. The
prime q, in turn, is called a Sophie Germain prime. For instance, p = 5 = 2 · 2 + 1
and p = 7 = 2 · 3 + 1 are the first two safe primes, and q = 2 and q = 3 are the
first two Sophie Germain primes. Suppose that p > 7 is a safe prime and prove the
following.

(a) Show that p ≡ 2 mod 3.
(b) Show that p ≡ 3 mod 4.
(c) Show that if p > 11, then p �≡ 1 mod 5.
(d) Use the previous congruences to show that p ≡ 23, 47, or 59 mod 60.
(e) Use (d) to find 10 safe primes larger than 1000.

Note: safe primes are important in cryptographic applications because of their use
in discrete logarithm-based techniques like the Diffie–Hellman key exchange.

Exercise 4.7.39. Find all the solutions for the following congruences.

(a) Find all solutions for the congruence x2 ≡ 1 mod 8.
(b) Find all solutions for x2 ≡ 1 mod 5.
(c) Use (a) and (b) and the Chinese remainder theorem to find all solutions for

x2 ≡ 1 mod 40.

Exercise 4.7.40. Solve the following quadratic congruences.

• Find all solutions of x2 ≡ 1 mod 133.
• Prove that there are no solutions: x2 ≡ 2 mod 133.
• Find (at least) one solution: x2 ≡ 93 mod 133.

Note: Trial and error will yield no points. (Hint: use the Chinese remainder theorem
and the fact that 133 = 7 · 19.)

Exercise 4.7.41. Prove that the equation x2 − 7y3 + 21z5 = 3 has no solution
with x, y, z in Z (Hint: calculate all possible squares modulo 7.)

Exercise 4.7.42. Show that 22
n

+ 5 is composite for every positive integer n.

Exercise 4.7.43. The 7-digit number n = 72x20y2, where x and y are digits
between 0 and 9, is divisible by 72. What are the possibilities for x and y?

Exercise 4.7.44. Show that n(n− 1)(2n− 1) is divisible by 6 for every n > 0.

Exercise 4.7.45. Find 3 primes in each category:

(1) Find 3 primes p ≡ 1 mod 3 and also 3 primes p ≡ 2 mod 3.
(2) Find 3 primes p ≡ 1 mod 5 and also 3 primes p ≡ 2 mod 5.
(3) Find 3 primes p ≡ 3 mod 5 and also 3 primes p ≡ 4 mod 5.
(4) Are there any primes p ≡ 3 mod 21? Why? Why not?
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(5) Are there any primes p ≡ 3 mod 22? Why? Why not?
(6) Are there infinitely many primes in each category above? How do you know?

(Hint: read Chapter 3.)

Exercise 4.7.46. Let n ≥ 0 and let F (n) = 22
n

+ 1 be the nth Fermat number
(see Example 3.2.7). Show that F (n) + 2 is composite for infinitely many values of
n. (Hint: reduce modulo 7.)

Exercise 4.7.47. Let F (n) be the nth Fermat number (as in Exercise 4.7.46).
Show that the decimal expansion of F (n) ends in 7 for all n > 1 (i.e., the unit digit
is 7). For instance, F (2) = 22

2

+ 1 = 17.

Exercise 4.7.48. Let p be a prime number.

(1) Let a and b be integers such that ab ≡ 0 mod p. Show that either a ≡ 0 mod p
or b ≡ 0 mod p.

(2) Let n > 3 be a composite number. Show that there are integers a, b, both
non-zero when reduced modulo n and such that ab ≡ 0 mod n.

Exercise 4.7.49. Let C26 = {0, 1, 2, . . . , 25} be a complete residue system mod
26. Decide whether each map τ : C26 → C26 given below is a substitution cipher,
as in Definition 4.6.14.

(1) The map given by τ (N) ≡ 2N mod 26.
(2) The map given by τ (N) ≡ N3 mod 26.
(3) The map given by τ (N) ≡ 5N + 3 mod 26.

Exercise 4.7.50. Let τ be the substitution cipher given by τ (N) ≡ 3N mod 26
for any letter 0 ≤ N ≤ 25.

(1) Use the function τ to encrypt the word “PIN” letter by letter.
(2) Describe the decryption function τ−1 such that τ−1(τ (N)) ≡ N mod 26 for

any 0 ≤ N ≤ 25.
(3) Decipher the message “OYN” that was encrypted using τ .

Exercise 4.7.51. The following text was encrypted using a Caesar cipher:

ZNGU VF NJRFBZR OHG AHZORE GURBEL VF GUR ORFG.

Use frequency analysis (Figure 4.3) to break the cipher and decrypt the message.

Exercise 4.7.52. You have intercepted a ciphertext “URYYB” that was encrypted
using a Caesar cipher and later learned it corresponded to the word “HELLO”.
Decipher the next intercepted ciphertext using the same Caesar cipher: “JBEYQ”.

Exercise 4.7.53. Use a Vigenère cipher with key K = (3, 1, 2) to encrypt the
message “HELLO SILENCE MY OLD FRIEND”.

Exercise 4.7.54. The message “OIYFV WFPO NI WII REHV” was encrypted
using a Vigenère cipher with key K = (1, 4, k3). What is k3? What was the
original message?
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CHAPTER 5

GROUPS, RINGS, AND FIELDS

Algebra is the offer made by the devil to the
mathematician. . . . All you need to do is give me
your soul: give up geometry.

Michael Atiyah

In the previous chapter we defined the concept of congruence,

a ≡ b mod m if and only if m|a− b,

and we proved a number of properties satisfied by congruences. We also saw that
the set Cm = {0, 1, 2, 3, . . . ,m − 1} is a complete residue system modulo m. In
particular, when we work with congruences modulo m, every equation can be re-
duced to a statement about the numbers in Cm. In this chapter, we will begin by
defining an addition operation and a multiplication operation on Cm, which will
make Cm into a number system with only m elements, that resembles the usual
number system Z is some respects, but it is also fundamentally different, as Cm

only has m elements, while Z has infinitely many elements. The set Cm, together
with its addition and multiplication operations, will be denoted by Z/mZ.

5.1. Z/mZ

We begin by reminding the reader about the definition of a congruence class (which
we already saw in Definition 4.1.1).

Definition 5.1.1. Let m > 1 be fixed. The congruence class of an integer a ∈ Z

modulo m is the set of all integers b ∈ Z such that b ≡ a mod m. The congruence
class of a modulo m will be denoted by a mod m. In other words,

a mod m = {b ∈ Z : b ≡ a mod m}
= {. . . , a− 3m, a− 2m, a−m, a, a+m, a+ 2m, a+ 3m, . . .}.

119
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120 5. Groups, Rings, and Fields

Example 5.1.2. Let m = 5. The congruence class of 2 modulo 5 is the set of all
integers that are congruent to 2 modulo 5; i.e.,

2 mod 5 = {b ∈ Z : b ≡ 2 mod 5}
= {. . . ,−13,−8,−3, 2, 7, 12, 17, . . .}.

Proposition 5.1.3. Let m > 1 be fixed. Then Z is the disjoint union of the m
congruence classes 0 mod m, 1 mod m, . . . , and m− 1 mod m. In other words,

Z = (0 mod m) ∪ (1 mod m) ∪ · · · ∪ (m− 1 mod m) =
m−1⋃
i=0

(i mod m),

and (i mod m) ∩ (j mod m) = ∅ if i �≡ j mod m.

Proof. By Proposition 4.1.4, the set Cm = {0, 1, 2, . . . ,m−1} is a complete residue
system modulo m. In particular, every integer a ∈ Z is congruent to exactly one i
in the range 0 ≤ i ≤ m − 1. Thus, a ≡ i mod m and a belong to the congruence
class i mod m, and it does not belong to any other j mod m, for i �≡ j mod m. This
shows that Z is the disjoint union of the congruence classes 0 mod m, 1 mod m, . . . ,
and m− 1 mod m, as claimed. �

Now we are ready to define operations of addition and multiplication on Cm

and, therefore, define Z/mZ (we read this as “zee modulo m” or “the integers modulo
m”).

Definition 5.1.4. We define (Z/mZ,+, ·) as the set of all congruence classes mod-
ulo m; i.e.,

Z/mZ = {0 mod m, 1 mod m, . . . ,m− 1 mod m}
together with two operations + and ·, defined by

(1) addition: (a mod m) + (b mod m) = (a+ b) mod m and
(2) multiplication: (a mod m) · (b mod m) = (a · b) mod m,

for any 0 ≤ a, b ≤ m− 1.

Remark 5.1.5. Notice that if a′ ≡ a mod m and b′ ≡ b mod m, then a′ + b′ ≡
a+ b mod m by Proposition 4.2.1, so that

(a mod m) + (b mod m) = (a+ b) mod m

= (a′ + b′) mod m = (a′ mod m) + (b′ mod m).

In other words, addition of congruence classes is a well-defined operation and it does
not depend on the choice of representative a ∈ Z of a congruence class a mod m.
Similarly, multiplication is also well-defined.

Remark 5.1.6. The congruence relation ≡ in Z is an equivalence relation (see
Remark 4.2.5). Each congruence class is an equivalence class for the congruence
relation. The set Z/mZ is the set of all equivalence classes, or, in other words,
Z/mZ is the quotient set Z/ ≡.

Example 5.1.7. Let m = 2. Then (Z/2Z,+, ·) has only two elements, namely
0 mod 2 and 1 mod 2. For instance,

(1 mod 2) + (1 mod 2) = (1 + 1 mod 2) = (0 mod 2),
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which we will usually abbreviate as 1 + 1 ≡ 2 ≡ 0 mod 2. Here are the addition
and multiplication tables in Z/2Z:

+ 0 1

0 0 1

1 1 0

and
· 0 1

0 0 0

1 0 1

.

Example 5.1.8. Let m = 5. The set (Z/5Z,+, ·) has 5 elements, namely Z/5Z =
{0, 1, 2, 3, 4 mod 5}. Here are some examples of calculations in Z/5Z:

(2 mod 5) + (4 mod 5) = (6 mod 5) = (1 mod 5),

(2 mod 5) · (4 mod 5) = (8 mod 5) = (3 mod 5),

which we will abbreviate as 2 + 4 ≡ 1 mod 5 and 2 · 4 ≡ 3 mod 5. Here are the full
addition and multiplication tables for Z/5Z:

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

and

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

.

Example 5.1.9. Let m = 6 and consider Z/6Z. The addition and multiplication
tables for Z/6Z are as follows:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

and

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

.

Some peculiarities occur in Z/6Z that are not present in Z/2Z and Z/5Z; for
instance,

(3 mod 6) · (4 mod 6) = (12 mod 6) = (0 mod 6),

or 3 · 4 ≡ 0 mod 6. Notice that 3 �≡ 0 mod 6 and 4 �≡ 0 mod 6 but their product is
0 mod 6. Also, we have

3 · 5 ≡ 3 · 7 mod 6

but 5 �≡ 7 mod 6. In particular, the cancellation law (Theorem 2.2.3) does not hold
in Z/6Z. See also Proposition 4.3.1 and Exercise 4.7.48.

In the following proposition, we shall prove properties of (Z/mZ,+, ·), similar
to the defining axioms of Z that we saw in Section 2.1.
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Proposition 5.1.10. Let m > 1 be fixed, and let (Z/mZ,+, ·) be the set of con-
gruence classes modulo m with operations + and · as in Definition 5.1.4. Then:

(1) The set Z/mZ is closed under the + and · operations; that is, if a, b mod m ∈
Z/mZ, then a+ b mod m and a · b mod m are also in Z/mZ.

(2) (Properties of + and ·) For all a, b, c mod m ∈ Z/mZ, we have:
(2.a) (Commutativity): a+ b ≡ b+ a mod m and a · b ≡ b · a mod m.
(2.b) (Associativity): (a + b) + c ≡ a + (b + c) mod m and (a · b) · c ≡

a · (b · c) mod m.
(2.c) (Distributivity): c · (a+ b) ≡ c · a+ c · b mod m and (a+ b) · c ≡ a · c+ b ·

c mod m.

(3) (Existence of distinguished elements)
(3.a) (Additive identity) There exists 0 mod m ∈ Z/mZ such that a + 0 ≡

0 + a ≡ a mod m, for all a mod m ∈ Z/mZ.
(3.b) (Additive inverses) For all a mod m ∈ Z/mZ there is m − a mod m ∈

Z/mZ such that a+ (m− a) ≡ 0 ≡ (m− a) + a mod m.
(3.c) (Multiplicative identity) There exists 1 mod m ∈ Z/mZ such that a · 1 ≡

1 · a ≡ a mod m, for all a mod m ∈ Z/mZ.

Proof. The properties of (Z/mZ,+, ·) follow directly from the axioms of Z, the
definition of congruence ≡, and the definitions of + and · on Z/mZ. For example,
the fact that + and · are closed in Z/mZ follows from Proposition 5.1.3 and, in
particular, from Proposition 4.1.4. Indeed, if a, b ∈ Z are arbitrary, then a+ b will
belong to a unique congruence class modulo m, which we denote by (a+ b) mod m
and, by definition, (a mod m) + (b mod m) is the class (a+ b) mod m. Thus, + is
closed in Z/mZ (see also Remark 5.1.5).

As another example, let us show that + and · are commutative:

(a mod m) + (b mod m) = (a+ b) mod m

= (b+ a) mod m = (b mod m) + (a mod m), and
(a mod m) · (b mod m) = (a · b) mod m

= (b · a) mod m = (b mod m) · (a mod m),

where we have used that a+ b = b+ a and a · b = b · a for any a, b ∈ Z. �

The previous proposition shows that Z and Z/mZ, for any m > 1, share a
number of properties: namely the axioms (1), (2), and (3) for Z as in Section 2.1
also hold for Z/mZ. However, the fourth axiom that defines Z, i.e., the existence
of N, with its characteristic properties, is a fundamental difference between Z and
Z/mZ. The reader might want to play around with the axioms that define N and
try to find a subset N′ of Z/mZ that would satisfy said properties. . . and eventually
prove that such a set N′ cannot exist (see Exercise 5.6.1).

5.1.1. Z/mZ and Geometry. From the arithmetic geometry point of view, our
interest in Z/mZ comes from the following theorem, which says that if a diophantine
equation has an integral point, then it also has a solution over Z/mZ, for all m > 1.
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Theorem 5.1.11. Let C : f(x1, . . . , xn) = 0, where f is a polynomial in n variables
with integer coefficients, and suppose that C has at least one integral point. Then,
for each m > 1, the equation fm(x1, . . . , xn) ≡ 0 mod m has at least one solution
defined over Z/mZ, where fm is the polynomial obtained from f by reducing each
coefficient modulo m.

Proof. If v = (a1, . . . , an) ∈ Zn is an integral point on C, then f(a1, . . . , an) = 0,
and in particular f(a1, . . . , an) ≡ 0 mod m. Now, by the properties of congruences
(Proposition 4.2.1), we must have

fm(a1 mod m, . . . , an mod m) ≡ f(a1, . . . , an) ≡ 0 mod m,

and therefore (a1 mod m, . . . , an mod m) is a point defined over Z/mZ of the con-
gruence equation fm(x1, . . . , xn) ≡ 0 mod m, as claimed. �
Example 5.1.12. The diophantine equation C : x2 + y2 + z2 = 107 has a solution
(9, 5, 1). Therefore, x2 + y2 + z2 ≡ 107 mod m has a solution over Z/mZ for
all m > 1, namely (9 mod m, 5 mod m, 1 mod m). For instance, if m = 5, then
(4 mod 5, 0 mod 5, 1 mod 5) is a solution of x2 + y2 + z2 ≡ 2 mod 5.

Example 5.1.13. The curve C : x2 − 5y2 = 2 has no integral points. Indeed,
assume for a contradiction that C has an integral point. Then, Theorem 5.1.11
shows that there must be solutions modulo every m > 1. In particular, there
would be solutions for m = 5, but we showed in Example 4.2.8 that the equation
x2 − 5y2 ≡ 2 mod 5 (or, equivalently, x2 ≡ 2 mod 5) has no solutions modulo 5.
Therefore, we have reached a contradiction, and C cannot have integral points.

Notice, however, that C does have points modulo m, for some values of m
(in fact, for most values of m!). For instance, let m = 7. Then, C reduces to
x2 − 5y2 ≡ 2 mod 7, or x2 + 2y2 ≡ 2 mod 7. Thus, (0 mod 7, 1 mod 7) is a solution
of C defined over Z/7Z.

Remark 5.1.14. It is natural to ask whether the converse of Theorem 5.1.11 is
also true. More concretely, suppose that C : f(x1, . . . , xn) = 0 is a diophantine
equation that has solutions modulo m for every value of m > 1. Is it true that
C has an integral (or perhaps rational) point? This is a very deep and interesting
question, and it will be discussed in depth in Chapter 11.

For now, let us show an example (due to K. Conrad) with solutions modulo
m, for all m > 1, but no integral solution. Consider the ellipse C : 2x2 + 7y2 = 1.
Clearly, it has no integral solutions because if x or y is non-zero, then 2x2+7y2 ≥ 2.
However, there are rational points on C such as P = (1/3, 1/3) and Q = (3/5, 1/5).
Now, if m is relatively prime to 3 (resp. 5), the point P (resp. Q) is well-defined
in Z/mZ (as 3−1 mod m would make sense), and therefore there is a point in
C(Z/mZ). If m is a multiple of 3 and 5, say m = s · t with gcd(s, 5) = 1 = gcd(t, 3),
then we can use the Chinese remainder theorem to find a point R modulo m such
that

R ≡
{
P mod s,

Q mod t.

Since P ∈ C(Z/sZ) and Q ∈ C(Z/tZ), it follows that R ∈ C(Z/mZ), as desired.
We leave it as an exercise for the reader to find a point R mod 15 on the curve C
following the method outlined above.
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5.2. Groups

Groups, as men, will be known by their actions.

Guillermo Moreno

In this section we look at other sets with operations that satisfy properties
similar to those satisfied by Z and Z/mZ. We begin with a definition that captures
properties of sets with a binary operation.

Definition 5.2.1. Let G be a set. A binary operation, or binary operator, on G is
a map G×G → G.

Definition 5.2.2. A pair (G, ∗) formed by a set G with a binary operation ∗ is
called a group if the following properties are satisfied:

(1) The set G is closed under the binary operation ∗; i.e., g ∗ h ∈ G for any
g, h ∈ G.

(2) The operation ∗ is associative: g ∗ (h ∗ k) = (g ∗ h) ∗ k, for any g, h, k ∈ G.
(3) There exists an identity element in G for ∗; i.e., there is some e ∈ G such that

e ∗ g = g ∗ e = g, for all g ∈ G.
(4) There are inverses in G for ∗; i.e., for each g ∈ G there is an element g−1 ∈ G

such that g ∗ g−1 = e.

In addition, suppose the operation ∗ satisfies the following additional property:

(5) The operation ∗ is commutative: g ∗ h = h ∗ g, for any g, h ∈ G.

Then we say that (G, ∗) is a commutative group, or abelian group.

Example 5.2.3. The pair (Z,+) is an abelian group. In this case the identity
element is e = 0 ∈ Z and the inverses with respect to + are simply the additive
inverses. In other words, for each a ∈ Z there is −a ∈ Z such that a+ (−a) = 0.

However, the pair (Z,×) does not form a group. The identity element with
respect to multiplication is 1 ∈ Z, but not every integer a ∈ Z has a multiplicative
inverse in Z. For instance, there is no 2−1 ∈ Z such that 2 · 2−1 = 1. As we know,
2−1 ∈ Q, but it does not belong to Z.

Example 5.2.4. The pairs (Q,+) and (Q − {0},×) are two examples of abelian
groups.

Example 5.2.5. Let (G, ·) be the set of all 2 × 2 matrices with real entries and
non-zero determinant, and let · be matrix multiplication (we usually denote this
group by GL(2,R) and call it the general linear group). In other words,

G =

{(
a b

c d

)
: a, b, c, d ∈ R, ad− bc �= 0

}
and (

a b

c d

)
·
(

e f

g h

)
=

(
ae+ bg af + bh

ce+ dg cf + dh

)
.
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The set (G, ·) is a group with identity element

(
1 0

0 1

)
. The reader can check

associativity and the existence of inverses. However, (G, ·) is not a commutative
group. For instance,(

1 2

0 1

)
·
(

0 −1

1 0

)
=

(
2 −1

1 0

)
�=
(

0 −1

1 2

)
=

(
0 −1

1 0

)
·
(

1 2

0 1

)
.

Example 5.2.6. Let (C0(R),+) be the set of all continuous functions f : R → R

with addition of functions as an operation; i.e., (f + g)(x) = f(x) + g(x). Then
(C0(R),+) is a group, because (1) the sum of two continuous function is also con-
tinuous (so C0(R) is closed under addition), (2) addition of functions is associative,
(3) there is an identity element, namely f(x) = 0 for all x ∈ R, and (4) for every
f(x) ∈ C0(R) the function g(x) = −f(x) is also continuous and f(x) + g(x) = 0,
for all x ∈ R.

Let us define an alternative operation ∗ on C0(R) given by composition of
functions; i.e., (f ∗ g)(x) = f(g(x)). Is (C0(R), ∗) a group?

(1) C0(R) is closed under composition of functions, because the composition of
two continuous functions is also continuous.

(2) Composition of functions is associative:

(f ∗ (g ∗ h))(x) = f(g(h(x))) = ((f ∗ g) ∗ h)(x).

(3) There is an identity element e(x) = x such that

(f ∗ e)(x) = f(e(x)) = f(x) = e(f(x)) = (e ∗ f)(x).

However, not every element of C0(R) has an inverse with respect to composition.
For instance, f(x) = x2 does not have an inverse function defined over all of R.
Also, the inverse of f(x) = ex would be f−1(x) = log x, which is not defined
anywhere in the interval (−∞, 0].

Proposition 5.2.7. Let m > 1 be fixed. Then, (Z/mZ,+) is an abelian group.

Proof. This follows from Proposition 5.1.10 and in particular from parts (1), (2.a),
(2.b), (3.a) and (3.b). �

Let us consider the pair (Z/mZ, ·). Is this a group? Obviously not, because
0 mod m does not have a multiplicative inverse. Let us define multiplicative inverse
in the particular case of Z/mZ, for completeness sake.

Definition 5.2.8. Let m > 1 be fixed. The congruence class of b mod m is a
multiplicative inverse of the congruence class of a mod m if a · b ≡ 1 mod m. If so,
we sometimes write b ≡ a−1 mod m, or b ≡ 1

a mod m. We say that a congruence
class a mod m is invertible if a mod m has a multiplicative inverse modulo m.

Example 5.2.9. In Z/15Z we have 2 · 8 ≡ 1 mod 15. Thus, 8 mod 15 is a mul-
tiplicative inverse for 2 mod 15 and, conversely, the class of 2 is a multiplicative
inverse for 8 mod 15. We say that the class of 2 and the class of 8 are invertible.
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Alternatively, we write

2 ≡ 8−1 mod 15 and 8 ≡ 2−1 mod 15,

or simply 2 ≡ 1
8 mod 15 and 8 ≡ 1

2 mod 15.

Now, let us consider (Z/mZ− {0}, ·). Is this a group? By Proposition 5.1.10,
the set Z/mZ is closed under the multiplication operation, and this operation is
commutative and associative and there is an identity element 1 mod m. It only
remains to check whether every non-zero element has a multiplicative inverse.

Example 5.2.10. Let m = 2. The set Z/2Z − {0} consists of only one congru-
ence class, namely 1 mod 2. Since 1 · 1 ≡ 1 mod 2, we conclude that 1 is its own
multiplicative inverse, and therefore (Z/2Z− {0}, ·) is a group.

Example 5.2.11. Let m = 3. The set Z/3Z − {0} consists of two congruence
classes: 1 mod 3 and 2 mod 3. Since

1 · 1 ≡ 1 mod 3 and 2 · 2 ≡ 1 mod 3,

we conclude that the classes of 2 and 3 are invertible, and therefore every non-zero
class in Z/3Z has a multiplicative inverse. In particular, (Z/3Z−{0}, ·) is a group.

Example 5.2.12. Let m = 4. The set Z/4Z − {0} consists of three congruence
classes: 1 mod 4, 2 mod 4, and 3 mod 4. We have

1 · 1 ≡ 1 mod 4 and 3 · 3 ≡ 1 mod 4,

so 1 and 3 mod 4 have multiplicative inverses, but 2 mod 4 does not have a mul-
tiplicative inverse. Indeed, if x mod 4 is a multiplicative inverse for 2 mod 4, then
2 · x ≡ 1 mod 4. But this congruence does not have solutions, for any x ∈ Z, by
Theorem 4.4.3, because gcd(2, 4) = 2 and 2 does not divide 1. Hence, 2 mod 4 is
not invertible, and (Z/4Z− {0}, ·) is not a group. Notice that, in fact, Z/4Z− {0}
is not closed under multiplication, as 2 · 2 ≡ 0 mod 4.

Proposition 5.2.13. Let m > 1. The congruence class of a mod m is invertible
in Z/mZ if and only if gcd(a,m) = 1.

Proof. The class of a mod m is invertible if and only if the linear congruence
a · x ≡ 1 mod m has a solution. By Theorem 4.4.3, this linear congruence has a
solution if and only if gcd(a,m) = 1. �

Corollary 5.2.14. Let m > 1 be fixed. The pair (Z/mZ−{0}, ·) is a group if and
only if m is a prime number.

Proof. If m is not prime, then there are some a, b ∈ Z with m = ab and 1 < a, b <
m. In particular, the class of a mod m is non-zero (because a �≡ 0 mod m), but
gcd(a,m) = a, and Proposition 5.1.10 implies that a is not invertible modulo m.
Thus, not all non-zero congruence classes are invertible, and (Z/mZ−{0}, ·) is not
a group.

If m is prime, by Proposition 5.1.10, the set Z/mZ is closed under the multi-
plication operation, and this operation is commutative and associative and there
is an identity element 1 mod m. It only remains to check whether every non-zero
element has a multiplicative inverse. If a is an integer in the interval 1 ≤ a ≤ m−1,
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then gcd(a,m) = 1 because m is prime and m > a. Thus, by Proposition 5.2.13,
it follows that a is invertible in Z/mZ. Hence, every non-zero congruence class in
Z/mZ is invertible, and (Z/mZ− {0}, ·) is a group. �

Next, we introduce the concept of a subgroup of a group.

Definition 5.2.15. Let (G, ∗) be a group with identity element e, and let H be a
subset of G containing e, such that (H, ∗) is a group also, where the operation ∗
is the same as in G. Then, H is said to be a subgroup of G. If H � G, then H is
called a proper subgroup of G.

Example 5.2.16. Let (G, ∗) = (Q,+) be the group of rational numbers under
addition. Then, (Z,+) is a subgroup of Q. However, (N,+) is not a subgroup of
(Z,+) because, for instance, N does not have an identity element 0 ∈ N.

Example 5.2.17. Let (G, ∗) = (Z/6Z,+) be the group of congruence classes mod-
ulo 6, with respect to addition. Let

H = {0, 2, 4 mod 6}.
Then, (H,+) is a subgroup of (Z/6Z,+). We leave it up to the reader to check
that (H,+) is a group.

Example 5.2.18. Let G = {1, 2, 4, 5, 7, 8 mod 9} ⊆ Z/9Z and let (G, ·) be the
group formed by G under multiplication. Then (H, ·), where H = {1, 4, 7 mod 9},
forms a subgroup of G. We again leave it up to the reader to check that (G, ·) and
(H, ·) are indeed groups.

We finish this section citing one of the most important theorems in group
theory.

Theorem 5.2.19 (Lagrange’s theorem). Let G be a finite group and let H be a
subgroup of G (with respect to a common operation ∗). Then, the size of G (usually
denoted by |G|) is divisible by the size of H.

Figure 5.1. Joseph-Louis Lagrange (1736–1813). Image source: Wikimedia Commons.
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The proof of Lagrange’s theorem has been left as an exercise for the reader
(Exercise 5.6.6). Here we simply provide two examples to illustrate the idea behind
the proof of the theorem.

Example 5.2.20. Let (G, ·) and (H, ·) be as in Example 5.2.18, so that

G = {1, 2, 4, 5, 7, 8 mod 9} and H = {1, 4, 7 mod 9}.
We can define an equivalence relation on G by setting g1 ∼H g2 if and only if there
is some h ∈ H such that g1 = g2 · h (the reader needs to verify that this, indeed,
is an equivalence relation). Since H contains the identity element of G, any two
elements of H are equivalent with respect to ∼H . However, 2 is not equivalent to
any of the elements of H, so 2 belongs to a different equivalence class, which we
denote as

2 ·H = {g ∈ G : g = 2 · h for some h ∈ H} = {2, 5, 8 mod 9}.
Then, G = H ∪2 ·H, and, in fact, G is the disjoint union of H and 2 ·H. Moreover,
H and 2 ·H have the same number of elements, namely 3. Therefore, |G| = 2 · |H|
and, in particular, the size of H, namely |H| = 3, is a divisor of the size of G, which
is |G| = 6.

Example 5.2.21. Let (G,+) be the group Z/6Z under addition, and let H =
{0, 3 mod 6}. Then (H,+) is a subgroup of (G,+). Let us define an equivalence
relation on G by g1 ∼H g2 if and only if g1 ≡ g2 + h mod 6, for some h ∈ H. Then,
there are three equivalence classes; namely,

H = {0, 3 mod 6}, 1 +H = {1, 4 mod 6}, and 2 +H = {2, 5 mod 6}.
In particular,

G = H ∪ (1 +H) ∪ (2 +H),

and each equivalence class is disjoint from the others. Hence, |G| = |H|+ |1+H|+
|2 +H|. Moreover, all equivalence classes have the same size, namely |H| = 2, and
therefore

|G| = 3 · |H|.
In particular, |H| = 2 is a divisor of |G| = 6.

5.2.1. Group Homomorphisms. We use functions between two groups G and
H to study their relationships, or to understand one group in terms of the other.
In order to be able to deduce useful group-theoretic information from a map, such
a function needs to respect the group structures. Such a map is called a group
homomorphism.

Definition 5.2.22. Let (G, ∗) and (H, 	) be groups. A function f : G → H is a
group homomorphism if

f(g ∗ g′) = f(g) 	 f(g′)

for all g and g′ in G.

It is important to remark that the binary operations ∗ on G and 	 on H may
be quite different (see Example 5.2.25 below) and g ∗ g′ is an operation in G, while
f(g) 	 f(g′) occurs in H. Next, we give a few examples of group homomorphisms.
We leave it up to the reader as an exercise to verify that each of the maps f below
satisfies the required equation f(g ∗ g′) = f(g) 	 f(g′).
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Example 5.2.23. The zero map f0 : G → G that sends all elements of G to the
trivial element e ∈ G, i.e., f0(g) = e for all g ∈ G, is a group homomorphism. Sim-
ilarly, the identity map f1 : G → G with f1(g) = g is also a group homomorphism.

Example 5.2.24. Let n ≥ 1 be an integer, and let (G, ∗) be a group. The
multiplication-by-n map, sometimes denoted by [n] : G → G, is a group homo-
morphism defined by

[n](g) = g ∗ g ∗ · · · ∗ g,
so that we have used the group operation n − 1 times on n elements of G. For
instance, if the group is (Z,+), then [n](g) = g + g + · · · + g = n · g for any
g ∈ Z. If the group under consideration is (R×, ·), non-zero real numbers under
multiplication, then [n](g) = g · g · · · g = gn for any g ∈ R.

Example 5.2.25. Let (GL(2,R), ·) be the group of all 2 × 2 matrices with real
entries and non-zero determinant (as in Example 5.2.5), and let (R×, ·) be the
non-zero real numbers under multiplication. Then, the determinant map

det : GL(2,R) → R×

that sends a matrix M =

(
a b

c d

)
to its determinant det(M) = ad−bc is a group

homomorphism from GL(2,R) to R×.

Example 5.2.26. Consider the groups (Z,+) and (Z/mZ,+), for some m ≥ 2.
Then, the reduction-by-m map from Z to Z/mZ that sends an integer g �→ g mod m
is a group homomorphism.

Example 5.2.27. The map f : R → R that sends x �→ x + 1 is not a group
homomorphism from (R,+) to itself, because

f(x+ y) = x+ y + 1 �= (x+ 1) + (y + 1) = f(x) + f(y).

Next, we state (without proof) a few results about homomorphisms.

Proposition 5.2.28. Let (G, ∗) and (H, 	) be groups and suppose that f : G → H
is a group homomorphism. Then:

(1) f(eG) = eH , where eG and eH are the identity elements of G and H, respec-
tively.

(2) The kernel of f , defined by

Ker(f) = {g ∈ G : f(g) = eH},
is a subgroup of G.

(3) The image of f , i.e.,

f(G) = {h ∈ H : there is g ∈ G such that f(g) = h},
is a subgroup of H.

Example 5.2.29. Let m > 1, and consider the multiplication-by-m homomor-
phism [m] : Z → Z given by g �→ m · g. Then, the image of [m] is mZ, which is an
additive subgroup of Z.

If instead we consider the reduction-by-m homomorphism Z → Z/mZ, then
the kernel is precisely given by mZ.
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Example 5.2.30. The determinant map det : GL(2,R) → R× is surjective (why?),
so the image is all of R×. The kernel of det is given by those 2 × 2 matrices with
determinant 1; i.e.,

Ker(det) =

{(
a b

c d

)
: a, b, c, d ∈ R and ad− bc = 1

}
.

The subgroup of matrices of determinant 1 is the special linear group, and it is
usually denoted by SL(2,R).

Definition 5.2.31. Let (G, ∗) and (H, 	) be groups. A homomorphism f : G → H
is said to be an isomorphism if it is also a bijection. If such an isomorphism exists,
then we say that G and H are isomorphic.

Example 5.2.32. Let m > 1 be an integer, and let μm be the set of all mth roots
of unity in the complex numbers; i.e.,

μm = {z ∈ C : zm = 1} = {e2nπi/m : 0 ≤ n < m}.

Then, (μm, ·) is a group under multiplication (Exercise 5.6.3). Moreover, there is
a homomorphism ϕ : Z/mZ → μm given by a mod m �→ e2aπi/m. We leave it to
the reader to show that this map is well-defined, a homomorphism, and in fact a
bijection. Thus, ϕ is an isomorphism of groups.

We conclude this section with a useful criterion to determine whether a homo-
morphism is injective.

Proposition 5.2.33. Let f : G → H be a group homomorphism and let K be its
kernel. Then, f is injective if and only if K = {eG}; i.e., the kernel is trivial (it
only contains the identity element of G).

Example 5.2.34. Let f : Z → GL(2,R) be the map given by

n �→
(

1 n

0 1

)
.

We leave it up to the reader in the exercises to check that f is a group homo-
morphism from (Z,+) to (GL(2,R), ·). Proposition 5.2.33 says that f is injective
because the kernel of f consists only of the identity matrix. Hence, if we define

H =

{(
1 n

0 1

)
: n ∈ Z

}
,

then H is a subgroup of GL(2,R), and f : Z → H is an isomorphism of groups.

5.3. Rings

In the previous section we defined groups, i.e., sets together with one binary opera-
tion. The integers and Z/mZ, however, have two operations, namely addition and
multiplication. Next, we define a structure of a set with two operations.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



5.3. Rings 131

Definition 5.3.1. A ring (with identity) is a triple (R,+, ·) where R is a set with
two binary operations + and · that satisfy the following properties:

(1) The set R is closed under the operations + and ·; i.e., r + s, r · s ∈ R, for all
r, s ∈ R.

(2) The pair (R,+) is an abelian group.
(3) The operation · is associative; i.e., r · (s · t) = (r · s) · t, for all r, s, t ∈ R.
(4) The operations + and · satisfy the distributive laws:

r · (s+ t) = r · s+ r · t and (s+ t) · r = s · r + t · r,

for all r, s, t ∈ R.
(5) There is an identity with respect to · in R; i.e., there is some 1 ∈ R such that

1 · r = r · 1 = r, for all r ∈ R.

In addition, suppose · satisfies the following property:

(6) The operation · is commutative; i.e., r · s = s · r, for all r, s ∈ R.

Then we say that R is a commutative ring (with identity).

Example 5.3.2. The integers Z are our prototype of a (commutative) ring with
identity. The ring axioms of Definition 5.3.1 are precisely the axioms (1) through
(3) that defined Z in Section 2.1.

Example 5.3.3. The rational numbers Q, the real numbers R, and the complex
numbers C are also examples of commutative rings.

Example 5.3.4. Let (C0(R),+, ·) be the triple given by the set of all continuous
functions f : R → R with operations of addition and multiplication defined by

(f + g)(x) = f(x) + g(x) and (f · g)(x) = f(x) · g(x),

for any f, g ∈ C0(R). Then, (C0(R),+, ·) is a commutative ring with additive
identity given by the zero function 0 : x �→ 0 and multiplicative identity 1 : x �→ 1.

Example 5.3.5. Let M2×2(C) be the set of all 2×2 matrices with complex entries.
Define a triple (M2×2(C),+, ·), where + is defined coordinatewise, i.e.,(

a b

c d

)
+

(
e f

g h

)
=

(
a+ e b+ f

c+ g d+ h

)
,

and multiplication · is as in Example 5.2.5. Then, (M2×2(C),+, ·) is a ring with

additive identity given by

(
0 0

0 0

)
and multiplicative identity

(
1 0

0 1

)
. This

ring is not commutative, as Example 5.2.5 shows.

Proposition 5.3.6. Let m > 1 be fixed. The triple (Z/mZ,+, ·) is a commutative
ring with identity.

Proof. The fact that (Z/mZ,+, ·) satisfies the axioms of a commutative ring was
shown in Propositions 5.1.10 and 5.2.7. �
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By definition, if (R,+, ·) is a ring, then (R,+) is an abelian group. However,
(R−{0}, ·) is not necessarily a group. For instance, (Z−{0}, ·) is not a group, be-
cause only 1 and −1 have a multiplicative inverse, and any n �= ±1 is not invertible
in Z; i.e., there is no m ∈ Z such that n ·m = 1. As another example, the pair(

M2×2(C)−
{(

0 0

0 0

)}
, ·
)

is not a group because many matrices do not have multiplicative inverses (indeed,

a matrix

(
a b

c d

)
is invertible if and only if its determinant ad− bc �= 0).

In order to study whether (R− {0}, ·) is a group, we define two concepts: unit
and zero-divisor in a ring.

Definition 5.3.7. Let (R,+, ·) be a ring with multiplicative identity 1 ∈ R and
additive identity 0 ∈ R.

(1) We say that an element u ∈ R is a unit if there is some v ∈ R such that
u · v = 1. The set of all units in R is denoted by R×.

(2) We say that an element r ∈ R is a zero-divisor if there is some s ∈ R such
that r · s = 0 and r �= 0 and s �= 0. The set of all zero-divisors in R will be
denoted by R0.

Example 5.3.8. The only units in Z are 1 and −1; i.e., Z× = {±1}. Indeed, if
u · v = 1 with u, v ∈ Z, then u and v are divisors of 1. Thus, both u and v are 1 or
−1. There are no zero-divisors in Z, by Theorem 2.2.3, so Z0 = ∅.
Example 5.3.9. Every non-zero number in Q is a unit; that is, Q× = Q − {0}.
For all u = p

q ∈ Q there is v = q
p ∈ Q such that u · v = p

q · q
p = 1. There are no

zero-divisors in Q, for if r · s = p
q · m

n = 0, then p ·m = 0. Thus, by Theorem 2.2.3,
p = 0 or m = 0, and this implies that r = 0 or s = 0.

Example 5.3.10. Let M2×2(C) be the set of all matrices with entries in C. Then,
the set of all units is formed by all matrices with non-zero determinant

(M2×2(C))
× =

{(
a b

c d

)
: ad− bc �= 0

}
,

and the set of all zero-divisors is formed by those matrices with zero determinant

(M2×2(C))
0 =

{(
a b

c d

)
: ad− bc = 0

}
\
{(

0 0

0 0

)}
.

Proposition 5.3.11. Let m > 1 be fixed, and consider the ring (Z/mZ,+, ·).
(1) A congruence class a mod m is a unit in Z/mZ if and only if a mod m has a

multiplicative inverse in Z/mZ if and only if gcd(a,m) = 1.
(2) The set of all units in Z/mZ is denoted by Um = (Z/mZ)× and it is equal to

Um = (Z/mZ)× = {a mod m : 1 ≤ a ≤ m− 1 and gcd(a,m) = 1}.
(3) The set of all zero-divisors in Z/mZ is

(Z/mZ)0 = {a mod m : 1 ≤ a ≤ m− 1 and gcd(a,m) > 1}.
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Proof. By definition of unit, a congruence class a mod m is a unit in Z/mZ if and
only if there is some b mod m such that a · b ≡ 1 mod m. In other words, a mod m
is a unit if and only if ax ≡ 1 mod m has a solution. This means that a mod m
is a unit if and only if a mod m is an invertible congruence class (as in Definition
5.2.8). By Proposition 5.2.13, this is equivalent to gcd(a,m) = 1. This shows (1).

By part (1), the units are equal to the invertible classes, equal to those a mod m
with gcd(a,m) = 1. Thus, Um is the set given in the statement of the proposition.

Finally, suppose that a mod m is a zero-divisor. Equivalently, a �≡ 0 mod m
but there is some non-zero b mod m such that ab ≡ 0 mod m. This means that m
divides ab but m does not divide a and m does not divide b. Thus, gcd(a,m) > 1
and gcd(b,m) > 1. Conversely, if gcd(a,m) = d > 1 and 1 ≤ a ≤ m − 1, then we
can write a = dk and m = dh, for some k, h ∈ Z. It follows that

a · h = dk · m
d

= k ·m ≡ 0 mod m,

and, moreover a �≡ 0 mod m and b �≡ 0 mod m. Thus, a is a zero-divisor. We
conclude that the set of all zero-divisors is the set given in the statement of the
proposition. �

When we specialize the previous proposition to the case when m is prime, we
obtain the following corollary.

Corollary 5.3.12. Let p be a prime. Then, the ring (Z/pZ,+, ·) does not have
any zero-divisors, and every non-zero element is a unit; i.e.,

Up = (Z/pZ)× = Z/pZ− {0 mod p}.

Proof. This follows directly from Proposition 5.3.11, once we realize that every
number 1 ≤ a ≤ p− 1 is relatively prime to p. �

Example 5.3.13. Let m = 15. Then, the units in Z/15Z form the set

U15 = {1, 2, 4, 7, 8, 11, 13, 14 mod 15},
and the zero-divisors are the congruence classes in the set

(Z/15Z)0 = {3, 5, 6, 9, 10, 12 mod 15}.
We remark that Z/15Z = {0} ∪ U15 ∪ (Z/15Z)0.

Example 5.3.14. Let m = 16. Then, the units in Z/16Z form the set

U16 = {1, 3, 5, 7, 9, 11, 13, 15 mod 16},
and the zero-divisors are the congruence classes in the set

(Z/16Z)0 = {2, 4, 6, 8, 10, 12, 14 mod 16}.
We remark that Z/16Z = {0} ∪ U16 ∪ (Z/16Z)0.

Example 5.3.15. Let m = 17. Then, the units in Z/17Z form the set

U17 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 mod 17},
and the zero-divisors are the congruence classes in the empty set; i.e., the set
(Z/17Z)0 = ∅. We remark that Z/17Z = {0} ∪ U17 = {0} ∪ U17 ∪ (Z/17Z)0.
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Proposition 5.3.16. Let (R,+, ·) be a commutative ring with identity, and let R×

be the set of all units in R. Then, the pair (R×, ·) is an abelian group.

Proof. We need to verify that the pair (R×, ·) verifies the axioms of a group in
Definition 5.2.2.

(1) The · operation is associative in R×: since · is associative in R and since R
and R× share the same operation, it follows that · is associative in R× ⊆ R.

(2) The set R× is closed under the · binary operation: let us show that if u and
u′ are units in R, then uu′ is also a unit in R. By the definition of unit, there
are v and v′ ∈ R such that uv = u′v′ = 1 ∈ R. Thus, the element vv′ is an
inverse for uu′, since

uu′ · vv′ = (uv) · (u′v′) = 1 · 1 = 1,

where we have used the fact that · commutes in R, because R is assumed to be
a commutative ring. Thus, uu′ ∈ R× and R× is closed under multiplication.

(3) There exists an identity element in R× for the · operation: the ring R is
assumed to have a unity 1 ∈ R, and clearly 1 · 1 = 1, so in particular 1 is a
unit. Moreover, 1 ·u = u ·1 = u for all u ∈ R×, and so 1 is an identity element
for (R×, ·) with respect to its operation.

(4) There are inverses in R× for the · operation: for every unit u ∈ R×, by
definition of unit, there is a v ∈ R such that uv = 1. Notice that v is also a
unit, so v ∈ R× and, moreover, v = u−1.

(5) The operation · is commutative in R×: since R is assumed to be a commutative
ring, we have that r · s = s · r for all r, s ∈ R. Since R× ⊆ R and they share
the same multiplication operation, we conclude that (R×, ·) is commutative.

Hence, the pair (R×, ·) is a commutative (or abelian) group, as claimed. �

Corollary 5.3.17. Let m > 1 be fixed and let Um be the set of all units in Z/mZ;
i.e.,

Um = {a mod m : 1 ≤ a ≤ m− 1 and gcd(a,m) = 1}.
Then, (Um, ·) is a commutative group.

Example 5.3.18. Let m = 15. Then, the units in Z/15Z form the set

U15 = {1, 2, 4, 7, 8, 11, 13, 14 mod 15}.
By our previous proposition, the pair (U15, ·) forms a (commutative) group. In
particular, whenever we multiply any two units in U15, we see that their product is
also a unit in U15. For instance,

2 · 4 ≡ 8 mod 15, 4 · 7 ≡ 28 ≡ 13 mod 15, and 11 · 13 ≡ 8 mod 15.

It also follows that the multiplicative inverse of any element of U15 is also an element
of U15:

2−1 ≡ 8, 4−1 ≡ 4, 7−1 ≡ 13, 8−1 ≡ 2, 11−1 ≡ 11, 13−1 ≡ 7, 14−1 ≡ 14 mod 15.

Example 5.3.19. If p is a prime, then we have seen that Up = Z/pZ−{0 mod p}.
Thus, (Z/pZ− {0 mod p}, ·) is a group.
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It is worth noting that if (G, ∗) is a group, then the inverses with respect to
∗ are unique; i.e., if g ∈ G, then there is a unique inverse element g−1 such that
g ∗ g−1 = e, where e is the identity element in the group G (this is left as Exercise
5.6.5). In particular, since (R,+) and (R×, ·) are groups, the additive inverse of an
element r ∈ R and the multiplicative inverse of a unit u ∈ R× are unique. Let us
show this directly, in the case of (Z/mZ,+, ·).

Proposition 5.3.20. Let m > 1 be fixed. Then:

(1) Every congruence class a mod m has a unique additive inverse; i.e., there is
a unique congruence class b mod m such that

a+ b ≡ 0 mod m.

(2) Every unit u mod m in (Z/mZ)× has a unique multiplicative inverse; i.e.,
there is a unique congruence class v mod m such that

u · v ≡ 1 mod m.

Proof. Suppose first that b and b′ mod m are additive inverses for a mod m. Then,
by definition of additive inverse,

a+ b ≡ 0 mod m and a+ b′ ≡ 0 mod m.

In particular, a + b ≡ a + b′ mod m, or, equivalently, (a + b) − (a + b′) = b − b′

is divisible by m. This means that b ≡ b′ mod m, so they represent the same
congruence class. Hence, the additive inverse of a mod m is unique modulo m.

Similarly, suppose that v and v′ mod m are two multiplicative inverses for a
unit u mod m. Then, by definition of multiplicative inverse,

u · v ≡ 1 mod m and u · v′ ≡ 1 mod m.

In particular, u · v ≡ u · v′ mod m. This means that uv−uv′ = u(v− v′) is divisible
by m. Since u is a unit, we have gcd(u,m) = 1, by Corollary 5.3.17. Hence,
gcd(u,m) = 1 and m divides u(v − v′) imply that m divides v − v′, by Corollary
2.7.6. Therefore, v ≡ v′ mod m, and v and v′ represent the same congruence
class modulo m. We conclude that the multiplicative inverse of u mod m is unique
modulo m, as claimed. �

We finish this section comparing Z/mZ and Z/nZ, when n is a divisor of m.

Proposition 5.3.21. Let m ≥ 2 be an integer and let n ≥ 2 be a divisor of m.
Then, the map

ψ : Z/mZ → Z/nZ

that sends a mod m to a mod n is well-defined and surjective and it induces a sur-
jection ψ : Um → Un.

Proof. Let us first verify that ψ is well-defined. Suppose a and b are integer
representatives of the same class modulo m; i.e., a ≡ b mod m. Equivalently, there
is some k ∈ Z such that a− b = km. Since n is a divisor of m, there is some t ∈ Z

such that m = tn and a− b = ktn. Hence, a ≡ b mod n. In particular,

ψ(a mod m) ≡ a ≡ b ≡ ψ(b mod m) mod n.

Thus, ψ is well-defined.
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Clearly, ψ is surjective: if c is a representative of a class modulo n, then
ψ(c mod m) ≡ c mod n.

Let us show that ψ sends Um to Un. Let u be a representative of a unit modulo
m. Then, gcd(u,m) = 1. If we write m = tn as before, then gcd(u, tn) = 1 and
in particular gcd(u, n) = 1. Thus, u is also a representative for a unit modulo n.
Hence, ψ(u mod m) ≡ u mod n is a unit modulo n, and ψ(Um) ⊆ Un.

Finally, it remains to show that ψ(Um) = Un. Let v be a unit modulo n (so
that gcd(v, n) = 1). Let n′ be the largest divisor of m such that n|n′ and such
that n and n′ share all their prime divisors. Then, we have that gcd(v, n′) = 1
and m = n′t′ with gcd(t′, n′) = 1. In particular, the image of Un′ is Un under
Z/n′Z → Z/nZ and ψ factors as

ψ : Z/mZ → Z/n′Z → Z/nZ.

So to finish our proof, it suffices to show that the image of Um is Un′ under ψ′ :
Z/mZ → Z/n′Z. Let v be a unit modulo n′ (so that gcd(v, n′) = 1). Then, there
is a j ∈ Z such that

v + jn′ ≡ 1 mod t′.

Indeed, the linear equation

v − 1 = t′x+ n′y

by Proposition 2.9.1 has a solution (x, y) = (i, j) ∈ Z2 because gcd(n′, t′) = 1,
by the definition of n′. In particular, with this choice of j, the number v + jn′ is
relatively prime to t′. In addition, gcd(v + jn′, n′) = gcd(v, n′) = 1, so v + jn′

is also relatively prime to n′. Hence, v + jn′ is relatively prime to n′t′ = m, and
therefore it is a unit modulo m. Finally,

ψ′(v + jn′ mod m) ≡ v + jn′ ≡ v mod n′.

Hence, ψ′(Um) = Un′ , and when reduced modulo n, the image of Un′ is Un. Thus,
ψ(Um) = Un, as we wanted to prove. �

Remark 5.3.22. Let ψ : Z/mZ → Z/nZ be the reduction map that we discussed
in Proposition 5.3.21, where n is a divisor of m. Here is a slick proof of the fact that
ψ(Um) = Un which uses a deep theorem about prime numbers, namely Dirichlet’s
theorem on primes in arithmetic progressions (Theorem 3.3.11).

We want to show that for any unit v mod n, there is a unit u mod m such
that u ≡ v mod n. Since gcd(v, n) = 1, Dirichlet’s theorem implies that there
are infinitely many primes pi, i = 1, 2, 3, . . ., such that pi ≡ v mod n. Since m
has only finitely many prime divisors (by the fundamental theorem of arithmetic,
Theorem 2.10.6!), we may choose a prime pi that is not a divisor of m and such
that pi ≡ v mod n. Hence, gcd(pi,m) = 1, so pi is a unit modulo m, and

ψ(pi mod m) ≡ pi ≡ v mod n.

Therefore, we may pick u ≡ pi mod m to be our unit in Um that maps to v mod n
via ψ, as desired.
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5.3.1. Ring Homomorphisms. As in the case of groups, we use maps to com-
pare rings, and in order to reach ring-theoretic conclusions, we need our maps to
preserve ring structures. Such maps are called ring homomorphisms.

Definition 5.3.23. Let R and S be rings (with identity). A function f : R → S is
a ring homomorphism if

(1) f(r + r′) = f(r) + f(r′) and
(2) f(r · r′) = f(r) · f(r′)

for all r and r′ in R. A bijective ring homomorphism is called a ring isomorphism.

Example 5.3.24. If R is any ring, the zero map f0 : R → R defined by f0(r) = 0
for all r ∈ R is a ring homomorphism. Similarly, the identity map f1(r) = r is also
a homomorphism of rings.

Example 5.3.25. Let m > 1 be an integer and consider the reduction modulo m
map Z → Z/mZ. This map is a ring homomorphism from Z to Z/mZ.

Example 5.3.26. Let m > 1 and let n > 1 be a divisor of m. Then, the map
ψ : Z/mZ → Z/nZ that sends a mod m to a mod n is a ring homomorphism from
Z/mZ to Z/nZ. This map was studied in Proposition 5.3.21.

5.3.2. Ideals. An important concept in the theory of rings is that of ideals,
which is a special type of subset of a ring. Ideals were first introduced by Richard
Dedekind in 1876, who was in turn reformulating ideas of Ernst Kummer. However,
it was Emmy Noether’s work that showcased the wide range of applications of ideals
in algebra, algebraic geometry, and other areas of mathematics.

Figure 5.2. Emmy Noether (1882–1935) was a German mathematician, who
is regarded as one of the most important women in the history of mathematics.
Image source: Wikipedia Commons.

Definition 5.3.27. Let (R,+, ·) be a commutative ring with identity. An ideal in
R is an additive subgroup I of R such that I is closed under multiplication by R.
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Equivalently, I ⊆ R is an ideal if the following conditions are satisfied:

• If a, b ∈ I, then a+ b ∈ I.
• If r ∈ R and a ∈ I, then r · a ∈ I.

Example 5.3.28. Let (R,+, ·) be a commutative ring with identity. Then, {0}
and R are ideals. If R is a field, then {0} and R are the only ideals of R (see
Exercise 5.6.17).

Example 5.3.29. Let R = C0(R) be the ring of continuous functions f · R → R,
as in Example 5.3.4. Then, the set of functions that vanish at x = 0, given by

I = {f ∈ C0(R) : f(0) = 0},
is an ideal of C0(R). Indeed, if f, g ∈ I and h ∈ C0(R), then

• (f + g)(0) = f(0) + g(0) = 0 + 0 = 0, so f + g ∈ I, and
• (h · f)(0) = h(0) · f(0) = h(0) · 0 = 0, so h · f ∈ I.

These two properties show that I is an ideal in C0(R).

Example 5.3.30. Let m be an integer. Then, mZ = {m · n : n ∈ Z} is an ideal of
the ring Z. Moreover, every ideal of Z is of this form (this is left as an exercise for
the reader; see Exercise 5.6.16).

Example 5.3.31. Let R and S be commutative rings with identity, and let ψ : R →
S be a ring homomorphism. Then, the kernel of ψ, defined by Ker(ψ) = {r ∈ R :
ψ(r) = 0S}, is an ideal of R. Indeed, suppose that k, j ∈ Ker(ψ) and r ∈ R. Then,

• ψ(k + j) = ψ(k) + ψ(j) = 0S + 0S = 0S ; thus, k + j is also in the kernel, and
• ψ(r · k) = ψ(r) · ψ(k) = ψ(r) · 0S = 0S , so r · k ∈ Ker(ψ),

where, in both cases, we have used the properties of a ring homomorphism and the
property of the zero element of a ring.

5.4. Fields

Those commutative rings where every non-zero element is a unit have a special
name.

Definition 5.4.1. A commutative ring with identity (R,+, ·) is called a field if
(R−{0}, ·) is a commutative group. Equivalently, (R,+, ·) is a field if R× = R−{0}.

Example 5.4.2. The rings Q, R, and C are fields, because every non-zero element
in each ring has a multiplicative inverse in the ring. For instance,(

3

7

)−1

=
7

3
∈ Q, π−1 =

1

π
∈ R, (1 + i)−1 =

1

2
− i

2
∈ C.

Notice that Q, R, and C are infinite fields. Our next theorem describes our first
examples of finite fields.

Theorem 5.4.3. Let m > 1 be a fixed integer. The ring (Z/mZ,+, ·) is a field if
and only if m is a prime number.
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Proof. We have seen in Proposition 5.3.6 that (Z/mZ,+, ·) is a commutative ring
with identity, for any m > 1. In Proposition 5.3.11, we showed that

Um = (Z/mZ)× = {a mod m : 1 ≤ a ≤ m− 1 and gcd(a,m) = 1},
and in Corollary 5.3.17 we have seen that ((Z/mZ)×, ·) is a commutative group.
Thus, (Z/mZ)× = Z/mZ−{0 mod m} if and only if m is a prime number. Hence,
(Z/mZ,+, ·) is a field if and only if m is prime, as claimed. �

Example 5.4.4. The previous theorem provides an infinite source of examples of
finite fields: (Z/pZ,+, ·) is a field for each prime p. To ease notation, we usually
denote a field with p elements by Fp:

F2 = Z/2Z, F3 = Z/3Z, F5 = Z/5Z, . . . .

Theorem 5.4.3 shows that for any prime p, there is a field with exactly p elements,
namely Z/pZ. Some follow-up questions naturally come to mind: is there a field
with 4 elements? Is there a field with 9 elements? Is there a field with 6 elements?
We will come back to these interesting questions in Chapter 6 of this book.

Example 5.4.5. Let d be a square-free integer. Let Q(
√
d) be the subring of

complex numbers C generated by 1 and
√
d, with the addition and multiplication

operations inherited from C. Then:

(1) The ring Q(
√
d) is precisely

Q(
√
d) =

{
a+ b

√
d : a, b ∈ Q

}
.

(2) The ring Q(
√
d) is a field.

These fields (called quadratic fields) will be studied in some detail in Sections 12.5
and 14.3.1. The fact that Q(

√
d) is indeed a field will be shown in Proposition

12.5.3. We will use quadratic fields in our study of the rational and integral points
on ellipses and hyperbolas.

The notion of ring homomorphism (as in Definition 5.3.23) can be extended to
fields, as follows.

Definition 5.4.6. Let (F,+, ·) and (K,+, ·) be fields. A map ψ : F → K is a
field homomorphism if it is a ring homomorphism. In other words, ψ satisfies the
following conditions, for all f, g ∈ F :

(1) ψ(f + g) = ψ(f) + ψ(g), and
(2) ψ(f · g) = ψ(f) · ψ(g).

If ψ is injective and surjective, then we say that ψ is an isomorphism of fields.

Example 5.4.7. If F and K are fields, the map F → K that sends every element
of F to 0K is the zero homomorphism.

Example 5.4.8. Let K be a field and let F ⊆ K be a subfield of K. Then, the
inclusion map F ↪→ K that sends f �→ f ∈ K is a field homomorphism. For
instance, Q ⊆ R or R ⊆ C gives rise to a field homomorphism.

Moreover, if ψ : F → K is a field homomorphism, then it is either identically
zero (as in Example 5.4.7) or it is injective (Exercise 5.6.18).
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Example 5.4.9. Let C be the field of complex numbers and let c : C → C be the
map defined by

a+ bi �→ a− bi.

Then, c is a field homomorphism that we usually call complex conjugation (and we
usually write c(a+bi) = a+ bi = a−bi). Let us show that c is a field homomorphism:

c((a+ bi) + (d+ ei)) = c((a+ d) + (b+ e)i) = (a+ d)− (b+ e)i

= (a− bi) + (d− ei) = c(a+ bi) + c(d+ ei),

and

c((a+ bi) · (d+ ei)) = c((ad− be) + (ae+ bd)i) = (ad− be)− (ae+ bd)i

= (a− bi) · (d− ei) = c(a+ bi) · c(d+ ei).

Moreover, c is injective (if a − bi = d − ei, then a = d and b = e) and surjective
(c−1(d+ ei) = d− ei). Thus, c is an isomorphism of C to C (i.e., an automorphism
of C). Since (c ◦ c)(α) = α, for every α ∈ C, we say that c is an involution.

5.5. Rings of Polynomials

In this section we introduce new examples of rings that will be very useful in later
chapters: the rings of polynomials. The operations of addition and multiplication
of polynomials are defined in the most natural way one could imagine.

Example 5.5.1. The ring of polynomials with coefficients in Z will be denoted by
Z[x]. The addition and multiplication in Z[x] will be defined naturally so that +
and · are commutative and associative and satisfy the usual distributive laws. For
instance,

(1 + x) + (−2 + x+ 3x2) = −1 + 2x+ 3x2,

and
(1 + x) · (−2 + x+ 3x2) = −2− x+ 4x2 + 3x3.

Definition 5.5.2. Let (R,+, ·) be a commutative ring with identity 1 ∈ R, and
define a triple (R[x],+, ·) as follows.

(1) The set R[x] is formed by all polynomials in the variable x with coefficients
in R; i.e.,

R[x] = {r0 + r1x+ r2x
2 + · · ·+ rnx

n : n ≥ 0, ri ∈ R}.
(2) The addition operation + of two polynomials p(x) =

∑n
i=0 rix

i and q(x) =∑m
j=0 sjx

j is defined by the formula

p(x) + q(x) =

n∑
i=0

rix
i +

m∑
j=0

sjx
j =

max{m,n}∑
k=0

(rk + sk)x
k.

(3) The multiplication operation · of two polynomials p(x) and q(x) as above is
defined by the formula

p(x) · q(x) =
(

n∑
i=0

rix
i

)
·

⎛⎝ m∑
j=0

sjx
j

⎞⎠ =
m+n∑
k=0

tkx
k,
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where
tk =

∑
i+j=k
i,j≥0

risj .

Theorem 5.5.3. If (R,+, ·) is a commutative ring with identity 1 ∈ R, then R[x]
is also a commutative ring with identity 1 ∈ R[x].

We will not provide a proof of this theorem in this book, but it is not deep,
only tedious, to check that all the axioms are satisfied. For our purposes, it suffices
to say that the additive identity of R[x] is the polynomial identically equal to 0 ∈ R
and the multiplicative identity is given by the polynomial identically equal to 1 ∈ R.

Example 5.5.4. Thanks to our previous theorem, now we can build many new
rings. For instance, we may consider Z[x], Q[x], R[x], and C[x]. Since R = Z[x]
is a ring, we may construct a new ring of polynomials with coefficients in R, i.e.,
R[y] = (Z[x])[y] which is formed by polynomials in two variables and that we usually
denote by Z[x, y].

Of course, in this book we are particularly interested in the ring Z/mZ, for
some m > 1, and we will also be very interested in the study of the polynomial
rings (Z/mZ)[x]. This ring of polynomials behaves just as Z[x] does, except that
we always reduce each coefficient modulo m.

Example 5.5.5. Let m = 15 and consider the ring of polynomials (Z/15Z)[x]
and, in particular, consider the product of the two polynomials x − 3 mod 15 and
x− 5 mod 15:

(x− 3)(x− 5) ≡ x2 − 3x− 5x+ 15 ≡ x2 − 8x ≡ x(x− 8) mod 15.

We notice that the polynomial x2−8x has two distinct factorizations in (Z/15Z)[x];
namely,

x2 − 8x ≡ x(x− 8) ≡ (x− 3)(x− 5) mod 15.

This indicates that, unlike Z, the elements in the ring (Z/15Z)[x] do not have a
unique factorization into “primes” (however, we have not defined prime in a general
ring).

As in the case of Z we can define a concept of divisibility of polynomials.

Definition 5.5.6. Let R be a ring and let R[x] be the associated ring of polynomials
with coefficients in R. Let p(x), q(x) ∈ R[x] be polynomials. We say that q(x)
divides the polynomial p(x) if there is another polynomial t(x) ∈ R[x] such that
p(x) = q(x)t(x). In this case, we say that q(x) is a divisor of p(x) or that p(x) is a
multiple of q(x). We also write q(x) | p(x).

Every polynomial has a term of maximum degree, and this degree is called the
degree of the polynomial.

Definition 5.5.7. Let (R,+, ·) be a commutative ring with identity, and let R[x] be
the ring of polynomials with coefficients in R. The degree of a non-zero polynomial
p(x) ∈ R[x] is the exponent of the highest power of x in p(x) with a non-zero
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coefficient; i.e., if p(x) is given by

p(x) = adx
d + ad−1x

d−1 + · · ·+ a2x
2 + a1x+ a0,

with ai ∈ R and ad �= 0, then the degree of p(x) is d. We write deg p(x) = d.

As the reader may have noticed, Definition 5.5.7 does not assign a degree to the
identically zero polynomial p(x) = 0, for if we were to assign a value to the degree
of 0, it would create conflicts in the formulas we are about to quote below. There
is one way, however, to extend the definition of degree to the zero polynomial, and
that is by assigning deg 0 = −∞.

Lemma 5.5.8. Let R[x] be a ring of polynomials, and let p(x) and q(x) be arbitrary
non-zero polynomials in R[x].

(1) If p(x) + q(x) �= 0, then deg(p(x) + q(x)) ≤ max{deg p(x), deg q(x)}.
(2) If p(x) · q(x) �= 0, then deg(p(x) · q(x)) ≤ deg p(x) + deg q(x). Moreover, if R

is a field, then deg(p(x) · q(x)) = deg p(x) + deg q(x).

The proof of the previous lemma follows directly from the definition of addition
and multiplication of polynomials and the fact that every non-zero element in a field
is a unit (therefore, there are no zero-divisors). We leave the proof as an exercise
for the reader (Exercises 5.6.13 and 5.6.20).

Exercise 5.5.9. Let (Z/6Z)[x] be the ring of polynomials with coefficients in Z/6Z,
and let p(x) ≡ 2x+ 5 and q(x) ≡ 3x2 + 1 mod 6. Then,

p(x) + q(x) ≡ (2x+ 5) + (3x2 + 1) ≡ 3x2 + 2x+ 6 ≡ 3x2 + 2x mod 6,

and

p(x) · q(x) ≡ (2x+ 5) · (3x2 + 1) ≡ 6x3 + 15x2 + 2x+ 5 ≡ 3x2 + 2x+ 5 mod 6.

Thus, deg p(x) = 1, deg q(x) = 2, and

deg(p+ q) = 2 = max{1, 2}, deg(p · q) = 2 ≤ 1 + 2 = 3.

As in the case of Z and Theorem 2.4.4, we can also perform “long division”
of polynomials in a ring F [x] with coefficients in a field F . Before we prove the
division theorem for polynomials, we need to verify that polynomials over a field
satisfy a cancellation law.

Lemma 5.5.10. Let F be a field, let F [x] be the associated polynomial ring, and
let p(x), q(x) ∈ F [x]. Then, p(x) · q(x) = 0 if and only if p(x) = 0 or q(x) = 0.

Proof. Let p(x) = adx
d + · · · + a1x + a0 and q(x) = bex

e + · · · + b1x + b0, where
d, e ≥ 0 and ai, bj ∈ F . It is clear that if p(x) = 0 or q(x) = 0, then p(x) · q(x) = 0.

Conversely, suppose that p(x) · q(x) = 0, but p(x), q(x) �= 0. Then, we may
assume that ad, be �= 0, where d, e ≥ 0. Moreover,

p(x) · q(x) = (adx
d + · · ·+ a1x+ a0) · (bexe + · · ·+ b1x+ b0)

= (adbe)x
d+e + · · ·+ (a1b0 + b1a0)x+ a0b0.

It follows that, if p(x) · q(x) = 0, then adbe = 0. Since F is a field, we conclude that
ad = 0 or be = 0 (see Exercise 5.6.19), which is a contradiction to our assumption
that ad, be �= 0. Thus, we must have that p(x) = 0 or q(x) = 0, as claimed. �
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Remark 5.5.11. Notice that the cancellation law does not hold in general if the
coefficients of the polynomials are not in a field. For instance,

(2x+ 2)(3x+ 3) ≡ 0 mod 6,

but the polynomials 2x+ 2 and 3x+ 3 are non-zero in (Z/6Z)[x].

We are now ready to prove the division theorem for polynomials:

Theorem 5.5.12 (Division theorem for polynomials). Let F be a field, and let
F [x] be the ring of polynomials with coefficients in F . Then, for all polynomials
a(x), b(x) ∈ F [x], with a(x) �= 0, there exist unique polynomials q(x) and r(x) in
F [x] such that

b(x) = a(x) · q(x) + r(x),

such that either r(x) = 0 or 0 ≤ deg r(x) < deg a(x).

Proof. Let a(x), b(x) ∈ F [x], with a(x) �= 0. We will first show the existence of
polynomials q(x) and r(x) as in the statement of the theorem, and later we shall
prove their uniqueness.

If there exists a polynomial q(x) ∈ F [x] such that b(x) = a(x)q(x), then we can
take r(x) = 0. Otherwise, b(x) − a(x)q(x) is never zero, and we may consider the
set

S = {d ≥ 0 : d = deg(b(x)− a(x) · q(x)) for some q(x) ∈ F [x]}.
Clearly, S is non-empty (as deg b(x) ∈ S), so either d = 0 ∈ S or by the well-
ordering principle (Section 2.1), the set S ⊆ N has a least element. In either case,
S has a least element d0. In particular, there is a polynomial q(x) such that d0 is
the degree of b(x)− a(x)q(x). Define r(x) = b(x)− a(x)q(x), so that deg r(x) = d0.
Furthermore,

b(x) = a(x) · q(x) + r(x).

Next we show that 0 ≤ deg r(x) = d0 < deg a(x). Since d0 ∈ S, it follows that
d0 ≥ 0. Suppose for a contradiction that deg r(x) = d0 ≥ deg a(x). Let us write

r(x) = rd0
xd0 + rd0−1x

d0−1 + · · ·+ r1x+ r0

and
a(x) = atx

t + · · ·+ a1x+ a0,

for some ri, aj ∈ F , with rd0
, at �= 0. The condition deg r(x) ≥ deg a(x) implies

that d0 ≥ t. Let s = d0 − t ≥ 0 and define q̃(x) = q(x) + rd0
a−1
t xs. Notice that at

has an inverse in F , because F is a field and at �= 0. Then, we have

b(x) = a(x)q(x) + r(x)

= a(x) · (q(x) + rd0
a−1
t xs) + r(x)− a(x) · (rd0

a−1
t xs)

= a(x) · q̃(x) + r̃(x),

where we define r̃(x) = r(x)− a(x) · (rd0
a−1
t xs). Notice that

r̃(x) = r(x)− a(x) · (rd0
a−1
t xs)

= rd0
xd0 + · · ·+ r1x+ r0 − (atx

t + · · ·+ a1x+ a0) · (rd0
a−1
t xs)

= rd0
xd0 + · · ·+ r1x+ r0 − rd0

xd0 − rd0
a−1
t at−1x

d0−1 − · · · − rd0
a0a

−1
t xs

= rd0−1x
d0−1 + · · ·+ r1x+ r0 − rd0

a−1
t at−1x

d0−1 − · · · − rd0
a0a

−1
t xs.
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Thus, deg r̃(x) ≤ d0 − 1 < deg r(x). Since

r̃(x) = b(x)− q̃(x) · a(x),
it follows that deg r̃(x) belongs to S. But deg r̃(x) < d0 and d0 was supposed to
be the least element in S. This is a contradiction and, therefore, our assumption
that deg r(x) = d0 ≥ deg a(x) must be wrong, and we must have d0 < deg a(x), as
desired.

It remains to show that q(x) and r(x) are unique. Suppose that q′(x) and
r′(x) ∈ F [x] are other polynomials such that

b(x) = a(x)q′(x) + r′(x)

and either r′(x) = 0 or we have that 0 ≤ deg r′(x) < deg a(x). Since we also have
that b(x) = a(x)q(x) + r(x), we have

a(x)q(x) + r(x) = a(x)q′(x) + r′(x),

and, as a consequence,

a(x)(q(x)− q′(x)) = r′(x)− r(x).

If q(x)−q′(x) �= 0, then Lemma 5.5.8 implies that the degree of the left-hand side of
the equation is at least deg a(x), while the degree of the right-hand side is less than
deg a(x). This is impossible, so we must have q(x) = q′(x). Hence, r′(x)− r(x) = 0
and r′(x) = r(x). It follows that q(x) and r(x) are unique. This concludes the
proof of the theorem. �

Example 5.5.13. Let us find quotients and remainders in Q[x] and (Z/5Z)[x].

• For instance, when we divide x5 + 1 by x + 2 in Q[x] we obtain a remainder
of −31 and a quotient x4− 2x3 +4x2 − 8x+16. In particular, the polynomial
x+ 2 is a divisor of x5 + 1 in (Z/31Z)[x], because

x5 + 1 = (x+ 2)(x4 − 2x3 + 4x2 − 8x+ 16)− 31

≡ (x+ 2)(x4 − 2x3 + 4x2 − 8x+ 16) mod 31.

• When we divide x5 + 1 by x2 + 2 in Q[x] we obtain a quotient of x3 − 2x and
a remainder of 4x+ 1, because

x5 + 1 = (x2 + 2)(x3 − 2x) + 4x+ 1.

Corollary 5.5.14 (Remainder theorem). Let F be a field, let p(x) ∈ F [x] be a
polynomial, and let f ∈ F . Then, the remainder of the division of p(x) by x− f is
precisely p(f).

Proof. By the division theorem (Theorem 5.5.12), we can divide p(x) by x − f
with quotient and remainder; i.e., there is a q(x) and r(x) such that

p(x) = (x− f)q(x) + r(x),

with either r(x) = 0 or we have that 0 ≤ deg r(x) < deg(x − f) = 1; i.e., either
r(x) = 0 or we have 0 ≤ deg r(x) < 1. Hence, r(x) = r is a constant. Moreover,

p(f) = (f − f)q(f) + r = 0 · q(f) + r = r

and we have shown that p(f) = r, as claimed. �
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Corollary 5.5.15 (Root theorem). Let F be a field, let p(x) ∈ F [x] be a polynomial,
and let f be an element of F . Then, the polynomial x− f divides p(x) if and only
if p(f) = 0.

Proof. Suppose first that p(x) is divisible by x− f . Then, there is some q(x) such
that p(x) = (x− f)q(x). Hence,

p(f) = (f − f)q(f) = 0 · q(f) = 0.

Conversely, suppose that p(f) = 0. By Corollary 5.5.14,

p(x) = (x− f)q(x) + p(f),

for some q(x) ∈ F [x]. Since p(f) = 0, it follows that p(x) = (x− f)q(x) and so, by
definition, (x− f) divides p(x), as claimed. �

Example 5.5.16. Let p(x) ≡ x4−1 mod 5 in (Z/5Z)[x]. Let us find a factorization
of p(x). The first thing we notice is that x ≡ 1 mod 5 is a root. Thus, by the root
theorem, x− 1 is a factor. Indeed,

x4 − 1 ≡ (x− 1)(x3 + x2 + x+ 1) mod 5.

Moreover 24 − 1 ≡ 15 ≡ 0 mod 5, so x ≡ 2 mod 5 is also a root. Since 2 is not a
root of x− 1, it must be a root of x3 + x2 + x+ 1, and therefore the latter should
be divisible by x− 2. Indeed,

x3 + x2 + x+ 1 ≡ (x− 2)(x2 + 3x+ 2) mod 5.

The polynomial x2 + 3x+ 2 factors as (x+ 1)(x+ 2). Therefore,

x4 − 1 ≡ (x− 1)(x− 2)(x+ 1)(x+ 2) ≡ (x− 1)(x− 2)(x− 3)(x− 4) mod 5.

Definition 5.5.17. Let R[x] be a ring of polynomials, where R is a ring. Let p(x)
be a polynomial. We say that r ∈ R is a zero or a root of p(x) if p(r) = 0, or,
equivalently, if x − r divides p(x). If there is some e ≥ 1 such that (x − r)e, then
we say that r is a zero of p(x) with multiplicity e.

Example 5.5.18. Let p(x) ≡ x4 + 4x3 + 4x+ 4 in (Z/5Z)[x]. Since p(3) = 205, it
follows that x ≡ 3 mod 5 is a root of p(x) in (Z/5Z)[x]. Hence, by the root theorem
(Corollary 5.5.15), the polynomial x−3 is a divisor of p(x). Indeed, when we divide
p(x) by x− 3 we find that the remainder is 0 mod 5:

p(x) ≡ (x− 3)(x3 + 2x2 + x+ 2) mod 5.

In fact, notice that 3 is also a root of x3 +2x2 + x+2, as 33 +2 · 32 +3+2 ≡ 50 ≡
0 mod 5. Thus, x− 3 is a factor:

x3 + 2x2 + x+ 2 ≡ (x− 3)(x2 + 1) mod 5.

Moreover, x2 + 1 ≡ x2 − 4 ≡ (x− 2)(x+ 2) mod 5. Thus,

p(x) ≡ x4 + 4x3 + 4x+ 4

≡ (x− 3)2(x− 2)(x+ 2)

≡ (x− 3)3(x− 2) mod 5.
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Hence, 3 is a root with multiplicity three, because (x−3)3 also divides p(x). Notice
that the roots of the polynomial p(x) are {2, 3}, or if we count them with multi-
plicities, the roots are {2, 3, 3, 3}. In either case, the number of roots is ≤ 4 and
deg(p(x)) = 4.

Theorem 5.5.19. Let F be a field and let F [x] be the associated ring of polynomials
with coefficients in F . Let p(x) ∈ F [x] be a non-zero polynomial of degree n. Then,
p(x) has at most n roots in F , even when counted with multiplicities.

Proof. We shall prove the theorem by induction on n, the degree of the non-zero
polynomial p(x). If n = 0, then p(x) = p is a constant polynomial, for some
0 �= p ∈ F . Then, p(x) has no zeros, as p(x) = p = 0 is impossible. Thus, the
number of roots is ≤ 0, as needed.

Now, suppose that the theorem is true for all polynomials in F [x] of degree n,
and suppose p(x) has degree n+ 1. If p(x) has no roots in F , then the number of
roots of p(x) is 0 ≤ n + 1, and the theorem holds for p(x). Otherwise, if p(x) has
at least one root r ∈ F , Corollary 5.5.15 implies that x− r is a divisor of p(x); i.e.,
there is a q(x) ∈ F [x] such that p(x) = (x− r)q(x). Moreover, by Lemma 5.5.8, we
have

n+ 1 = deg p(x) = deg((x− r)q(x)) = deg(x− r) + deg q(x) = 1 + deg q(x).

Hence, deg q(x) = n+1− 1 = n. By our induction hypothesis, the polynomial q(x)
has at most n roots, and any root of q(x) is clearly also a root of p(x), because
q(x) divides p(x). Moreover, if s is a root of p(x), then either r = s or s is a root
of q(x), because

0 = p(s) = (s− r)q(s),

and so s − r = 0 or q(s) = 0. Hence, the number of roots of p(x) is at most the
number of roots of x− r (1 root) plus the number of roots of q(x) (n roots by the
induction hypothesis). It follows that p(x) has at most n+1 roots, as desired. This
shows the induction step.

Hence, by the principle of mathematical induction, every polynomial of degree
n ≥ 0 has, at most, n roots. �

Remark 5.5.20. The conclusion of Theorem 5.5.19 is false if the coefficient ring of
the polynomial is not a field. For instance, consider the polynomial p(x) = x2−1 as
an element of the ring of polynomials (Z/105Z)[x]. This polynomial has 8 distinct
roots, namely

x ≡ 1, 29, 34, 41, 64, 71, 76, 104 mod 105.

Thus, p(x) has 8 distinct roots over Z/105Z, but the degree of p(x) is only 2. See
also Example 4.5.13.

Let us specialize Theorem 5.5.19 to the case of the finite field F = Z/pZ, for
some prime p.

Corollary 5.5.21. Let p be a prime, and let p(x) be a polynomial in (Z/pZ)[x]
of degree n. Then, p(x) has at most n roots in Z/pZ, even when counted with
multiplicities.
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Equivalently, let p(x) ∈ Z[x], of degree n, and such that the coefficient of xn is
not divisible by p. Then p(x) ≡ 0 mod p has at most n distinct solutions modulo p,
even when counted with multiplicities.

We finish this section with a result that says that if a polynomial is defined over
F and all but one root is defined over F , then the remaining root is also defined
over F . This result will be particularly useful in Parts 2 and 3 of the book (for
instance, see Theorem 9.3.4).

Proposition 5.5.22. Let n ≥ 2, let F be a field, and let p(x) ∈ F [x] be a polynomial
with coefficients in F and degree n. Suppose that p has at least n−1 roots (counted
with multiplicity) defined over F . Then, p(x) has n roots defined over F .

Proof. Let n, F , and p(x) be as in the statement, and let α1, . . . , αn−1 ∈ F be
roots of p(x), counted with multiplicity. By Corollary 5.5.15 we have

p(x) = (x− α1)(x− α2) · · · (x− αn−1)q(x),

for some q(x) ∈ F [x]. Since the degree of p(x) is n, it follows that the degree of
q(x) is 1; i.e., q(x) is a linear polynomial, say q(x) = ax+ b, for some a, b ∈ F and
a �= 0. Thus, the roots of p(x) are precisely α1, . . . , αn−1, and αn = −b/a ∈ F . So
all n roots of p(x) are actually defined over F . �

5.5.1. The Discriminant of a Polynomial. Let p(x) = ax2 + bx+ c be a qua-
dratic polynomial in F [x], for some field F . If F = C, then the well-known quadratic
formula

x =
−b±

√
b2 − 4ac

2a
tells us the values of the two (complex) roots of p(x). It is not immediate, however,
whether the quadratic formula works for other fields such as F = Fp, for a prime
p > 2 (what is the meaning of

√
a for a ∈ Fp?). This topic will be revisited in

detail in Chapter 10 when we introduce the concept of quadratic residues. In this
section, instead, we concentrate on the quantity b2 − 4ac that appears as part of
the quadratic formula and which we will refer to as the discriminant of p(x).

When F = R, the reader is probably familiar with the fact that the sign of
Δ = b2 − 4ac determines whether p(x) has 0, 1, or 2 distinct real roots, according
to whether Δ < 0, Δ = 0, or Δ > 0, respectively. We shall define a discriminant
for polynomials of arbitrary degree that generalizes the definition in the quadratic
case and enjoys a similar discriminating property.

Definition 5.5.23. Let n ≥ 2, and let p(x) = anx
n+ · · ·+a1x+a0 be a polynomial

defined over a field F of degree n (i.e., an �= 0), with roots r1, . . . , rn (not necessarily
different) defined over a field extension L of F . We define the discriminant of p(x)
as

Δp(x) = a2n−2
n ·

∏
1≤i<j≤n

(rj − ri)
2.

Example 5.5.24. Let p(x) = a2x
2 + a1x + a0 be a quadratic polynomial (i.e.,

a2 �= 0) defined over C. Then, the roots of p(x) are

r1 =
−a1 −

√
a21 − 4a0a2
2a2

and r2 =
−a1 +

√
a21 − 4a0a2
2a2

.
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Thus,

Δp(x) = a22 · (r2 − r1) = a22 ·
a21 − 4a0a2

a22
= a21 − 4a0a2,

which is the usual discriminant of a quadratic polynomial.

A direct consequence of the definition of a discriminant, as given in Definition
5.5.23, is that Δp(x) = 0 if and only if p(x) has a root of multiplicity ≥ 2. However, it
is difficult to calculate a discriminant directly from this definition for polynomials of
degree ≥ 3, when the roots are not already known. The following theorem expresses
the discriminant solely in terms of the coefficients of the polynomial.

Theorem 5.5.25. Let p(x) = anx
n + · · ·+ a1x+ a0 be a polynomial defined over

a field F of degree n (i.e., an �= 0). Then,

Δp(x) = (−1)n(n−1)/2R(p, p′)

an
,

where R(p, p′) is the resultant of p(x), which is given by the determinant of the
(2n− 1)× (2n− 1) matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an an−1 an−2 · · · a2 a1 a0 0 0 · · · 0

0 an an−1 an−2 · · · a2 a1 a0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 an an−1 an−2 · · · a2 a1 a0

bn bn−1 bn−2 · · · b2 b1 0 0 0 · · · 0

0 bn bn−1 bn−2 · · · b2 b1 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 bn bn−1 bn−2 · · · b2 b1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with p′(x) = bnx

n−1 + · · ·+ b2x+ b1, i.e., bk = k · ak for 1 ≤ k ≤ n.

The determinant R(p, p′) is called the resultant of p(x). We will not prove
Theorem 5.5.25 here, which is a standard result about discriminants and resultants.
Instead, let us apply the theorem to find formulas of discriminants for quadratic
and cubic polynomials.

Example 5.5.26. Let p(x) = a2x
2 + a1x + a0 be a quadratic polynomial (i.e.,

a2 �= 0) defined over a field F . Then, the resultant R(p, p′) of p(x) is the determinant
of ⎛⎜⎝ a2 a1 a0

2a2 a1 0

0 2a2 a1

⎞⎟⎠ .

Thus,
R(p, p′) = a21a2 + 4a0a

2
2 − 2a21a2 = 4a0a

2
2 − a21a2.

Hence,

Δp(x) = (−1) · R(p, p′)

a2
= a21 − 4a0a2,

as expected.
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Example 5.5.27. Let p(x) = a3x
3 + a2x

2 + a1x+ a0 be a cubic polynomial (i.e.,
a3 �= 0) defined over a field F . Then, the resultant R(p, p′) of p(x) is the determinant
of ⎛⎜⎜⎜⎜⎜⎜⎝

a3 a2 a1 a0 0

0 a3 a2 a1 a0

3a3 2a2 a1 0 0

0 3a3 2a2 a1 0

0 0 3a3 2a2 a1

⎞⎟⎟⎟⎟⎟⎟⎠ .

We leave it up to the reader to verify that Δp(x) is given by

Δp(x) = a21a
2
2 − 4a31a3 − 4a0a

3
2 − 27a20a

2
3 + 18a0a1a2a3.

In particular, the discriminant of a polynomial of the form p(x) = x3 + Ax+ B is
given by

Δp(x) = −(4A3 + 27B2).

The discriminant Δ = −(4A3 + 27B2) will be particularly relevant when we study
elliptic curves in Chapter 16 (see Proposition 16.1.2, for instance).

Remark 5.5.28. We will continue our discussion of polynomials in Section 6.3,
when discussing finite fields.

5.6. Exercises

Exercise 5.6.1. Let m > 1 be fixed. Suppose that N′ ⊆ Z/mZ is a subset of
congruence classes that satisfies the following properties:

(1) (Non-triviality) N′ is non-empty.
(2) (Closure) N′ is closed under + and ·; that is, if a, b ∈ N′, then a + b and

a · b ∈ N′.
(3) (Trichotomy) For all a ∈ Z/mZ, precisely one and only one of the following

statements is true: a ∈ N′ or a ≡ 0 or −a ∈ N′.

Show that N′ cannot exist.

Exercise 5.6.2. Let (G, ·) and (H, ·) be defined as in Example 5.2.18. Prove that
(G, ·) and (H, ·) are groups.

Exercise 5.6.3. Let m > 1 be an integer, and let μm be the set of all mth roots
of unity in the complex numbers; i.e.,

μm = {z ∈ C : zm = 1} = {e2nπi/m : 0 ≤ n < m}.
Show that (μm, ·) is a group under multiplication.

Exercise 5.6.4. Let SL(2,Z) be the set of 2× 2 matrices with integer coefficients
and determinant 1 that we defined in Exercise 1.8.21.

(1) Show that SL(2,Z) is a group with respect to matrix multiplication. Give
an explicit formula for the multiplicative inverse of an arbitrary element of
SL(2,Z).

(2) Show that SL(2,Z) is not abelian.
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(3) Show that SL(2,Z) is generated as a group by the matrices S and T defined
in Exercise 1.8.21, together with − Id. (Note: this is a difficult problem. A
proof can be found in [Ser73, Chapter VII, Theorem 2].)

Exercise 5.6.5. Prove that if (G, ∗) is a group, then the inverses with respect to
∗ are unique; i.e., if g ∈ G, then there is a unique inverse element g−1 such that
g ∗ g−1 = e, where e is the identity element in the group G.

Exercise 5.6.6. The goal of this exercise is to prove Lagrange’s theorem (Theorem
5.2.19). Let (G, ∗) be a finite group, and let (H, ∗) be a subgroup of G.

(1) Let g1, g2 be elements of G. We say that g1 ∼H g2 if and only if there is some
h ∈ H such that g1 = g2 ∗h. Prove that ∼H defines an equivalence relation on
the elements of G; i.e., prove that ∼H is reflexive, symmetric, and transitive.

(2) Let G/H be the set of equivalence classes of G with respect to ∼H , and let
g ∗H denote the equivalence class formed by all the elements of G in the same
equivalence class as g ∈ G; i.e.,

g ∗H = {k ∈ G : k ∼H g}.

Let g1∗H and g2∗H be two equivalence classes. Show that either g1∗H = g2∗H
or (g1 ∗ H) ∩ (g2 ∗ H) = ∅, or, in words, two equivalence classes are either
identical or completely disjoint.

(3) Prove that all equivalence classes have the same size. (Hint: if a∗H and b∗H
are two equivalence classes, consider the map f : g1 ∗ H → g2 ∗ H given by
f(x) = g2 ∗ g−1

1 ∗ x.)

(4) Show that e ∗H = H. Conclude that all equivalence classes are of size |H|.
(5) Show that |G| = |G/H| · |H|, where |G/H| is the number of equivalence classes

of elements of G with respect to ∼H . Hence, |H| is a divisor of |G|.

Exercise 5.6.7. Let (G, ∗) be a finite abelian group, and let (H, ∗) be a subgroup
of G. Let G/H = {g ∗ H : g ∈ G} be the set of equivalence classes defined in
Exercise 5.6.6, and define a group operation 	 on G/H as follows:

(g1 ∗H) 	 (g2 ∗H) = (g1 ∗ g2) ∗H.

(a) Show that (G/H, 	) is a group, called the quotient group of G by H.

(b) Conclude that G/H is a group of order |G|/|H|, where |G| and |H| are the
orders of G and H, respectively.

(c) Let p > 2 be a prime, let G = (Z/pZ)× be the group of units in Z/pZ, and let
H = {±1 mod p}.
(1) Show that the quotient group (Z/pZ)×/{±1 mod p} has (p − 1)/2 ele-

ments.
(2) Let p = 11. The group G/H = (Z/11Z)×/{±1 mod 11} has five elements

{H, g2H, g3H, g4H, g5H}. Find representatives 1, g2, . . . , g5 for the five
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equivalence classes of (Z/11Z)×/{±1}, and write a multiplication table
for the elements of G/H of the form

· H g2H g3H g4H g5H

H H g2H · · ·
g2H

g3H

g4H

g5H

such that each entry (giH) · (gjH) in the table is identified to be another
element gkH of G/H.

Exercise 5.6.8. Verify that the maps in Examples 5.2.23, 5.2.24, 5.2.25, and 5.2.26
are group homomorphisms.

Exercise 5.6.9. Prove Proposition 5.2.28.

Exercise 5.6.10. Let ϕ : Z/mZ → μm be the map given by a mod m �→ e2aπi/m

in Example 5.2.32. Prove the following statements:

(1) Show that ϕ is well-defined; that is, ϕ(a mod m) = ϕ(b mod m) whenever a, b
are integers with a ≡ b mod m.

(2) Show that ϕ is a group homomorphism.
(3) Show that ϕ is injective and surjective.
(4) Show that ϕ is an isomorphism of groups.

Exercise 5.6.11. Prove Proposition 5.2.33.

Exercise 5.6.12. Verify that the map f of Example 5.2.34 is an injective group
homomorphism.

Exercise 5.6.13. Let (R,+, ·) be a commutative ring with identity, such that
0 �= 1. Prove that if u ∈ R is a unit, then u is not a zero-divisor.

Exercise 5.6.14. Let n and m be positive integers such that n is a divisor of m.
Let u be an integer relatively prime to n.

(a) Show that there exists an integer v, relatively prime to m, such that v ≡
u mod n. (Hint: use Proposition 5.3.21.)

(b) Let n = 5, m = 210, and u = 12. Find v ∈ Z as in part (a), i.e., an integer v
relatively prime to m such that v ≡ u mod n.

Exercise 5.6.15. Let (F,+, ·) be a field. Show that 0F · f = 0F for every f ∈ F ,
where 0F is the zero element for the addition in the field. (Hint: 0 + 0 = 0.)

Exercise 5.6.16. Let (R,+, ·) be a commutative ring with identity. Prove that all
the ideals (see Definition 5.3.27) of Z are of the form {0} or nZ for some n ∈ Z;
i.e., an ideal in Z is a set of multiples of a fixed integer n:

nZ = {n ·m : m ∈ Z}.
(Hint: find the smallest positive integer n ∈ I, and show that every element of I is
divisible by n.)
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Exercise 5.6.17. Let (F,+, ·) be a field. Show that the only ideals of F are {0}
and F .

Exercise 5.6.18. Let F and K be fields, and let ψ : F → K be a field homomor-
phism (Definition 5.4.6). We define the kernel of ψ by

Ker(ψ) = {f ∈ F : ψ(f) = 0K}.
Show that Ker(ψ) is an ideal of F . Use Exercise 5.6.17 to conclude that Ker(ψ) =
{0F } or F .

Exercise 5.6.19. Let (F,+, ·) be a field, and let a, b ∈ F . Show that a · b = 0 if
and only if a = 0 or b = 0. (Hint: if ab = 0 and a �= 0, then we can multiply both
sides of ab = 0 by a−1.)

Exercise 5.6.20. Prove Lemma 5.5.8.

Exercise 5.6.21. (1) Find all the congruence classes modulo 35 that are zero-
divisors in Z/35Z.

(2) Find all the congruence classes modulo 35 that are units in Z/35Z.
(3) For each unit modulo 35, find its multiplicative inverse.
(4) Repeat parts (1), (2) and (3) for the ring Z/11Z.

Exercise 5.6.22. (1) Find all the congruence classes modulo 16 that are zero-
divisors in Z/16Z.

(2) Find all the congruence classes modulo 16 that are units in Z/16Z.
(3) For each unit modulo 16, find its multiplicative inverse.

Exercise 5.6.23. Find all the units in Z/18Z and all the units in Z/19Z. Find
the multiplicative inverse for every unit in Z/18Z. Does 3x ≡ 1 mod 18 have a
solution? What about 3x ≡ 1 mod 19?

Exercise 5.6.24. Verify that:

(1) The numbers 0, 2, 22, 23, 24, 25, 26, 27, 28, 29, 210 are a complete set of represen-
tatives modulo 11.

(2) The numbers 0, 2, 22, 23, 24, 25, 26 are not a complete set of representatives
modulo 7.

Exercise 5.6.25. Find the quotient and remainder in Q[x] when dividing x3−7x−1
by x2 + 2x− 3.

Exercise 5.6.26. Find the remainder when x4 − 7x2 + 3 is divided by x + 1 in
Q[x].

Exercise 5.6.27. For which values of k in Q does x− k divide f(x) = x3 − kx2 −
2x+ k + 3?

Exercise 5.6.28. Using Euclid’s algorithm, find a greatest common divisor in F3[x]
of the following:

(1) x5 + 1 and x2 + 1.
(2) x3 + 2x2 + 3x+ 2 and x2 − x+ 4.
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Exercise 5.6.29. In Z/3Z[x], write if possible the polynomial 1 in the form
f(x)p(x) + g(x)q(x) = 1 where

p(x) = x3 + 1, q(x) = x3 + x+ 1.

Exercise 5.6.30. Prove that any polynomial of degree ≥ 1 in F [x], where F is a
field, is either irreducible or it factors into a product of irreducibles (see Definition
6.3.3).

Exercise 5.6.31. Factor x5 − x into a product of irreducibles in Z/5Z[x].

Exercise 5.6.32. Show that for any prime p the polynomial xp − x factors as
x(x− 1)(x− 2) · · · (x− (p− 1)) over Z/pZ[x].

Exercise 5.6.33. Let p(x) = 16x3 + 8x2 − 7x+ 1 be defined over Q.

(1) Calculate the discriminant of p(x).
(2) Use (1) to show that p(x) has a double root, but not a triple root.
(3) Calculate the roots of p(x) over Q.
(4) Now consider p(x) as defined over F5. Show that p(x) has a triple root.

Exercise 5.6.34. Compute the discriminant of a polynomial p(x) = x3 +Ax+B,
defined over a field F . (Hint: use Theorem 5.5.25.)
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CHAPTER 6

FINITE FIELDS

Taking Three as the subject to reason about–
A convenient number to state–
We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight.
The result we proceed to divide, as you see,
By Nine Hundred and Ninety Two:
Then subtract Seventeen, and the answer must be
Exactly and perfectly true.
The method employed I would gladly explain,
While I have it so clear in my head,
If I had but the time and you had but the brain–
But much yet remains to be said.

Lewis Carroll, from The Hunting of the Snark

In Section 5.4 we introduced the concept of field, and we showed that Z/pZ is
a field, when p is a prime (Theorem 5.4.3). Here is a natural question that arises:
are there fields with any fixed finite number of elements? In this chapter we explore
this question. We will construct fields of size pn for any prime p and any n ≥ 1 and
then show that the size of a finite field is always a prime power.

Remark 6.0.1. Let p be a prime number. The ring Z/p2Z has p2 elements, but it
is not a field. Indeed, the congruence class p mod p2 is not invertible (see Theorem
5.4.3).

6.1. An Example

Let p be a prime such that p ≡ 3 mod 4. Later in this book, we will show that (as
a consequence of Lemma 10.3.4, part (3)) the number −1 is not a square modulo
p. In other words, there is no integer n such that n2 ≡ −1 mod p. Let us define a
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156 6. Finite Fields

new number “i” such that i2 ≡ −1 mod p and also define

Fp[i] = {a+ bi : a, b ∈ Fp}.

The set Fp[i] inherits addition and multiplication laws from Fp; i.e.,

(a+ bi) + (c+ di) ≡ (a+ b) + (c+ di) mod p

and
(a+ bi) · (c+ di) ≡ (ac− bd) + (ad+ bc)i mod p.

One can routinely check that the addition and multiplication laws are commutative
and associative and the distributive laws are satisfied. Moreover, Fp[i] has a zero
element, 0 mod p; an identity element, 1 mod p; and every element a + bi has an
additive inverse, namely (−a) + (−b)i. In order to prove that Fp[i] is a field, it
remains to show that every non-zero element a + bi is a unit; i.e., a + bi has a
multiplicative inverse.

Lemma 6.1.1. Let p ≡ 3 mod 4 be a prime and suppose a, b ∈ Z are non-zero
modulo p. Then, a2 + b2 �≡ 0 mod p.

Proof. Let p ≡ 3 mod 4 be a prime. By Lemma 10.3.4, −1 is not a square mod p.
Suppose that a �≡ 0 �≡ b mod p (i.e., a, b are units modulo p) and a2+ b2 ≡ 0 mod p.
Then, a2 ≡ −b2 mod p and, therefore, (ab−1)2 ≡ a2b−2 ≡ −1 mod p. But this is
impossible because we just remarked that −1 is a quadratic non-residue. This is a
contradiction and it follows that a2 + b2 �≡ 0 mod p, as claimed. �

We claim that if a+bi �= 0, then a−bi
a2+b2 ≡ (a−bi)(a2+b2)−1 is the multiplicative

inverse of a + bi. Notice that we are able to find an inverse for a2 + b2 because
the previous lemma shows that it is non-zero modulo p and it is therefore a unit.
Indeed,

(a+ bi) · a− bi

a2 + b2
≡ a2 − (bi)2

a2 + b2
≡ a2 + b2

a2 + b2
≡ 1 mod p,

as claimed. Therefore, every non-zero a+ bi is a unit in Fp[i] and we conclude that
Fp[i] is a field. Notice that this field has p2 elements.

This example prompts several questions. Are there fields of p2 elements for
those primes p ≡ 1 mod 4? Are there fields of pn elements, for all n ≥ 1? Are there
fields of m elements, for all m > 1? Before we answer this question, we need to
learn a little bit more about congruences of polynomials.

6.2. Polynomial Congruences

Let p be a prime. We will write Fp for Z/pZ.

Definition 6.2.1. Let a(x), b(x), and m(x) be polynomials in Fp[x]. We say that
a(x) ≡ b(x) mod (m(x)) if the polynomial a(x)− b(x) is divisible by m(x) in Fp[x].

We work with congruences of polynomials just as we work with congruences of
integers. We quote, without proof, an analogue of Proposition 4.2.1 for polynomials.
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Proposition 6.2.2. Let p be a fixed prime. For all polynomials a(x), b(x), c(x),
a′(x), b′(x), k(x), and m(x) in Fp[x], the following properties hold.

(i) If a(x) ≡ b(x) mod m(x), then k(x)a(x) ≡ k(x)b(x) mod m(x).

(ii) If a(x) ≡ b(x) mod m(x) and b(x) ≡ c(x) mod m(x), then a(x) ≡ c(x) mod
m(x).

(iii) If a(x) ≡ b(x) mod m(x), then a(x)j ≡ b(x)j mod m(x), for all j ≥ 1.

(iv) If a(x) ≡ b(x) mod m(x) and a′(x) ≡ b′(x) mod m(x), then
(a) a(x) + a′(x) ≡ b(x) + b′(x) mod m(x), and
(b) a(x) · a′(x) ≡ b(x) · b′(x) mod m(x).

Example 6.2.3. Let us simplify (x2 + x+ 1)3 mod (x2 − 1) over F5[x]. Since

x2 + x+ 1 ≡ x2 − 1 + 1 + x+ 1 ≡ 0 + x+ 2 ≡ x+ 2 mod (x2 − 1),

it follows from Proposition 6.2.2, part (iii), that

(x2 + x+ 1)3 ≡ (x+ 2)3 ≡ x3 + 6x2 + 12x+ 8 ≡ x3 + x2 + 2x+ 3 mod (x2 − 1)

since the coefficients are in F5. Further, x2 ≡ 1 and so

x3 ≡ x · x2 ≡ x · 1 ≡ x mod (x2 − 1).

Thus,

(x2 + x+ 1)3 ≡ x3 + x2 + 2x+ 3 ≡ x+ 1 + 2x+ 3 ≡ 3x+ 4 mod (x2 − 1),

where we have used Proposition 6.2.2, part (iv)(a), to simplify the expression.

Remark 6.2.4. Let a(x) and m(x) be in Fp[x] and let q(x), r(x) ∈ Fp[x] be,
respectively, the quotient and reminder of the long division of a(x) by m(x) as
polynomials, with deg r(x) < degm(x). In other words,

a(x) = m(x)q(x) + r(x), with deg r(x) < degm(x).

Then, a(x) ≡ r(x) mod (m(x)). This shows that every polynomial in Fp[x] is
congruent mod m(x) to another polynomial of degree less than the degree of m(x).

Example 6.2.5. Let p = 7 and put m(x) = x2 + 1 ∈ F7[x]. Let a(x) = x4 + x2 +
x+ 1. Then:

• We may use long division and obtain x4 + x2 + x+1 = (x2 +1)(x2)+ (x+1).
Thus,

x4 + x2 + x+ 1 ≡ x+ 1 mod (x2 + 1).

• x2 + 1 ≡ 0 mod (x2 + 1); thus x2 ≡ −1 mod (x2 + 1). Therefore,

x3 ≡ x2 · x ≡ −x mod (x2 + 1).

Alternatively, −x ≡ 6x in F7[x]. Similarly, we can calculate other powers of
x, for example x4 ≡ 1, and x5 ≡ x mod (x2 + 1).

• We reduce x4 + x2 + x+ 1 in a different way, using the previous remarks:

x4 + x2 + x+ 1 ≡ 1 +−1 + x+ 1 ≡ x+ 1 mod (x2 + 1).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



158 6. Finite Fields

Definition 6.2.6. Let p be a prime and let m(x) be a polynomial in Fp[x] of degree
n ≥ 1. We define the set of all congruence classes in Fp[x] modulo m(x) by

Fp[x]/(m(x)) = {a0 + a1x+ · · ·+ an−1x
n−1 mod (m(x)) : ai ∈ Fp}.

The set Fp[x]/(m(x)) is equipped with addition and multiplication laws, inherited
from Fp[x]:

(a(x) mod m(x)) + (b(x) mod m(x)) ≡ (a(x) + b(x) mod (m(x))

and
(a(x) mod m(x)) · (b(x) mod m(x)) ≡ (a(x) · b(x) mod (m(x)).

Example 6.2.7. Let p = 3 and m(x) = x2 + 1 ∈ F3[x]. Then, the set of all
congruence classes modulo (x2 + 1) is

F3[x]/(x
2 + 1) = {a+ bx mod (x2 + 1) : a, b ∈ F3}

= {0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2 mod (x2 + 1)}.
The polynomial x5 + 2x3 + x+ 2 is congruent to one of the representatives above.
Which one? Notice that x2 ≡ −1 mod (x2 + 1); thus x3 ≡ −x, x4 ≡ 1, and
x5 ≡ x mod (x2 + 1). Therefore,

x5 + 2x3 + x+ 2 ≡ x− 2x+ x+ 2 ≡ 2 mod (x2 + 1).

What is the representative of (2x + 1)(2x + 2) of degree ≤ 1 modulo x2 + 1? Let
us calculate:

(2x+ 1)(2x+ 2) ≡ 4x2 + 6x+ 2 ≡ −4 + 2 ≡ −2 ≡ 1 mod (x2 + 1).

Therefore (2x+ 2) is the multiplicative inverse of (2x+ 1) in F3[x]/(x
2 + 1).

Example 6.2.8. Let p = 3 and m(x) = x2+2x+1. Then, the set of all congruence
classes modulo (x2 + 2x+ 1) is

F3[x]/(x
2 + 2x+ 1) = {a+ bx mod (x2 + 2x+ 1) : a, b ∈ F3}

= {0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2 mod (m(x))}.
Notice that F3[x]/(x

2 + 1) (in the previous example) and F3[x]/(x
2 + 2x+ 1) have

the same set of representatives. However, the additive and multiplicative structures
are quite different. For example, x2 ≡ −1 and x3 ≡ −x mod (x2 + 1) but x2 ≡
−2x− 1 ≡ x+ 2 mod (x2 + 2x+ 1) and

x3 ≡ x2 + 2x ≡ x+ 2 + 2x ≡ 3x+ 2 ≡ 2 mod (x2 + 2x+ 1).

Also, notice that F3[x]/(x
2 + 2x+ 1) is not a field because it has zero-divisors:

(x+ 1)(x+ 1) ≡ x2 + 2x+ 1 ≡ 0 mod (x2 + 2x+ 1)

so x+ 1 mod (x2 + 2x+ 1) is a zero-divisor.

Proposition 6.2.9. Let p be a prime and let m(x) ∈ Fp[x] be a polynomial. Then,
Fp[x]/(m(x)) is a commutative ring with identity.

Proof. The addition and multiplication laws on the set Fp[x]/(m(x)) are inherited
from the laws in Fp and Fp[x], which are, respectively, a field and a commutative
ring with identity. The reader can now finish the proof by checking that + and ·
on Fp[x]/(m(x)) satisfy all the properties of a commutative ring with identity. �
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When is Fp[x]/(m(x)) a field? In Example 6.2.8 we have seen that F3[x]/
(x2 + 2x + 1) is not a field, because it has zero-divisors. The problem is that
x2 + 2x + 1 factors as (x + 1)(x + 1) in F3[x]. We will see that, in fact, if m(x)
cannot be factored, then Fp[x]/(m(x)) is a field.

6.3. Irreducible Polynomials

Before we construct other finite fields, we need to discuss the concept of irreducible
polynomial. In particular, we need to know (a) how to tell if a polynomial is
irreducible and (b) how to find irreducible polynomials of a certain degree. In this
section, R is a commutative ring with identity and F is an arbitrary field.

Definition 6.3.1. A polynomial f(x) ∈ R[x] is a unit polynomial if f(x) is a
unit in the ring R[x], i.e., if there is another polynomial g(x) ∈ R[x] such that
f(x) · g(x) = 1 ∈ R.

If f(x) is defined over a field F instead, then the only unit polynomials are
the constants in F . However, if R is not a field, there may be other units, as the
following example shows.

Example 6.3.2. Let R = Z/4Z and let f(x) = 1 + 2x ∈ Z/4Z[x]. Put g(x) =
1 + 2x = f(x). Then,

f(x)g(x) ≡ (1 + 2x)(1 + 2x) ≡ (1 + 2x)(1− 2x) ≡ 1− 4x2 ≡ 1 mod 4.

Thus, f(x) is a unit.

Definition 6.3.3. Let R be a ring and let f(x) be a polynomial in R[x]. We
say that f(x) is irreducible if f(x) is not a unit and whenever f(x) factors as
f(x) = p(x)q(x), then p(x) or q(x) is a unit polynomial. Otherwise, we say that
f(x) is reducible, i.e., if it factors as a product of irreducible polynomials of lesser
degree.

We remind the reader of two important results, the remainder theorem (Corol-
lary 5.5.14) and the root theorem (Corollary 5.5.15).

Example 6.3.4. Let F = Z/7Z and let f(x) = x2 + 5. Even though f(x) is
irreducible over R, f(x) is not irreducible over Z/7Z, because

f(x) ≡ x2 + 5 ≡ (x+ 4)(x+ 3) ≡ x2 + 7x+ 12 mod 7.

The polynomial g(x) = x2 + 4 is irreducible in Z/7Z[x]. Indeed, if g(x) was re-
ducible, then it would factor as two polynomials of degree 1 and 1. But a polynomial
of degree 1 indicates a root, by the root theorem. Since x2+4 has no roots in Z/7Z
(because −4 ≡ 3 is not a square modulo 7), the polynomial g(x) must be irreducible.

The argument that was used in the last example is very common, so we record
it as a proposition.

Proposition 6.3.5. Let F be a field and let f(x) ∈ F [x] be a polynomial of degree
2 or 3. If f(x) has no roots in F , then f(x) is an irreducible polynomial over F .
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Proof. We begin with a simple remark. Suppose that g(x) is a polynomial of degree
1 that divides f . Then, we claim that f(x) has a root. Indeed, if g(x) = ax + b
with a �= 0, then g(−b/a) = 0 and, therefore, f(−b/a) = 0 because g(x) divides
f(x).

Now, suppose that f(x) is a polynomial of degree 2 or 3 that has no roots over
F . Suppose, for a contradiction, that f(x) is not irreducible. Then f(x) = p(x)q(x)
and neither p(x) nor q(x) is a unit (i.e., deg(p(x)), deg(q(x)) ≥ 1). But p(x) and
q(x) cannot be polynomials of degree 1 because, by the remark above, this would
imply that f(x) has a root. Therefore deg(p(x)), deg(q(x)) ≥ 2 and

deg(f(x)) = deg(p(x)) + deg(q(x)).

Notice that the previous equality holds because F is a field (and it is not true in
general over a ring). If deg(f(x)) = 2 or 3, then deg(p)+ deg(q) ≥ 4 > deg(f), and
we have reached a contradiction. Thus, f(x) must be irreducible. �

Remark 6.3.6. The previous proposition is false for polynomials of degree ≥ 4.
For example, consider f(x) = x4+6x2+1 over Z/7Z. Then, f(x) has no roots (try
to find one!) but

f(x) ≡ (x2 + 4)(x2 + 2) mod 7.

Therefore, f(x) is not irreducible but f(x) has no roots over Z/7Z.

Example 6.3.7. Is the polynomial f(x) = x3 + 2x+ 1 irreducible over Z/7Z? By
Proposition 6.3.5, since deg(f(x)) = 3, if f(x) has no roots, then it must be an
irreducible polynomial. One calculates

f(0) ≡ 1, f(1) ≡ 4, f(2) ≡ 6, f(3) ≡ 6, f(4) ≡ 3, f(5) ≡ 3, f(6) ≡ 5 mod 7.

Thus, f(x) has no roots over Z/7Z and, therefore, it is irreducible.

Example 6.3.8. Is the polynomial f(x) = x3 + x2 + x+ 1 irreducible over Z/7Z?
By Proposition 6.3.5, since deg(f(x)) = 3, if f(x) has no roots, then it must be an
irreducible polynomial. One calculates

f(0) ≡ 1, f(1) ≡ 4, f(2) ≡ 1, f(3) ≡ 5, f(4) ≡ 1, f(5) ≡ 2, f(6) ≡ 0 mod 7.

Thus, 6 is a root of f(x) and, by the root theorem, (x− 6) ≡ x+ 1 divides f(x) in
Z/7Z[x]. Indeed,

x3 + x2 + x+ 1 ≡ (x+ 1)(x2 + 1) mod 7.

Hence, f(x) is not irreducible.

6.4. Fields with pn Elements

We are ready to construct finite fields with pn elements.

Theorem 6.4.1. Let p be a prime and let m(x) be a polynomial in Fp[x] of degree
n ≥ 1. Then, the ring Fp[x]/(m(x)) has pn elements, and it is a field if and only if
the polynomial m(x) is irreducible.

Proof. From the definitions (see Definition 6.2.6),

Fp[x]/(m(x)) = {a0 + a1x+ · · ·+ an−1x
n−1 mod (m(x)) : ai ∈ Fp}.
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There are p choices for each coefficient and n coefficients, so Fp[x]/(m(x)) has ex-
actly pn elements. Suppose first that m(x) is not irreducible. Then, there are poly-
nomials a(x), b(x) ∈ Fp[x] such that m(x) = a(x)b(x) and deg a(x) and deg b(x) ≥
1. Therefore, a(x), b(x) �≡ 0 mod (m(x)) but a(x)b(x) ≡ m(x) ≡ 0 mod (m(x)).
Hence, a(x) and b(x) are zero-divisors, and so Fp[x]/(m(x)) cannot be a field.

Next, suppose that m(x) is irreducible. By Proposition 6.2.9, Fp[x]/(m(x)) is a
commutative ring with identity. Thus, in order to show that it is a field, it suffices
to show that every non-zero element is a unit; i.e., it has a multiplicative inverse.
Let a(x) be a polynomial such that a(x) �≡ 0 mod (m(x)). Therefore, the GCD
of a(x) and m(x) must be a unit, because m(x) is an irreducible (if d(x) is their
gcd, then d(x) divides m(x), but the only divisors of m(x) are units). Hence, the
Bezout’s identity

a(x) ·X +m(x) · Y = 1

has solutions X = f(x), Y = g(x) ∈ Fp[x], and so a(x)f(x)+m(x)g(x) = 1. Hence,
a(x)f(x) ≡ 1 mod (m(x)) and, therefore, f(x) is the multiplicative inverse of a(x)
modulo m(x). Since a(x) was arbitrary, this concludes the proof. �

Example 6.4.2. Let p = 2 and write m(x) = x2+x+1. Then, m(x) is irreducible
because it is of degree 2 and it does not have any roots in F2:

m(0) ≡ 02 + 0 + 1 ≡ 1 mod 2 and m(1) ≡ 12 + 1 + 1 ≡ 1 mod 2.

Therefore, F2[x]/(x
2 + x+ 1) is a field with four elements:

F2[x]/(x
2 + x+ 1) = {0, 1, x, x+ 1 mod (x2 + x+ 1)}.

Here are tables of addition in F2[x]/(x
2 + x+ 1):

+ 0 1 x x+ 1

0 0 1 x x+ 1

1 1 0 x+ 1 x

x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

and multiplication:

× 0 1 x x+ 1

0 0 0 0 0

1 0 1 x x+ 1

x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

Example 6.4.3. Let p = 7 and m(x) = x3+2x+1, which is irreducible by Example
6.3.7. Therefore, F7[x]/(x

3 + 2x+ 1) is a field with 73 = 343 elements.

6.5. Fields with p2 Elements

In the first section of this chapter, Section 6.1, we saw an example of a field with p2

elements, namely Fp[i] for p ≡ 3 mod 4. In this case, the polynomial m(x) = x2+1
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is irreducible over Fp[x], because it is of degree 2 and it does not have any roots (see
Proposition 6.3.5): a root of x2 + 1 would be a number whose square is congruent
to −1 modulo p, but −1 is not a square mod p. Hence, Fp[x]/(x

2 + 1) is a field
with p2 elements, by Theorem 6.4.1. This is exactly the same construction that we
showed in Section 6.1, where the role of i is played by x here (notice that i was
defined by i2 ≡ −1 and x2 ≡ −1 as well). Now we can extend this construction to
all primes.

Let p > 2 be a prime and let s ∈ Z be a quadratic non-residue modulo p; that
is, (s, p) = 1 but s is not congruent to a square modulo p (we will discuss quadratic
residues in much more detail in Section 10.2). Then, m(x) = x2 − s is irreducible
over Fp[x] and Fp[x]/(x

2 − s) is a field with p2 elements. If p ≡ 3 mod 4, one may
choose s = −1 in which case m(x) = x2 + 1 and we recover the example Fp[i]. In
general, we may also write

√
s for the indeterminate x and write our field of p2

elements as
Fp[

√
s ] = {a+ b

√
s : a, b ∈ Fp},

where (
√
s )2 ≡ s mod p and the addition and multiplication laws in Fp[

√
s] are

given by
(a+ b

√
s) + (c+ d

√
s) ≡ (a+ b) + (c+ d

√
s) mod p

and
(a+ b

√
s) · (c+ d

√
s) ≡ (ac+ bds) + (ad+ bc)

√
s mod p.

Let us see a concrete example.

Example 6.5.1. Let p = 5 and let s = 2. Then, s is not a square modulo 5, and
we can form the field

F5[
√
2] = {a+ b

√
2 : a, b ∈ F5}.

Let us perform some calculations in F5[
√
2]. For instance, let α ≡ 1 +

√
2 and

β ≡ 3 + 4
√
2 mod 5. Then,

α+ β ≡ 1 +
√
2 + 3 + 4

√
2 ≡ 4 + 5

√
2 ≡ 4 mod 5,

and

α · β ≡ (1 +
√
2)(3 + 4

√
2) ≡ 3 + 4 · 2 + (3 + 4)

√
2 ≡ 1 + 2

√
2 mod 5.

Notice that, as we pointed out above, here
√
2 is playing the role of x in F5[x]/

(x2 − 2). As such, α ≡ 1 + x and β ≡ 3 + 4x mod (x2 − 2), and then

α+ β ≡ 1 + x+ 3 + 4x ≡ 4 + 5x ≡ 4 mod (x2 − 2),

in F5[x]/(x
2 − 2), and

α · β ≡ (1 + x)(3 + 4x)

≡ 3 + (4 + 3)x+ 4x2

≡ 3 + 7x+ 4(x2 − 2) + 8

≡ 11 + 7x ≡ 1 + 2x mod (x2 − 2),

where we have used the fact that x2 − 2 ≡ 0 in F5[x]/(x
2 − 2). Hence, α · β ≡

1 + 2x mod (x2 − 2), which corresponds to 1 + 2
√
2, as we had already calculated

above.
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We will see an application of finite fields to the problem of finding “square
roots” modulo a prime p, the so-called Cipolla’s algorithm, in Section 10.6.

6.6. Fields with s Elements

In this section we prove that if a field has s elements, then s is a power of a prime.

Theorem 6.6.1. Let F be a finite field with s > 0 elements. Then, s = pd for
some prime number p and some d ≥ 1.

Let us first discuss some preliminaries and define the characteristic of a field.

Definition 6.6.2. Let (F,+, ·) be a field. The characteristic of F is the smallest
positive integer n such that n · 1F = 1F + · · ·+ 1F = 0F . If no such n exists, then
we say that the characteristic of F is zero.

Example 6.6.3. The characteristic of Q, R, and C is 0, because n·1 = n is non-zero
as long as n ≥ 1. However, the characteristic of Z/pZ is p because p · 1 ≡ 0 mod p,
and n · 1 �≡ 0 mod p for any 1 ≤ n ≤ p− 1.

Remark 6.6.4. If a field F has characteristic n > 0, then n · f = 0F for every
f ∈ F . Indeed,

n · f = n · (1F · f) = (n · 1F ) · f = 0F · f = 0F ,

where we have used the associativity of multiplication in a field and the fact that
0F · f = 0F for every f ∈ F (see Exercise 5.6.15).

Lemma 6.6.5. The characteristic of a field F is 0 or a prime number p.

We leave the proof of Lemma 6.6.5 as an exercise (Exercise 6.7.10). Next we
present a proof of Theorem 6.6.1 that assumes some knowledge of linear algebra.

Proof of Theorem 6.6.1. Let F be a field of positive characteristic. By Lemma
6.6.5, the characteristic is a prime number p. Let Fp = Z/pZ be the field of p-
elements. Then, we claim that (F,+) is a vector space over Fp with respect to the
following scalar multiplication:

(n mod p) · f := n · f

where n · f , for an integer n and an element f ∈ F , is the field multiplication,
i.e., f + · · ·+ f added n times. Note that the scalar multiplication is well-defined,
because if m ≡ n mod p, then m = n+ pk for some k ∈ Z, and therefore

(m mod p)·f = (n+pk mod p)·f = (n+pk)·f = n·f+pk ·f = n·f+p·(k ·f) = n·f

where we have used that k · f ∈ F and p · f ′ = 0F for any f ′ ∈ F because the
characteristic of F is p.

We justify that (F,+), with the scalar multiplication defined above, is a vector
space. Since F is a field, (F,+) is an abelian group, and therefore + is associative
and commutative and there are 0F and additive inverses in F . Moreover, since the
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scalar multiplication is defined through the field multiplication operation ·, it fol-
lows that the scalar multiplication and addition operations satisfy all the necessary
compatibility and distributive conditions (e.g., (1 mod p) · f = f for all f ∈ F , or
(n mod p) · (f + g) = (n mod p) · f + (n mod p) · g). See Remark 6.6.6 below for
some details.

Now, since F is a vector space over Fp and F is finite, we conclude that F
must be a finite-dimensional vector space, say dimFp

(F ) = d ≥ 1. Then, we can
choose an Fp-basis {f1, . . . , fd} of F such that F ∼= (Fp)

d are isomorphic as vector
spaces, where the isomorphism is given by ψ : F → (Fp)

d, such that ψ(fi) = ei =
(0, . . . , 0, 1, 0, . . . , 0) is an element of a canonical basis of (Fp)

d. In particular, ψ is
a bijection, and therefore the size of F is #(Fp)

d = pd, a power of p, as desired. �

Remark 6.6.6 (The devil is in the details). A vector space (V,+, ·) over a field F
is a set V with an addition + and a scalar multiplication · by elements of F that
satisfy the following properties:

• (V,+) is an abelian group.
• Scalar multiplication: f ·v is an element of V for every f ∈ F and every v ∈ V ,

and for all f, g ∈ F and all v, w ∈ V we have
(a) f · (g · v) = (f · g) · v,
(b) 1F · v = v, where 1F is the multiplicative identity element in F ,
(c) f · (v + w) = f · v + f · w, and
(d) (f + g) · v = f · v + g · v.

The usual example of a vector space is euclidean space over the real numbers, i.e.,
Rn as a vector space over R. As we saw in the proof of Theorem 6.6.1, a finite field
F of characteristic p is a vector space over Fp. For instance, let us check that the
scalar multiplication of Fp on F satisfies the distributive property (c) above. Let n
be an integer, and let v, w ∈ F . Then,

(n mod p) · (v + w) = n · (v + w) = n · v + n · w = (n mod p) · v + (n mod p) · w,
as desired, where we have used the fact that (F,+, ·) satisfies a distributive law
(Definition 5.3.1, part (4)) to prove that n · (v+w) = n · v+n ·w and we have used
the definition of the scalar multiplication (n mod p) · v = n · v.

Example 6.6.7. Let F = F3[i] ∼= F3[x]/(x
2 + 1). Then, F is a vector space over

F3. Indeed,
F3[i] = {a+ bi : a, b ∈ F3}

is isomorphic to F3 × F3 = (F3)
2, via ψ : F3[i] → (F3)

2 such that ψ(a+ bi) = (a, b).
That is, ψ(1) = e1 = (1, 0) and ψ(i) = e2 = (0, 1). Since (F3)

2 has nine elements,
it follows that F3[i] has order 32, also.

6.7. Exercises

Exercise 6.7.1. Prove parts (i) and (iii) of Proposition 6.2.2.

Exercise 6.7.2. Write down addition and multiplication tables for the ring F =
F3[x]/(x

2 + 1) as in Example 6.4.2. Verify that F is a field by finding the multi-
plicative inverse of each non-zero congruence class in F .

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



6.7. Exercises 165

Exercise 6.7.3. Let F5 = Z/5Z be a finite field with five elements.

(a) Show that 2 mod 5 and 3 mod 5 are not squares modulo 5; i.e., there is no
integer n such that n2 ≡ 2 or 3 mod 5.

(b) Show that F = F5[x]/(x
2 + 2) and K = F5[y]/(y

2 + 3) are fields with 25
elements.

(c) Find elements α and β of F such that α2 = 2 (i.e., α2 ≡ 2 mod (x2 + 2)) and
β2 = 3.

(d) Find elements δ and γ of K such that δ2 = 2 and γ2 = 3.
(e) Define a map ψ : F → K by

ψ((a+ bx) mod (x2 + 2)) ≡ a+ bγ mod (y2 + 3),

for each a, b ∈ F5, where γ ∈ K is such that γ2 = 3. Show that ψ is a field
isomorphism:
(1) Show that ψ is well-defined; i.e., if p(x) is a polynomial in F5[x] such that

p(x) ≡ a+ bx mod (x2 + 2), then ψ(p(x)) ≡ ψ(a+ bx) mod (y2 + 3).
(2) Show that ψ is a field homomorphism, as in Definition 5.4.6, that is

injective and surjective.

Exercise 6.7.4. Find all the irreducible polynomials in F2[x] of degree 1, 2, and
3.

Exercise 6.7.5. Find all the irreducible polynomials in F3[x] of degree 1, 2, and
3.

Exercise 6.7.6. Is the polynomial f = x4 + 4 irreducible in F5[x]? Prove that f
is irreducible or find a factorization into irreducible polynomials over F5.

Exercise 6.7.7. Is the polynomial f = 2x4+x3+x+3 irreducible in F5[x]? Prove
that f is irreducible or find a factorization into irreducible polynomials over F5.

Exercise 6.7.8. Let f(x) = x3+3x+1 and let g(x) = x3+2x+1 be defined over
Z/5Z[x]. We will also write F5 for Z/5Z.

(a) Is f(x) or g(x) irreducible over F5[x]? If it is irreducible, prove it. If it is not
irreducible, factor the polynomial into other irreducible polynomials of lesser
degree.

(b) How many elements are there in F5[x]/(f(x)) and F5[x]/(g(x))?
(c) Are F5[x]/(f(x)) and F5[x]/(g(x)) fields? If it is a field, explain why. If it is

not a field, find a pair of zero-divisors (i.e., you need to find polynomials a, b
in F5[x] such that a · b ≡ 0 mod f(x) or g(x)).

(d) Is the polynomial x + 3 invertible in F5[x]/(f(x))? Is it invertible in F5[x]/
(g(x))? If so, find its multiplicative inverse. If not, explain why.

(e) Is the polynomial x + 1 invertible in F5[x]/(f(x))? Is it invertible in F5[x]/
(g(x))? If so, find its multiplicative inverse. If not, explain why.

Exercise 6.7.9. Let n > 1, mn(x) = xn + x+ 1, and let Fn = F2[x]/(m(x)).

(a) Is m(x) irreducible over F2[x]? Is Fn a field?
(b) How many elements are there in Fn?
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(c) Let n = 3, so m3(x) = x3 + x + 1 and F3 = F2[x]/(x
3 + x + 1). Write down

a complete set of representative for F3. (Hint: pick representatives all with
degree ≤ 2.)

(d) Find a polynomial f(x) such that

f(x) ≡ (x5 + 1)(x4 + x3 + x2 + 1) mod (x3 + x+ 1)

and deg(f(x)) ≤ 2.

Exercise 6.7.10. Prove Lemma 6.6.5; i.e., show the characteristic of a field F is
either 0 or a prime p. (Hint: if (pq) · 1F = 0F , then (p · 1F ) · (q · 1F ) = 0F . Now
use Exercise 5.6.19.)

Exercise 6.7.11. Let p be a prime number, and let F be a finite field of charac-
teristic p. The Frobenius map of F is defined by φp : F → F such that φp(f) = fp

for all f ∈ F . Show the following properties of φp.

(a) The map φp is a field homomorphism; i.e.,
• φp(f + g) = φp(f) + φp(g), and
• φp(f · g) = φp(f) · φp(g),

for all f, g ∈ F . (Hint: Exercise 4.7.27.)
(b) The map φp is injective.
(c) The map φp is an automorphism of F ; i.e., φp is a bijective homomorphism

from F to F . (Hint: it remains to show that φp is surjective. Use the fact
that F is finite.)

Exercise 6.7.12. Let F = F3[i] and consider F as a vector space over F3 (as in
Example 6.6.7), with basis {1, i}. Let ψ : F3[i] → F3[i] be defined by ψ(f) = i · f
for all f ∈ F3[i].

(a) Show that ψ is a linear map of F to F ; i.e., ψ(f + g) = ψ(f) + ψ(g) and
ψ((n mod 3) · f) = (n mod 3) · ψ(f), for all f, g ∈ F and all n ∈ Z.

(b) What is the matrix M defined over F3 that represents ψ in coordinates with
respect to the basis {1, i} of F? That is, find a matrix M such that ψ(v) = M ·v
for any vector v ∈ (F3)

2 ∼= F3[i].
(c) Let φ3 : F → F be the Frobenius automorphism defined in Exercise 6.7.11.

Show that φ3 is a linear map, and find the matrix over F3 that represents φ3

in coordinates with respect to the basis {1, i} of F .

Exercise 6.7.13. Let F = F3[x]/(x
2 + 1) and let F ∗ be all the non-zero elements

of F . Show that F ∗ is cyclic; i.e., find an element f ∈ F ∗ such that if g ∈ F ∗ is
any other non-zero element, then g = fn for some n ≥ 1.
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CHAPTER 7

THE THEOREMS OF WILSON,
FERMAT, AND EULER

Mathematics is the queen of the sciences and
number theory is the queen of mathematics.
(Die Mathematik ist die Königin der
Wissenschaften und die Zahlentheorie ist die
Königin der Mathematik.)

Carl Friedrich Gauss

When we experiment with the elements of the ring Z/mZ, lots of patterns
emerge. Some are easy to verify, but some others are either very deep and difficult
to prove or they still remain as conjectures. In this chapter we present proofs for
several of these phenomena. The theorems are named after the mathematicians who
first discovered, proved, or published these results: Leonhard Euler (1707–1783),
Pierre de Fermat (1601–1665), and John Wilson (1741–1793).

7.1. Wilson’s Theorem

In Chapter 5 we saw that if (R,+, ·) is a commutative ring with identity, then
its subset of units, (R×, ·), is a commutative group (see Proposition 5.3.16). In
particular, in Corollary 5.3.17, we saw that Um = (Z/mZ)× is a group with respect
to multiplication. In this section we present an application of this fact: Wilson’s
theorem.

Wilson’s theorem provides an answer for the following question: what is the
least non-negative residue of (m − 1)! mod m? In the language of Z/mZ, we may
rewrite this question as follows. We are interested in the product

1 · 2 · 3 · · · (m− 2) · (m− 1) mod m,

167
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168 7. The Theorems of Wilson, Fermat, and Euler

so we are trying to calculate the value of the product of all non-zero elements in
Z/mZ. For instance,

4! ≡ 4 mod 5.

Example 7.1.1. Let us calculate (m− 1)! mod m for some small values of m.

(2− 1)! ≡ 1 mod 2,

(3− 1)! ≡ 1 · 2 ≡ 2 mod 3,

(4− 1)! ≡ 1 · 2 · 3 ≡ 6 ≡ 2 mod 4,

(5− 1)! ≡ 1 · 2 · 3 · 4 ≡ 24 ≡ 4 mod 5,

(6− 1)! ≡ 1 · 2 · 3 · 4 · 5 ≡ 6 · 20 ≡ 0 · 20 ≡ 0 mod 6,

(7− 1)! ≡ 1 · 2 · 3 · 4 · 5 · 6 ≡ 6 · 20 · 6 ≡ (−1)(−1)(−1) ≡ −1 ≡ 6 mod 7,

(8− 1)! ≡ 1 · 2 · 3 · 4 · 5 · 6 · 7 ≡ 8 · 2 · 5 · 6 · 7 ≡ 0 · 420 ≡ 0 mod 8,

(9− 1)! ≡ 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 ≡ 18 · 3 · 4 · 5 · 7 · 8 ≡ 0 · 3360 ≡ 0 mod 9,

(10− 1)! ≡ 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 ≡ 10 · 3 · 4 · 6 · 7 · 8 · 9 ≡ 0 mod 10.

When m > 4 is a composite number, a pattern emerges from the data. It seems
(m− 1)! ≡ 0 mod m. Why would that be? In Proposition 5.3.11, we saw that the
set of all zero-divisors in Z/mZ is given by

(Z/mZ)0 = {a mod m : 1 ≤ a ≤ m− 1 and gcd(a,m) > 1}.
Thus, if m is composite and we multiply all the non-zero elements of Z/mZ, there
will be a product of two zero-divisors that make the whole congruence zero. Let us
show this formally.

Lemma 7.1.2. Let m > 4 be a composite number. Then, (m− 1)! ≡ 0 mod m.

Proof. Let m > 4 be a composite number. Thus, m = ab, with 1 < a, b < m.
Suppose first that a �= b. Without loss of generality, we may assume b > a. Then,
a mod m and b mod m are two distinct congruence classes, because 0 < b− a < m
and therefore m does not divide b− a, so a �≡ b mod m. Thus, m = a · b is a divisor
of (m − 1)! = 1 · 2 · · · a · · · b · · · (m − 1) and this implies that (m− 1)! ≡ 0 mod m,
as claimed.

It only remains to consider the case when m = ab and a = b, i.e., m = a2.
Since we are assuming that m > 4, we have that a > 2. Therefore, a and 2a are
numbers between 1 and m− 1 = a2 − 1 > 2a, since a ≥ 3. It follows that a · 2a is
a factor of (m− 1)! = 1 · 2 · · · a · · · 2a · · ·m− 1. Hence, (m− 1)! is divisible by 2a2,
and in particular it is divisible by a2 = m. It follows that (m− 1)! ≡ 0 mod m. �
Example 7.1.3. We have just settled the value of (m − 1)! mod m when m > 4
is composite (≡ 0 mod m) or m = 4 (3! ≡ 2 mod 4). What happens when m is
prime? We have seen in Example 7.1.1 that

1! ≡ 1 mod 2, 2! ≡ 2 mod 3, 4! ≡ 4 mod 5, and 6! ≡ 6 mod 7,

or, equivalently,

1! ≡ −1 mod 2, 2! ≡ −1 mod 3, 4! ≡ −1 mod 5, and 6! ≡ −1 mod 7.

Let us calculate one more example to see more evidence of this pattern. Let us
calculate (p − 1)! mod p for p = 11. In order to simplify the calculations, we will
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use the fact that (Z/11Z)× is a group. In particular, every class a mod 11, for
a = 1, . . . , 10, has a multiplicative inverse, and we will pair up together a and
a−1 mod 11 because a · a−1 ≡ 1 mod 11:

(11− 1)! ≡ 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10
≡ (2 · 6) · (3 · 4) · (5 · 9) · (7 · 8) · 10
≡ 1 · 1 · 1 · 1 · 10
≡ 10 ≡ −1 mod 11.

Notice that the multiplicative inverse of 1 mod 11 is itself. Similarly, the mul-
tiplicative inverse of 10 mod 11 is itself. In other words, 1−1 ≡ 1 mod 11 and
10−1 ≡ 10 mod 11, so those are the two elements of (Z/11Z)× that we were not
able to pair up together with their multiplicative inverse, and we ended up with
(11− 1)! ≡ 1 · 10 ≡ 10 ≡ −1 mod 11.

We shall generalize the method used to calculate (p−1)! mod p in the previous
example in order to show that (p− 1)! ≡ −1 mod p for every prime p. In order to
do this, we first need to know that each unit modulo p has a unique multiplicative
inverse, but this was already shown in Proposition 5.3.20. We also need to know
what congruence classes modulo p are their own multiplicative inverses.

Lemma 7.1.4. Let p be a prime. Then, the quadratic congruence x2 ≡ 1 mod p
has only two solutions; namely, x ≡ 1 and x ≡ −1 mod p. In particular, if a mod p
is its own multiplicative inverse, then a ≡ 1 mod p or a ≡ −1 mod p.

Proof. Suppose p is a prime and x is an integer with x2 ≡ 1 mod p. In other
words, p is a divisor of x2 − 1 = (x+ 1)(x− 1). Since p is a prime, then p divides
x + 1 or p divides x − 1, by Lemma 2.10.3. In terms of congruences, this means
that x+ 1 ≡ 0 or x − 1 ≡ 0 mod p, or, equivalently, x ≡ −1 or x ≡ 1 mod p. This
proves the first part of the lemma.

Now, suppose that the class of a mod p is its own multiplicative inverse. This
means that a · a ≡ 1 mod p, or a2 ≡ 1 mod p, and, by our previous result, a ≡
±1 mod p. �

Example 7.1.5. Let us calculate all the squares in Z/11Z:

x mod 11 0 1 2 3 4 5 6 7 8 9 10

x2 mod 11 0 1 4 9 5 3 3 5 9 4 1

As the previous lemma predicts, the only numbers x whose square is 1 mod p are
precisely x ≡ ±1 mod 11; i.e., x ≡ 1, 10 mod 11.

Example 7.1.6. Notice, however, that Lemma 7.1.4 is not true if we consider
x2 ≡ 1 mod m and m is not a prime. For instance, let us calculate all the squares
in Z/12Z:

x mod 12 0 1 2 3 4 5 6 7 8 9 10 11

x2 mod 12 0 1 4 9 4 1 0 1 4 9 4 1

Therefore, the equation x2 ≡ 1 mod 12 has four solutions, namely x ≡ 1, 5, 7, or
11 mod 12.
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The following theorem was known to Ibn al-Haytham (also known as Alhazen;
about 1000 AD), but it is named after John Wilson (a student of the English
mathematician Edward Waring) who rediscovered and stated it in the 18th century.

Theorem 7.1.7 (Wilson’s theorem). Let m > 1 be fixed.

(1) If m = 4, then (m− 1)! ≡ 2 mod 4.
(2) If m �= 4 is composite, then (m− 1)! ≡ 0 mod m.
(3) If m is prime, then (m− 1)! ≡ −1 mod m.

In particular, p ≥ 2 is a prime number if and only if (p− 1)! ≡ −1 mod p.

Proof. Parts (1) and (2) have been shown in Example 7.1.1 and Lemma 7.1.2.
There are two key ingredients for the proof of part (3). First, each non-zero con-
gruence modulo p has a unique multiplicative inverse mod p (this was shown in
Proposition 5.3.20). The second key ingredient is Lemma 7.1.4. These two pieces
can be put together to prove that the congruence classes {2, 3, . . . , p−2 mod p} can
be organized in p−3

2 pairs {(a1, a−1
1 ), (a2, a

−1
2 ), . . . , (a(p−3)/2, a

−1
(p−3)/2)} of distinct

congruence classes, so that

(p− 1)! ≡ 1 · a1 · a−1
1 · a2 · a−1

2 · · · a(p−3)/2 · a−1
(p−3)/2 · (p− 1) mod p.

We leave it as an exercise for the reader to fill in all the details of the proof (see
Exercise 7.6.2). �

A surprising consequence of Wilson’s theorem is that it provides a criterion for
primality of a number p that does not involve finding a factorization of p. This is
in practice not very effective (there are a lot of calculations involved in computing
the least non-negative residue of (p−1)! mod p), but it is certainly interesting from
a theoretical perspective.

Example 7.1.8. Is p = 1001 a prime number? Wilson’s theorem tells us that
if p is prime, then (p − 1)! = 1000! must be congruent to −1 mod 1001. One
can put a computer (or calculator) to work on this and find out that, in fact,
1000! ≡ 0 mod 1001. Thus, we conclude that 1001 is not a prime number and it
must be a composite number. Notice, however, that we have not calculated a single
prime factor of 1001. (By the way, 1001 = 7 · 11 · 13, which one can easily deduce
from a divisibility test such as Proposition 4.6.4.)

7.2. Fermat’s (Little) Theorem

In Section 1.6.1 we already mentioned the French lawyer and mathematician Pierre
de Fermat and his famous last theorem. In this section, however, we are concerned
with another well-known theorem of Fermat, but one that is not quite as hard as
the “last” theorem. In fact, this other theorem is not difficult to prove, and it is
usually referred to as Fermat’s little theorem.

Theorem 7.2.1 (Fermat’s little theorem). Let p be a prime number, and let n be
an integer. Then, the number np − n is always a multiple of p. In other words,

np ≡ n mod p,

for all n ∈ Z and any prime p.
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7.2. Fermat’s (Little) Theorem 171

For instance, 37 − 3 = 2184 = 23 · 3 · 7 · 13 is divisible by 7. Before we attempt
to prove Fermat’s little theorem, let us think a little bit about powers of numbers
modulo m. We have already seen that congruences are very useful in determining
the divisibility (or remainder) of a large number by another number m. Let us see
another example.

Example 7.2.2. Is N = 17100−16 divisible by 15? Equivalently, is N ≡ 0 mod 15?
By the properties of congruences (Proposition 4.2.1), we know that

N = 17100 − 16 ≡ 2100 − 1 mod 15.

Moreover, 24 ≡ 16 ≡ 1 mod 15. Thus,

N ≡ 2100 − 1 ≡ (24)25 − 1 ≡ 125 − 1 ≡ 1− 1 ≡ 0 mod 15.

Therefore, the remainder when we divide N by 15 is 0 and this means that 15
divides N .

In this example, the calculation was fairly simple due to the fact that 24 ≡
1 mod 15. In particular, the powers of 2 mod 15 follow a pattern:

2, 22 ≡ 4, 23 ≡ 8, 24 ≡ 1, 25 ≡ 2, 26 ≡ 4, 27 ≡ 8, 28 ≡ 1 mod 15, . . . .

In other words, the powers of 2 mod 15 form a repeating sequence

2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, . . . .

Is this true for any a mod 15? Will the powers of a mod 15 form a repeating se-
quence? Here is a table of powers for each congruence class modulo 15:

x mod 15 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . . .

0 0 0 0 0 0 0 0 0 0 0 0 . . .

1 1 1 1 1 1 1 1 1 1 1 1 . . .

2 4 8 1 2 4 8 1 2 4 8 1 . . .

3 9 12 6 3 9 12 6 3 9 12 6 . . .

4 1 4 1 4 1 4 1 4 1 4 1 . . .

5 10 5 10 5 10 5 10 5 10 5 10 . . .

6 6 6 6 6 6 6 6 6 6 6 6 . . .

7 4 13 1 7 4 13 1 7 4 13 1 . . .

8 4 2 1 8 4 2 1 8 4 2 1 . . .

9 6 9 6 9 6 9 6 9 6 9 6 . . .

10 10 10 10 10 10 10 10 10 10 10 10 . . .

11 1 11 1 11 1 11 1 11 1 11 1 . . .

12 9 3 6 12 9 3 6 12 9 3 6 . . .

13 4 7 1 13 4 7 1 13 4 7 1 . . .

14 1 14 1 14 1 14 1 14 1 14 1 . . .

There are lots of patterns in the previous table waiting to be discovered. The first
thing to notice is that the powers of a mod 15 follow a repeating pattern, for each
congruence class a mod 15 in Z/15Z, as we had anticipated. It is also apparent
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that the units and the zero-divisors of Z/15Z behave slightly different. Below, the
reader can find the same type of table but only for units in Z/15Z:

x mod 15 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . . .

1 1 1 1 1 1 1 1 1 1 1 1 . . .

2 4 8 1 2 4 8 1 2 4 8 1 . . .

4 1 4 1 4 1 4 1 4 1 4 1 . . .

7 4 13 1 7 4 13 1 7 4 13 1 . . .

8 4 2 1 8 4 2 1 8 4 2 1 . . .

11 1 11 1 11 1 11 1 11 1 11 1 . . .

13 4 7 1 13 4 7 1 13 4 7 1 . . .

14 1 14 1 14 1 14 1 14 1 14 1 . . .

And this is a table of powers but only for zero-divisors of Z/15Z:

x mod 15 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . . .

3 9 12 6 3 9 12 6 3 9 12 6 . . .

5 10 5 10 5 10 5 10 5 10 5 10 . . .

6 6 6 6 6 6 6 6 6 6 6 6 . . .

9 6 9 6 9 6 9 6 9 6 9 6 . . .

10 10 10 10 10 10 10 10 10 10 10 10 . . .

12 9 3 6 12 9 3 6 12 9 3 6 . . .

Notice, in particular, that if x is a unit modulo 15, then x4 ≡ 1 mod 15, which
explains and generalizes the fact that 24 ≡ 1 mod 15. However, if x is a zero-
divisor, then x4 ≡ 6 or 10 mod 15. Moreover x4 ≡ 6 mod 15 if x ≡ 0 mod 3, and
x4 ≡ 10 mod 15 if x ≡ 0 mod 5.

Before we attempt to prove some of the patterns observed in the tables of
powers modulo 15, let us see some simpler examples.

Example 7.2.3. Let us calculate consecutive powers for each non-zero congruence
class modulo 5 and modulo 7:

x mod 5 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . . .

1 1 1 1 1 1 1 1 1 1 1 1 . . .

2 4 3 1 2 4 3 1 2 4 3 1 . . .

3 4 2 1 3 4 2 1 3 4 2 1 . . .

4 1 4 1 4 1 4 1 4 1 4 1 . . .

x mod 7 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . . .

1 1 1 1 1 1 1 1 1 1 1 1 . . .

2 4 1 2 4 1 2 4 1 2 4 1 . . .

3 2 6 4 5 1 3 2 6 4 5 1 . . .

4 2 1 4 2 1 4 2 1 4 2 1 . . .

5 4 6 2 3 1 5 4 6 2 3 1 . . .

6 1 6 1 6 1 6 1 6 1 6 1 . . .
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From the tables we see that a4 ≡ 1 mod 5, for all a ∈ Z such that gcd(a, 5) = 1, and,
moreover, this is the smallest exponent that works for all such integers. Similarly,
b6 ≡ 1 mod 7, for all b ∈ Z such that gcd(b, 7) = 1, and 6 is the least exponent with
this property. Notice that 4 = 5 − 1 and 6 = 7 − 1, which suggests that, perhaps,
np−1 ≡ 1 mod p for any prime p. Let us compute the value of c10 mod 11 for all
integers c relatively prime to 11:

110 ≡ 1 mod 11, 210 ≡ 1024 ≡ 1 mod 11, 310 ≡ 59049 ≡ 1 mod 11,

410 ≡ 1048576 ≡ 1 mod 11, 510 ≡ 9765625 ≡ 1 mod 11,

610 ≡ 60466176 ≡ 1 mod 11, 710 ≡ 282475249 ≡ 1 mod 11,

810 ≡ 1073741824 ≡ 1 mod 11, 910 ≡ 3486784401 ≡ 1 mod 11,

1010 ≡ 10000000000 ≡ 1 mod 11.

Thus, it is true that c10 ≡ 1 mod 11 for all c ∈ Z with gcd(c, 11) = 1.

Example 7.2.4. We have just seen by direct calculation that 610 ≡ 1 mod 11. Let
us show this in a more elegant way, in a manner that we will be able to generalize
for any prime p. Consider the two sets

S1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
and

S2 = {6 · i : i = 1, . . . , 10} = {6, 12, 18, 24, 30, 36, 42, 48, 54, 60}.
Notice that

6 ≡ 6, 12 ≡ 1, 18 ≡ 7, 24 ≡ 2, 30 ≡ 8,

36 ≡ 3, 42 ≡ 9, 48 ≡ 4, 54 ≡ 10, 60 ≡ 5 mod 11.

Therefore, both S1 and S2 are complete residue systems for all the non-zero classes
modulo 11. In particular, the numbers in set S2 cover all the non-zero congruence
classes modulo 11, in a different order than S1. Thus,

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 ≡ 6 · 12 · 18 · 24 · 30 · 36 · 42 · 48 · 54 · 60 mod 11.

Let us write N = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10. Hence,

N = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10
≡ 6 · 12 · 18 · 24 · 30 · 36 · 42 · 48 · 54 · 60
≡ 6 · 1 · (6 · 2) · (6 · 3) · (6 · 4) · (6 · 5) · (6 · 6) · (6 · 7) · (6 · 8) · (6 · 9) · (6 · 10)
≡ 610 · (1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10)
≡ 610 ·N mod 11.

Thus, we have shown that 610·N ≡ N mod 11. Since gcd(N, 11) = 1, by Proposition
4.3.1, we can cancel N on both sides of the congruence and reach 610 ≡ 1 mod 11,
as desired. In other words, since gcd(N, 11) = 1, the congruence class N mod 11 is
invertible. Moreover, ((Z/11Z)×, ·) is a group and, therefore, there is a multiplica-
tive inverse N−1 mod 11. Thus, given 610 · N ≡ N mod 11, we can multiply both
sides by N−1 to obtain 610 ≡ 1 mod 11.

As we mentioned, we are going to generalize the method explained in Example
7.2.4 to prove Fermat’s little theorem. We will need the following lemma.
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Lemma 7.2.5. Let p be a prime and let a ∈ Z be an integer not divisible by p.
Then, the set

S = {a · i : i = 1, 2, . . . , p− 1} = {a, 2 · a, 3 · a, . . . , (p− 1) · a}

is a complete residue system of the non-zero classes modulo p. In other words, for
each non-zero residue class b mod p there is a unique number i, with 1 ≤ i ≤ p− 1,
such that a · i ∈ S and a · i ≡ b mod p.

Proof. Let S be the set defined in the statement of the lemma. Clearly, S has
p − 1 elements. Since there are exactly p − 1 non-zero congruence classes modulo
p, we simply need to show that all the elements of S represent different non-zero
congruence classes.

First, let us show that a · i �≡ 0 mod p, for all i = 1, . . . , p − 1. Suppose, for a
contradiction, that a·i ≡ 0 mod p. This means that p divides a·i. Since p is a prime
number, it follows from Lemma 2.10.3 that p divides a or p divides i. However, we
have assumed that a is not divisible by p and i = 1, . . . , p − 1 cannot be divisible
by the prime p, so neither a nor i is divisible by p. This is a contradiction and so
a · i must be non-zero modulo p.

Next, suppose that a · i ≡ a · j mod p, for some 1 ≤ i, j ≤ p − 1. Then,
a · i − a · j ≡ 0 mod p and this implies that a(i − j) ≡ 0 mod p. Thus, again by
Lemma 2.10.3, this implies that a ≡ 0 mod p or i−j ≡ 0 mod p. Since a is assumed
to be relatively prime to p, we conclude that i− j ≡ 0 mod p, or i ≡ j mod p. We
have assumed that 1 ≤ i, j ≤ p− 1 and p is prime, so it follows that i = j. Thus, if
1 ≤ i, j ≤ p− 1 and i �= j, then a · i �≡ a · j mod p, as desired.

We conclude that there are p − 1 distinct, non-zero congruence classes in S,
and this concludes the proof of the lemma. �

We are now ready to prove Fermat’s little theorem (Theorem 7.2.1).

Proof of Theorem 7.2.1. Let p be a prime number. We will show that ap ≡
a mod p, for all integers a ∈ Z.

First, suppose that a is divisible by p. Then, a ≡ 0 mod p and, therefore,
ap ≡ 0p ≡ 0 ≡ a mod p. Hence, the theorem is true. It remains to show that the
theorem holds for integers a relatively prime to p. We will show that if gcd(a, p) = 1,
then ap−1 ≡ 1 mod p. If so, then we may multiply both sides by a and this would
show that ap ≡ a · ap−1 ≡ a · 1 ≡ a mod p, as desired.

In order to show that ap−1 ≡ 1 mod p for all gcd(a, p) = 1, consider the sets
S1 = {1, 2, 3, . . . , p− 1} and

S2 = {a · i : i = 1, . . . , p− 1} = {a, 2a, . . . , (p− 1)a}.

It follows from Lemma 7.2.5 that both sets S1 and S2 are complete residue systems
for the non-zero congruence classes modulo p. Thus, each set covers each residue
class 1 mod p, . . . , p− 1 mod p exactly once. In particular,

1 · 2 · 3 · · · (p− 1) ≡ a · 2a · 3a · · · (p− 1)a mod p.
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Let N = 1 · 2 · 3 · · · (p− 1). Then,

N = 1 · 2 · 3 · · · (p− 1)

≡ a · 2a · 3a · · · (p− 1)a

≡ ap−1 · (1 · 2 · 3 · · · (p− 1))

≡ ap−1 ·N mod p.

Hence, ap−1 ·N ≡ N mod p. Since gcd(N, p) = 1, we may cancel N on both sides
of the congruence, by Proposition 4.3.1, to obtain ap−1 ≡ 1 mod p, as desired. �

Remark 7.2.6. The last step in the proof of Fermat’s little theorem, i.e., prove
that

ap−1 ·N ≡ N mod p implies that ap−1 ≡ 1 mod p,

where N = 1 · 2 · 3 · · · (p− 1), can be shown in a few different ways:

(1) By Wilson’s theorem, N = (p − 1)! ≡ −1 mod p, since p is a prime. Thus,
ap−1 · N ≡ N mod p implies that −ap−1 ≡ −1 mod p, and therefore ap−1 ≡
1 mod p.

(2) The congruence class N mod p is a product of p−1 congruence classes, 1 mod
p, . . . , p − 1 mod p, and each of these congruence classes is a unit modulo
p. Since (Z/pZ)× is a group (Corollary 5.3.17), it follows that a product of
units is itself a unit, and so N mod p is a unit modulo p. Thus, there is a
multiplicative inverse N−1 mod p in (Z/pZ)×. In particular,

ap−1 ≡ ap−1 · 1 ≡ ap−1 · (N ·N−1) ≡ (ap−1 ·N) ·N−1 ≡ N ·N−1 ≡ 1 mod p.

(3) Since gcd(N, p) = 1, it follows that N is a unit modulo p (by Corollary 5.3.17)
and there is a multiplicative inverse N−1 mod p. Then proceed as in the
previous item.

Example 7.2.7. Is the number N = 237911916 − 1 divisible by 1987? We shall
use Fermat’s little theorem to show that the answer is “yes”. Indeed, it turns out
that 1987 is a prime number and 2379 ≡ 392 mod 1987. Since 392 �≡ 0 mod 1987,
it follows from Fermat’s little theorem that

3921986 ≡ 1 mod 1987.

Moreover, 11916 = 6 · 1986. Therefore,

237911916 ≡ 39211916 ≡ (3921986)6 ≡ 16 ≡ 1 mod 1987.

Hence, N ≡ 237911916 − 1 ≡ 1− 1 ≡ 0 mod 1987 and N is divisible by 1987.

Example 7.2.8. Let us show that n12 ≡ 1 mod 35, for all integers n relatively
prime to 35. For instance,

212 − 1 = 4095 = 35 · 117 and 312 − 1 = 531440 = 35 · 15184.

Since 35 ≡ 5 · 7, the Chinese remainder theorem (Theorem 4.5.9; see also Lemma
4.5.4) implies that it suffices to prove that

n12 ≡ 1 mod 5 and n12 ≡ 1 mod 7.
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By Fermat’s little theorem, we know that n4 ≡ 1 mod 5, as long as gcd(n, 5) = 1,
and n6 ≡ 1 mod 7, as long as gcd(n, 7) = 1. Hence,

n12 ≡ (n4)3 ≡ 13 ≡ 1 mod 5

and

n12 ≡ (n6)2 ≡ 12 ≡ 1 mod 7.

Thus, n12 ≡ 1 mod 35, as claimed.

7.3. Euler’s Theorem

Fermat’s little theorem allows us to calculate (large) powers of a number modulo
a prime (see Example 7.2.7). It can also be used to calculate powers of numbers
modulo a product of distinct primes (as in Example 7.2.8). However, Fermat’s
little theorem is of little use when trying to calculate powers modulo a number
N that is not square-free (e.g., N = 9 or N = 100 = 4 · 25). In 1736, Leonhard
Euler published a proof of a theorem that generalizes Fermat’s little theorem to
any modulus, which is now known as Eulers’ theorem.

Figure 7.1. Leonhard Euler (1707–1783). Image source: Wikipedia Commons.

Leonhard Euler was a Swiss mathematician and one of the greatest mathemati-
cians of all time. He made important discoveries in fields as diverse as infinitesimal
calculus and graph theory, but also mechanics, fluid dynamics, optics, and astron-
omy. He also introduced much of the modern mathematical terminology and nota-
tion, particularly for mathematical analysis, such as the notion of a mathematical
function.
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Example 7.3.1. In the following table we have calculated the first 12 consecutive
powers of each invertible congruence class in Z/9Z:

x mod 9 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . . .

1 1 1 1 1 1 1 1 1 1 1 1 . . .

2 4 8 7 5 1 2 4 8 7 5 1 . . .

4 7 1 4 7 1 4 7 1 4 7 1 . . .

5 7 8 4 2 1 5 7 8 4 2 1 . . .

7 4 1 7 4 1 7 4 1 7 4 1 . . .

8 1 8 1 8 1 8 1 8 1 8 1 . . .

It is plain now that n6 ≡ 1 mod 9 for all integers n relatively prime to 9. Fermat’s
little theorem tells us that n2 ≡ 1 mod 3, for each n not divisible by 3, but it says
nothing about the congruence class of the powers of n modulo 9. Euler’s theorem
will show that n6 ≡ 1 mod 9 when gcd(n, 9) = 1.

Let us show that 56 ≡ 1 mod 9 using a method of proof that will generalize to
a proof of Euler’s theorem (Theorem 7.3.5 below). Let us consider the two sets

S1 = {1, 2, 4, 5, 7, 8} and S2 = {5, 5 · 2, 5 · 4, 5 · 5, 5 · 7, 5 · 8} = {5, 10, 20, 25, 35, 40}.
Notice that

5 ≡ 5 mod 9, 10 ≡ 1 mod 9, 20 ≡ 2 mod 9,

25 ≡ 7 mod 9, 35 ≡ 8 mod 9, 40 ≡ 4 mod 9.

Therefore, both S1 and S2 represent the same six congruence classes modulo 9,
namely the six congruence classes of the units modulo 9. In particular, the product
of the elements of S1 and the product of the elements of S2 are congruent modulo
9; i.e.,

1 · 2 · 4 · 5 · 7 · 8 ≡ 5 · 10 · 20 · 25 · 35 · 40 mod 9.

Let N = 1 · 2 · 4 · 5 · 7 · 8. Then,

N = 1 · 2 · 4 · 5 · 7 · 8
≡ 5 · 10 · 20 · 25 · 35 · 40
≡ 5 · (5 · 2)(5 · 4)(5 · 5)(5 · 7)(5 · 8)
≡ 56 · (1 · 2 · 4 · 5 · 7 · 8)
≡ 56 ·N mod 9.

Thus, we have shown that 56 · N ≡ N mod 9. Since gcd(N, 9) = 1, it follows
that N is a unit modulo 9 and we may cancel N in both sides of the congruence
56 ·N ≡ N mod 9 to obtain 56 ≡ 1 mod 9, as desired. Notice that here the exponent
of 5 is 6 because there are 6 elements in S1 and also in S2. In other words, there
are precisely 6 units in Z/9Z.

Before we can state and prove Euler’s theorem, first we need to introduce an
important function.

Definition 7.3.2. We define the Euler phi function, or Euler’s totient function,
ϕ(m) as the number of elements in (Z/mZ)×, for any m ≥ 2.
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Remark 7.3.3. Let m > 2 be a fixed integer. The value of ϕ(m) can be calculated
in the following ways:

(1) ϕ(m) is the size of (Z/mZ)×.
(2) ϕ(m) is the number of invertible congruence classes in Z/mZ.
(3) ϕ(m) is the number of integers a in the range 1 ≤ a ≤ m − 1 which are

relatively prime to m.

Indeed, the set (Z/mZ)× is, by definition, the set of units in Z/mZ, and a mod m is
a unit if and only if a is invertible modulo m. Finally, we have shown in Proposition
5.3.11 that

(Z/mZ)× = {a mod m : 1 ≤ a ≤ m− 1, gcd(a,m) = 1}.

Thus, ϕ(m) counts the size of the set {a : 1 ≤ a ≤ m− 1, gcd(a,m) = 1}.

Example 7.3.4. Let us calculate some values of ϕ(m).

• The group (Z/2Z)× only contains one element, namely 1 mod 2. Therefore,
ϕ(2) = 1.

• We have (Z/3Z)× = {1, 2 mod 3} so ϕ(3) = 2.
• We have (Z/4Z)× = {1, 3 mod 4} so ϕ(4) = 2.
• (Z/5Z)× = {1, 2, 3, 4 mod 5} so ϕ(5) = 4.
• (Z/6Z)× = {1, 5 mod 6} so ϕ(6) = 2.
• (Z/7Z)× = {1, 2, 3, 4, 5, 6 mod 4} so ϕ(7) = 6.
• (Z/8Z)× = {1, 3, 5, 7 mod 8} so ϕ(8) = 4.
• (Z/9Z)× = {1, 2, 4, 5, 7, 8 mod 9} so ϕ(9) = 6.

We are now ready to state Euler’s theorem.

Theorem 7.3.5 (Euler’s theorem). Let m > 1 be fixed and let a be an integer
relatively prime to m. Then

aϕ(m) ≡ 1 mod m,

where ϕ is Euler’s phi function.

Example 7.3.6. Let m = 9. Then, by Example 7.3.4, we know that ϕ(9) = 6.
Hence, by Euler’s theorem, we have that a6 ≡ 1 mod 9, for all integers a relatively
prime to 9, in agreement with the table we calculated in Example 7.3.1.

Remark 7.3.7. Suppose m is a prime number. Then, every number 1, 2, . . . ,m−1
is a unit modulo m, because they are all relatively prime to m. It follows that
(Z/mZ)× has m − 1 elements and ϕ(m) = m − 1. Thus, by Euler’s theorem
am−1 ≡ 1 mod m, for all numbers a relatively prime to m. This is precisely the
statement of Fermat’s little theorem, so now it is clear that Euler’s theorem is a
generalization of Fermat’s result.

In order to prove Euler’s theorem, we shall need to generalize Lemma 7.2.5,
which was used to prove Fermat’s little theorem.
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Lemma 7.3.8. Let m > 1 be fixed and let a ∈ Z be an integer relatively prime
to m. Let Um = (Z/mZ)× be the set of all units in Z/mZ. Thus, Um has ϕ(m)
congruence classes

Um = {u1, u2, . . . , uϕ(m) mod m}.

Then, the set

S = {a ·ui mod m : i = 1, 2, . . . , ϕ(m)} = {a ·u1, a ·u2, a ·u3, . . . , a ·uϕ(m) mod m}

is a complete residue system of the units modulo m. In other words, for each unit
congruence class b mod m there is a unique number i, with 1 ≤ i ≤ ϕ(m), such that
a · ui ∈ S and a · ui ≡ b mod m.

Proof. Let S be the set defined in the statement of the lemma. Clearly, S has
ϕ(m) elements (by definition of ϕ(m)). Since there are exactly ϕ(m) units modulo
m, we simply need to show that (a) each element of S is a unit and (b) all the
elements of S represent different congruence classes.

First, let us show that a · ui mod m is a unit, for all i = 1, . . . , ϕ(m). Since
gcd(a,m) = 1, it follows that a is a unit modulo m (by Corollary 5.3.17). Moreover,
ui is a unit and Um = (Z/mZ)× is a group; thus the product of two units, a and
ui, is itself a unit. Hence, a · ui mod m is also a unit. (Here is another way to see
this: since ui is a unit, it follows that gcd(ui,m) = 1. By assumption, we also have
gcd(a,m) = 1. Hence, gcd(aui,m) = 1 and aui is a unit modulo m.)

Next, suppose that a · ui ≡ a · uj mod m, for some 1 ≤ i, j ≤ ϕ(m). Then,
a · ui − a · uj ≡ 0 mod m and this implies that a(ui − uj) ≡ 0 mod m. Hence, m is
a divisor of a(ui − uj). Since gcd(a,m) = 1, it follows from Corollary 2.7.6 that m
must divide ui − uj , or, equivalently, ui ≡ uj mod m. Since {u1, . . . , uϕ(m)} form
a complete residue system for the units modulo m, we have ui ≡ uj mod m if and
only if i = j. Hence, if i �= j, then aui �≡ auj mod m.

We conclude that there are ϕ(m) distinct unit congruence classes in S, and this
concludes the proof of the lemma. �

Proof of Euler’s theorem. Let m > 1 be fixed and let a be an integer relatively
prime to m. By Lemma 7.3.8, the set

Um = (Z/mZ)× = {u1, u2, . . . , uϕ(m) mod m}

and the set

S = {a ·ui mod m : i = 1, 2, . . . , p−1} = {a ·u1, a ·u2, a ·u3, . . . , a ·uϕ(m) mod m}

are both complete residue systems for the units modulo m. Hence, the congruence
classes au1, . . . , auϕ(m) mod m are simply a reordering of u1, . . . , uϕ(m) mod m. In
particular,

u1 · u2 · u3 · · ·uϕ(m) ≡ (a · u1) · (a · u2) · (a · u3) · · · (a · uϕ(m)) mod m.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



180 7. The Theorems of Wilson, Fermat, and Euler

Let us write N ≡ u1 · u2 · u3 · · ·uϕ(m) mod m. Then,

N ≡ u1 · u2 · u3 · · ·uϕ(m)

≡ (a · u1) · (a · u2) · (a · u3) · · · (a · uϕ(m))

≡ aϕ(m) · (u1 · u2 · u3 · · ·uϕ(m))

≡ aϕ(m) ·N mod m.

Thus, we find that aϕ(m) · N ≡ N mod m. Since each ui is a unit modulo m, we
conclude that their product, N , is also a unit modulo m. Hence, there is an inverse
N−1 mod m, such that N ·N−1 ≡ 1 mod m. Hence,

aϕ(m) ≡ aϕ(m) · 1 ≡ aϕ(m) · (N ·N−1) ≡ (aϕ(m) ·N) ·N−1 ≡ N ·N−1 ≡ 1 mod m,

as desired. This concludes the proof of Euler’s theorem. �
Example 7.3.9. What is the first digit (the units digit) in the decimal expansion
of 123321? Notice that the units digit in the decimal expansion of a number N =
at · 10t + · · ·+ a2 · 102 + a1 · 10 + a0 is the number a0. Moreover, N ≡ a0 mod 10.
Thus, we need to calculate the least non-negative residue of 123321 mod 10.

We shall use Euler’s theorem with m = 10, so we first need to calculate ϕ(10).
The units in Z/10Z are given by the set {1, 3, 7, 9 mod 10}. Thus, ϕ(10) = 4.
Since gcd(123, 10) = 1, we can conclude that 1234 ≡ 1 mod 10, by Euler’s theorem.
Moreover,

321 = 4 · 80 + 1.

Therefore,

123321 ≡ (1234)80 · 123 ≡ 180 · 123 ≡ 123 ≡ 3 mod 10.

We have shown that the first digit of the decimal expansion is 3.

Example 7.3.10. We have seen in Example 7.2.2 that n8 ≡ 1 mod 15, for all n
relatively prime to 15. Let us show this using Euler’s theorem. First, we need to
calculate ϕ(15). By Corollary 5.3.17 (see also Example 5.3.18), we know that

U15 = (Z/15Z)× = {a mod 15 : 1 ≤ a ≤ 14, gcd(a, 15) = 1}
= {1, 2, 4, 7, 8, 11, 13, 14 mod 15}.

In particular, there are 8 units modulo 15 and ϕ(15) = 8. Hence, by Euler’s
theorem, we have that n8 ≡ 1 mod 15, for all n relatively prime to 15.

Notice, however, that the tables in Example 7.2.2 imply that n4 ≡ 1 mod 15,
for all n with gcd(n, 15) = 1, but this does not follow directly from Euler’s theorem.
We may prove this smaller exponent using Fermat’s little theorem. In order to prove
that n4 ≡ 1 mod 15 whenever gcd(n, 15) = 1, it suffices to show that n4 ≡ 1 mod 3
and also modulo 5 (by Lemma 4.5.4). By Fermat’s little theorem, we know that

n2 ≡ 1 mod 3 and n4 ≡ 1 mod 5.

Thus,
n4 ≡ (n2)2 ≡ 12 ≡ 1 mod 3,

and
n4 ≡ 1 mod 5.

Hence, n4 ≡ 1 mod 15, as we wanted to prove.
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7.4. Euler’s Phi Function

Euler’s phi function is prominently featured in the statement of Euler’s theorem
and, as a consequence, we need to calculate values of ϕ(m) whenever we want to
use Euler’s theorem (see Example 7.3.4 for some values calculated directly from the
definition). In this section we prove a few results that help in calculating values of
ϕ efficiently.

Proposition 7.4.1. Let ϕ be Euler’s phi function. Then:

(1) If p is a prime, then ϕ(p) = p− 1.
(2) If p is a prime and n ≥ 1, then ϕ(pn) = (p− 1)pn−1.

Proof. As a consequence of Corollary 5.3.17, if p is a prime, then (Z/pZ)× =
{1, . . . , p− 1} has exactly p− 1 elements. Thus, ϕ(p) = p− 1.

Now, suppose that p is prime and n ≥ 1. Then,

(Z/pnZ)× = {a mod pn : 1 ≤ a ≤ pn − 1, gcd(a, pn) = 1}.
Notice that gcd(a, pn) = 1 if and only if gcd(a, p) = 1. Hence, the non-units in
Z/pnZ are the multiples of p; i.e., the non-units are the congruence classes

0, p, 2p, . . . , (p− 1)p, p · p = p2, (p+ 1)p, . . . , pn − p = (pn−1 − 1)p,

or, in other words, the non-units are the classes in the set

{k · p : k = 0, . . . , pn−1 − 1}.
Hence, there are pn−1 − 1 + 1 = pn−1 non-units. Since there are pn congruence
classes in Z/pnZ, there must be

pn − pn−1 = pn−1(p− 1)

units in Z/pnZ. We have shown that ϕ(pn) = (p− 1)pn−1, as claimed. �

Example 7.4.2. By the previous proposition, we calculate

ϕ(4) = (2− 1) · 2 = 2 and ϕ(25) = (5− 1) · 5 = 4 · 5 = 20.

What is ϕ(100)? Proposition 7.4.1 only tells us the values of ϕ for powers of
primes, so we cannot calculate ϕ(100) just yet. However, we shall see that ϕ(100) =
ϕ(4 · 25) = ϕ(4) · ϕ(25) = 2 · 20 = 40, and this can be done because gcd(4, 25) = 1.

More generally, we shall prove that ϕ(m · n) = ϕ(m) · ϕ(n) whenever m and
n are relatively prime. This equality will follow from an important theorem about
the structure of Z/mnZ, which is equivalent to the Chinese remainder theorem
(Theorem 4.5.9).

Theorem 7.4.3. Let m,n > 1 be relatively prime integers; i.e., gcd(m,n) = 1.
Then, the map

ψ : Z/mnZ → Z/mZ× Z/nZ

defined by
ψ(a mod mn) = (a mod m, a mod n)

is well-defined and it is a bijection of the set Z/mnZ and the direct product

Z/mZ× Z/nZ = {(u mod m, v mod n) : 0 ≤ u ≤ m− 1, 0 ≤ v ≤ n− 1}.
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Proof. We need to check three things: (1) ψ is well-defined, (2) ψ is injective, and
(3) ψ is surjective.

(1) We first need to check that ψ is a well-defined map; i.e., if a ≡ b mod mn, then
ψ(a mod mn) = ψ(b mod mn). Indeed, suppose that a ≡ b mod mn. Then,
mn divides a− b, and therefore m and n are divisors of a− b. This shows that
a ≡ b mod m and a ≡ b mod n. Hence,

ψ(a mod mn) = (a mod m, a mod n)

= (b mod m, b mod n) = ψ(b mod mn)

as we needed to prove.
(2) Let us show that ψ is injective; i.e., ψ(a mod mn) = ψ(b mod mn) implies

that a ≡ b mod mn. Indeed, if ψ(a mod mn) = ψ(b mod mn), then

(a mod m, a mod n) = (b mod m, b mod n).

In particular, a and b are solutions to the system{
x ≡ a mod m

x ≡ a mod n.

However, since gcd(m,n) = 1, the Chinese remainder theorem (Theorem 4.5.9)
guarantees that there is a unique solution to this system modulo mn. Hence,
we must have a ≡ b mod mn, as claimed. This proves ψ is injective.

(3) It only remains to show that ψ is surjective; i.e., for all (u mod m, v mod n)
∈ Z/mZ × Z/nZ there is some a mod mn such that ψ(a mod mn) =
(u mod m, v mod n). In order to show this, let (u mod m, v mod n) be an
arbitrary element of the direct product Z/mZ× Z/nZ. Since gcd(m,n) = 1,
the Chinese remainder theorem implies that the system{

x ≡ u mod m

x ≡ v mod n

has a unique solution x0 mod mn such that x0 ≡ u mod m and x0 ≡ v mod n.
Hence,

ψ(x0 mod mn) = (x0 mod m,x0 mod n) = (u mod m,u mod n),

and this shows that ψ is surjective.

We have shown that ψ is well-defined, it is injective, and it is surjective. Therefore,
ψ is a bijection. This ends the proof of the theorem. �

Corollary 7.4.4. Let m,n > 1 be relatively prime integers and define a map, as
in the previous theorem, ψ : Z/mnZ → Z/mZ × Z/nZ. Then, the restriction of ψ
to (Z/mnZ)× is a bijection

ψ : (Z/mnZ)× → (Z/mZ)× × (Z/nZ)×.

Proof. By Theorem 7.4.3, the map ψ : Z/mnZ → Z/mZ×Z/nZ is a bijection. In
order to establish the corollary, we need to check that ψ sends units modulo mn to
units modulo m and units modulo n, and vice versa.
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Let a mod mn be a unit. Then, gcd(a,mn) = 1 and it follows that gcd(a,m) =
1 and gcd(a, n) = 1. Hence, a mod m and a mod n are units in Z/mZ and
Z/nZ, respectively. This shows that the image of (Z/mnZ)× via ψ is contained in
(Z/mZ)× × (Z/nZ)×.

Also, let (u mod m,u mod n) be an arbitrary pair of units modulo m and n.
In particular, gcd(u,m) = 1 and gcd(v, n) = 1. Let a mod mn be a class such that
ψ(a mod mn) = (u, v). Then, a ≡ u mod m and a ≡ u mod n, and it follows that
gcd(a,m) = 1 and gcd(a, n) = 1. We conclude that gcd(a,mn) = 1. Hence, a is a
unit modulo mn. Thus, this implies that the inverse image via ψ of a pair of units
in Z/mZ× Z/nZ always comes from a unit modulo mn.

Since ψ is a bijection and ψ sends units to units and since units in the image
space come from units in the domain, it follows that the induced map

(Z/mnZ)× → (Z/mZ)× × (Z/nZ)×

is also a bijection, as claimed. �

Since the size of a direct product S × T of two finite sets is the product of the
sizes of the finite sets S and T , we obtain the following important corollary.

Corollary 7.4.5. Let m,n > 1 be relatively prime natural numbers. Then

ϕ(mn) = ϕ(m) · ϕ(n).

Proof. Since gcd(m,n) = 1, our Corollary 7.4.4 implies that the set (Z/mnZ)×

and the direct product (Z/mZ)× × (Z/nZ)× are in bijective correspondence, and
therefore they have the same number of elements. Thus,

ϕ(mn) = |(Z/mnZ)×|
= |(Z/mZ)× × (Z/nZ)×|
= |(Z/mZ)×| · |(Z/nZ)×|
= ϕ(m) · ϕ(n),

as desired. �

Example 7.4.6. Let us calculate the first two digits in the decimal expansion of
123321. Notice that if N has decimal expansion

N = at · 10t + · · ·+ a2 · 102 + a1 · 10 + a0,

then the first two digits are a0 and a1. Moreover, N ≡ a1 ·10+a0 mod 100. Hence,
it suffices to calculate 123321 mod 100. In order to do this, we shall use Euler’s
theorem. We first need to calculate ϕ(100):

ϕ(100) = ϕ(4 · 25) = ϕ(4) · ϕ(25) = 2 · 20 = 40,

where we have used the fact that gcd(4, 25) = 1 and Corollary 7.4.5. Notice also
that gcd(123, 100) = 1 and

321 = 40 · 8 + 1.

Therefore, Euler’s theorem applies, 12340 ≡ 1 mod 100, and we may calculate

123321 ≡ (12340)8 · 123 ≡ 18 · 123 ≡ 123 ≡ 23 mod 100.

Hence, the first two digits of 123321 in its decimal expansion are 23.
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7.5. Applications

In this section we discuss applications of Fermat’s little theorem to primality testing
and cryptography.

7.5.1. Fermat’s Primality Test. Fermat’s little theorem (Theorem 7.2.1) says
that if p is prime, then ap−1 ≡ 1 mod p, for all integers a relatively prime to p. In
particular, ap−1 ≡ 1 mod p for all a = 1, . . . , p − 1. The contrapositive statement
of Fermat’s theorem is as follows:

Theorem 7.5.1 (Fermat’s primality test). Let n > 2 be a fixed integer. If there is
some integer a, with 1 ≤ a ≤ n−1, such that an−1 �≡ 1 mod n, then n is not prime.

Hence, Fermat’s little theorem can be used for primality testing. Let us see a
few examples.

Example 7.5.2. The number n = 6 is not prime because

25 ≡ 2 mod 6.

Similarly, n = 10 is not prime because 29 ≡ 2 mod 10. Also, n = 15 is not prime
because 214 ≡ 4 mod 15.

Example 7.5.3. Is n = 341 a prime? If we use a = 2 in Theorem 7.5.1, we see
that

2340 ≡ 1 mod 341,

and we might be led to believe that 341 is indeed prime. However,

3340 ≡ 56 mod 341,

and therefore 341 is not prime. A composite natural number n such that 2n−1 ≡
1 mod n is called a 2-pseudoprime. See Exercises 7.6.17 and 7.6.18.

Example 7.5.4. Is n = 561 a prime? If we use a = 2 in Theorem 7.5.1, we see
that

2560 ≡ 1 mod 561.

And, in fact, a560 ≡ 1 mod 561 for a = 2, 4, 5, 7, 8, and 10. However, 3560 ≡
375 mod 561, so 561 is not a prime. A composite natural number m such that
bm−1 ≡ 1 mod m for all integers b which are relatively prime to m is called a
Carmichael number. See Exercises 7.6.19 and Exercise 7.6.20.

Remark 7.5.5. In practice, how useful is Fermat’s primality test? Let us introduce
some notation. If n is a composite number, an integer a in the interval [1, n−1] that
is relatively prime to n and such that an−1 �≡ 1 mod n is called a Fermat witness.
Thus, the question is, how many Fermat witnesses are there for a fixed composite
number n? One can show (although we will not do this here) that if n is not a
Carmichael number, then at least half of the integers in the interval [1, n− 1] that
are relatively prime to n are Fermat witnesses. Hence, Fermat’s primality test is
quite useful in practice.
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7.5.2. The AKS Primality Test. In 2002, in the landmark paper [AKS04],
Manindra Agrawal, Neeraj Kayal, and Nitin Saxena (three computer scientists at
the Indian Institute of Technology Kanpur) published the first (deterministic) pri-
mality test that runs within polynomial time. This is called the AKS primality
test, and in it is based on the following consequence of Fermat’s little theorem.

Proposition 7.5.6. Let n ≥ 2 and a be coprime integers. Then, n is prime if and
only if the following congruence of polynomials holds:

(x+ a)n ≡ xn + a mod n.

That is, n is prime if and only if there is a polynomial f(x) ∈ Z[x] such that

(x+ a)n − (xn + a) = n · f(x).

Proof. Suppose n = p is a prime number. Then, the binomial theorem (Exercise
2.11.14, and more concretely Exercise 4.7.26) implies that

(x+ a)p ≡ xp + ap mod p.

Moreover, by Fermat’s little theorem, we have ap ≡ a mod p, and therefore
(x+ a)p ≡ xp + a mod p, as desired.

We leave the proof of the converse as an exercise for the reader (the crucial
step is Exercise 7.6.23). �
Example 7.5.7. For instance,

(x+ 5)7 = x7 + 35x6 + 525x5 + 4375x4 + 21875x3 + 65625x2 + 109375x+ 78125

≡ x7 + 5 mod 7

but

(x+ 5)6 = x6 + 30x5 + 375x4 + 2500x3 + 9375x2 + 18750x+ 15625

≡ x6 + 3x4 + 4x3 + 3x2 + 1 mod 6.

Suppose we want to know if a number n is prime. Let 1 < a < n be arbitrary. If
we implemented code in a computer to calculate (x+ a)n mod n, the running time
would be exponential with respect to the size of n. In order to improve efficiency,
the AKS algorithm works in a different ring. Instead of working over the polynomial
ring (Z/nZ)[x], we choose an appropriate small positive integer r and work in the
quotient ring Rr = (Z/nZ)[x]/(xr − 1), i.e., polynomials with coefficients in Z/nZ
modulo (xr − 1).

Corollary 7.5.8. If n ≥ 2 is prime, a ∈ Z is not divisible by n, and 1 < r < n,
then

(x+ a)n ≡ xn + a mod (n, xr − 1).

In other words, there are polynomials f(x) and g(x) in Z[x] such that

(x+ a)n − (xn + a) = n · f(x) + g(x) · (xr − 1).

Proof. By Proposition 7.5.6, if n is prime, then (x+ a)n ≡ (xn + a) mod n. Thus,
there is a polynomial q(x) ∈ Z[x] such that

(x+ a)n − (xn + a) = n · q(x).
Thus, the result is true with f(x) = q(x) and g(x) = 0. �
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The statement of Corollary 7.5.8 is weaker than that of Proposition 7.5.6 (in-
deed, the converse of Corollary 7.5.8 is no longer true in general), but the benefit is
that the congruence modulo (n, xr − 1) is easier and quicker to check. Finally, the
key step shown by Agrawal, Kayal, and Saxena is a partial converse for Corollary
7.5.8: there exist a small value of r and a (relatively) small set S of values for a
such that if

(x+ a)n ≡ xn + a mod (n, xr − 1),

for all a ∈ S, then n is a prime power. We refer the reader to their paper [AKS04]
for the rest of the details, which are beyond the scope of this chapter.

7.5.3. RSA Public Key Cryptography. In this section we discuss an applica-
tion of Fermat’s little theorem to “real life”, a cryptosystem known as RSA, which
is an example of public key cryptography. It is a widely used system, relying for its
security on the difficulty of factoring a large number. RSA is an acronym for the
last names of Ron Rivest, Adi Shamir, and Leonard Adleman, who first publicly
described the algorithm in 1977 (notice that the authors were wise not to list their
last names in alphabetical order).

The encoding and decoding of messages works as follows. Suppose that there
are two people, Alice and Bob, who want to communicate privately. First, they
need a way to convert words into numbers. This can be done in many ways. One
simple way is to assign a 2-digit number to each letter:

00 = A, 01 = B, 02 = C, . . . , 24 = Y, 25 = Z.

The spaces between words are erased, and we make groups of two consecutive letters
to form 4-digit numbers. For example, the message PUBLIC KEY CRYPTOGRA-
PHY would become

1520 0111 0802 1004 2402 1724 1519 1406 1700 1507 2423

where we have added a dummy letter X = 23 at the end of the passage to fill out
the final block. Now, we need a secure way to encrypt the messages that Bob will
send to Alice. The RSA setup is as follows.
RSA cryptosystem:

(1) Alice chooses large primes p and q, then form n = pq.
(2) Alice chooses an integer e ≥ 1 relatively prime to ϕ(n) = (p− 1)(q − 1).
(3) Alice publishes (n, e) as her public key and computes her private key d such

that de ≡ 1 mod ϕ(n).
(4) Bob encrypts a message M as C ≡ Me mod n, and he sends C to Alice.
(5) Alice can decrypt the message by computing M ≡ Cd mod n.

Example 7.5.9. Alice picks “large” primes p = 43, q = 59, and n = 43 · 59 = 2537
as the modulus and e = 13 as the exponent. She publishes (n, e) = (2537, 13) in
a public channel. Now Bob can encrypt messages using RSA and send them to
Alice. For example, the first block of our previous message M = 1520 would get
encrypted as

C ≡ (M)e ≡ (1520)13 ≡ 95 mod 2537
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which Bob would send over to Alice as 0095. The second block is

C ≡ (0111)13 ≡ 1648 mod 2537

so Bob would send 1648, and so on. The complete encrypted message would be

0095 1648 1410 1299 0811 2333 2132 0370 1185 1957 1084.

Now, to decrypt the message, since Alice knows p and q, she also knows ϕ(n) =
ϕ(43 · 59) = 2436. Using Euclid’s algorithm she easily finds that d = 937 satisfies
de ≡ 1 mod ϕ(n). Consequently, to decrypt the first block C sent over by Bob, she
only needs to compute

M ≡ C937 ≡ (0095)937 ≡ 1520 mod 2537

and now Alice knows the first two letters of the message, i.e., P and U.

Why does the system work? It works thanks to Fermat’s little theorem, Theo-
rem 7.2.1. Let us first see a proof using Euler’s theorem, Theorem 7.3.5, but under
one additional assumption: M is relatively prime to n (this is not much of an im-
position, because Bob can change M slightly to make sure that gcd(M,n) = 1, for
instance, changing the dummy letter X to Z at the end of the message).

Proposition 7.5.10. Let p and q be distinct primes, let n = pq, let e be an integer
relatively prime to (p− 1)(q− 1), and let d be such that de ≡ 1 mod (p− 1)(q− 1).
Let M be a number relatively prime to n = pq, and put C ≡ Md mod n. Then,

Ce ≡ Mde ≡ M mod n.

Proof. Since the number d is chosen so that de ≡ 1 mod ϕ(n), there is some k ∈ Z

such that de = 1 + kϕ(n). Hence,

Cd ≡ (Me)d ≡ Mde ≡ M1+kϕ(n) ≡ M · (Mϕ(n))k ≡ M · 1 ≡ M mod n,

where we have used Euler’s theorem to show that Mϕ(n) ≡ 1 mod n. �

Let us see now a proof of the fact that RSA works, but using Fermat’s little
theorem instead, in order to avoid any restrictions on the message M .

Proposition 7.5.11. Let p and q be distinct primes, let n = pq, let e be an integer
relatively prime to (p− 1)(q− 1), and let d be such that de ≡ 1 mod (p− 1)(q− 1).
Let M be any integer, and put C ≡ Md mod n. Then,

Ce ≡ Mde ≡ M mod n.

Proof. Since n = pq and p and q are distinct primes, by the Chinese remainder
theorem (Theorem 4.5.9, or simply Corollary 4.5.6), it suffices to show that Med ≡
M mod p and Med ≡ M mod q. As before, write de = 1 + kϕ(n) for some k ∈ Z.

If M ≡ 0 mod p, then Med ≡ 0 ≡ M mod p, and we would be done, so let us
assume that M �≡ 0 mod p. Then,

Med ≡ Med−1M ≡ Mk(p−1)(q−1)M

≡ (Mp−1)k(q−1)M ≡ 1k(q−1) ·M
≡ M mod p,
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where we used the fact that Mp−1 ≡ 1 mod p for any M relatively prime to p, by
Fermat’s little theorem. The fact that Med ≡ M mod q is proved similarly. Hence,
by the Chinese remainder theorem,

Med ≡ M mod pq,

for any integer M , as desired. �
Remark 7.5.12. It is important to notice that if a spy knows how to factor n,
then it is easy to compute ϕ(n) and also the decrypting exponent d, and therefore
the spy would be able to decipher Bob’s messages to Alice. The security of the
algorithm, thus, relies on the fact that factoring a large integer is computationally
expensive (i.e., time- and memory-consuming). Currently, it takes several months
of computing time (even on the best computers available!) to factor numbers with
200 digits. In practice, the RSA codes used on the internet make use of values of n
with 600 or 1200 digits, and the value of n is changed on a weekly basis.

7.6. Exercises

Exercise 7.6.1. Calculate the least non-negative residue of 20! mod 23. Also, cal-
culate the least non-negative residue of 20! mod 25. (Hint: use Wilson’s theorem.)

Exercise 7.6.2. The goal of this exercise is to finish the proof of Wilson’s theorem
(Theorem 7.1.7).

(1) Justify the following congruence modulo 11:

10! ≡ 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10
≡ 1 · 2 · 2−1 · 3 · 3−1 · 5 · 5−1 · 7 · 7−1 · 10
≡ 1 · 10 ≡ −1 mod 11.

(2) Generalize the formula in (1) to prove that if p is any prime, then (p− 1)! ≡
−1 mod p. (Hint: use Lemma 7.1.4.)

Exercise 7.6.3. Let p be an odd prime. Show that N = 1 + 2 + · · · + (p − 1) is
divisible by p. (Hint: let a �≡ 0, 1 mod p, and consider a · N . Then, use Lemma
7.2.5.)

Exercise 7.6.4. Show that if m > 2, then ϕ(m) is even.

Exercise 7.6.5. Find the least non-negative residue of 247 mod 23.

Exercise 7.6.6. Show that n13 − n is divisible by 2, 3, 5, 7 and 13 for all n ≥ 1.

Exercise 7.6.7. Show that n5

5 + n3

3 + 7n
15 is an integer for all n.

Exercise 7.6.8. Show that 37100 ≡ 13 mod 17. (Hint: use Fermat’s little theorem.)

Exercise 7.6.9. Show that if p and q are distinct primes, then pq−1 + qp−1 ≡
1 mod pq.

Exercise 7.6.10. Show that if p and q are distinct primes, then pq + qp ≡ p +
q mod pq.

Exercise 7.6.11. Prove that for any natural number n ≥ 1, 36n − 26n is never
prime.
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Exercise 7.6.12. Find the following values of Euler’s phi function:

ϕ(5), ϕ(6), ϕ(16), ϕ(11), ϕ(77), ϕ(10), ϕ(100), and ϕ(100n) for all n ≥ 1.

Exercise 7.6.13. For each pair (a, b) below, calculate separately ϕ(ab), ϕ(a), and
ϕ(b), and then verify that ϕ(ab) = ϕ(a)ϕ(b), or explain why the equality does not
hold.

(i) a = 3, b = 5, (ii) a = 4, b = 7, (iii) a = 5, b = 6, and (iv) a = 4, b = 6.

Exercise 7.6.14. The goal of this exercise is to provide an alternative proof of
ϕ(ab) = ϕ(a)ϕ(b) if gcd(a, b) = 1.

(1) First, we will prove that ϕ(30) = ϕ(6)ϕ(5) as follows. Write down all the
numbers 1 ≤ n ≤ 30 in 6 rows of 5 numbers

1 7 13 19 25
2 8 14 20 26
3 9 15 21 27
4 10 16 22 28
5 11 17 23 29
6 12 18 24 30

(a) Show that each row is a complete residue system modulo 5; hence each
row has ϕ(5) numbers relatively prime to 5.

(b) Show that each column is a complete residue system modulo 6; hence
each column has ϕ(6) numbers relatively prime to 6. Show that all the
numbers in each row are congruent modulo 6.

(c) Show that if a number is relatively prime to 30, then there are in total
ϕ(5) numbers in the same row that are relatively prime to 30.

(d) Conversely, show that if a number is not relatively prime to 6, then none
of the numbers in the same row are relatively prime to 30.

(e) Conclude that

ϕ(30) = ϕ(6)ϕ(5)

= (ϕ(6) rows with units modulo 30)(ϕ(5) units in each row).

(2) Generalize the previous argument to prove that ϕ(ab) = ϕ(a)ϕ(b) if a and b
are relatively prime.

Exercise 7.6.15. Prove that n101 − n is divisible by 33 for all n ≥ 1.

Exercise 7.6.16. Use Euler’s theorem to find the first digit (starting from the
right-hand side of the expansion, i.e., the units digit) of the decimal expansion of
71000.

Exercise 7.6.17. Fermat’s little theorem says that if p is prime and gcd(2, p) =
1, then 2p−1 ≡ 1 mod p. However, the converse is not true: if m is a number,
gcd(2,m) = 1, and 2m−1 ≡ 1 mod m, this does not imply that m is a prime
number. A number m is called a 2-pseudoprime if (a) m is composite and (b)
2m−1 ≡ 1 mod m. Show that 341 is a 2-pseudoprime; i.e., show that 2340 ≡ 1 mod
341, but 341 is a composite number.
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Exercise 7.6.18. Let n ≥ 1 be a natural number.

(1) Verify that if n is composite; i.e., n = ab, then the polynomial xn − 1 factors
as

xn − 1 = (xb − 1)(xb(a−1) + xb(a−2) + · · ·+ xb + 1).

(2) Show that if n is composite, then m = 2n − 1 is also composite.
(3) Show that if n is a 2-pseudoprime, then m = 2n − 1 is also a 2-pseudoprime.
(4) Use part (3) to show that there are infinitely many 2-pseudoprimes.

Exercise 7.6.19. A Carmichael number is a composite positive integer m such
that bm−1 ≡ 1 mod m for all integers b which are relatively prime to m.

(1) Show that 561 is a 2-pseudoprime and a 5-pseudoprime; i.e., show that

2560 ≡ 1 mod 561 and 5560 ≡ 1 mod 561.

(2) Show that b80 ≡ 1 mod 561, for all b relatively prime to 561. (Hint: use
Fermat’s little theorem.)

(3) Use part (2) to conclude that 561 is a Carmichael number. (In fact, 561 is the
smallest Carmichael number.)

(4) Prove that 1105 is also a Carmichael number. (1105 is the second Carmichael
number.)

Exercise 7.6.20. Chernick showed in [Che39] that the number

Ck = (6k + 1)(12k + 1)(18k + 1)

is a Carmichael number if the three factors 6k+1, 12k+1, and 18k+1 are primes.
Find three distinct Carmichael numbers using Chernick’s formula.

Exercise 7.6.21. Find as many prime factors as possible of the number N =
310! − 1.

Exercise 7.6.22. Let a, n > 0 be natural numbers. Find as many prime factors
as possible of the number N = an! − 1.

Exercise 7.6.23. Show that n ≥ 2 is a prime number if and only if the binomial

coefficients
(
n

k

)
≡ 0 mod n for all 1 ≤ k ≤ n−1. (Hint: suppose n = pkm for some

prime p and some integer m relatively prime to p. Show that
(
n

p

)
�≡ 0 mod pk.)

Exercise 7.6.24. Alice wants to set up an RSA encryption scheme with N = 1147
as her modulus, as in Section 7.5.3.

(1) Can Alice choose e = 3 as an encryption exponent? If so, find the correspond-
ing decryption exponent d. If not, explain why not.

(2) Can Alice choose e = 7 as an encryption exponent? If so, find the correspond-
ing decryption exponent d. If not, explain why not.

Exercise 7.6.25. Alice publishes (N, e) = (1147, 7) for her RSA encryption. Bob
wants to send the message “HI” to Alice. Each letter is encoded A = 01, B = 02,. . .
and messages are encoded in message blocks of two letters (so “YOYO” would be
encoded as 2515 2515).
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(1) Encode “HI” into numeric form, and encrypt it using RSA with (N, e) =
(1147, 7). (Hint: 19562 ≡ 691 and (−338)4 ≡ 329 mod 1147.)

(2) Alice receives the message 793 from Bob. Explain how Alice would decrypt
the message.

(3) Decrypt the message 793 into an actual English word. (Note: the plaintext
message “0868” makes no sense because “68” does not correspond to a letter.
However, 0868 ≡ 2015 mod 1147 and “2015” corresponds to the word “TO”.)
(Hint: 793462 ≡ 1062 mod 1147.)

Exercise 7.6.26. Suppose there is a public RSA key n = 2911 and e = 1867 and
you intercept an encrypted message:

0785 0976 1594 0481 1560 2128 0917.

(1) Can you crack the code and decipher the message? (Note: here letters are
encoded as numbers by 00 = A, 01 = B, 02 = C, . . . , 24 = Y, 25 = Z.)

(2) Another message is sent with public key n = 54298697624741 and e = 1234567.
Would you be able to decrypt messages that used this RSA code? How would
you do it?

Exercise 7.6.27. Let p be a prime such that p ≡ 3 mod 4, and let F = Fp[i] be a
finite field with p2 elements. Let φ : F → F be the Frobenius automorphism such
that φ(f) = fp for every f ∈ F , as in Exercise 6.7.11.

(a) Show that φ(k) = k for every k ∈ Fp.
(b) Show that φ(i) = −i.
(c) Show that φ(a+ bi) = a− bi, for all a, b ∈ Fp.

Exercise 7.6.28. Let p be a prime, let s be an element of Z/pZ that is not
congruent to a square mod p, and let F = Fp[x]/(x

2 − s) be a finite field with p2

elements. Let φ : F → F be the Frobenius automorphism such that φ(f) = fp for
every f ∈ F , as in Exercise 6.7.11.

(a) Show that φ(k) = k for every k ∈ Fp.
(b) Show that φ(x) ≡ −x mod (x2 − s).
(c) Show that φ(a+ bx) ≡ a− bx mod (x2 − s), for all a, b ∈ Fp.
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CHAPTER 8

PRIMITIVE ROOTS

Many who have had an opportunity of knowing
any more about mathematics confuse it with
arithmetic, and consider it an arid science. In
reality, however, it is a science which requires a
great amount of imagination.

Sofia Kovalevskaya

In this chapter we will explore the concept of multiplicative order of a con-
gruence class and the concept of primitive roots. We will use these tools to find
solutions to higher-degree congruences (see Example 8.6.10), which in turn will
help us decide whether certain diophantine equations have integral points (see, for
instance, Exercises 8.10.12 and 8.10.13). In order to introduce the concept of mul-
tiplicative order, let us see an example about the length of the period of a rational
number.

Example 8.0.1. As it is well known, the decimal expansion of a rational number
a/b is periodic (we will show this in Theorem 8.9.5). For instance,

3

11
= 0.272727272727272727272727272727272 . . . = 0.27 ,

1

17
= 0.058823529411764705882352941176470 . . . = 0.0588235294117647 ,

5

37
= 0.135135135135135135135135135135135 . . . = 0.135 .

What dictates the length of the period of a fraction? In particular, why is the period
of 1/17 so long, while the periods of 3/11 and 5/37 are so short? Gauss discusses
this sort of questions in his Disquisitiones Arithmeticae (articles 308–318), as an
application of congruences and primitive roots.

193
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194 8. Primitive Roots

Let us see how one calculates the decimal expansion of 3/11:

111))13.00...
0.27...

1203
1177
0080
..220.0

Since 11 > 3, we multiply 3 by 10 and we do long division of 30 by 11:

30 = 11 · 2 + 8.

Then we multiply the remainder by 10 and do long division by 11 once again:

8 · 10 = 11 · 7 + 3.

At this step, the remainder (3) coincides with our initial numerator, and the com-
putation enters a cycle. It follows that the expansion is periodic and the length of
the period is two (namely, the expansion is 0.27, where the digits 2 and 7 are the
quotients in the two long divisions performed above). In terms of congruences, we
computed

3 · 10 ≡ 8 mod 11 and 8 · 10 ≡ 3 mod 11,

or, equivalently,

3 · 10 ≡ 8 mod 11 and (3 · 10) · 10 ≡ 3 · 102 ≡ 3 mod 11,

which implies that 102 ≡ 1 mod 11 (because 3 and 11 are relatively prime). Con-
versely, the fact that 102 ≡ 1 mod 11 implies that at the second iteration of the
long division the remainder and the initial numerator will coincide modulo 11 and,
therefore, the period of the decimal expansion will be of length two.

Similarly, in order to compute the decimal expansion of 5/37 we do a few long
divisions until we find a repeated remainder:

50 = 37 · 1 + 13, 130 = 37 · 3 + 19, 190 = 37 · 5 + 5,

which in terms of congruences modulo 37 read as

5 · 10 ≡ 13 mod 37, 5 · 102 ≡ 19 mod 37, and 5 · 103 ≡ 5 mod 37,

which implies that 103 ≡ 1 mod 37. Conversely, the fact that 103 ≡ 1 mod 37 means
that at the third long division the numerator and the remainder agree modulo 37.

Now, let us consider 1/17. According to our previous experiments, the length
of the period should coincide with the first exponent n such that 10n ≡ 1 mod 17.
Thus, we compute a table of powers of 10 modulo 17:

x x2 x3 x4 x5 x6 x7 x8 x9 x10

10 15 14 4 6 9 5 16 7 2

x11 x12 x13 x14 x15 x16 . . .

3 13 11 8 12 1 . . .

It follows that the length of the period must be 16 and, indeed,

1/17 = 0.0588235294117647

has the predicted period length.
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The smallest positive integer n such that 10n ≡ 1 mod 17 is called the multi-
plicative order of 10 modulo 17 (see Definition 8.1.1). Since the multiplicative order
of 10 is 16 = 17− 1, which turns out to be the largest possible multiplicative order
mod 17, we say that 10 is a primitive root modulo 17 (see Definition 8.2.1). We will
come back to decimal expansions in Section 8.9.2 in much more detail.

8.1. Multiplicative Order

Let us consider the powers of congruence classes modulo 7:

x mod 7 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . . .

1 1 1 1 1 1 1 1 1 1 1 1 . . .

2 4 1 2 4 1 2 4 1 2 4 1 . . .

3 2 6 4 5 1 3 2 6 4 5 1 . . .

4 2 1 4 2 1 4 2 1 4 2 1 . . .

5 4 6 2 3 1 5 4 6 2 3 1 . . .

6 1 6 1 6 1 6 1 6 1 6 1 . . .

From the previous chapter, we know that the column of 1’s under x6 is explained
by Fermat’s little theorem. Indeed, since p = 7 is prime, Fermat’s little theorem
says that a6 ≡ 1 mod 7, whenever gcd(a, 7) = 1. However, as we can see from the
table, when we take consecutive powers of a congruence class, some classes reach
1 mod 7 sooner than the sixth power. For instance, 23 ≡ 43 ≡ 1 mod 7. But for
some classes, the first power that is congruent to 1 modulo 7 is precisely the sixth
power predicted by Fermat’s little theorem. Let us begin this chapter by giving a
name to the first power of a unit that is congruent to 1.

Definition 8.1.1. Let m > 1 be fixed, and let a be an integer relatively prime
to m. The multiplicative order of a mod m, or simply the order of a modulo m,
denoted by ordm(a), is the smallest positive number n such that an ≡ 1 mod m.

Example 8.1.2. Let m = 7. Then, from the previous table, we see that ord7(2) =
3, because 23 ≡ 1 mod 7, and 2n �≡ 1 mod 7 for any positive number n with 1 ≤
n < 3. Moreover,

ord7(1) = 1, ord7(2) = 3, ord7(3) = 6, ord7(4) = 3, ord7(5) = 6,

and ord7(6) = 2. Notice then that the possible orders modulo 7 are 1, 2, 3, and 6,
but no congruence class has order 4 or 5. The attentive reader may notice that
{1, 2, 3, 6} is precisely the set of all positive divisors of 6 = 7− 1 and may wonder
if this holds for any prime p; i.e., are the possible orders modulo p precisely the
positive divisors of p− 1? Let us see another example.
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Example 8.1.3. Let us calculate a table of all powers x1, . . . , x10 of the non-zero
congruence classes modulo 11:

x mod 11 x2 x3 x4 x5 x6 x7 x8 x9 x10 . . .

1 1 1 1 1 1 1 1 1 1 . . .

2 4 8 5 10 9 7 3 6 1 . . .

3 9 5 4 1 3 9 5 4 1 . . .

4 5 9 3 1 4 5 9 3 1 . . .

5 3 4 9 1 5 3 4 9 1 . . .

6 3 7 9 10 5 8 4 2 1 . . .

7 5 2 3 10 4 6 9 8 1 . . .

8 9 6 4 10 3 2 5 7 1 . . .

9 4 3 5 1 9 4 3 5 1 . . .

10 1 10 1 10 1 10 1 10 1 . . .

Once again, the last column of 1’s is precisely the content of Fermat’s little theorem:
if gcd(a, 11) = 1, then a10 ≡ 1 mod 11. Let us make a table of congruence classes
modulo 11 and their respective orders:

a mod 11 1 2 3 4 5 6 7 8 9 10
ord11(a) 1 10 5 5 5 10 10 10 5 2

In particular, the possible multiplicative orders are 1, 2, 5, or 10, and no con-
gruence class has order 3, 4, 6, 7, 8, or 9. As in the previous example, we notice
that {1, 2, 5, 10} is precisely the set of all positive divisors of 10 = 11− 1.

Example 8.1.4. What happens if m is composite and we consider consecutive
powers modulo m? For instance, take m = 15. Euler’s theorem predicts that
a8 ≡ 1 mod 15, for all integers a with gcd(a, 15) = 1, because ϕ(15) = 8. Are then
the possible orders given by the divisors of 8? Are the possible orders 1, 2, 4, and
8? We have already seen in Example 7.2.2 a table of consecutive powers of units
modulo 15:

x mod 15 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . . .

1 1 1 1 1 1 1 1 1 1 1 1 . . .

2 4 8 1 2 4 8 1 2 4 8 1 . . .

4 1 4 1 4 1 4 1 4 1 4 1 . . .

7 4 13 1 7 4 13 1 7 4 13 1 . . .

8 4 2 1 8 4 2 1 8 4 2 1 . . .

11 1 11 1 11 1 11 1 11 1 11 1 . . .

13 4 7 1 13 4 7 1 13 4 7 1 . . .

14 1 14 1 14 1 14 1 14 1 14 1 . . .

Thus, we find that the possible orders are 1, 2, and 4, but no element has order 8.
However, we still find that the possible orders are divisors of ϕ(15), even though
not every divisor is an actual order of a congruence class modulo 15.
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Proposition 8.1.5. Let m > 1 and let a be an integer relatively prime to m, with
multiplicative order n = ordm(a). Suppose that there is a number t ≥ 1 such that
at ≡ 1 mod m. Then, n is a divisor of t.

Proof. By the division theorem (Theorem 2.4.4), there exist unique q, r ∈ Z such
that

t = n · q + r

and 0 ≤ r < n. Thus,

1 ≡ at ≡ an·q+r ≡ (an)q · ar ≡ 1 · ar ≡ ar mod m,

where we have used the fact that an ≡ 1 mod m, since n = ordm(a). It follows that
ar ≡ 1 mod m and 0 ≤ r < n. Since n is the order of a modulo m, by definition
n is the smallest positive integer such that an ≡ 1 mod m. Since r < n, the only
possibility is that r = 0. Hence, t = n · q + 0 = n · q, and n is a divisor of t, as
claimed. �

Corollary 8.1.6. Let m > 1 be fixed and let a ∈ Z be relatively prime to m. Then,
ordm(a) is a divisor of ϕ(m), where ϕ is the Euler phi function. In particular, if
m = p is prime, then ordp(a) is a divisor of p− 1.

Proof. If gcd(a,m) = 1, then Euler’s theorem, Theorem 7.3.5, says that aϕ(m) ≡
1 mod m. Hence, Proposition 8.1.5 implies that ordm(a) is a divisor of ϕ(m). If
m = p is a prime, then we know that ϕ(p) = p−1 and therefore ordp(a) is a divisor
of p− 1, as claimed. �

Example 8.1.7. As we saw in Example 8.1.2, the order of any unit modulo 7 is 1,
2, 3, or 6, and we see that each order is a divisor of ϕ(7) = 7− 1 = 6. Similarly, in
Example 8.1.2 each order modulo 11 is a divisor of ϕ(11) = 11 − 1 = 10. Finally,
in Example 8.1.4 we have seen that each order mod 15 is a divisor of ϕ(15) = 8.
However, there is no unit modulo 15 of exact order 8.

In the following proposition we prove a formula for the order of a power ad of
a unit a mod m, given the order of a mod m.

Proposition 8.1.8. Let m > 1 be fixed and let a ∈ Z be relatively prime to m.
Suppose that ordm(a) = n. Then, for any d ≥ 1 we have

ordm(ad) =
n

gcd(n, d)
=

ordm(a)

gcd(ordm(a), d)
.

Proof. Fix m > 1 and a ∈ Z with gcd(a,m) = 1, and let d ≥ 1. Let n = ordm(a)
and put s = ordm(ad). We want to show that s = n

gcd(n,d) .

By Exercise 2.11.27, we have an identity n · d = lcm(n, d) · gcd(n, d). In partic-
ular,

(ad)
n

gcd(n,d) ≡ alcm(n,d) ≡ 1 mod m,

since lcm(n, d) is a multiple of n = ordm(a). It follows from Proposition 8.1.5 that
s ≤ n

gcd(n,d) . Suppose for a contradiction that s < n
gcd(n,d) .

Since s = ordm(ad), we know that (ad)s ≡ 1 mod m and s is the smallest
positive number with this property. This implies that n divides sd and s is the
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smallest positive number such that n is a divisor of sd. In particular, sd is a
multiple of d and a multiple of n, and therefore sd ≥ lcm(n, d). However, we have
assumed s < n

gcd(n,d) and so

sd < d · n

gcd(n, d)
=

nd

gcd(n, d)
= lcm(n, d).

This is a contradiction, and it follows that ordm(ad) = s = n
gcd(n,d) , as desired. �

Example 8.1.9. The order of 3 mod 7 is 6. Therefore we can use the formula of
Proposition 8.1.8 to find the order of every non-zero congruence class modulo 7:

ord7(2) = ord7(3
2) =

ord7(3)

gcd(ord7(3), 2)
=

6

gcd(6, 2)
=

6

2
= 3,

ord7(6) = ord7(3
3) =

ord7(3)

gcd(ord7(3), 3)
=

6

gcd(6, 3)
=

6

3
= 2,

ord7(4) = ord7(3
4) =

ord7(3)

gcd(ord7(3), 4)
=

6

gcd(6, 4)
=

6

2
= 3,

ord7(5) = ord7(3
5) =

ord7(3)

gcd(ord7(3), 5)
=

6

gcd(6, 5)
=

6

1
= 6,

ord7(1) = ord7(3
6) =

ord7(3)

gcd(ord7(3), 1)
=

6

gcd(6, 1)
=

6

6
= 1.

Example 8.1.10. The number p = 4001 is a prime number. The reader can check
that the order of 3 mod 4001 is precisely 4000. We know that the order of each
congruence class modulo 4001 will be a divisor of p− 1 = 4000. Suppose that e is a
divisor of 4000. Is there a congruence class of order exactly e? The answer is “yes”,
and we will be able to find such a congruence class by considering the powers of
3. For instance, e = 50 is a divisor of 4000 = 50 · 80. Let us find some power of 3
whose order is exactly 50. If d ≥ 1, the order of 3d mod 4001 will be given by

ord(3d) =
ord 3

gcd(ord 3, d)
=

4000

gcd(4000, d)
.

Thus, if we want the order of 3d to be 50, we want gcd(4000, d) = 80. It suffices to
take d = 80. Indeed, 380 ≡ 636 mod 4001 and

ord(636) = ord(380) =
4000

gcd(4000, 80)
=

4000

80
= 50.

More generally, if e is a divisor of 4000 and 4000 = e · d, then

ord(3d) =
4000

gcd(4000, d)
=

4000

d
= e,

and so, the congruence class of 3d mod 4001 has exact order e. Notice also that
gcd(d, 4000) = 1 if and only if the congruence class of 3d mod 4001 has exact order
4000.

In the following proposition we prove a formula that will allow us to find ele-
ments of higher order out of elements of smaller (relatively prime) orders.
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Proposition 8.1.11. Let m > 1 be fixed and suppose a, b are integers relatively
prime to m. Further, suppose that ordm(a) = h and ordm(b) = k and gcd(h, k) = 1.
Then, ordm(ab) = hk; i.e.,

ordm(ab) = ordm(a) · ordm(b).

Proof. Let m, a, b, h, k be as in the statement of the proposition, and let s =
ordm(ab). We want to show that s = hk. First note that

(ab)hk ≡ ahk · bhk ≡ (ah)k · (ak)h ≡ 1k · 1h ≡ 1 mod m,

because h = ordm(a) and k = ordm(b). In particular, Proposition 8.1.5 implies
that hk is a multiple of s = ordm(ab). Moreover, consider aks mod m:

aks ≡ aks · 1 ≡ aks · (bk)s ≡ (ab)ks ≡ ((ab)s)k ≡ 1k ≡ 1 mod m,

because s = ordm(ab). Using Proposition 8.1.5 again, it follows that h = ordm(a)
is a divisor of ks. Since gcd(h, k) = 1, our favorite corollary (Corollary 2.7.6) tells
us that h is actually a divisor of s. By a similar argument, we have that

bhs ≡ (ab)hs ≡ ((ab)s)h ≡ 1h ≡ 1 mod m,

and it follows that k is a divisor of s. Hence, h and k are divisors of s. Since
gcd(h, k) = 1, we conclude that hk divides s. We have also shown above that s
divides hk, and since they are both positive integers, the only possibility is that
s = hk, as claimed. �

Example 8.1.12. The order of 2 mod 7 is 3; i.e., ord7(2) = 3. The order of
6 ≡ −1 mod 7 is 2; i.e., ord7(6) = 2. Since gcd(2, 3) = 1, the order of −2 must be
2 · 3 = 6. Indeed, −2 ≡ 5 mod 7, and the order of 5 mod 7 is precisely 6.

Example 8.1.13. The order of 1444 mod 4001 is 125, i.e., ord4001(1444) = 125,
and the order of 3339 mod 4001 is 32, i.e., ord4001(3339) = 32. Since gcd(32, 125) =
gcd(25, 53) = 1, it follows from Proposition 8.1.11 that

ord4001(1444 · 3339) = ord4001(1444) · ord4001(3339) = 32 · 125 = 4000.

Hence, the order of 1444 ·3339 ≡ 311 mod 4001 is 4000, which is the largest possible
order modulo 4001.

Remark 8.1.14. Beware: if ordm(a) and ordm(b) are not relatively prime, then it is
not necessarily true that ordm(ab) = ordm(a) ordm(b). For instance, let m = 15 and
put a = 2 and b = 11. Then ord15(2) = 4 and ord15(11) = 2, but 2 · 11 ≡ 7 mod 15
and

ord15(7) = 4 �= 8 = ord15(2) · ord15(11).

In previous examples, we have seen several instances of congruence classes that
attain the maximum possible order. For instance, 2 mod 5 has order 4, the class
of 3 mod 7 has order 6, and the classes of 3 mod 4001 has order 4000. The class
of 311 mod 4001 also has order 4000. An element that has the maximum possible
order is called a primitive root. We will study these in detail in the following
sections.
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8.2. Primitive Roots

Definition 8.2.1. Let m > 1 be fixed and let g ∈ Z be relatively prime to m.
We say that the congruence class g mod m is a primitive root modulo m, or that
g mod m is a multiplicative generator modulo m, if ordm(g) = ϕ(m). In particular,
if m = p is a prime number, we say that g mod p is a primitive root if ordp(g) = p−1.

Example 8.2.2. The following congruence classes are primitive roots for the in-
dicated modulus: 1 mod 2, 2 mod 3, 2 mod 5, 3 mod 7, 2 mod 11, 3 mod 4001, etc.
Let us show that 2 is a primitive root modulo 11. We only need to show that
ord11(2) = 10. Since the order of 2 must divide p− 1 = 10, it suffices to show that
the order of 2 is not 1, 2, or 5. Indeed,

21 ≡ 2 �≡ 1, 22 ≡ 4 �≡ 1, 25 ≡ 32 ≡ −1 �≡ 1 mod 11,

and, therefore, the order must be exactly 10. Another (lengthier) way to see this
is to compute a table of all the powers of 2 modulo 11:

x mod 11 x2 x3 x4 x5 x6 x7 x8 x9 x10

2 4 8 5 10 9 7 3 6 1

Thus, the first power of 2 that is congruent to 1 mod 11 is the tenth power and so,
by definition, ord11(2) = 10.

Example 8.2.3. There is no primitive root modulo 15. As we have seen in Example
8.1.4, every order modulo 15 is 1, 2, or 4. A primitive root would be an element of
order ϕ(15) = 8, but there are none with such order.

However, there are primitive roots for some composite orders. For instance,
consider Z/9Z. The congruence class of 2 mod 9 is a primitive root modulo 9.
Indeed, the order of 2 mod 9 is 6 and ϕ(9) = 6:

x mod 9 x2 x3 x4 x5 x6

2 4 8 7 5 1

Similarly, the congruence class of 3 mod 50 is a primitive root. Notice that ϕ(50) =
20 and the reader can verify that ord50(3) = 20.

Proposition 8.2.4. Suppose that ordm(g) = ϕ(m); i.e., g mod m is a primitive
root in Z/mZ. Then:

(1) The set {g, g2, g3, . . . , gϕ(m)} is a complete residue system for the unit classes
modulo m.

(2) For every divisor e of ϕ(m), there is a congruence class whose order is precisely
e. In particular, if ϕ(m) = e · d, then the congruence classes modulo m with
exact order e are precisely given by {gn : n ≥ 1, gcd(n, ϕ(m)) = d}.

(3) The primitive roots of Z/mZ are given by {gn : n ≥ 1, gcd(n, ϕ(m)) = 1}.
In particular, if there is at least one primitive root modulo m, then there are
exactly ϕ(ϕ(m)) primitive roots modulo m.
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Proof. Let us assume that g mod m is a primitive root.

(1) Since g mod m is a primitive root, the order of g mod m is precisely ϕ(m);
i.e., gϕ(m) ≡ 1 mod m and gt �≡ 1 mod m for any 1 ≤ t < ϕ(m). Now, suppose
that

gi ≡ gj mod m

for some 1 ≤ i ≤ j ≤ ϕ(m). Since g is a primitive root, it is a unit modulo m,
and we can multiply both sides of the previous equation by g−i ≡ (g−1)i mod
m to obtain

1 ≡ gj−i mod m.

But j− i < ϕ(m) and therefore j− i = 0 and i = j. Hence, all the congruence
classes in S = {g, g2, . . . , gϕ(m)} are distinct modulo m. Since there are ϕ(m)
of them and since (Z/mZ)× has cardinality ϕ(m), we conclude that S is a
complete residue system for all the unit classes modulo m.

(2) Let e be a divisor of ϕ(m) with ϕ(m) = e · d. Then, by Proposition 8.1.8, we
have

ordm(gn) =
ordm(g)

gcd(ordm(g), n)
=

ϕ(m)

gcd(ϕ(m), n)
.

Hence, ordm(gn) = e if and only if gcd(ϕ(m), n) = d. Moreover, if a mod m
is any congruence class of order e, by part (1) there is some n such that
gn ≡ a mod m, and we have shown that we must have gcd(ϕ(m), n) = d.

(3) The primitive roots modulo m are those congruence classes modulo m whose
order is precisely ϕ(m). By part (2), those elements are given by powers
gn such that gcd(ϕ(m), n) = 1. In other words, the primitive roots are the
elements in the set

G = {gn : 1 ≤ n ≤ ϕ(m), gcd(ϕ(m), n) = 1}.
The set G is in bijection with the set {n : 1 ≤ n ≤ ϕ(m), gcd(ϕ(m), n) = 1},
which, in turn, is in bijection with the set of units modulo ϕ(m). Since the
set (Z/ϕ(m)Z)× has exactly ϕ(ϕ(m)) elements, we conclude that there are
ϕ(ϕ(m)) roots of unity modulo m. �

When we specialize the previous proposition to the case when m = p is prime,
we obtain the following immediate corollary.

Corollary 8.2.5. If p is prime and Z/pZ has at least one primitive root, then there
are exactly ϕ(ϕ(p)) = ϕ(p− 1) primitive roots modulo p.

Example 8.2.6. Let us consider Z/7Z. We know that 3 mod 7 is a primitive root.
Here is a table of powers of 3 mod 7:

x mod 7 x2 x3 x4 x5 x6

3 2 6 4 5 1

Therefore, each primitive root modulo 7 is given by a power of 3 mod 7 whose
exponent is relatively prime to ϕ(7) = 7 − 1 = 6. Hence, there are ϕ(ϕ(7)) =
ϕ(6) = 2 primitive roots and they are

{g1, g5 mod 7} = {3, 5 mod 7}.
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The elements of exact order 3 are given by those powers 3n whose exponent n
satisfies gcd(6, n) = ϕ(7)/3 = 2. Thus, the elements of order 3 are

{g2, g4 mod 7} = {2, 4 mod 7}.
Similarly, the elements of exact order 2 are given by those powers 3n whose exponent
n satisfies gcd(6, n) = ϕ(7)/2 = 3. Thus, there is only one element of order 2:

{g3 mod 7} = {6 mod 7}.
And there is only one element of order 1, namely 1 mod 7.

Example 8.2.7. Let us find all the primitive roots modulo 11. We already know
that 2 mod 11 is a primitive root. Here are the powers of 2 modulo 11:

x mod 11 x2 x3 x4 x5 x6 x7 x8 x9 x10

2 4 8 5 10 9 7 3 6 1

By Proposition 8.2.4, all the primitive roots modulo 11 are given by all those
powers of 2 whose exponent is relatively prime to ϕ(11) = 10. Thus, there are
ϕ(ϕ(11)) = ϕ(10) = 4 primitive roots and they are given by

{g1, g3, g7, g9 mod 11} = {2, 8, 7, 6 mod 11}.
Thus, the four primitive roots modulo 11 are 2, 6, 7, and 8 mod 11.

Example 8.2.8. Let us show that there is a primitive root modulo p = 43 (a prime
number), by explicitly finding one. Let gcd(a, 43) = 1; then the multiplicative
order of a mod 43 is a divisor of ϕ(43) = 42 = 2 · 3 · 7, so ord43(a) is one of
{1, 2, 3, 6, 7, 14, 21, 42}. Let us find the order of 2 mod 43:

22 ≡ 4, 23 ≡ 8, 26 ≡ 82 ≡ 64 ≡ 21, 27 ≡ 21 · 2 ≡ 42 ≡ −1 mod 43,

and so, 214 ≡ 1 mod 43, and ord43(2) = 14. By Proposition 8.1.11, it suffices to
find an element of order 3, i.e., b mod 43 such that b3 ≡ 1, but b �≡ 1 mod 43. Since

b3 − 1 = (b− 1)(b2 + b+ 1),

we are looking for b such that b2+ b+1 ≡ 0 mod 43. We may naively find solutions
using the quadratic formula (we will prove that the quadratic formula does indeed
work modulo 43 in Chapter 10, Section 10.1) to find that b must satisfy

b ≡ −1±
√
−3

2
mod 43.

Is −3 a square modulo 43? We will dive into questions of this sort in Section
10.2, but for now it suffices to say that after some calculations, we can see that
−3 ≡ 132 mod 43, and so

b ≡ −1±
√
−3

2
≡ −1± 13

2
mod 43,

and so b ≡ 6 or b ≡ −7 mod 43. Indeed, b ≡ 6 mod 43 works as a root of b2 + b+ 1
because 36 + 6 + 1 = 43 ≡ 0 mod 43. Therefore,

ord43(12) = ord43(2 · 6) = ord43(2) · ord43(6) = 14 · 3 = 42,

and 12 mod 43 is a primitive root.
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Once we have found one primitive root, Proposition 8.2.4 tells us that there
are ϕ(ϕ(43)) = 12 primitive roots in Z/43Z and they are given by

{gn mod 43 : n ≥ 1, gcd(n, 42) = 1},
where g is one fixed primitive root, say g ≡ 12 mod 43. Thus, the primitive roots
modulo 43 are

12, 125 ≡ 34, 1211 ≡ 26, 1213 ≡ 3, 1217 ≡ 30, 1219 ≡ 20, 1223 ≡ 28, 1225 ≡ 33,

1229 ≡ 29, 1231 ≡ 5, 1237 ≡ 19, and 1241 ≡ 18.

In order, the primitive roots are {3, 5, 12, 18, 19, 20, 26, 28, 29, 30, 33, 34 mod 43}.

We have shown that if there is one primitive root, then there are ϕ(ϕ(m))
of them, but we have not yet proved for what values of m there is at least one
primitive root. In the next two sections, we shall prove that there is always at least
one primitive root when we work modulo a prime.

8.3. Universal Exponents

Definition 8.3.1. Let m > 1 be fixed. A universal exponent for Z/mZ is a positive
integer u ≥ 1 such that au ≡ 1 mod m, for all a ∈ Z with gcd(a,m) = 1. The least
universal exponent is the smallest positive universal exponent for Z/mZ.

Remark 8.3.2. By Euler’s theorem, ϕ(m) is a universal exponent, so the least
universal exponent u for Z/mZ satisfies u ≤ ϕ(m). If m = p is a prime, then
u ≤ p− 1.

Example 8.3.3. The least universal exponent modulo 11 is 10. Indeed, by Fermat’s
little theorem, we know that a10 ≡ 1 mod 11 whenever gcd(a, 11) = 1 and this
implies that u ≤ 10. Moreover, ord11(2) = 10. Hence u ≥ 10, and it follows that
u = 10.

Example 8.3.4. The least universal exponent modulo 15 is 4. This follows from
the table of Example 8.1.4. Notice that here the least universal exponent is strictly
less than ϕ(15) = 8.

Proposition 8.3.5. Let m > 1 be fixed and let u be the least universal exponent
modulo m. Then, u is the least common multiple of all the orders of all units modulo
m; i.e.,

u = lcm({ordm(a) : 1 ≤ a ≤ m, gcd(a,m) = 1}).

Proof. Let u be the least universal exponent modulo m and put

s = lcm({ordm(a)}),
where the least common multiple runs over all orders of all units a mod m. Fix
a mod m. Then, s is a multiple of ordm(a); i.e., s = d · ordm(a) for some d ∈ Z.
Hence,

as ≡ (aordm(a))d ≡ 1d ≡ 1 mod m.

Since a was an arbitrary unit, we conclude that as ≡ 1 mod m, for all units a mod
m. Hence u ≤ s because u is the least universal exponent.
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Suppose for a contradiction that u < s. Since s is the least common multiple of
all orders modulo m, it follows that u is not a multiple of at least one order ordm(a);
i.e., there is some a mod m such that ordm(a) does not divide u. However,

au ≡ 1 mod m

because u is a universal exponent, but then Proposition 8.1.5 implies that ordm(a)
must divide u. This is a contradiction, and we conclude that u < s is impossible.
Thus, u = s, as desired. �

Example 8.3.6. The orders modulo 7 are {1, 2, 3, 6}. Hence, the (least) universal
exponent modulo 7 is

u = lcm(1, 2, 3, 6) = 6.

Similarly, every element modulo 11 has one of these orders: 1, 2, 5, or 10. Thus, the
least universal exponent modulo 11 is

u = lcm(1, 2, 5, 10) = 10.

As a last example, every element modulo 15 has one of these orders: 1, 2, or 4.
Thus, the least universal exponent modulo 15 is

u = lcm(1, 2, 4) = 4.

Lemma 8.3.7. Let p be a prime and suppose that pk divides lcm(a, b), for some
k ≥ 1. Then pk divides a or b.

Proof. By the definition of least common multiple, if e is the largest number such
that pe divides one of a or b, then the largest power of p that divides lcm(a, b) is
also pe. Thus, if pk divides lcm(a, b), then pk has to divide a or b. �

Lemma 8.3.8. Let p be a prime and suppose pe divides u, the least universal
exponent modulo m. Then, there is a congruence class a mod m whose order is
exactly pe.

Proof. Suppose that pe divides u. By Proposition 8.3.5, u is the least common
multiple of all orders modulo m. By the previous lemma, there is some order
ordm(a) which is divisible by pe. Let us write ordm(a) = pe · d, for some d ≥ 1.
Then, by Proposition 8.1.8

ordm(ad) =
ordm(a)

gcd(ordm(a), d)
=

pe · d
gcd(pe · d, d) =

pe · d
d

= pe.

Hence, ad mod m has exact order pe, as desired. �

The following theorem will be one out of two key results in proving that Z/pZ
always has a primitive root when p is prime.

Theorem 8.3.9. Let m > 1 be fixed and let u be the (least) universal exponent
modulo m. Then, there is some congruence class a mod m such that ordm(a) = u;
i.e., there is a congruence class whose order is the least universal exponent.
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Proof. By the fundamental theorem of arithmetic, we can find a factorization of
u into prime powers,

u = pe11 pe22 · · · perr ,

where each pi is a prime, ei ≥ 1, and pi �= pj if i �= j. Since peii divides u, it follows
from Lemma 8.3.8 that there is some class ci mod m of exact order peii . Since each
pi is a distinct prime, it follows that gcd(ordm(ci), ordm(cj)) = 1 for all i �= j. Let
c = c1 · c2 · · · cr. Then, by Proposition 8.1.11,

ordm(c) = ordm(c1c2 · · · cr)
= ordm(c1) · ordm(c2) · · · ordm(cr)

= pe11 pe22 · · · perr
= u.

Hence, the order of c mod m is exactly u, the least universal exponent modulo
m. �

Example 8.3.10. The least universal exponent of Z/7Z is u = 6 = 3 ·2. The order
of c1 = 2 mod 7 is 3. The order of c2 = 6 ≡ −1 mod 7 is 2. Hence, the order of
c = c1 · c2 ≡ 2 · (−1) ≡ −2 ≡ 5 mod 7 is 3 · 2 = 6, and the order of 5 mod 7 is the
least universal exponent u = 6.

8.4. Existence of Primitive Roots Modulo p

Recall that, in Chapter 5, we proved Theorem 5.5.19 that said that a polynomial
over a field has at most as many roots as the degree of the polynomial, even when
the roots are counted with multiplicity. We shall use this result and Theorem 8.3.9
to show that Z/pZ has a primitive root, for every prime p.

Theorem 8.4.1. Let p be a prime. Then, there is at least one primitive root modulo
p; i.e., there is a congruence class g mod p such that ordp(g) = p− 1.

Proof. Let u be the least universal exponent modulo p. We shall show first that
u = p − 1. Let p(x) = xu − 1 be a polynomial in (Z/pZ)[x]. Since p is prime, we
know that Z/pZ is a field (Theorem 5.4.3). Hence, by Theorem 5.5.19 (see also
Corollary 5.5.21), we know that the number of roots of p(x) in Z/pZ is ≤ u =
deg(p(x)). On the other hand, each unit a modulo p is a root of p(x) because
au ≡ 1 mod p whenever gcd(a, p) = 1, since u is a universal exponent modulo p.
Hence, a ≡ 1, 2, . . . , p−1 mod p are p−1 distinct roots of p(x). It follows that p(x)
has at least p − 1 roots, and so p − 1 ≤ u = deg(p(x)). Moreover, we know that
the least universal exponent modulo a prime is always ≤ p − 1, by Fermat’s little
theorem, and therefore u = p− 1.

Hence, the least universal exponent modulo p is always p − 1. Now, Theorem
8.3.9 says that there is a congruence class g mod p whose order is precisely the least
universal exponent u = p− 1 and, therefore, ordp(g) = p− 1, as we wanted. Hence,
g mod p is a primitive root modulo p. This concludes the proof of the theorem. �
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Example 8.4.2. In the table below, we list all primes p ≤ 50 and the smallest
positive integer g such that g mod p is a primitive root mod p:

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

g 1 2 2 3 2 2 3 2 5 2 3 2 6 3 5

8.4.1. Finding a Primitive Root Modulo p. In general, the problem of finding
a primitive root modulo p is hard, as there is no known formula that will produce
a primitive root given a prime number. The best known method to find primitive
roots is an “educated trial-and-error” approach, as was illustrated in Example 8.2.8,
where we calculated a primitive root modulo 43. In the most basic trial-and-error
approach we simply calculate ordp(u) for random units u mod p, until we find a
primitive root. Some remarks are in order:

(1) The probability of finding a primitive root at random is in our favor. By
Proposition 8.2.4, there are ϕ(p − 1) primitive roots modulo p. Hence, the
probability that a random unit is indeed a primitive root is ϕ(p− 1)/(p− 1).
This probability can be as good as 50% in some cases (see Exercise 10.8.32).
The lowest value of ϕ(p−1)/(p−1) among the first 100000 primes is 0.1852 . . .,
for p = 870871. In Table 8.1 we have computed the probability of finding at
random a primitive root modulo p, for primes between 3 and 29.

Table 8.1. The probability of finding at random a primitive root modulo p.

p 3 5 7 11 13 17 19 23 29
ϕ(p− 1)/(p− 1) 0.5 0.5 0.3 0.4 0.3 0.5 0.3 0.45 0.428571

Moreover, if we fail to find a primitive root in our first pick, then the
probability that we find one in our second pick would be ϕ(p − 1)/(p − 2),
and so on. Equivalently, the probability of not finding a primitive root in the
first random attempt is α1 = 1− ϕ(p− 1)/(p− 1), and the probability of not
finding a primitive root after n attempts is

αn =

(
1− ϕ(p− 1)

(p− 1)

)(
1− ϕ(p− 1)

(p− 2)

)
· · ·
(
1− ϕ(p− 1)

(p− n)

)
,

which decreases to 0 as n approaches p−ϕ(p−1). For instance, when p = 43,
the probability of not finding a primitive root in the first random attempt is
α1 = 0.714 . . ., or 71.4%. The probability of not finding a primitive root in
four random attempts is down to about 0.245, or 24.5%.

(2) If p > 3, then 1 and −1 mod p cannot be primitive roots (they have order 1
and 2, respectively, and p−1 > 2). Thus, we search for primitive roots among
2, . . . , p− 2 mod p, and the probability of finding a primitive root at random
in our first pick is now ϕ(p− 1)/(p− 3). See Table 8.2.

Table 8.2. The probability of finding a primitive root between 2 and p− 2.

p 5 7 11 13 17 19 23 29
ϕ(p− 1)/(p− 1) 1 0.5 0.5 0.4 0.571428 0.375 0.5 0.461538
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(3) If we compute the order of a unit u mod p and u is not a primitive root, then
we have additional information that we can use to discard a number of units
that cannot be primitive roots either. Indeed, we know that ordp(u

n) is a
divisor of ordp(u), by Proposition 8.1.8. Hence, if u is not a primitive root,
then no power of u can be a primitive root either.

For instance, in Example 8.2.8 we began by computing the order of 2,
which happened to be 14, so 2 is not a primitive root. It follows that no power
of 2 is a primitive root. Thus, there are 14 units that cannot be primitive roots.
So in our second attempt at finding a primitive root, we have reduced the
number of candidates from 42 units down to 28 units, and now the probability
of finding a primitive root is

ϕ(p− 1)

p− 1− ordp(u)
=

12

42− ord43(2)
=

12

28
=

3

7
= 0.428571,

up from approximately a probability 0.28 of success before we calculated the
order of 2.

(4) Even if a primitive root has not been found, it is possible to build one out of
partial information. We can calculate orders of units u1, u2, u3, . . . , un until

lcm(ordp(u1), ordp(u2), . . . , ordp(un))

equals p− 1. At this point, using the multiplicative property of orders (as in
Proposition 8.1.11) and the methods outlined in the proofs of Lemma 8.3.8
and Theorem 8.3.9, we can build a unit with order p− 1, which is therefore a
primitive root.

Moreover,
lcm(ordp(u), ordp(u

n)) = ordp(u)

for any n ≥ 1. Thus, when computing primitive roots, it is futile to compute
the order of any power of a unit u for which we have already calculated ordp(u),
as it will not help in any way.

Example 8.4.3. Let p = 71, and let us find a primitive root modulo 71. We begin
calculating the order of u ≡ 2 mod 71. Since 70 = 2 ·5 ·7, the order of 2 must be one
of 1, 2, 5, 7, 10, 14, 35, or 70. The reader can check that ord71(2) = 35. Therefore,
it suffices to find a unit of order 70/35 = 2. Since ord71(−1) = 2, we conclude that
2 · (−1) ≡ −2 ≡ 69 mod 71 has order

ord71(69) = ord71(2 · (−1)) = ord71(2) · ord71(−1) = 35 · 2 = 70,

where we have used the fact that gcd(35, 2) = 1. Thus, 69 mod 71 is a primitive
root modulo 71. (Note: 7 mod 71 is the smallest primitive root modulo 71.)

Example 8.4.4. Let p = 97. The order of 2 mod 97 is 48. Although 96/48 = 2,
we cannot use −1 mod 97 to build a unit of order 96, because the orders 48 and 2
are not relatively prime (in fact, the order of −2 is also 48). Before we move on to
calculating the order of another unit, we list the powers of 2 modulo 97. These are

2, 4, 8, 16, 32, 64, 31, 62, 27, 54, 11, 22, 44, 88, 79, 61, 25, 50, 3, 6, 12,

24, 48, 96, 95, 93, 89, 81, 65, 33, 66, 35, 70, 43, 86, 75, 53, 9, 18, 36, 72,

47, 94, 91, 85, 73, 49, 1,

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



208 8. Primitive Roots

and by our remarks above, none of these powers can be of any use to us (note that
94 ≡ −2 mod 97 is a power of 2). Now we calculate the order of the smallest unit
not listed among the powers of 2, namely 5 mod 97. It turns out that ord97(5) = 96,
and therefore it is a primitive root.

8.4.2. Artin’s Conjecture on Primitive Roots.

Example 8.4.5. In Example 8.0.1 we saw that if 10 is a primitive root modulo p,
then the length of the period in the decimal expansion of 1/p must be p − 1 (we
will prove this rigorously and in greater generality in Section 8.9.2; in particular see
Corollary 8.9.7). A few natural questions arise: when is 10 a primitive root modulo
p? Is 10 a primitive root mod p infinitely often? Artin’s conjecture is precisely
aimed at predicting how often a fixed integer a is a primitive root modulo p, when
p is a prime number. For now, we include here a list of all primes p ≤ 500 such
that 10 is a primitive root modulo p:

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233,

257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499.

In Section 8.4.1 we have described a method to find a primitive root modulo p.
Since the method is an “educated trial-and-error” search, it is natural to hope for
a small primitive root. Here is a list of the smallest primitive root modulo n ≥ 2
(if there is no primitive root modulo n, see Theorem 8.7.4, we included a 0 in the
sequence):

1, 2, 3, 2, 5, 3, 0, 2, 3, 2, 0, 2, 3, 0, 0, 3, 5, 2, 0, 0,

7, 5, 0, 2, 7, 2, 0, 2, 0, 3, 0, 0, 3, 0, 0, 2, 3, 0, 0, 6,

0, 3, 0, 0, 5, 5, 0, 3, 3, 0, 0, 2, 5, 0, 0, 0, 3, 2, 0, 2,

3, 0, 0, 0, 0, 2, 0, 0, 0, 7, 0, 5, 5, 0, 0, 0, 0, 3, 0, 2,

7, 2, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0, 5, 3, 0, 0, . . . .

The smallest primitive root modulo 118 is 11, and the smallest one modulo 191 is
19, so sometimes primitive roots are not so small. The sequence above indicates,
however, that 2 seems to be a primitive root often. . . but how often is that? The
following sequence is formed by those primes p ≤ 700 such that 2 is a primitive
root modulo p:

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131,

139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317,

347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509,

523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677.

There are 125 primes below 700, and of those, the number 2 is a primitive root
for 51 of them. That is, 2 is a primitive root for 40.8% of all primes below 700.
The mathematician Emil Artin conjectured in 1927 that, indeed, the number 2 is
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a primitive root infinitely often and, moreover, claimed that 2 is a primitive root
modulo p about 37% of the time. In fact, he conjectured that something similar
happens more generally (e.g., the number 3 is also a primitive root for about 37%
of all prime numbers).

Conjecture 8.4.6 (Artin’s conjecture). Let a be an integer which is not a perfect
square and let a �= −1. Let x ≥ 0 and define Sa(x) as the set of prime numbers
p ≤ x such that a is a primitive root modulo p. Then:

(1) The size of Sa(x) goes to infinity as x → ∞. In other words, there are infinitely
many prime numbers p such that a is a primitive root modulo p.

(2) Suppose that a is not a perfect power (a �= nm for any n ≥ 1 and m ≥ 2) and
that the square-free part of a is not congruent to 1 mod 4. Then, there is a

constant CArtin =
∏

q prime

(
1− 1

q(q − 1)

)
= 0.3739558136 . . . such that

lim
x→∞

|Sa(x)|
π(x)

= CArtin,

where π(x) = |{p : primes ≤ x}| is the prime counting function (as in Section
3.3.2).

(3) If a is a perfect power (not a square or −1) or if the square-free part of a is
congruent to 1 mod 4, then there is a positive rational number v(a) ∈ Q such
that

lim
x→∞

|Sa(x)|
π(x)

= v(a) · CArtin.

We will not give a formula for the rational number v(a) in its utmost generality,
but it suffices to say here that such a formula exists.

Figure 8.1. Emil Artin (1898–1962) was an Austrian-American mathemati-
cian. Image author: Konrad Jacobs (Erlangen). Image source: Archives of the
Mathematisches Forschungsinstitut Oberwolfach.
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Remark 8.4.7. In Artin’s conjecture, we assume that a is not a perfect square
and a �= −1. We leave it as an exercise for the reader to understand why those
restrictions are necessary (see Exercise 8.10.10).

Although Artin’s conjecture is yet to be proven unconditionally, Hooley, in
1967, proved the conjecture under the assumption of the generalized Riemann hy-
pothesis (an extension of the Riemann hypothesis that we discussed in Section
3.4.4). Further, a series of results by R. Gupta, K. Murty, M. R. Murty, and D. R.
Heath-Brown culminated (in [HB86]) in the following result.

Theorem 8.4.8. One of 2, 3, or 5 is a primitive root modulo p for infinitely many
primes p.

Thus, there is at least a number a ∈ {2, 3, 5} such that Artin’s conjecture is
true for a.

8.5. Primitive Roots Modulo pk

In the previous sections, we have discussed the set of primitive roots modulo a
prime p. Here we will discuss primitive roots modulo a power of a prime (and in
the following section we will treat the case of any m ≥ 2). We begin with a useful
lemma.

Lemma 8.5.1. Let m ≥ 2, and let n be a divisor of m.

(1) If g is a primitive root modulo m, then it is also a primitive root modulo n.
(2) If h is a primitive root modulo n, then the order of h modulo m is divisible by

ϕ(n).

Proof. Suppose first that g mod m is a primitive root modulo m. Then, by Propo-
sition 8.2.4, the set {g, g2, . . . , gϕ(m)} is a complete residue system for the unit
classes modulo m. Now let u be a representative for a unit class modulo n. By
Proposition 5.3.21, we may take u ∈ Z such that gcd(u,m) = 1 (see Exercise 5.6.14).
Then, there is some t ∈ Z such that gt ≡ u mod m and, therefore, gt ≡ u mod n as
well. In particular, the order g modulo n must be at least ϕ(n) and it follows that
g is a primitive root modulo n as well. This shows (1).

For (2), suppose that h is a primitive root modulo n. Without loss of generality,
we may assume that gcd(h,m) = 1 (by Proposition 5.3.21). By definition of order,
we have hordm(h) ≡ 1 mod m, but reducing modulo n we also obtain hordm(h) ≡
1 mod n. Hence, by Proposition 8.1.5, ordn(h) = ϕ(n) is a divisor of ordm(h), as
claimed. �
Example 8.5.2. Let n = 5 and let m = 25. Then, 2 is a primitive root modulo
25, and therefore, by the lemma above, it is also a primitive root modulo 5. In
particular, ord5(2) = 4.

Now let n = 5 and m = 35. Then, by the lemma, the order of 2 mod 35
must be divisible by 4. Indeed, the order of 2 mod 35 is 12. Note, however, that
ϕ(35) = ϕ(5) · ϕ(7) = 4 · 6 = 24, so 2 is not a primitive root modulo 35.

In the following theorem, we identify the primitive roots modulo a prime power.
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Theorem 8.5.3. Suppose that p is an odd prime, and let g be a primitive root
modulo p.

(1) The number g is also a primitive root modulo p2 if and only if gp−1 �≡ 1 mod p2.

(2) If gp−1 ≡ 1 mod p2, then g + p is a primitive root of p2.

(3) If g is a primitive root modulo pn, for some n ≥ 2, then g is also a primitive
root modulo pn+1.

Proof. Let p be an odd prime, and let g be a primitive root modulo p. In particular,
the order of g modulo p is exactly p− 1.

(1) Suppose first that g is a primitive root modulo p2. Then, the order of g modulo
p2 is precisely ϕ(p2) = p(p−1). Hence, gp(p−1) ≡ 1 mod p2, but gn �≡ 1 mod p2

for any 1 ≤ n < p(p− 1). In particular, gp−1 �≡ 1 mod p2.
For the converse, suppose that gp−1 �≡ 1 mod p2. By Corollary 8.1.6, the

order of g mod p2 is a divisor of ϕ(p2) = p(p − 1), but the order cannot be
a divisor d of p − 1, because (gd)(p−1)/d ≡ gp−1 �≡ 1 mod p2. Therefore, p
divides the order of g. Suppose then that ordp2(g) = dp, for some divisor d of
p− 1. Then, 1 ≡ gdp ≡ (gd)p ≡ gd mod p, by Fermat’s little theorem. Since g
is a primitive root modulo p, it follows that d = p−1 and ordp2(g) = p(p−1).
Hence, g is also a primitive root modulo p2, as claimed.

(2) Suppose that gp−1 ≡ 1 mod p2. By the binomial theorem (Exercise 2.11.14),

(g + p)p−1 = gp−1 +

(
p− 1

1

)
pgp−2 +

(
p− 1

2

)
p2gp−3 + · · ·+ pp−1

≡ gp−1 +

(
p− 1

1

)
pgp−2 mod p2

≡ gp−1 + (p− 1)pgp−2 mod p2

≡ 1 + (p− 1)pgp−2 mod p2.

Hence, (g + p)p−1 �≡ 1 mod p2, because (p − 1)pgp−2 �≡ 0 mod p2 (because
(p − 1)gp−2 is a unit modulo p2). Since g + p ≡ g mod p is a primitive root,
we conclude from part (1) that g + p is a primitive root modulo p2.

(3) Let g be a primitive root modulo pn, and let d = ordpn+1(g). Then, Lemma
8.5.1 implies that ϕ(pn) = (p − 1)pn−1 is a divisor of d. On the other hand,
Euler’s theorem (Theorem 7.3.5) shows that d is a divisor of ϕ(pn+1) =
(p − 1)pn. Hence, d is either ϕ(pn) or ϕ(pn+1). We will show that d =
ϕ(pn+1).

Since g is a primitive root modulo pn, it also is a primitive root modulo
pn−1 (by Lemma 8.5.1). Therefore, gϕ(p

n−1) ≡ 1 mod pn−1, and so gϕ(p
n−1) =

1 + kpn−1, for some k ∈ Z. Moreover, k �≡ 0 mod p, because gϕ(p
n−1) �≡ 1

mod pn as g is a primitive root modulo pn. Since n ≥ 2, we have
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ϕ(pn) = pϕ(pn−1) and so

gϕ(p
n) = (gϕ(p

n−1))p = (1 + kpn−1)p

= 1 + kpn +
p(p− 1)

2
k2p2n−2 +

(
p

3

)
k3p3n−3 + · · ·

≡ 1 + kpn mod pn+1,

because 2n − 1 ≥ n + 1 for all n ≥ 2 and p > 2. Hence, gϕ(p
n) �≡ 1 mod

pn+1, and so the order of g modulo pn+1 cannot be ϕ(pn). It follows that
ordpn+1(g) = ϕ(pn+1) and g is a primitive root modulo pn+1, as desired. �

Example 8.5.4. Let us find a primitive root modulo 49. First, we find a primitive
root modulo 7. Since g = 2 does not work (23 ≡ 1 mod 7), we try g = 3:

32 ≡ 2, 33 ≡ 6 ≡ −1, 36 ≡ (33)2 ≡ (−1)2 ≡ 1 mod 7,

and we conclude that 3 mod 7 is a primitive root. Further,

32 ≡ 9, 33 ≡ 27, 36 ≡ 272 ≡ 729 ≡ 43 mod 49.

Thus, 36 �≡ 1 mod 49 and it follows that 3 is also a primitive root modulo 49.
Finally, Theorem 8.5.3 also implies that 3 is a primitive root modulo 7k for all
k ≥ 1.

If we know all the primitive roots modulo p, then the previous theorem allows
us to write a complete description of the primitive roots modulo pk for every k ≥ 2.

Corollary 8.5.5. Let p be an odd prime, and for each n ≥ 1, let Gn ⊆ Z/pnZ be
the set of all primitive roots modulo pn. Then:

(1) G2 = {h mod p2 : h ∈ G1 and hp−1 �≡ 1 mod p2} ⊆ Z/p2Z.

(2) Let G1 = {g1, . . . , gϕ(p−1)} ⊂ Z/pZ, and let H2 = {gpi mod p2 : 1 ≤ i ≤
ϕ(p− 1)} ⊂ Z/p2Z. Then,

G2 = {h mod p2 : h ∈ G1, h �∈ H2} ⊂ Z/p2Z.

(3) If n ≥ 2, then

Gn+1 = {g + tpn mod pn+1 : g ∈ Gn, t ≡ 0, 1, . . . , p− 1 mod p} ⊆ Z/pn+1Z.

Proof. Part (1) is an immediate consequence of Theorem 8.5.3, part (1).
Before we prove (2), let us show that the set H2 is well-defined. Let g, g′ ∈ Z,

such that g ≡ g′ mod p so that they are in the same congruence class mod p.
Then, we claim that gp ≡ (g′)p mod p2. Indeed, since g ≡ g′ mod p, it follows that
g′ = g + kp for some k ∈ Z. Thus,

(g′)p ≡ (g + kp)p

≡ gp +

(
p

1

)
· gp−1 · (kp) + · · ·+

(
p

p− 1

)
· g · (kp)p−1 + (kp)p

≡ gp mod p2,

where we have used the binomial theorem and Exercises 2.11.14 and 4.7.26. Hence,
if g mod p is fixed, the class of gp mod p2 is well-defined. Now we are ready to prove
(2).
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Notice that |G1| = ϕ(p− 1) while |G2| = ϕ(ϕ(p2)) = (p − 1)ϕ(p− 1), so that
|G2| = (p − 1) · |G1|. By Lemma 8.5.1, every primitive mod p2 is also a primitive
root modulo p. The set of all lifts of G1 to G2, i.e.,

L2 = {g + kp : g ∈ G1, k = 0, 1, . . . , p− 1} ⊂ Z/p2Z,

has size p · |G1| and G2 ⊆ L2. Therefore L2 −G2 has size

|L2 −G2| = p · |G1| − (p− 1) · |G1| = |G1| = ϕ(p− 1).

Let H2 = {gpi mod p2 : 1 ≤ i ≤ ϕ(p − 1)} ⊂ Z/p2Z. By Fermat’s little theorem,
gpi ≡ gi mod p and gi ∈ G1, so H2 ⊂ L2. Moreover, if gpi ≡ gpj mod p2, then
gpi ≡ gpj mod p, but gpi ≡ gi and gpj ≡ gj mod p by Fermat’s little theorem, so
gi ≡ gpi ≡ gpj ≡ gj mod p, which implies that i = j because {g1, . . . , gϕ(p−1)} is a
complete residue system of primitive roots for Z/pZ, so gi �≡ gj mod p for i �= j.
This shows that |H2| = ϕ(p− 1).

Since L2−G2 and H2 have the same size (ϕ(p−1)) and sinceH2 ⊂ L2, it suffices
to show that H2∩G2 = ∅ in order to conclude that H2 = L2−G2, or, equivalently,
G2 = L2 −H2 (which is equivalent to the statement to show in part (2)). For this,
suppose that h ∈ H2, so that h ≡ gpi mod p2 for some i = 1, . . . , ϕ(p− 1). Then,

hp−1 ≡ (gpi )
p−1 ≡ (gi)

p(p−1) ≡ 1 mod p2,

by Euler’s theorem (Theorem 7.3.5). By Theorem 8.5.3, h mod p2 is not a primitive
root modulo p2. Thus, H2 ∩G2 = ∅, as desired. This concludes the proof of (2).

Finally, we prove part (3): for each n ≥ 2, let Gn be the set of primitive roots
modulo pn. We know that

|Gn| = ϕ(ϕ(pn)) = ϕ(pn−1(p− 1)) = ϕ(pn−1)ϕ(p− 1) = pn−2(p− 1)ϕ(p− 1),

and therefore |Gn+1| = pn−1(p− 1)ϕ(p− 1) and |Gn+1| = p · |Gn|. Notice that if h
is a primitive root modulo pn+1, then h mod pn is a primitive root modulo pn by
Lemma 8.5.1. Therefore, the candidates for primitive roots modulo pn+1 are those
h mod pn+1 such that h mod pn is a primitive root modulo pn. In other words, the
primitive roots modulo pn+1 are contained in the set

G′
n+1 = {g + tpn : g ∈ Gn, t ≡ 0, 1, . . . , p− 1 mod p} ⊆ Z/pn+1Z.

But |G′
n+1| = p · |Gn| and

p · |Gn| = |Gn+1| ≤ |G′
n+1| = p · |Gn|.

Thus, G′
n+1 = Gn+1. �

Example 8.5.6. Let us apply Corollary 8.5.5 to describe explicitly all the primitive
roots of Z/49Z and Z/7nZ for n ≥ 3. In Z/7Z there are ϕ(ϕ(7)) = ϕ(6) = 2 primi-
tive roots, namely 3 and 5. In Z/49Z there are ϕ(ϕ(49)) = ϕ(42) = ϕ(6)ϕ(7) = 12.
If h is a primitive root modulo 49, then h is also a primitive root modulo 7, so h ≡ 3
or 5 mod 7. There are seven such h ≡ 3 and seven such h ≡ 5 mod 7, so we have 14
candidates for primitive roots, of which 12 are primitive roots. By Theorem 8.5.3,
those which are not primitive roots must satisfy hp−1 ≡ 1 mod p2. Clearly

(37)6 ≡ 3(7·6) ≡ 1 and (57)6 ≡ 5(7·6) ≡ 1 mod 49,
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214 8. Primitive Roots

by Euler’s theorem, because ϕ(49) = 42 = 7 ·6. Since 37 ≡ 3 mod 7 and 57 ≡ 5 mod
7, by Fermat’s little theorem, we conclude that 37 and 57 are the two exceptions:

37 ≡ 31 mod 49 and 57 ≡ 19 mod 49.

Hence, the set G2 of primitive roots modulo 49 = 72 is the union of

{3 + 7k : 0 ≤ k ≤ 6, k �= 4} and {5 + 7j : 0 ≤ j ≤ 6, j �= 2}.
Alternatively, in the notation of Corollary 8.5.5, we have H2 = {19, 31 mod 49}, so

G2 = {a mod p2 : a ≡ 3 or 5 mod 7, and a �≡ 19 or 31 mod 49}.
Finally, for each k ≥ 2, the set Gk of primitive roots modulo 7k are those elements
that reduce to one of the elements in G2 modulo 49.

Theorem 8.5.7. Let m = 2, 4, pk, or 2pk, for some odd prime p and some k ≥ 1.
Then, m has a primitive root.

Proof. If m = 2, then g ≡ 1 mod 2 is a primitive root. If m = 4, then g ≡ 3 mod 4
is one. If p is an odd prime, then there exists a primitive root modulo p by Theorem
8.4.1. Corollary 8.5.5 shows that there is a primitive root modulo pk for every k ≥ 1.

It remains to show that m = 2pk has a primitive root. Let g ∈ Z be a primitive
root modulo pk. We distinguish two cases:

• If g is odd, then every power of g is odd, so gj ≡ 1 mod 2 for all j ≥ 1. Thus,
gj ≡ 1 mod 2pk if and only if gj ≡ 1 mod pk. Hence, the multiplicative order
of g mod 2pk is the same as the order of g mod pk which is ϕ(pk) = ϕ(2pk).
Hence, g is also a primitive root modulo 2pk.

• If g is even, then g is not even a unit in Z/2pkZ so it cannot be a primitive
root. Let g′ = g + pk. Then g′ is odd, and g′ ≡ g mod pk, so it is a primitive
root modulo pk. Hence, by our previous bullet point, g′ is a primitive root
modulo 2pk.

Thus, in all cases, m = 2pk has a primitive root, as we claimed. �

Example 8.5.8. Let p = 7. In Example 8.5.4 we showed that 3 is a primitive root
modulo 7k, for all k ≥ 1. Since g = 3 is odd, it follows that 3 is also a primitive
root modulo 2 · 7k, for all k ≥ 1.

Similarly, Example 8.5.6 shows that g = 10 is a primitive root modulo 7k, for
all k ≥ 1. However, 10 is even, so it is not a unit modulo 2 · 7k. However, 10 + 7k

is a primitive root modulo 2 · 7k, for all k ≥ 1. For instance, this shows that 59 is
a primitive root modulo 98.

The converse of Theorem 8.5.7 is also true; i.e., if m ≥ 2 has a primitive root,
then m = 2, 4, pk, or 2pk for some odd prime p. Before we prove this fact, we will
introduce the concept of indices, which is an analogue of the concept of logarithm.

8.6. Indices

The logarithm in base b, denoted by logb(x), is the inverse function of exponentia-
tion in base b, i.e., bx. Logarithms are quite useful when solving equations where
the unknown is in the exponent. Let us see two examples.
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Example 8.6.1. Let us find x such that x5 = 16807, using logarithms. Let us take
logarithms (in base e, the natural logarithm) on both sides of the equation:

5 log x = log(x5) = log(16807).

Thus, log x = log(16807)/5 = 1.945910149 . . .. Now we use the inverse function of
log x, the exponential ex, to retrieve x:

x = elog x = e1.945910149... = 7.

Example 8.6.2. Let us find x such that 7x+3 = 16807. Notice that 16807 = 75.
Let us take logarithms in base 7 of both sides:

x+ 3 = log7(7
x+3) = log7(16807) = log7(7

5) = 5.

Thus, x+ 3 = 5, so x = 2.

Here are the key properties of the exponential and logarithm functions that
make them so useful in the applications. Let b > 1 be fixed. Then:

(a) bx is a bijection, from R to R+, and logb(x) is a bijection, from R+ to R;
(b) logb(x) is the inverse function of bx;
(c) logb(x

n) = n · logb(x);
(d) logb(xy) = logb(x) + logb(y);
(e) and (perhaps the most important property of all) we can calculate bx and

logb(x) efficiently.

In this section, we want to define an analog of the logarithm function for the units
modulo m, i.e., Um = (Z/mZ)×. Clearly, if g is a primitive root, then gx is a
bijection;

gx : {1, 2, . . . , ϕ(m)} → Um.

Thus, we can define a “logarithm in base g” (an index function for the powers of
g) as the inverse function of gx. This is exactly what we will do, and we will show
that our index function satisfies properties (a) through (e) above. The following
is a preliminary definition of the concept of index, which we will refine below in
Definition 8.6.7.

Definition 8.6.3. Let m ≥ 2 be an integer, such that there exists a primitive root
g modulo m. We define the index function in base g as the function

indg : (Z/mZ)× → {1, 2, . . . , ϕ(m)}
such that n = indg(a mod m) is the smallest integer n ≥ 1 with gn ≡ a mod m.

Example 8.6.4. In Example 8.2.2 we showed that g = 2 is a primitive root modulo
11. We indeed calculated a table of powers of 2 mod 11:

x mod 11 x2 x3 x4 x5 x6 x7 x8 x9 x10

2 4 8 5 10 9 7 3 6 1

Using this table, we can calculate values of ind2, the index in base 2. For instance,
ind2(9) = 6, because 29 ≡ 6 mod 11. Similarly, ind2(3) = 8 because 28 ≡ 3 mod 11.
We can also build a table of all indices in base 2:

a mod 11 1 2 3 4 5 6 7 8 9 10

ind2(a) 10 1 8 2 4 9 7 3 6 5
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Example 8.6.5. In Example 8.2.8, we showed that g ≡ 3 mod 43 is a primitive
root in Z/43Z. Let us calculate a table of indices in base 3. First, let us calculate
a table of powers of 3 modulo 43:

x mod 43 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

3 9 27 38 28 41 37 25 32 10 30 4 12

x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25

36 22 23 26 35 19 14 42 40 34 16 5

x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37

15 2 6 18 11 33 13 39 31 7 21 20

x38 x39 x40 x41 x42

17 8 24 29 1

And now we can calculate a table of indices in base 3:

a mod 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ind3(a) 42 27 1 12 25 28 35 39 2 10 30 13 32 20
a mod 43 15 16 17 18 19 20 21 22 23 24 25 26 27 28
ind3(a) 26 24 38 29 19 37 36 15 16 40 8 17 3 5
a mod 43 29 30 31 32 33 34 35 36 37 38 39 40 41 42
ind3(a) 41 11 34 9 31 23 18 14 7 4 33 22 6 21

Remark 8.6.6. Let m be a positive integer and suppose that gcd(a,m) = 1. Then,
as ≡ at mod m if and only if s ≡ t mod (ordm(a)). Indeed, if as ≡ at mod m, then
as−t ≡ 1 mod m, and ordm(a) must be a divisor of s − t (by Proposition 8.1.5).
Hence s ≡ t mod (ordm(a)).

Conversely, if s ≡ t mod (ordm(a)), then s− t = n · ordm(a) and

as−t ≡ (aordm(a))n ≡ 1n ≡ 1 mod m,

and, therefore, as ≡ at mod m.
In particular, if g is a primitive root modulo m and gs ≡ b mod m, then gt ≡

b mod m, for all t ≡ s mod ϕ(m), because ordm(g) = ϕ(m). This means that
indg(b) can be regarded as the congruence class of s mod ϕ(m).

In light of Remark 8.6.6, we redefine the index function as follows.

Definition 8.6.7. Let m ≥ 2 be an integer, such that there exists a primitive root
g modulo m. We define the index function in base g as the function

indg : (Z/mZ)× → Z/ϕ(m)Z

such that n ≡ indg(a mod m) mod ϕ(m) is in the unique congruence class modulo
ϕ(m) that satisfies gn ≡ a mod m.

With this definition, we are ready to show that the index function satisfies
properties very similar to the logarithm.
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Proposition 8.6.8. Let m ≥ 2 be an integer such that there exists a primitive root
g modulo m. Then, the function indg satisfies the following properties:

(a) gx is a bijection, from Z/ϕ(m)Z to Um = (Z/mZ)×, and indg is a bijection,
from Um to Z/ϕ(m)Z.

(b) indg(x) is the inverse function of gx.
(c) indg(x

t) ≡ t · indg(x) mod ϕ(m).
(d) indg(xy) ≡ indg(x) + indg(y) mod ϕ(m).

Proof. Since g is a primitive root, the map gx is surjective on (Z/mZ)×. By
Remark 8.6.6, gx ≡ gy mod m if and only if x ≡ y mod ϕ(m). Thus, gx is injective
with domain Z/ϕ(m)Z. Hence, gx is a bijection. The index function indg is defined
to be the inverse function of gx, so it is also a bijection. This shows (a) and (b).

Let n ≡ indg(x mod m). Then, n is in the unique congruence class mod-
ulo ϕ(m) that satisfies gn ≡ x mod m. It follows that gtn ≡ xt mod m, and so
indg(x

t) ≡ t · n ≡ t · indg(x) mod ϕ(m). This is (c).
Let u ≡ indg(x mod m) and v ≡ indg(y mod m) mod ϕ(m). Then, gu ≡ x and

gv ≡ y mod m. Hence,

gu+v ≡ gu · gv ≡ x · y mod m.

This implies that

indg(x) + indg(y) ≡ u+ v ≡ indg(xy) mod ϕ(m),

as claimed in (d). �

Remark 8.6.9. Note that property (d) in Proposition 8.6.8 would not be true if the
index function was integer-valued (as we had preliminarily defined it in Definition
8.6.3) instead of Z/ϕ(m)Z-valued.

Traditional exponentials and logarithms can be calculated efficiently (any cal-
culator can do that!). In order to use indices, however, (i) there must be a primitive
root modulo m, (ii) we need to be able to find an explicit primitive root g modulo
m, and (iii) we need a table of indices in base g.

Example 8.6.10. Let us find all the solutions to the congruence 3x6 ≡ 4 mod 11,
using indices. In Example 8.6.4 we calculated a table of indices in base 2:

a mod 11 1 2 3 4 5 6 7 8 9 10

ind2(a) 10 1 8 2 4 9 7 3 6 5

Taking indices on both sides of 3x6 ≡ 4 mod 11 and using the properties of Propo-
sition 8.6.8, we obtain on one hand ind2(4) ≡ 2 mod 10 and on the other hand

2 ≡ ind2(4) ≡ ind2(3x
6) ≡ ind2(3) + ind2(x

6) ≡ 8 + 6 ind2(x) mod 10.

Therefore, 6 ind2(x) ≡ 2 − 8 ≡ −6 ≡ 4 mod 10. Solving the congruence 6t ≡
4 mod 10 is equivalent to finding the solutions of 10s + 6t = 4, which in turn is
equivalent to finding solutions to the diophantine equation 5s+3t = 2. Using what
we learned in Section 2.9, we find the solution to be

s = 1 + 3k, t = −1− 5k
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for each k ∈ Z. Hence, t ≡ −1 ≡ 4 mod 5, which means t ≡ 4 or 9 mod 10. It
follows that the solutions x to our original equation satisfy

ind2(x) ≡ 4 or 9 mod 10

and by our table, these indices correspond to x ≡ 5 or 6 mod 11. Indeed,

3 · 56 ≡ 46875 ≡ 4 mod 11

and since 6 ≡ −5 mod 11, it follows that 3 · 66 ≡ 3 · (−5)6 ≡ 3 · 56 ≡ 4 mod 11.

In general, there is a formula for the number of solutions of xk ≡ a mod m,
which is given in the following theorem, and it is an application of indices.

Theorem 8.6.11. Let m ≥ 2 and suppose that Z/mZ has a primitive root. Let
gcd(a,m) = 1. Then, the congruence xk ≡ a mod m has a solution if and only if

aϕ(m)/ gcd(k,ϕ(m)) ≡ 1 mod m.

If xk ≡ a mod m is solvable, then it has exactly gcd(k, ϕ(m)) different solutions in
Z/mZ.

Proof. Let g be a primitive root modulo m. Then, the congruence xk ≡ a mod m
has a solution x mod m if and only if k · indg(x) ≡ indg(a) mod ϕ(m). Moreover,
by Theorem 4.4.3, the congruence ky ≡ b mod ϕ(m) has a solution y0 mod m if
and only if d = gcd(k, ϕ(m)) is a divisor of b, and if it has a solution, then it has
exactly d different solutions modulo ϕ(m). We need a lemma to finish our proof.

Lemma 8.6.12. Let m ≥ 2 and suppose that Z/mZ has a primitive root. Let
gcd(a,m) = 1 and let d be a divisor of ϕ(m). Then, indg(a) ≡ 0 mod d if and only
if aϕ(m)/d ≡ 1 mod m if and only if ordm(a) is a divisor of ϕ(m)/d.

Proof. Suppose that aϕ(m)/d ≡ 1 mod m. Taking indices in base g we obtain an
equivalent expression

(ϕ(m)/d) · indg(a) ≡ indg(1) ≡ 0 mod ϕ(m),

which is equivalent to indg(a) ≡ 0 mod d by Proposition 4.3.1. This concludes the
proof of the lemma. �

Back to the proof of Theorem 8.6.11, aϕ(m)/d ≡ 1 mod m if and only if indg(a) ≡
0 mod d if and only if k · indg(x) ≡ indg(a) mod ϕ(m) has d solutions for indg(x)
and these correspond to d different solutions of xk ≡ a mod m. �

Example 8.6.13. In Example 8.6.10 we saw that the congruence 3x6 ≡ 4 mod 11
has two solutions, namely x ≡ 5, 6 mod 11. Let us show that there are two solutions
using Theorem 8.6.11. The congruence in question is equivalent to

x6 ≡ 4 · 3−1 ≡ 4 · 4 ≡ 16 ≡ 5 mod 11.

Hence, Theorem 8.6.11 says that there are gcd(6, 10) = 2 solutions if 510/2 = 55 ≡
1 mod 11. So it only remains to calculate

55 ≡ 5 · (52)2 ≡ 5 · (25)2 ≡ 5 · 32 ≡ 5 · 9 ≡ 5 · (−2) ≡ −10 ≡ 1 mod 11.

Next, we list a few corollaries of Theorem 8.6.11. If m = p is prime, then we
know the existence of a primitive root modulo p (by Theorem 8.4.1).
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Corollary 8.6.14. Let p be a prime and let gcd(a, p) = 1. Then, a is congruent
to a kth power in Z/pZ if and only if

a(p−1)/ gcd(k,p−1) ≡ 1 mod p.

Corollary 8.6.15. Suppose that there exists a primitive root modulo m. Then:

(1) The congruence xk ≡ 1 mod m has exactly gcd(k, ϕ(m)) distinct solutions in
Z/mZ. In particular, if k is a divisor of ϕ(m), then xk ≡ 1 mod m has exactly
k solutions.

(2) The number of distinct kth powers modulo m is ϕ(m)/ gcd(k, ϕ(m)).

Proof. Part (1) follows directly from Theorem 8.6.11, with a = 1. For part (2), we
note that b is a kth power if and only if bϕ(m)/ gcd(k,ϕ(m)) ≡ 1 mod m if and only if
b is a solution of xϕ(m)/ gcd(k,ϕ(m)) ≡ 1 mod m. By part (1), the latter congruence
has exactly ϕ(m)/ gcd(k, ϕ(m)) solutions. �

Example 8.6.16. The congruences x6 ≡ 1 and x7 ≡ 1 mod 43 have, respectively, 6
solutions and 7 solutions, but x5 ≡ 1 mod 43 only has one solution (x ≡ 1 mod 43),
because gcd(6, ϕ(43)) = 6, gcd(7, 42) = 7, but gcd(5, 42) = 1. Let us calculate the
solutions to each of these congruences using indices. Recall that in Example 8.6.5
we have calculated a table of indices in base 3:

a mod 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ind3(a) 42 27 1 12 25 28 35 39 2 10 30 13 32 20

a mod 43 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ind3(a) 26 24 38 29 19 37 36 15 16 40 8 17 3 5

a mod 43 29 30 31 32 33 34 35 36 37 38 39 40 41 42

ind3(a) 41 11 34 9 31 23 18 14 7 4 33 22 6 21

Now, taking indices on the congruence x6 ≡ 1 mod 43 we obtain

6 ind3(x) ≡ ind3(1) ≡ 42 ≡ 0 mod 42,

and therefore ind3(x) ≡ 0 mod 7, so that ind3(x) ≡ 7k mod 42, for 0 ≤ k ≤ 5. In
other words, ind3(x) ≡ 0, 7, 14, 21, 28, 35 mod 42, and these correspond to

x ≡ 1, 37, 36, 42, 6, 7 mod 43,

respectively. Notice that to find x knowing ind3(x), it is best to use the table of
powers of 3 (as it appears in Example 8.6.5). Similarly, x7 ≡ 1 mod 43 is equivalent
to 7 ind3(x) ≡ 0 mod 42, which means that ind3(x) ≡ 0 mod 6, and the solutions
satisfy ind3(x) ≡ 6j mod 42 for 0 ≤ j ≤ 6. These correspond to

x ≡ 1, 41, 4, 35, 16, 11, 21 mod 43.

Last, x5 ≡ 1 mod 43 translates to 5 ind3(x) ≡ 0 mod 42. Since gcd(5, 42) = 1,
this means that ind3(x) ≡ 0 mod 42, and there is a unique solution; namely, x ≡
1 mod 43.
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8.7. Existence of Primitive Roots Modulo m

In Section 8.5 we have shown that if m = 2, 4, pk, or 2pk, for some odd prime p,
then there exists a primitive root modulo m (see Theorem 8.5.7). In this section
we will show that, in fact, no other integer m > 2 has a primitive root.

Example 8.7.1. The contrapositive of part (1) of Corollary 8.6.15 reads as follows:
suppose k is a divisor of ϕ(m) and the number of distinct solutions for the congru-
ence xk ≡ 1 mod m is different from k. Then, there is no primitive root modulo
m. In particular, note that if m > 2, then ϕ(m) is always even (see Exercise 7.6.4).
Thus, 2 is always a divisor of ϕ(m), and the existence of a primitive root modulo
m implies that x2 ≡ 1 mod m has exactly two solutions. This fact can be exploited
to show that certain numbers do not have primitive roots.

For instance, let m = 2k, for some k ≥ 3. The units in Z/2kZ are the odd
numbers between 1 and 2k − 1. Moreover,

(2n+ 1)2 − 1 ≡ 4n2 + 4n+ 1− 1 ≡ 4n(n+ 1) mod 2k.

Therefore x ≡ 2n+1 mod 2k is a solution to x2 ≡ 1 mod 2k if and only if n(n+1) ≡
0 mod 2k−2. Since gcd(n, n+ 1) = 1, one of n and n+ 1 is even and the other one
is odd.

• If n is even, then n(n + 1) ≡ 0 mod 2k−2 implies that n ≡ 0 mod 2k−2 and
thus x ≡ 2n+ 1 ≡ 1 mod 2k−1. Hence, x ≡ 1 or 1 + 2k−1 mod 2k.

• If n is odd, then n + 1 is even, and n(n + 1) ≡ 0 mod 2k−2 implies that
n + 1 ≡ 0 mod 2k−2. Hence x ≡ 2n + 1 ≡ −1 mod 2k−1; i.e., x ≡ −1 or
2k−1 − 1 mod 2k.

Hence, we have found four solutions to x2 ≡ 1 mod 2k; namely,

x ≡ 1, 2k−1 − 1, 2k−1 + 1, 2k − 1 mod 2k.

Moreover, if k ≥ 3, then

1 < 2k−1 − 1 < 2k−1 + 1 < 2k − 1,

so they are distinct modulo 2k (note that they are not distinct when k = 2).
Therefore, we have shown the following result.

Lemma 8.7.2. Let k ≥ 3 and m = 2k. Then, the congruence x2 ≡ 1 mod m has
exactly four different solutions modulo m. In particular, there is no primitive root
modulo m.

We will use the same argument as in Example 8.7.1 to classify the integers
m ≥ 2 with a primitive root. First, we need to know the number of distinct
solutions of x2 ≡ 1 mod m for each m ≥ 2.

Proposition 8.7.3. Let m ≥ 2 be an integer, with prime factorization

m = 2e0pe11 pe22 · · · penn ,
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for some e0 ≥ 0 and ei ≥ 1 and distinct odd primes pi, for 1 ≤ i ≤ n. Then, the
number of distinct solutions to the congruence x2 ≡ 1 mod m is⎧⎪⎨⎪⎩

2n if e0 = 0 or 1,

2n+1 if e0 = 2,

2n+2 if e0 ≥ 3.

In particular, the congruence x2 ≡ 1 mod m has exactly two solutions modulo m if
and only if m = 2, 4, pk, or 2pk.

Proof. By the Chinese remainder theorem (Theorem 4.5.9), a class x mod m is a
solution for the congruence x2 ≡ 1 mod m if and only if it also solves the system of
equations ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x2 ≡ 1 mod 2e0 ,

x2 ≡ 1 mod pe11 ,

x2 ≡ 1 mod pe22 ,
...
x2 ≡ 1 mod penn .

Since each pi is an odd prime, there is a primitive root modulo peii (by Theorem
8.5.7), and therefore x2 ≡ 1 mod peii has exactly two solutions (by Corollary 8.6.15;
notice again that ϕ(m) is even for all m > 2, by Exercise 7.6.4).

If e0 = 1, then x2 ≡ 1 mod 2 has a unique solution; if e0 = 2, then x2 ≡ 1 mod 4
has two solutions; and if e0 ≥ 3, then x2 ≡ 1 mod 2e0 has exactly four solutions,
by Lemma 8.7.2.

Therefore, the number of solutions to the system of quadratic congruences is
equal to the product of the number of solutions in each individual congruence, and
this equals⎛⎜⎝

⎧⎪⎨⎪⎩
1 if e0 = 0 or 1,

2 if e0 = 2,

22 if e0 ≥ 3

⎞⎟⎠ · 2 · 2 · · · 2 =

⎛⎜⎝
⎧⎪⎨⎪⎩
1 if e0 = 0 or 1,

2 if e0 = 2,

22 if e0 ≥ 3

⎞⎟⎠ · 2n,

as claimed. �

We are finally ready to classify all the numbers m ≥ 2 with a primitive root.

Theorem 8.7.4. Let m ≥ 2 be an integer. Then, m has a primitive root if and
only if m = 2, 4, pk, or 2pk, for some odd prime p and some k ≥ 1.

Proof. By Theorem 8.5.7, a number of the form m = 2, 4, pk, or 2pk, for some
odd prime p and some k ≥ 1, has a primitive root.

Now let m > 2 be a number with a primitive root. By Corollary 8.6.15,
the congruence x2 ≡ 1 mod m has exactly two distinct solutions modulo m. By
Proposition 8.7.3, the number m must be of the form m = 2, 4, pk, or 2pk, for some
odd prime p and some k ≥ 1, as claimed. �
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8.8. The Structure of (Z/pkZ)×

In this section we interpret the existence of primitive roots and the index function
in terms of groups.

Theorem 8.8.1. Let m = 2, 4, pk, or 2pk, for some odd prime p and some k ≥ 1.
Then, there is a bijection

ψ : (Z/mZ)× → Z/ϕ(m)Z

which respects group structures; i.e.,

ψ(a · b mod m) = ψ(a mod m) + ψ(b mod m)

for any units a and b mod m. In other words, ψ is an isomorphism of groups.

Proof. Let m = 2, 4, pk, or 2pk. Then, by Theorem 8.7.4, there is a primitive root
g modulo m. For a unit a mod m, let us define ψ(a mod m) ≡ indg(a) mod ϕ(m).
By Proposition 8.6.8, we know that indg : (Z/mZ)× → Z/ϕ(m)Z is a bijection.
Moreover,

ψ(a · b mod m) ≡ indg(ab) ≡ indg(a) · indg(b) ≡ ψ(a) · ψ(b) mod ϕ(m),

by the properties of the index function (Proposition 8.6.8). �

So what about m = 2n? We know that Z/2nZ does not have a primitive root.
So, what is the structure of (Z/2nZ)×? What is the largest order of a unit modulo
2n?

Example 8.8.2. What is the order of 3 modulo 2n, for n ≥ 3?

32 ≡ 9 ≡ 1 mod 8,

33 ≡ 27 ≡ 11 mod 16,

34 ≡ 33 ≡ 1 mod 16,

35 ≡ 27 · 9 ≡ −5 · 9 ≡ −45 ≡ 19 mod 32,

36 ≡ 19 · 3 ≡ −39 ≡ 25 mod 32,

37 ≡ 25 · 3 ≡ 75 ≡ 11 mod 32,

38 ≡ 11 · 3 ≡ 33 ≡ 1 mod 32.

Hence, ord8(3) = 2, ord16(3) = 4, and ord32(3) = 8. Let us show that the order of
3 mod 2n is 2n−2. The statement is true for n = 5. Let us use induction. Assume
that the statement is true for all 2, 3, 4, 5, . . . , n. By Lemma 8.5.1, the order of
3 mod 2n+1 is divisible by ord2n(3) = 2n−2. By Euler’s theorem, the order of
3 mod 2n+1 is a divisor of ϕ(2n+1) = 2n, so there are three options: 2n−2, 2n−1,
or 2n. In addition, 32

n−3 ≡ 1 mod 2n−1 and so 32
n−3

= 1 + k2n−1. Moreover, k is
odd, because the order of 3 mod 2n is 2n−2 and not 2n−3. Thus,

32
n−2

= (32
n−3

)2 = (1 + k2n−1)2

= 1 + k2n−2 + k222n−2.

Since n > 5, we have 2n− 2 ≥ n+ 1. Hence,

32
n−2 ≡ 1 + k2n−2 mod 2n+1,
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and it follows that 32
n−2 �≡ 1 mod 2n+1, because k is odd. Hence, the order of

3 mod 2n+1 is not 2n−2. It follows that the order is 2n−1 or 2n. However, Z/2n+1Z

does not have a primitive root (by Theorem 8.7.4), so the order cannot be ϕ(2n+1) =
2n. We conclude that the order of 3 mod 2n+1 is precisely 2(n+1)−2. Thus, by the
principle of mathematical induction, 3 mod 2n has order 2n−2 for all n ≥ 2.

Since ϕ(2n) = 2n−1, the fact that 3 mod 2n has order 2n−2 implies that the
powers of 3 go over half of all the elements of Z/2nZ. What units modulo 2n are
not powers of 3?

We claim that −1 is not a power of 3 modulo 2n, for n > 2. Suppose for a
contradiction that there is some t such that 1 < t < 2n−2 and 3t ≡ −1 mod 2n.
Then, 32t ≡ 1 mod 2n and so the order of 3 is a divisor of 2t; i.e., 2n−2 is a divisor
of 2t, so either t = 2n−2 or t = 2n−3. The former is impossible because t < 2n−2

by assumption; hence t = 2n−3. When n = 3, we have 31 ≡ 3 �≡ −1 mod 8, so let
us assume n ≥ 4. Then, t = 2n−3 is a positive power of 2. Since 3t ≡ −1 mod 2n

and n ≥ 4, then 3t ≡ −1 mod 4, but

3t ≡ (32)2
n−4 ≡ 12

n−4 ≡ 1 mod 4.

Hence, we have reached a contradiction, and −1 is not a power of 3 modulo 2n, for
any n > 2.

Now we claim that if a mod 2n is a power of 3, then −a is not a power of 3.
Indeed, if a ≡ 3t mod 2n and −a ≡ 3s mod 2n, then −1 ≡ 3s−t mod 2n, which is a
contradiction, since −1 is not a power of 3 modulo 2n. We have shown that Z/2nZ
is a disjoint union:

Z/2nZ = {3t mod 2n : 0 ≤ t < 2n−2} ∪ {−3t mod 2n : 0 ≤ t < 2n−2}.

We are ready to understand the structure of (Z/2nZ)× as an abstract group.

Theorem 8.8.3. Let n ≥ 3. Then, there is a bijection

ψ : (Z/2nZ)× → (Z/2Z)× (Z/2n−2Z)

which respects group structures; i.e.,

ψ(a · b mod 2n) = ψ(a mod 2n) + ψ(b mod 2n)

for any units a and b mod 2n. (Note: addition on (Z/2Z)×(Z/2n−2Z) is performed
coordinatewise.)

Proof. We define ψ as follows. Let a mod 2n be a unit. Then, by our results in
Example 8.8.2, there is a unique t with 0 ≤ t < 2n−2 such that either a ≡ 3t or
a ≡ −3t mod 2n, so let us write a ≡ (−1)s · 3t mod 2n, where s = 0 or 1. Define

ψ(a mod m) ≡ (s mod 2, t mod 2n−2).

By our previous remarks, s mod 2 and t mod 2n−2 are uniquely determined for
each unit a mod 2n, and ψ is surjective because ψ((−1)s · 3t) = (s, t). Hence, ψ is
a bijection.
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Finally, suppose that a ≡ (−1)s · 3t and b ≡ (−1)u · 3v mod 2n. Then,

ψ(a · b) = ψ((−1)s+u · 3t+v)

= (s+ u mod 2, t+ v mod 2n−2)

= (s mod 2, t mod 2n−2) + (u mod 2, v mod 2n−2)

= ψ((−1)s · 3t mod 2n) + ψ((−1)u · 3v mod 2n)

= ψ(a mod 2n) + ψ(b mod 2n).

This concludes the proof of our theorem. �

Remark 8.8.4. In the previous result, for each n ≥ 3, the number 3 can be substi-
tuted by any other congruence class g mod 2n of exact order 2n−2. By Proposition
8.1.8, if d is odd, then 3d mod 2n has the same order as 3.

8.9. Applications

In this section we discuss applications of the concepts of multiplicative order and
primitive root.

8.9.1. The Diffie–Hellman Key Exchange. In Sections 4.6.4 and 7.5.3 we have
seen our first applications of modular arithmetic to cryptography. In this section,
we discuss a different application that solves a different problem: private communi-
cation through insecure public channels (such as the internet). Suppose Alice and
Bob would like to communicate securely, but they live far apart. Before they can
start communicating using some type of cipher (e.g., a Caesar cipher or a Vigenère
cipher, as described in Section 4.6.4), they need to agree on a private key (or pass-
word) that they both know, but no one else knows. The problem is that Alice and
Bob live far apart, so how can they agree on a key while communicating on an
insecure channel?

The Diffie–Hellman key exchange protocol was first published by Whitfield
Diffie and Martin Hellman in 1976 (although it had been discovered by the Brit-
tish intelligence agency GCHQ as early as in 1969). The goal of this scheme is
for two parties (Alice and Bob) to be able to agree on a secret key, via public
communication. It works as follows.
Diffie–Hellman key exchange:

(1) Alice and Bob agree on a (large) prime number p and a primitive root g mod p.
The prime p and the primitive root g are usually public information.

(2) Alice chooses her secret key, an integer 1 < a < p − 1, and Bob chooses his
secret key, an integers 1 < b < p− 1.

(3) Alice computes A ≡ ga mod p, and Bob computes B ≡ gb mod p.
(4) Alice sends A to Bob, and Bob sends B to Alice, through a public channel.
(5) Alice computes KA ≡ Ba mod p, and Bob computes KB ≡ Ab mod p.
(6) The secret key shared by Alice and Bob is K ≡ KA ≡ KB mod p.

Indeed, the keys KA and KB coincide modulo p:

KA ≡ Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab ≡ KB mod p.
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Remark 8.9.1. The security of the exchange relies on the fact that, given a large
prime p, a primitive root g mod p, and a congruence class A mod p, it is compu-
tationally expensive (i.e., lengthy) to find 1 ≤ a ≤ p − 1 such that ga ≡ A mod p.
This is called the discrete logarithm problem. If p is small, then a spy can compute
a table of indices for the primitive root g (as in Section 8.6) and use the properties
of indices to find Alice’s (resp. Bob’s) secret key a (resp. b) from A (resp. B) and
compute their secret key K. For example, suppose that a spy finds that p = 11
and intercepts the public messages that say A = 9 and B = 7. Then, the spy can
build a table of indices as in Example 8.6.4 and find that Alice’s secret key is a = 6.
Hence, K ≡ Ba ≡ 76 ≡ 4 mod 11.

However, if p is large, then computing a full table of indices, or solving the
discrete logarithm problem gx ≡ A mod p, takes too long even in the most powerful
computers. Currently, in practice, it is recommended that a Diffie–Hellman key
exchange is done with a prime p of size ≈ 21000.

Example 8.9.2. Suppose that Alice and Bob would like to start communicating
with a Vigenère cipher with key K = (k1, k2), but they first have to agree on a key
K. They proceed with a Diffie–Hellman key exchange, as follows:

(1) Alice and Bob agree on p = 101 and a primitive root g ≡ 2 mod 101, through
a public channel.

(2) Alice chooses her secret key, a = 23, and Bob chooses his secret key, b = 17.
(3) Alice computes A ≡ ga ≡ 223 ≡ 53 mod 101, and Bob computes B ≡ gb ≡

217 ≡ 75 mod 101.
(4) Alice sends A ≡ 53 mod 101 to Bob, and Bob sends B ≡ 75 mod 101 to Alice,

through a public channel.
(5) Alice computes KA ≡ Ba ≡ 7523 ≡ 29 mod 101, and Bob computes KB ≡

Ab ≡ 5317 ≡ 29 mod 101.
(6) The secret key shared by Alice and Bob is K ≡ KA ≡ KB ≡ 29 mod 101.

Now, they will use K = 29, interpreted as K = (2, 9), as a key for a Vigenère
cipher. For instance, Alice sends the message HELLO as JNNUQ, which Bob can
decipher because he also knows K, the secret key.

8.9.2. Periods in Decimal Expansions. In this section we discuss an applica-
tion of the concepts of multiplicative order and primitive roots to prove a formula
for the length of the period in the decimal expansion of a rational number. Let us
begin with an example.

Example 8.9.3. Let us calculate the decimal expansion of the rational number
3/7. See Figure 8.2.

In the long division of 3 over 7, when we reach a remainder of 3, we can stop,
because the whole process starts over again, and so

3

7
= 0.428571428571428571 . . . .

Thus, the period of 3/7 is 428571 and its length is 6. Let us see in more detail what
calculations we are doing in the long division, in order to investigate why there
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71))13.0000000...
0.4285714...

1234567.....
12345628
12345630
1234567
1234510
123449
123450
12335
12340
1256
1260
114
120
28

Figure 8.2. Long division to calculate the decimal expansion of 3/7.

should be a repeating period. The calculation starts with a long division of 30 by
7:

30 = 7 · 4 + 2,

which means that the first digit of the decimal expansion, after “0.” is a 4. In
each of the following steps, we take the remainder of the previous long division, we
multiply it by 10, and then divide by 7.

30 = 7 · 4 + 2, 2 · 10 = 7 · 2 + 6, 6 · 10 = 7 · 8 + 4, . . .

and so the expansion continues with 0.428.... In terms of congruences and forgetting
about the digits of the expansion for a moment, the previous equations read

3 · 10 ≡ 2 mod 7, 2 · 10 ≡ 6 mod 7, 6 · 10 ≡ 4 mod 7, . . . ,

or, in other words,

3 · 10 ≡ 2, (3 · 10) · 10 ≡ 6, (3 · 102) · 10 ≡ 4 mod 7, . . . .

Thus, each consecutive remainder is precisely the least non-negative residue of
3 · 10t mod 7. The long division can stop as soon as we find a repetition in the
sequence of remainders, i.e., whenever

3 · 10t ≡ 3 · 10s mod 7,

for some t ≥ s ≥ 0, and in this case the length of the period is t − s. Since
gcd(3, 7) = 1, we may divide both sides by 3 (Proposition 4.3.1 or multiply by
3−1 ≡ 5 mod 7) and obtain

10t ≡ 10s mod 7.

Moreover, gcd(10, 7) = 1 as well, so 10 ≡ 3 is a unit modulo 7, and therefore it
follows that 10t ≡ 10s mod 7 if and only if

10t−s ≡ 1 mod 7.

Since the multiplicative order of 10 ≡ 3 mod 7 is 6 (Example 8.1.2), it follows that
10t−s ≡ 1 mod 7 if and only if t − s is divisible by 6, and this first happens when
t = 6 and s = 0. Hence, the length of the period in the decimal expansion of 3/7 is
6, and the period begins right at the beginning of the decimal expansion (because
s = 0 here).
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Let us begin with some basic results about decimal expansions.

Lemma 8.9.4. Let a, b be natural numbers, with gcd(a, b) = 1. Then, there are
unique non-negative integers q0, q1, . . . such that

a

b
= q0 +

q1
10

+
q2
102

+ · · ·

where 0 ≤ qi ≤ 9 for all i ≥ 1 and such that (qi, ri) satisfy the following recurrence
relation: let a = q0b + r0, with 0 ≤ r0 < b, then qi+1 is the unique integer with
10ri = qi+1b+ ri+1, for some 0 ≤ ri+1 < b, for every i ≥ 0.

Proof. By the division theorem (Theorem 2.4.4), there exist unique integers q0, r0
such that a = q0b+ r0 and 0 ≤ r0 < b, so that

a

b
= q0 +

r0
b
.

We define a sequence of pairs {(qi, ri)}∞i=1 recursively by

a = q0b+ r0 and 10ri = qi+1b+ ri+1,

where qi+1 and ri+1 are as in the division theorem, with 0 ≤ ri+1 < b, for each
i ≥ 0. In particular, 10ri < 10b and so 0 ≤ qi < 10, for each i ≥ 1. It follows that,
for every i ≥ 1, we have

a

b
= q0 +

r0
b

= q0 +
q1
10

+
r1
10b

= q0 +
q1
10

+ · · ·+ qi
10i

+
ri
10ib

.

If we define {cn}∞n=0 by cn =
∑n

k=0
qk
10k

, then the equation above shows that∣∣∣a
b
− cn

∣∣∣ = ri
10nb

<
1

10n
.

Therefore, limn→∞ cn = a/b, as desired. �

Theorem 8.9.5. Let a, b be natural numbers, with gcd(a, b) = 1. Then, the decimal
expansion of a/b is periodic, and the length of the period is precisely t− s, where s
and t are non-negative integers t > s ≥ 0 such that s and t − s are minimal with
the property that

10t ≡ 10s mod b.

Moreover, the period begins at the (s+1)th digit of the fractional part of the decimal
expansion; i.e., the decimal expansion of a/b is of the form

a

b
= q0.q1q2 · · · qsqs+1qs+2 · · · qt,

for some q0 ≥ 0 and 0 ≤ qi ≤ 9 for i ≥ 1.

Proof. Let s and t be as in the statement of the proposition, i.e., non-negative
integers t > s ≥ 0 such that s and t− s are minimal with the property that

10t ≡ 10s mod b.

Let qi ≥ 0 be the digits in a decimal expansion of a/b, as in Lemma 8.9.4; i.e.,
a = q0b + r0 and 10ri = qi+1b + ri+1, with 0 ≤ ri < b and 0 ≤ qi < 10 for each
i ≥ 0. It follows then from the definition of ri that

ri ≡ 10ri−1 ≡ 10ia mod b,
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for all i ≥ 0. In particular,

rt ≡ 10ta ≡ 10sa ≡ rs mod b,

and since 0 ≤ rs, rt < b, they must be equal. Now, it follows from the definition of
qi and ri that if rt = rs for some t ≥ s, then

qs+1b+ rs+1 = 10rs = 10rt = qt+1b+ rt+1,

and, therefore, by the uniqueness of the quotient and remainder in the division
theorem (Theorem 2.4.4), we have qs+1 = qt+1 and rs+1 = rt+1. Hence, if rt = rs
for some t ≥ s, then (qt+k, rt+k) = (qs+k, rs+k) for all k ≥ 1, and therefore the
decimal representation is periodic, with period qs+1qs+2 · · · qt, and the length of
the period is at most t− s.

It remains to show that the length of the period is indeed exactly equal to t−s.
Since we have shown that a/b is periodic, there are numbers u > w ≥ 0 and P,Q
with 0 ≤ P < 10w and 0 ≤ Q < 10u−w, such that the length of the period is u−w
(which is ≤ t− s by our remarks above) and

a

b
=

P

10w
+

Q

10u
+

Q

102u−w
+

Q

103(u−w)+w
+ · · · ,

or, equivalently,

10w
(
a

b
− P

10w

)
=

Q

10u−w
+

Q

102(u−w)
+

Q

103(u−w)
+ · · · .

This implies that

10u−w

(
10w

(
a

b
− P

10w

)
− Q

10u−w

)
=

Q

10u−w
+ · · · = 10w

(
a

b
− P

10w

)
.

In turn, this is equivalent to(
10u

(
a

b
− P

10w

)
−Q

)
= 10w

a

b
− P,

and therefore
(10u − 10w)

a

b
= 10u−wP + 10uQ,

or, equivalently, (10u − 10w)a = b(10u−wP + 10uQ). In particular,

(10u − 10w)a ≡ 0 mod b.

Since gcd(a, b) = 1 by assumption, a is a unit modulo b, and therefore 10u ≡
10w mod b. Since t > s ≥ 0 are such that s and t−s are smallest with the property
10t ≡ 10s mod b, it follows that w ≥ s and u− w ≥ t− s. This, together with the
fact shown above that u− w ≤ t − s shows that u − w = t− s (and so w = s and
u = t). Hence, the length of the period is t− s, as we wanted to prove.

Finally, note that by our remarks at the beginning of the proof, the period is
formed by the digits qs+1qs+2 · · · qt, as claimed. �

Example 8.9.6. Consider the rational number 3/14. In order to calculate the
length of the period in the decimal expansion, let us calculate (in Figure 8.3) first
powers of 10 modulo 14 to find out the values of s and t as in Theorem 8.9.5.

Thus, we find that 107 ≡ 101 mod 14, and this is the first time a repetition
happens; i.e., s = 1, t = 7, and t − s = 6. Therefore, the period begins on the
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n 0 1 2 3 4 5 6 7 8 9 10

10n mod 14 1 10 2 6 4 12 8 10 2 6 4

Figure 8.3. Powers of 10 mod 14.

second digit of the decimal expansion of the fractional part of 3/14, and the length
of the period is 6 digits. Indeed,

0.214285714285714285714285714286 . . . = 0.2142857.

Corollary 8.9.7. Let a, b be natural numbers, with gcd(a, b) = 1, and assume that
gcd(b, 10) = 1. Then, the length t of the period in the decimal expansion of a/b is
exactly the multiplicative order of 10 modulo b, and t is a divisor of ϕ(b). Moreover,
the period begins with the first digit of the fractional part of the decimal expansion;
i.e.,

a

b
= q0.q1q2 · · · qt,

for some q0 ≥ 0 and 0 ≤ qi ≤ 9 for i ≥ 1.

Proof. Suppose that gcd(b, 10) = 1 and 10t ≡ 10s mod b, where t > s ≥ 0 are
such that s and t− s are minimal with this property. Since b and 10 are relatively
prime, the number 10 is a unit modulo b, and therefore we obtain

10t−s ≡ 1 mod b.

By the minimality property of s and t, it follows that s = 0, and t is exactly the
multiplicative order of 10 mod b. Finally, Corollary 8.1.6 implies that t is a divisor
of ϕ(b). �
Example 8.9.8. For instance, the multiplicative order of 10 ≡ 3 mod 7 is 6, and
therefore the length of the period of 3/7 must be 6, and the period begins with the
first digit of the fractional part. Indeed, as we saw in Example 8.9.3,

3

7
= 0.428571428571428571 . . . = 0.428571.

It remains to understand the decimal expansion of rational numbers a/b such
that gcd(b, 10) �= 1. We need a lemma.

Lemma 8.9.9. Let h, k ≥ 1 and let b = 2h5k. Let M = max{h, k}; then 10M+1 ≡
10M mod b, and M+1 ≥ M ≥ 0 are the smallest values t > s ≥ 0 with the property
that 10t ≡ 10s mod b.

Proof. Let h, k, and M be as in the statement, and let p = 2 or 5 such that pM

is a divisor of b. Then, if 10t ≡ 10s mod b, then 10t ≡ 10s mod pM , and therefore
pt ≡ ps mod pM . It follows that pM is a divisor of pt − ps = ps(pt − 1) and since p
is relatively prime to pt−1, it follows that pM divides ps, and so s ≥ M . Moreover,
if i ≥ M , then 10i is divisible by 10M = 2M5M and also by b = 2h5k, since
M = max{h, k}. Thus, 10i ≡ 0 mod b, and in particular 10M+1 ≡ 10M mod b. �
Theorem 8.9.10. Let a, b be natural numbers, with gcd(a, b) = 1, and suppose
that b = 2h5kb′ with gcd(b′, 10) = 1 and h, k ≥ 0. Let M = max{h, k}. Then,
the length of the period in the decimal expansion of a/b is exactly t, where t is the
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multiplicative order of 10 modulo b′ (as before, t is a divisor of ϕ(b′)). Moreover, the
period begins with the (M+1)th digit of the fractional part of the decimal expansion;
i.e.,

a

b
= q0.q1q2 · · · qMqM+1qM+2 · · · qM+t,

for some q0 ≥ 0 and 0 ≤ qi ≤ 9 for i ≥ 1.

Proof. Let t > s ≥ 0 be as in Theorem 8.9.5. In particular,

10t ≡ 10s mod b,

and, therefore, the same congruence is true modulo 2h5k and modulo b′. By Lemma
8.9.9, if 10t ≡ 10s mod 2h5k, then s ≥ M = max{h, k}.

Now, consider 10Ma/b = a′/b′, where a′ = 2M−h5M−ka and b = 2h5kb′ with
gcd(b′, 10) = 1. Thus, gcd(a′, b′) = 1, and gcd(b′, 10) = 1. Hence, by Corollary
8.9.7, the length of the period in the decimal expansion of a′/b′ is t, the multiplica-
tive order of 10 mod b′, and the period starts with the first digit of the fractional
part. In other words,

a′/b′ = Q0.Q1Q2 · · ·Qt,

for some Q0 ≥ 0 and 0 ≤ Qi ≤ 9 for i ≥ 1. On the other hand, if

a/b = q0.q1q2 · · · qMqM+1qM+2 · · · ,
then

a′/b′ = 10Ma/b = q0 · 10M + q1 · · · qM .qM+1qM+2 · · · .
Hence, we conclude that the integer Q0 equals q0 · 10M + (q1 · · · qM )10 and Q1 =
qM+1, Q2 = qM+2, Qt = qM+t form the period of the decimal expansion. In other
words,

a

b
= q0.q1q2 · · · qMqM+1qM+2 · · · qM+t,

as desired. �

Example 8.9.11. Consider the rational number 4001/550. The numbers 4001 and
550 are relatively prime (in fact, 4001 is prime), and 550 = 2 · 52 · 11. Moreover,
the order of 10 ≡ −1 mod 11 is t = 2. Hence, the period in the fractional part of
the decimal expansion of 4001/550 starts with the 3rd digit (M = max{1, 2} as in
Theorem 8.9.10 equals 2), and the length of the period is t = 2. Indeed,

4001

550
= 7.2745454545454545 . . . = 7.2745,

so the period is 45 of length 2, beginning with the third digit in the expansion, in
agreement with the theory.

8.10. Exercises

Exercise 8.10.1. Find the (multiplicative) order of every non-zero element of
Z/19Z.

Exercise 8.10.2. Show that the order of 10 mod 83 is at least 30, without calcu-
lating any power of 10 higher than 102 = 100 (so you are not allowed to calculate
10k or 10k mod 83 for any k ≥ 3).
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Exercise 8.10.3. Let m = 215 − 1 = 32767. Prove the following:

(1) The order of 2 mod m is 15; i.e., show that 2n �≡ 1 mod m for any 1 ≤ n < 15
and 215 ≡ 1 mod m.

(2) The number 15 does not divide m− 1 = 32766.
(3) Use the previous parts to conclude that m is not prime (you are not allowed

to find a factorization of m).

Exercise 8.10.4. The following is a table of powers of 2 modulo 13:

x x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

2 4 8 3 6 12 11 9 5 10 7 1

(a) From the table, we see that 2 mod 13 has order 12. Find all the units of order
12.

(b) Find the order of every unit in Z/13Z.
(c) Find all the squares modulo 13; i.e., what congruences are the square of an-

other number? Which ones are not squares?

Exercise 8.10.5. Prove that 74 is a primitive root modulo 89.

Exercise 8.10.6. Find a primitive root modulo 61.

Exercise 8.10.7. Find a primitive root modulo 73.

Exercise 8.10.8. Show that 2 is a primitive root modulo 11k, for every k ≥ 1.

Exercise 8.10.9. Let p be an odd prime. Show that if g is a primitive root modulo
p, then g(p−1)/2 ≡ −1 mod p.

Exercise 8.10.10. Let p be a prime, and let a be a non-zero integer.

(a) Show that if a = −1 is a primitive root modulo p, then p = 2 or p = 3.
(b) Show that if a = b2 is a perfect square and a is a primitive root mod p, then

p = 2 and a = 1. (Hint: use Exercise 8.10.9 and Fermat’s little theorem.)

Exercise 8.10.11. Prove Wilson’s theorem using primitive roots. (Hint: suppose
that g is a primitive root mod p, and write every unit as a power of g.)

Exercise 8.10.12. Show that x3 + y3 = n has no integer solutions if n ≡ 3 or
4 mod 7. Conclude that 1001002001002 is not a sum of two cubes. (Hint: for the
second part, use Proposition 4.6.4.)

Exercise 8.10.13. Show that x5+y5 = 3+11z5 has no solutions in integers x, y, z.
(Hint: what congruence classes are fifth powers modulo 11?)

Exercise 8.10.14. The number p = 4003 is prime.

(1) The number 372 has exact order 2001 modulo 4003. Find a primitive root
modulo p.

(2) The number 285 has exact order 87 modulo p, and the number 2163 has exact
order 46 modulo p. Find another primitive root mod p.

(3) Given that 287 ≡ 2163 mod 4003 and 246 ≡ 285 mod 4003, prove that 2 is also
a primitive root modulo 4003.
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Exercise 8.10.15. A natural number of the form Mn = 2n − 1, for some n ≥ 1,
is called a Mersenne number. If Mn is prime, then Mn is called a Mersenne prime.
In this exercise we show a criterion to test the primality of Mn.

(1) Show that if Mn is prime, then n is prime. (Hint: Exercise 3.5.23.)

(2) For the rest of this exercise, assume that p is an odd prime, put Mp = 2p − 1,
and let q be a prime divisor of Mp. Show that the order of 2 modulo q is a
divisor of p, and therefore the order is exactly p.

(3) Show that p is a divisor of q − 1. (Hint: use Corollary 8.1.6.)

(4) Conclude that q = mp+ 1, for some even number m ≥ 2.

(5) Thus, we have shown that if Mp is divisible by q, then q = 2kp + 1 for some
k ≥ 1.

Figure 8.4. Marin Mersenne (1588–1648) was a French theologian, natural
philosopher, and mathematician. Image source: Wikimedia Commons.

Exercise 8.10.16. Using Exercise 8.10.15, determine if the following Mersenne
numbers are primes: 27 − 1, 211 − 1, and 229 − 1.

Exercise 8.10.17. Suppose that Z/mZ has a primitive root, and let {a1, . . . , ar}
be a complete residue system for the units modulo m (i.e., a complete residue system
of (Z/mZ)×). Show that S = {an1 , . . . , anr } is also a complete residue system for
the units modulo m if and only if gcd(n, ϕ(m)) = 1.

Exercise 8.10.18. Show that 3k+1 is a divisor of 23
k

+1 for all k ≥ 1. (Hint: show
that 2 is a primitive root modulo 3k+1.)

Exercise 8.10.19. Find all the solutions of the congruence 11x14 ≡ 23 mod 43.
(Hint: use the table in Example 8.6.16.)
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Exercise 8.10.20. Show that 2 is a primitive root modulo 19 and solve the fol-
lowing:

(a) Build a table of indices of modulo 19 in base 2.
(b) Use the table of indices to find all the possible values of x that satisfy the

following congruences:
(1) 9x ≡ 14 mod 19.
(2) 11x7 ≡ 13 mod 19.
(3) 5x6 ≡ 17 mod 19.
(4) 9x ≡ 7 mod 19.

Exercise 8.10.21. Find all the solutions for the following congruences:

(a) x2 ≡ 1 mod 35.
(b) x2 ≡ 1 mod 140.
(c) x2 ≡ 1 mod 105.

Exercise 8.10.22. Decide whether there exists a primitive root modulo m for the
following values of m:

m = 8, 14, 28, 35, 70, 162, 625, 1250.

Exercise 8.10.23. Let m = 1250.

(1) Show that 3 mod 1250 is a primitive root.
(2) How many primitive roots are there modulo 1250?

Exercise 8.10.24. Alice and Bob want to set up a private key using the Diffie–
Hellman method (as in Section 8.9.1). They choose p = 43, g = 3, a = 10, and
b = 20 for their prime, primitive root, and private keys, respectively. Compute the
secret key K they will share. (Hint: the tables in Example 8.6.5 should help.)

Exercise 8.10.25. Show that 6 is a primitive root modulo 13. Then, find an
integer x ≥ 1 that solves the discrete logarithm problem 6x ≡ 5 mod 13.

Exercise 8.10.26. Han and Leia want to set up a secure communication channel
using a Diffie–Hellman key exchange, with p = 13 and g = 6.

(1) Leia picks a = 2. Compute A ≡ ga mod p.
(2) Leia receives B = 2 from Han. Compute the secret key produced by the

Diffie–Hellman key exchange that Leia and Han will share.

Exercise 8.10.27. Governor Tarkin intercepts some messages from Han and Leia
who are setting up a Diffie–Hellman key exchange. He finds that p = 13 and g = 6
and intercepts A = 3 from Leia and B = 5 from Han. Use this information to
generate the secret key that Leia and Han are planning to share. (Note: it is not
the same key that they were sharing in part (2) of Exercise 8.10.26.)

Exercise 8.10.28. Compute the length of the period for the following rational
numbers and the position of the digit where the period starts (e.g., the period of
2/15 = 0.133333 . . . is of length 1 and the period starts with the second digit):

2

7
,
15

13
,

3

19
,

7

152
,
19

65
.
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CHAPTER 9

AN INTRODUCTION
TO QUADRATIC EQUATIONS

Is euclidean geometry true? [. . . ] We might as
well ask if the metric system is true and if the old
weights and measures are false; if cartesian
coordinates are true and polar coordinates are
false. One geometry cannot be more true than
another; it can only be more convenient.

Henri Poincaré

In the first part of this book we have learned how to find all integral and
rational solutions of polynomial equations in one variable p(x) = 0 (see Section
2.8 and Theorem 2.8.1) and linear equations in two variables (see Section 2.9 and
Theorem 2.9.4). In the next few chapters we are interested in finding the integral
and rational points on quadratic equations in two variables, i.e., equations of the
form

ax2 + bxy + cy2 + dx+ ey + f = 0,

where a, b, c, d, e, f are integers and a, b, or c is non-zero. As we will see, finding
the rational solutions is easy (once we know at least one of them!), but finding all
integral solutions can be rather complicated.

In this chapter, we will learn to distinguish “irreducible” quadratic equations
from “reducible” ones. By this we mean that some quadratic equations can be
factored into two linear equations that we already know how to solve (e.g., x2 −
y2 + x + y = 0 is equivalent to (x− y + 1)(x+ y) = 0, which in turn is equivalent
to solving x − y + 1 = 0 and x + y = 0), while some equations cannot be reduced
to the study of linear equations (e.g., x2 +2y2 = 1). Thus, a first step in analysing
a quadratic equation is to determine whether it can be factored.

237
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238 9. An Introduction to Quadratic Equations

Once we are certain that the quadratic equation is “irreducible” (it cannot be
factored as a product of two lines), then a first step is to classify the equation as
one of three possible conic sections: a parabola, an ellipse, or a hyperbola. We
will close this chapter studying how to find all the rational and integral points on
a parabola.

In Chapter 10, we continue our study of congruences, and we extend our theory
to quadratic congruences. These congruences will be useful in studying quadratic
equations in general and, in particular, they can be very useful to show that a
certain equation does not have solutions (see Example 1.3.2).

In Chapter 11 we discuss the theorem of Hasse and Minkowski, which provides a
criterion to determine when a quadratic equation has one rational solution. Once we
know one rational solution, we can use rational parametrizations (as in Example
1.3.1) to find all the rational points on the equation. We will discuss rational
parametrizations of quadratic equations in Section 9.3.

In Chapter 12 we discuss methods that are specific to finding points on circles
and ellipses. In particular, we give a criterion to decide what circles have integral
points, i.e., to decide whether x2 + y2 = n has integral points. In other words, we
classify what natural numbers are the sum of two squares.

Similarly, in Chapter 14 we discuss methods that are specific to hyperbolas.
Special attention will be paid to what is known as a Pell equation, x2 − dy2 = 1
and x2 − dy2 = n for an integer n. We will see that solving a Pell equation
is closely related to finding rational approximations of the irrational number

√
d.

Finally, Chapter 13 is an introduction to the theory of continued fractions, which
will be applied to solving Pell’s equation.

9.1. Product of Two Lines

Algebra is nothing more than geometry, in words;
geometry is nothing more than algebra, in pictures.

Sophie Germain

Let L : ax + by = c and L′ : dx + ey = f be two lines in the plane. If
we multiply both equations together, we produce the equation of a new geometric
object C, whose geometric locus is the union of L and L′. In other words, if we
consider the equation C : (ax+ by − c)(dx+ ey − f) = 0 and if P = (x0, y0) ∈ C,
then either ax0 + by0 − c = 0 or dx0 + ey0 − f = 0; i.e., either P ∈ L or P ∈ L′ so
the points on C are indeed the union of the points on L and the points on L′ (see
Figure 9.1).

Definition 9.1.1. Let C be a quadratic equation given by a polynomial equation
f(x, y) = 0, where f(x, y) ∈ Z[x, y]. We say that C is a product of two lines L and
L′ if there are two non-constant polynomials g(x, y) and h(x, y) in C[x, y] such that
L : g(x, y) = 0, the line L′ : h(x, y) = 0, and

f(x, y) = g(x, y)h(x, y).
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−3 −2 −1 1 2 3

−2

−1

1

2

0

L′ : dx+ ey = f

L : ax+ by = c

Figure 9.1. The geometric locus of C : (ax+ by − c)(dx+ ey − f) = 0.

Example 9.1.2. The equation C : x2 − y2 + x + y = 0 is a product of two lines.
Indeed,

x2 − y2 + x+ y = (x− y + 1)(x+ y) = 0,

so C is the product of L : x− y = −1 and L′ : x+ y = 0. See Figure 9.2.

−3 −2 −1 1 2 3

−2

−1

1

2

0

L′ : y = −x L : y = x+ 1

Figure 9.2. The geometric locus of C : x2 − y2 + x+ y = 0.

Remark 9.1.3. The polynomial f(x, y) may factor over C[x, y] but not over Z[x, y]
or Q[x, y]. For instance, consider

C : x2 + xy + y2 = 0.

We say that C is a product of two lines, because

f(x, y) = x2 + xy + y2 =

(
x− −1 +

√
−3

2
· y
)(

x− −1−
√
−3

2
· y
)
.

Thus, C is the product of two lines L : y = (−1 +
√
−3)/2 · x and L′ : y =

(−1−
√
−3)/2 · x in the complex plane C. In the real plane, however, there is only

one point. Indeed, note that

x2 + xy + y2 =
(
x+

y

2

)2
+

3

4
y2 = 0,
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so any real solution (x0, y0) ∈ R2 must satisfy x+ y/2 = 0 and y = 0, so (x0, y0) =
(0, 0).

The easiest way to identify a quadratic equation as a product of two lines is
via normal and tangent vectors: a quadratic equation C is a product of two lines
if all the tangent vectors to the points on the curve are parallel to one or two fixed
vectors v1 and v2. If all the tangent vectors are parallel to one single vector v1,
then C is the product of two parallel lines. If all the tangent vectors are parallel to
either v1 or v2, then C is a product of two lines L and L′, with direction vectors v1
and v2, respectively.

Next, we recall how to calculate tangent vectors, and we make the previous
paragraph more concrete. We will, in fact, define both tangent and normal vectors
to a curve, where the normal is a vector perpendicular to the tangent line.

Definition 9.1.4. Let C : f(x, y) = 0 be a curve on the plane given by a polynomial
in two variables f(x, y) ∈ Q[x, y]. Let P = (x0, y0) be a point on C. The normal
vector and the tangent vector of C at P , denoted, respectively, by �nC(P ) and �tC(P ),
are given by

�nC(P ) =

(
∂f

∂x
(P ),

∂f

∂y
(P )

)
and �tC(P ) =

(
−∂f

∂y
(P ),

∂f

∂x
(P )

)
.

Figure 9.3. The normal and tangent vectors, �nC(P ) and �tC(P ), at the points
P = (0, 1) and Q = (4/3, 1/3) on the ellipse C : x2 + 2y2 = 2.

Remark 9.1.5. Thus defined, the normal and the tangent vectors are perpendic-
ular with respect to the usual dot product. Indeed,

�nC(P ) · �tC(P ) = −∂f

∂x
(P ) · ∂f

∂y
(P ) +

∂f

∂x
(P ) · ∂f

∂y
(P ) = 0.
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Example 9.1.6. Let C be the ellipse given by x2 + 2y2 − 2 = 0 (see Figure
9.3). Then, the normal and tangent vectors are given by �nC =

(
∂f
∂x (P ), ∂f∂y (P )

)
=

(2x, 4y) and �tC =
(
−∂f

∂y (P ), ∂f∂x (P )
)
= (−4y, 2x). For example, if we put P = (0, 1)

and Q = (4/3, 1/3), then

�nC(P ) = (0, 4) and �nC(Q) = (8/3, 4/3),

and
�tC(P ) = (−4, 0) and �tC(Q) = (−4/3, 8/3).

Example 9.1.7. Let us calculate the normal vectors of C : x2 − y2 + x + y = 0.
Here f(x, y) = x2 − y2 + x+ y. Hence,

�nC =

(
∂f

∂x
,
∂f

∂y

)
= (2x+ 1,−2y + 1).

It is not immediately obvious from this expression for the normal vectors that, in
fact, when evaluated at a point P ∈ C, all vectors are parallel to either (1,−1) or
(1, 1). See Figure 9.4.

Figure 9.4. Several normal vectors at points on the curve C : x2−y2+x+y =
0. It turns out that C is a product of two lines, and all the normal vectors are
parallel to either (1, 1) or (1,−1).

However, from Example 9.1.2 we know that we have a factorization f(x, y) =
x2−y2+x+y = (x−y+1)(x+y). If we take partial derivatives using the product
rule, we obtain

�nC =

(
∂f

∂x
,
∂f

∂y

)
= ((x+ y) + (x− y + 1),−(x+ y) + (x− y + 1))

= (x+ y) · (1,−1) + (x− y + 1) · (1, 1),

where · here denotes scalar multiplication; e.g., (x+ y) · (1,−1) = (x+ y,−(x+ y)).
Now, if P ∈ C = L ∪ L′, either P ∈ L : x − y = −1 or P ∈ L′ : x + y = 0. If

P = (x0, y0) ∈ L, then x0 − y0 + 1 = 0 and

�nC(P ) = (x0 + y0) · (1,−1),
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which is a multiple of (1,−1). If P = (x0, y0) ∈ L′, then x0 + y0 = 0 and

�nC(P ) = (x0 − y0 + 1) · (1, 1),

which is a multiple of (1, 1).
It is still unclear, however, how to decompose the normal vector appropriately,

as in
�nC = (2x+ 1,−2y + 1) = (x+ y) · (1,−1) + (x− y + 1) · (1, 1),

if we do not know how to factor the polynomial f(x, y) in the first place. The first
step is to find the point of intersection of the two lines, if there is one. The following
proposition provides a criterion to find the intersection point.

Proposition 9.1.8. Let C : f(x, y) = 0 be a quadratic equation (with f(x, y) ∈
Z[x, y]) that is a product of two distinct lines L and L′. Suppose that L and L′

intersect at a point P = (x0, y0) ∈ C. Then, the coordinates of P are rational
numbers, and the normal vector of C at P vanishes; i.e., �nC(P ) = (0, 0). Moreover:

(1) If m1 and m2 are, respectively, the slopes of L and L′ and both are finite slopes
(i.e., L, L′ are not vertical), then

C : f(x, y) = λ(y − y0 −m1(x− x0))(y − y0 −m2(x− x0)) = 0,

for some rational number λ ∈ Q. In particular, after a change of variables
X = x− x0 and Y = y − y0, we obtain an equation C ′ given by

C ′ : λ(Y 2 + βXY + γX2) = 0,

with β = −(m1 + m2) ∈ Q and γ = m1m2 ∈ Q. Hence, m1 and m2 can be
retrieved from β and γ by

m1 =
−β +

√
β2 − 4γ

2
and m2 =

−β −
√
β2 − 4γ

2
.

(2) Otherwise, if one of the lines is vertical, say L : x− x0 = 0, then

C : f(x, y) = λ(x− x0)(y − y0 −m(x− x0)) = 0.

In particular, after a change of variables X = x − x0 and Y = y − y0, we
obtain an equation C ′ given by

C ′ : λX(Y −mX) = 0,

where m is the slope of L′ : y − y0 = m(x− x0).

Proof. Let C : f(x, y) = 0 be a quadratic equation which is a product of two lines
L and L′ that intersect at a point P = (x0, y0) ∈ C. In particular, P belongs to
both L and L′.

First assume that neither L nor L′ is a vertical line. Then, there are finite slopes
m1 and m2 such that L and L′ are given, respectively, by y − y0 = mi(x− x0) for
i = 1, 2. Therefore,

f(x, y) = λ(y − y0 −m1(x− x0))(y − y0 −m2(x− x0))

= λ((y − y0)
2 − (m1 +m2)(x− x0)(y − y0) +m1m2(x− x0)

2)
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for some rational number λ ∈ Q. Since f(x, y) has integer coefficients, λ ∈ Q, and
−λ(m1 +m2) and λm1m2 are, respectively, the coefficients of xy and x2, it follows
that m1+m2 and m1m2 are rational numbers. We will use this below to show that
x0 and y0 are also rational.

Now we may calculate the normal vector using the product rule of differentia-
tion:

�nC = λ · (−m1(y − y0 −m2(x− x0))−m2(y − y0 −m1(x− x0)),

(y − y0 −m2(x− x0)) + (y − y0 −m1(x− x0)))

= λ · (−(m1 +m2)(y − y0) + 2m1m2(x− x0),

2(y − y0)− (m1 +m2)(x− x0)),

and, therefore, �nC(P ) = �nC((x0, y0)) = (0, 0). Moreover, notice that if

C : ax2 + bxy + cy2 + dx+ ey + f = 0,

where a, b, c, d, e, f are integers, then �nC = (2ax + by + d, bx + 2cy + e). Thus,
(x0, y0), which is the unique intersection point of the lines L and L′, is also the
unique solution of the system {

2ax+ by = −d,

bx+ 2cy = −e,

which is linear and has integral coefficients, so the solution must have rational
coefficients by Cramer’s rule; i.e.,

(x0, y0) =

⎛⎜⎜⎜⎜⎝
det

(
−d b

−e 2c

)

det

(
2a b

b 2c

) ,

det

(
2a −d

b −e

)

det

(
2a b

b 2c

)
⎞⎟⎟⎟⎟⎠ =

(
−2cd+ be

4ac− b2
,
−2ae+ bd

4ac− b2

)
.

For part (2), notice that if the two distinct lines L and L′ intersect at a point P ,
then they are not both vertical. Suppose one of them is vertical, say L : x−x0 = 0.
Then,

C : f(x, y) = λ(x− x0)(y − y0 −m(x− x0)) = 0.

Once again, we can calculate the normal vector of C:

�nC = λ · ((y − y0 −m(x− x0))−m(x− x0), x− x0)

= λ · ((y − y0)− 2m(x− x0), x− x0),

and, therefore, �nC(P ) = �nC((x0, y0)) = (0, 0). The same argument as before shows
that x0 and y0 are rational. Also, −λm is the coefficient of x2 in f(x, y), so m is
also rational. The rest of the proof is straightforward. �

The previous proposition leaves only one case that remains to be treated: when
C is a product of two parallel lines L and L′.
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Proposition 9.1.9. Let C : f(x, y) = 0 be a quadratic equation (with f(x, y) ∈
Z[x, y]) that is a product of two parallel lines L and L′ (i.e., L and L′ have a
common slope m).

(1) If both L and L′ are vertical, then there are constants x0, x1 ∈ Q such that

C : λ(x− x0)(x− x1) = 0,

for some λ ∈ Q.
(2) If L and L′ have a common slope m ∈ C, then

−m · ∂f
∂y

=
∂f

∂x
,

the slope m is rational, and

C : λ(y −mx− b1)(y −mx− b2) = 0,

for some λ ∈ Q and b1, b2 ∈ C. In particular, after a change of variables
X = y −mx, we obtain an equation C ′ given by

C ′ : λ(X2 + βX + γ) = 0,

with β = −(b1 + b2) ∈ Q and γ = b1b2 ∈ Q. Hence, b1 and b2 can be retrieved
from β and γ by

b1 =
−β +

√
β2 − 4γ

2
and b2 =

−β −
√
β2 − 4γ

2
.

Proof. For part (1), if L and L′ are vertical lines, then there exist a, a′, b, b′ ∈ Q

such that L : ax−b = 0 and L′ : a′x−b′ = 0, and so C is given by (ax−b)(a′x−b′) =
0. Notice that a and a′ are non-zero. Thus, equivalently, C is given by

aa′
(
x− b

a

)(
x− b′

a′

)
= 0.

Thus, the result holds for λ = aa′, x0 = b/a, and x1 = b′/a′, which are rational
numbers.

Let us assume that L and L′ have a common slope m ∈ C. Then, L : y = mx+b1
and L′ : y = mx+ b2, for some b1, b2 ∈ C. Thus,

C : f(x, y) = λ(y −mx− b1)(y −mx− b2) = 0,

for some λ ∈ C, which is the coefficient of y2 in f(x, y), so λ is in Q. Also, the
coefficient of xy is −2λm; hence m is also rational. Similarly, b1 + b2 and b1b2 are
rational by considering, respectively, the coefficient of y and the constant term in
f(x, y).

In particular,

∂f

∂x
= −m(2y − 2mx− b1 − b2),

∂f

∂y
= 2y − 2mx− b1 − b2.

Hence, −m · ∂f/∂y = ∂f/∂x, as claimed. The rest of the proof is clear. �
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Example 9.1.10. Let C be the quadratic equation given by

C : 14x2 + 19xy − 33x− 3y2 + 8y − 5 = 0.

Let us investigate whether C is a product of two lines. In order to use Propositions
9.1.8 or 9.1.9, we need to calculate the normal vector of C:

�nC = (∂f/∂x, ∂f/∂y) = (28x+ 19y − 33, 19x− 6y + 8).

Since ∂f/∂x is not a constant multiple of ∂f/∂y, if C is a product of two lines,
then there must be a point of intersection P where �nC(P ) = (0, 0). Thus, we need
to solve the system {

28x+ 19y = 33,

19x− 6y = −8.

This system has a unique solution; namely P = (x0, y0) = ( 2
23 ,

37
23 ). Hence, we

choose a change of variables X = x− 2/23 and Y = y − 37/23 and obtain

C ′ : 14X2 + 19XY − 3Y 2 = 0,

or, equivalently, C ′ : X2 + 19/14XY − 3/14Y 2 = 0. Hence, β = −19/14 and
γ = −3/14 (as in Proposition 9.1.8) and the slopes m1 and m2 of L and L′ are

m1 =
−β +

√
β2 − 4γ

2
= 7 and m2 =

−β −
√
β2 − 4γ

2
= −2

3
.

It follows that f(x, y) = 0 is a multiple of(
y − 37

23
− 7

(
x− 2

23

))(
y − 37

23
+

2

3

(
x− 2

23

))
= 0.

Indeed, if we multiply the latter equation by −3 and simplify inside the parentheses,
we obtain

C : f(x, y) = (7x− y + 1)(2x+ 3y − 5) = 0.

Hence, C is the product of the lines L : 7x−y = −1 and L′ : 2x+3y = 5. It follows
that the rational points on C are the points in the set

C(Q) = L(Q) ∪ L′(Q) = {(t, 7t+ 1) : t ∈ Q} ∪
{(

s,
−2s+ 5

3

)
: s ∈ Q

}
,

while the integral points can be found using Theorem 2.9.4:

C(Z) = L(Z) ∪ L′(Z) = {(1 + k, 8 + 7k) : k ∈ Z} ∪ {(1 + 3h, 1− 2h) : h ∈ Z} .

Example 9.1.11. Let C : f(x, y) = 0 be the quadratic equation given by

C : f(x, y) = 12x2 + 36xy − 32x+ 27y2 − 48y + 5 = 0.

Let us investigate whether C is a product of two lines. In order to use Propositions
9.1.8 or 9.1.9, we need to calculate the normal vector of C:

�nC = (∂f/∂x, ∂f/∂y) = (24x+ 36y − 32, 36x+ 54y − 48).

Notice that 2
3 · ∂f/∂y = ∂f/∂x. By Proposition 9.1.9, this may be evidence that

C is a product of two parallel lines L and L′ of slope m = − 2
3 . Hence, we attempt

a change of variables X = y −mx, i.e., y = − 2
3x+X, and we obtain

C ′ : 27X2 − 48X + 5 = 0,
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or, equivalently, C ′ : X2 − 48
27X + 5

27 = 0. If we set β = −48/27 and γ = 5/27, then

b1 =
−β +

√
β2 − 4γ

2
=

5

3
and b2 =

−β −
√
β2 − 4γ

2
=

1

9
.

Hence C is a product of parallel lines L : y = − 2
3x+

5
3 and L′ : y = − 2

3x−
1
9 . Thus,

f(x, y) = 0 is a constant multiple of(
y +

2

3
x− 5

3

)(
y +

2

3
x− 1

9

)
= 0.

And, indeed, if we multiply our previous equation by 27 and simplify, we obtain

C : f(x, y) = (2x+ 3y − 5)(6x+ 9y − 1) = 0.

Hence, C is the product of the lines L : 2x+3y = 5 and L′ : 6x+9y = 1. It follows
that the rational points on C are the set

C(Q) = L(Q) ∪ L′(Q) =

{(
t,
−2t+ 5

3

)
: t ∈ Q

}
∪
{(

s,
−6s+ 1

9

)
: s ∈ Q

}
,

while the integral points can be found using Theorem 2.9.4:

C(Z) = L(Z) ∪ L′(Z) = {(1 + 3k, 1− 2k) : k ∈ Z} ∪ ∅,
where we have used Proposition 2.9.1 to show that L′(Z) = ∅, because gcd(6, 9) = 3
is not a divisor of 1.

Example 9.1.12. Let us determine all the rational and integral points that satisfy
the quadratic equation given by

C : f(x, y) = 4x2 − 12xy + 10x+ 9y2 − 15y + 5 = 0.

First, let us investigate if this equation is a product of two lines. We calculate

�nC = (∂f/∂x, ∂f/∂y) = (8x− 12y + 10,−12x+ 18y − 15).

Notice that −2
3 · ∂f/∂y = ∂f/∂x. By Proposition 9.1.9, this may be evidence that

C is a product of two parallel lines L and L′ of slope m = 2
3 . Hence, we attempt a

change of variables X = y −mx, i.e., y = 2
3x+X, and we obtain

C ′ : 9X2 − 15X + 5 = 0,

or, equivalently, C ′ : X2 − 5
3X + 5

9 = 0. If we set β = −5/3 and γ = 5/9, then

b1 =
−β +

√
β2 − 4γ

2
=

5 +
√
5

6
and b2 =

−β −
√
β2 − 4γ

2
=

5−
√
5

6
.

Hence C is a product of parallel lines L : y = 2
3x+ 5+

√
5

6 and L′ : y = 2
3x+ 5−

√
5

6 .
Thus, f(x, y) = 0 is a constant multiple of(

y − 2

3
x− 5 +

√
5

6

)(
y − 2

3
x− 5−

√
5

6

)
= 0.

And, indeed, if we multiply our previous equation by 9 and simplify, we obtain

C : f(x, y) =

(
2x− 3y +

5 +
√
5

2

)(
2x− 3y +

5−
√
5

2

)
= 0.
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It follows that if P = (x0, y0) ∈ C(Q) = L(Q) ∪ L′(Q), then P ∈ L(Q) or L′(Q).
However, if x0, y0 ∈ Q, then 2x0 − 3y0 ∈ Q, and

2x0 − 3y0 +
5 +

√
5

2
= 0 or 2x0 − 3y0 +

5−
√
5

2
= 0

would imply that either 5+
√
5

2 or 5−
√
5

2 is in Q, which in turn implies that
√
5 ∈ Q,

a contradiction (see Theorem 2.10.11 and Exercise 2.11.34). Hence, C(Q) = ∅ in
this case (notice, however, that there are infinitely many points over the reals).

We finish this section with a result that says that if a quadratic equation van-
ishes at all points on one line, then it is necessarily the product of two lines.

Proposition 9.1.13. Let C : f(x, y) = 0 be a quadratic equation, and suppose that
there is a line L such that (α, β) ∈ C(Q) for all (α, β) ∈ L. Then, C is a product
of two lines, L and another line L′.

Proof. Let us first assume that L is not vertical, and let L : l(x, y) = 0 be a
line given by l(x, y) = y − y0 −m(x − x0) for some slope m and some point P =
(x0, y0) ∈ L, and assume that f(x, y) vanishes at every point on L. In other words,
f(x,m(x−x0)+ y0) = 0 for all x. Then, we claim that there is a linear polynomial
g(x, y) such that

f(x, y) = (y − y0 −m(x− x0)) · g(x, y).
Indeed, let us write a Taylor expansion for f(x, y), centered at P = (x0, y0):

f(x, y) = A+B(x−x0)+C(y− y0)+D(x−x0)
2+E(x−x0)(y− y0)+F (y− y0)

2.

Then,

0 = f(x,m(x− x0) + y0) = A+ (B + Cm)(x− x0) + (D + Em+ Fm2)(x− x0)
2.

If this polynomial is identically zero, then each coefficient is zero; i.e.,

A = 0, B + Cm = 0, and D + Em+ Fm2 = 0.

Hence, if we let l(x, y) = y−y0−m(x−x0) as above, then we can use the fact that
A = 0, B = −Cm, and D = −Em− Fm2 to write f(x, y) as follows:

f = C · l(x, y) + E(x− x0)l(x, y) + F ((y − y0)
2 −m2(x− x0)

2)

= (y − y0 −m(x− x0))(C + E(x− x0) + F (y − y0 +m(x− x0))).

Thus, if we write g(x, y) = C + E(x− x0) + F (y − y0 +m(x− x0)), we have

f(x, y) = l(x, y)g(x, y),

as claimed. In particular, it follows from our claim that if f(x,m(x− x0) + y0) is
identically zero as a polynomial, then C is a product of two lines, L : l(x, y) = 0
and a second line L′ : g(x, y) = 0, as desired.

If L is vertical, then L : x = x0 for some x0 ∈ Q. If f(x0, y) = 0 for all values
of y, then we can proceed similarly to show that f(x, y) = (x− x0)g(x, y) for some
linear polynomial g(x, y), and so C is a product of L and L′ : g(x, y) = 0. �
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9.2. A Classification: Parabolas, Ellipses, and Hyperbolas

In this section we classify those quadratic equations that are not a product of two
lines. Such a quadratic equation defines a conic section. As the term indicates, these
curves are the result of intersecting a cone (a right conical surface X2 + Y 2 = Z2)
with a plane at different angles (see Figure 9.5). Each quadratic equation can be
classified as an ellipse, a hyperbola, or a parabola. In order to classify a quadratic
equation, we simply “complete the squares” in the formula.

Figure 9.5. Conic sections arising from different intersections of a right con-
ical surface and a plane: (1) parabolas, (2) circles and ellipses, and (3) hyper-
bolas. Image source: Pbroks13 (author), Wikimedia Commons, used under
Creative Commons Attribution 3.0 Unported License.

Theorem 9.2.1. Let C : f(x, y) = 0 be a quadratic equation, given by

f(x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0,

where a, b, c, d, e, f are integers and a, b, or c is non-zero. Then, there is an
invertible (linear) change of variables X = αx+ βy+ κ and Y = γx+ δy+ ρ, with
integer coefficients, such that f in terms of the new variables X and Y is of the
reduced form

C ′ : (i) X2 +BY 2 = D or (ii) X2 = Y or (iii) X2 = E,

for some integers B, D, and E, where B is non-zero.

Proof. Let C be a quadratic equation given by

f(x, y) = ax2 + bxy + cy2 + dx+ ey + f,

such that a, b, and c are not all zero. Let us first assume that a or c are not zero.
Without loss of generality, let us assume that a is non-zero, and consider 4af(x, y).
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Then,

4af(x, y) = 4a2x2 + 4abxy + 4acy2 + 4adx+ 4aey + 4af

= (4a2x2 + 4abxy + 4adx) + 4acy2 + 4aey + 4af

= (4a2x2 + 4a(by + d)x) + 4acy2 + 4aey + 4af

= ((2ax+ (by + d))2 − (by + d)2) + 4acy2 + 4aey + 4af

= (2ax+ (by + d))2 + c′y2 + e′y + f ′,

where
c′ = 4ac− b2, e′ = 4ae− 2bd, f ′ = 4af − d2.

Now we consider several different cases:

• Suppose c′ = e′ = 0. Then, a change of variables X = 2ax+ by+d and Y = y
leads to

C ′ : X2 = E,

with E = −f ′. The inverse change of variables is y = Y and x =
1
2a (X − bY − d).

• If c′ = 0 but e′ �= 0, then

f(x, y) = (2ax+ (by + d))2 + e′y + f ′ = 0.

Therefore a change of variables X = 2ax+ by + d and Y = −(e′y + f ′) leads
to

C ′ : X2 = Y.

The inverse change of variables is given by y = − 1
e′ (Y + f ′) and x =

1
2a (X − by − d) = 1

2a (X + b( 1
e′ (Y + f ′))− d).

• If c′ �= 0, then we proceed as before and we multiply through by 4c′:

4c′(4af(x, y)) = 4c′((2ax+ (by + d))2 + c′y2 + e′y + f ′)

= 4c′(2ax+ (by + d))2 + 4c′2y2 + 4c′e′y + 4c′f ′

= 4c′(2ax+ (by + d))2 + (2c′y + e′)2 − e′2 + 4c′f ′.

Thus, a change of variables Y = 2ax+(by+d) and X = 2c′y+ e′ and putting
B = 4c′ and D = e′2 − 4c′f ′ leads to

C ′ : X2 +BY 2 = D.

The inverse change of variables is given by y = 1
2c′ (X − e′) and x =

1
2a (Y − b( 1

2c′ (X − e′))− d).

Finally, suppose that a = c = 0 and, therefore, b �= 0. Since xy = 1
4 ((x + y)2 −

(x− y)2), we have

f(x, y) = bxy + dx+ ey + f

=
b

4
(x+ y)2 − b

4
(x− y)2 + dx+ ey + f.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



250 9. An Introduction to Quadratic Equations

Hence, a change of variables V = x+y and W = x−y (with inverse x = (V +W )/2
and y = (V −W )/2) leads to

C0 : bV 2 − bW 2 + 2d(V +W ) + 2e (V −W ) + 4f

= bV 2 − bW 2 + 2(d+ e)V + 2(d− e)W + 4f = 0.

Since b �= 0 and by the first part of this proof, there is a further change of variables
that takes C0 to a quadratic equation of the form C ′ : X2 + BY 2 = D or X2 = Y
or X2 = E. �
Example 9.2.2. Let C : f(x, y) = 0 be the quadratic equation given by

C : 3x2 + 5xy + 7y2 + x+ y − 20 = 0.

Let us find a reduced form for C, following the method in the proof of Theorem
9.2.1. Let us first consider 4 · 3 · f(x, y):

12f(x, y) = 36x2 + 60xy + 12x+ 84y2 + 12y − 240

= (36x2 + (60y + 12)x) + 84y2 + 12y − 240

= (6x+ 5y + 1)2 − (5y + 1)2 + 84y2 + 12y − 240

= (6x+ 5y + 1)2 + 59y2 + 2y − 241.

Next, we multiply through by 4 · 59:
2832f(x, y) = 236(6x+ 5y + 1)2 + 4 · 592y2 + 472y − 241

= 236(6x+ 5y + 1)2 + (118y + 2)2 − 56880.

Therefore, the change of variables X = 118y + 2 and Y = 6x + 5y + 1 shows that
C can be reduced to C ′ : X2 + 236Y 2 = 56880.

Remark 9.2.3. The proof of Theorem 9.2.1 outlines a method to find a reduced
form (and a change of variables of a special form that will be exploited later to find
integral points; see Example 9.4.8) that works on all quadratic equations. However,
one can simplify the equations in particular cases. For instance, if a is a square, say
a = n2, and n divides b and d, then there is no need to multiply f(x, y) through by
4a, and one can simply multiply by 4. If in addition, b and d are divisible by 2n,
then one does not need to multiply through by 4 either, and we can complete the
square in x directly in the equation f(x, y) = 0. Similar considerations apply when
completing the square in the y variable. We illustrate this in the following example
(see also Example 9.2.8 below).

Example 9.2.4. Let us find a reduced form for the following equation:

C : f(x, y) = 4x2 − 12xy + 10x+ 9y2 − 15y + 5 = 0.

We complete the squares in x and y, as outlined in the proof of Theorem 9.2.1.
Since the coefficient of x2 is a = 4, already a square, we do not need to multiply
through by 4a and multiplying only by 4 is sufficient:

4f(x, y) = 16x2 − 48xy + 40x+ 36y2 − 60y + 20

= (16x2 + (40− 48y)x) + 36y2 − 60y + 20

= (4x+ 5− 6y)2 − (5− 6y)2 + 36y2 − 60y + 20

= (4x+ 5− 6y)2 − 5.
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Hence, a linear change of variables X = 4x+5−6y, Y = y, reduces C to C ′ : X2 = 5.
Thus, C is a product of two lines; namely (X −

√
5)(X +

√
5) = 0 which, in terms

of the original variables x and y, reads

C : 4f(x, y) =
(
4x− 6y + 5−

√
5
)(

4x− 6y + 5 +
√
5
)
= 0,

which is equivalent to the factorization we obtained in Example 9.1.12 using differ-
ent methods.

Exercise 9.2.5. Let us find a reduced form for the equation C : xy = 1. In this
case, since there is no x2 or y2 term, we use the equality xy = 1

4 ((x+y)2− (x−y)2)
to write

1 = xy =
1

4
((x+ y)2 − (x− y)2) =

(
x+ y

2

)2

−
(
x− y

2

)2

.

Thus, if we change variables X = (x+ y)/2 and Y = (x− y)/2, we find

1 = xy = X2 − Y 2.

That is, a reduced form is given by X2 − Y 2 = 1.

In Theorem 9.2.1 we have shown that a quadratic equation has a reduced form.
In the next result we show that the reduced form is unique, which will allow us to
classify quadratic equations as parabolas, ellipses, or hyperbolas.

Theorem 9.2.6. With notation as in Theorem 9.2.1:

(1) A quadratic equation C is uniquely represented (via a linear change of vari-
ables) by a reduced form C ′ of type

(i) X2 +BY 2 = D or (ii) X2 = Y or (iii) X2 = E,

for some integers B, D, and E, where B is non-zero.
(2) If C is represented by a reduced form of type (i), i.e., C ′ : X2 + BY 2 = D,

then in every representation of C the sign of B is the same.

Proof. For part (1), suppose that a quadratic equation C can be represented in
two of the forms (i), (ii), and (iii). Then, there are invertible linear changes of
variables (linear in X and Y ) such that C changes to each of the forms. Thus,
there is also an invertible linear change between two forms of the shape (i), (ii),
and (iii).

First, suppose that there is a change of variables from an equation of the form
X ′2 = Y ′ to one of the form X2+BY 2 = D, where B �= 0. Then X ′ = αX+βY +κ
and Y ′ = γX + δY + ρ, and

X ′2 − Y ′ = (αX + βY + κ)2 − (γX + δY + ρ)

= α2X2 + 2αβXY + β2Y 2 + · · · .

But if this is of the form X2 + BY 2 = D, then 2αβ = 0, and therefore β = 0.
Hence the change of variables would also eliminate the Y 2 coefficient and we reach
a contradiction. Similarly, if this change of variables leads to an equation of the
form X2 = E, then we must have β = 0 and also γ = 0 to eliminate the Y term,
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but this leaves a change of variables X ′ = αX + κ and Y ′ = γX + ρ which is not
invertible (the point (X0, Y ) maps to the same value (X ′

0, Y
′
0) for any value of Y ).

It remains to see that there is no change of variables that takes an equation
of the form X ′2 = E to one of the form X2 + BY 2 = D. As before, suppose the
change of variables is given by X ′ = αX + βY + κ and Y ′ = γX + δY + ρ. Then,

X ′2 − E = (αX + βY + κ)2 − E

= α2X2 + 2αβXY + β2Y 2 + · · ·
and therefore αβ = 0, so α = 0 or β = 0, which leads to either an equation in X or
an equation in Y , but never to an equation of the form X2 +BY 2 = D.

For part (2), suppose that C can be represented by C ′ : X2 + BY 2 = D and
by C ′′ : X ′2 + B′Y ′2 = D′, where B and B′ are non-zero and have different signs.
Then, one of B or B′ is positive, and we assume B′ > 0 without loss of generality
(and so B < 0). Moreover, there is a linear change of variables from C ′ to C ′′,
given by X ′ = αX + βY + κ and Y ′ = γX + δY + ρ. Thus,

(αX + βY + κ)2 +B′(γX + δY + ρ)2 −D′ = X2 +BY 2 −D.

Comparing the coefficients of X2, we see that α2 + B′γ2 = 1. Since B′ > 0, we
conclude that α = ±1 and γ = 0. Comparing coefficients of XY , we see that
2αβ = 0, and it follows that β = 0. Hence, B = B′δ2 > 0, which contradicts our
assumption B < 0. Thus, C ′ and C ′′ cannot be equivalent via a linear change of
variables. �

Definition 9.2.7. Let C : f(x, y) = 0 be a quadratic equation, and let C ′ be its
reduced form (as in Theorem 9.2.1). Then:

• If C ′ : X2 +BY 2 = 0 or if C ′ : X2 = E, then C is a product of two lines.
• If C ′ : X2 +BY 2 = D, with B > 0 and D �= 0, then C is an ellipse.
• If C ′ : X2 +BY 2 = D, with B < 0 and D �= 0, then C is a hyperbola.
• If C ′ : X2 = Y , then C is a parabola.

A quadratic equation that is not a product of two lines, i.e., a parabola, an ellipse,
or a hyperbola, is called a conic, or conic section.

Example 9.2.8. Consider the quadratic equation C : f(x, y) = 0 given by

C : 9x2 − 42xy + 30x+ 49y2 − 72y + 14 = 0.

Since the coefficient of x2 is already a square a = n2 = 9 and since the coefficients
of xy and x are multiples of 2n = 6, we can complete squares without multiplying
through by any factor:

f(x, y) = 9x2 − 42xy + 30x+ 49y2 − 72y + 14

= (9x2 + (30− 42y)x) + 49y2 − 72y + 14

= (3x+ (5− 7y))2 − (5− 7y)2 + 49y2 − 72y + 14

= (3x− 7y + 5)2 − (2y + 11).

Hence, C : f(x, y) = 0 can be reduced to C ′ : X2 = Y via a change of variables
X = 3x− 7y + 5 and Y = 2y + 11. Therefore, C is a parabola.
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Example 9.2.9. Let us consider the quadratic equation given by

C : f(x, y) = 7x2 − 46xy + 42x+ 22y2 + 12y − 49 = 0.

Let us find a reduced form for C by completing the squares in x and y. First, we
need to multiply through by 4 · 7 = 28:

28f(x, y) = 196x2 − 1288xy + 1176x+ 616y2 + 336y − 1372

= (142x2 + (1176− 1288y)x) + 616y2 + 336y − 1372

= (14x− 46y + 42)2 − (42− 46y)2 + 616y2 + 336y − 1372

= (14x− 46y + 42)2 − 1500y2 + 4200y − 3136.

Next, we multiply through by 15 to make the coefficient of y2 a perfect square:

420f(x, y) = 15(14x− 46y + 42)2 − 22500y2 + 63000y − 47040

= 15(14x− 46y + 42)2 − (150y − 210)2 + 2102 − 47040

= 15(14x− 46y + 42)2 − (150y − 210)2 − 2940.

Hence, C : f(x, y) = 0 can be reduced to C ′ : X2 − 15Y 2 = −2940 via a change of
variables X = 150y − 210 and Y = 14x− 46y + 42. Therefore, C is a hyperbola.

Note that we could have also simplified the equation, to obtain

21f(x, y) = 3(7x− 23y + 21)2 − 5(15y − 21)2 − 147.

In other words, C is also equivalent to C ′′ : 3X ′2−5Y ′2 = 147, via X ′ = 7x−23y+21
and Y ′ = 15y − 21.

Example 9.2.10. Let C be the quadratic equation given by xy+ x+ y = 10. Let
us find a reduced form for C. Since the coefficients of x2 and y2 are zero, we first
use a change of variables ψ : C → C0, from C to the curve C0, given by

C0 : V 2 −W 2 + 2V − 10 = 0

and ψ(x, y) = (x+ y, x− y). Now we can complete squares to find a reduced form
for C0:

V 2 −W 2 + 2V − 10 = (V + 1)2 − Y 2 − 11.

Thus, if we put C ′ : X2 − Y 2 = 11, then we have a map ϕ : C0 → C ′ with
ϕ(V,W ) = (V +1,W ). Hence, the reduced form of C is C ′, and so C is a hyperbola.
The change of variables from C to C ′ is given by ϕ◦ψ : C → C ′, which in coordinates
is given by

ϕ ◦ ψ(x, y) = ϕ(ψ(x, y)) = ϕ(x+ y, x− y) = (x+ y + 1, x− y).

The inverse map is given by

(ϕ ◦ ψ)−1(X,Y ) =

(
X + Y

2
− 1,

X − Y

2
− 1

)
.

Remark 9.2.11. In Part 3 of this book we will introduce the projective plane
(Section 15.1.2) and the projectivization of a curve (Section 15.1.4), and we will see
that a fixed conic C can appear to be an ellipse, hyperbola, or parabola, depending
on what affine chart we choose to represent C with. In other words, there are
projective changes of variables that bring a parabola to look like a hyperbola, or
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a hyperbola to look like an ellipse. We refer the reader to Section 15.1.4 for more
details, in particular Examples 15.1.4 and 15.1.5.

We finish this section with a summary of the bijections that we found in the
proof of Theorem 9.2.1, which will be used in later proofs.

Corollary 9.2.12. Let C : f(x, y) = 0 be a quadratic equation, given by

f(x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0,

where a, b, c, d, e, f are integers and a, b, or c is non-zero.

(1) Suppose that a is non-zero (the case of c �= 0 is similar, by switching the roles
of a and x, by c and y). Let c′ = 4ac− b2, e′ = 4ae− 2bd, and f ′ = 4af − d2.
(a) Suppose c′ = e′ = 0. Then, C is a product of two lines, and there is a

bijection ϕ : C → C ′, with C ′ : X2 = −f ′, of the form

ϕ(x, y) = (2ax+ by + d, y) and ϕ−1(X,Y ) =

(
1

2a
(X − bY − d), Y

)
.

(b) If c′ = 0, but e′ = 4ae − 2bd �= 0, then C is a parabola, and there is a
bijection ϕ : C → C ′, with C ′ : X2 = Y , of the form

ϕ(x, y) = (2ax+ by + d, (4ae− 2bd)y + 4af − d2),

and the inverse change of variables is given by

ϕ−1(X,Y ) =

(
1

2a

(
X +

b

e′
(Y + f ′)− d

)
,− 1

e′
(Y + f ′)

)
.

(c) If c′ �= 0, then there is a bijection ϕ : C → C ′, with C ′ : X2 + BY 2 = D
and B = 4c′ and D = e′2 − 4c′f ′, and a change of variables

ϕ(x, y) = (2c′y + e′, 2ax+ (by + d)),

and the inverse change of variables is given by

ϕ−1(X,Y ) =

(
1

2a

(
Y − b

2c′
(X − e′)− d

)
,
1

2c′
(X − e′)

)
.

(2) If a = c = 0, then there is a bijection ψ : C → C0 with C0 : a0V
2 + b0VW +

c0W
2+ · · · = 0 and a0 = b �= 0, defined by ψ(x, y) = (x+y, x−y) and inverse

ψ−1(V,W ) =
(
V+W

2 , V−W
2

)
, and a bijection ϕ : C0 → C ′ of the form of part

(a), (b), or (c) above. Thus, there is a bijection ϕ ◦ ψ : C → C ′. Moreover,

C0 : bV 2 − bW 2 + 2(d+ e)V + 2(d− e)W + 4f

so c′0 = −4b2, e′0 = 8b(d− e), and f ′
0 = 16bf − 4(d+ e)2.

Remark 9.2.13. As we pointed out in Remark 9.2.3, the equations we have pro-
duced in the proof of Theorem 9.2.1 and which are summarized in Corollary 9.2.12
are valid in the outmost general case, but in particular cases they can be simplified
(see for instance Examples 9.2.4, and 9.2.8).
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9.3. Rational Parametrizations of Conics

In this section, we determine all the rational points on a quadratic equation C, as
long as we already know at least one rational point. As we will see in Chapter 11,
there is a method (the Hasse–Minkowski theorem) to determine whether a quadratic
equation has at least one rational point, so in this section we assume that we have
found at least one such point on C(Q).

In order to parametrize a conic we shall use the method known as “stereographic
projection”. We already saw an example of this method in the introduction, in
Example 1.3.1, where we parametrized a hyperbola. In the following example, let
us parametrize a circle to fix ideas, before we prove that the method works in more
generality.

Example 9.3.1. Let N be a perfect square; i.e., N = R2, for some R ∈ Q. We
would like to find all the rational points on the circle C : x2 + y2 = N , i.e., all
the rational numbers x0, y0 ∈ Q such that x2

0 + y20 = R2. The idea is to take the
“north pole” of the circle, the point P = (0, R), and trace a line Lm of slope m
that passes through P . Since a line intersects a circle in either none or two points
(perhaps equal, if the line is tangent) and since Lm already intersects the circle at
P , it follows that there is a second point of intersection Qm ∈ C. We shall see that
Qm has rational coordinates (this is a consequence of Proposition 5.5.22), and we
will also show that every point Q in C(Q), except for the south pole (0,−R), is of
the form Q = Qm for some m ∈ Q. See Figure 9.6.

Figure 9.6. Stereographic projection of the circle of radius R. The graph
shows the line Lm for three values of the slope m = m1, m2, and m3 and their
corresponding points on the circle Qm1 , Qm2 , and Qm3 .

Let us begin with an equation for Lm. Since the slope is m and it passes
through P = (0, R), the equation of the line is

Lm : y −R = m(x− 0),
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or Lm : y = mx+R. In order to find the intersection points of Lm and C, we need
to solve the algebraic system: {

x2 + y2 = R2,

y = mx+R.

Substituting the second equation of the system into the first one, we reduce the
system to

R2 = x2 + (mx+R)2 = x2 +mx2 + 2mRx+R2,

or x · ((1 + m2)x + 2Rm) = 0. Therefore, either x = 0 or x = −2Rm/(1 + m2).
Using the equation for Lm, we obtain that the points of intersection are

P = (0, R) and Qm =

(
− 2Rm

1 +m2
,
R(1−m2)

1 +m2

)
.

Thus, Qm is a new point on C and, since R,m ∈ Q, the coordinates are rational
numbers, so Qm belongs to C(Q).

Conversely, if Q = (x0, y0) is another rational point on the circle, i.e., Q ∈ C(Q),
and Q is neither the north nor south pole, i.e., Q �= (0,±R), or, in other words,
x0 �= 0, then the line L from P = (0, R) to Q has a slope

m =
y0 −R

x0 − 0
=

y0 −R

x0
,

which is a rational number. Hence, L = Lm and Q = Qm, because L = Lm

intersects C at exactly two points P and Qm. Therefore, we have shown that

C(Q) =

{(
− 2Rm

1 +m2
,
R(1−m2)

1 +m2

)
: m ∈ Q

}
∪ {(0,−R)}.

We remark that P = Q0, and L0 is tangent to the circle at P ; hence the intersection
of L0 and C consists of a single point, P , of multiplicity 2.

When a quadratic equation C : f(x, y) = 0 is a product of two lines L and
L′, the parametrization of rational points is simple, as C(Q) = L(Q) ∪ L′(Q) (see
Examples 9.1.10, 9.1.11, and 9.1.12). We shall now prove that the method of
projection demonstrated above (in Examples 1.3.1 and 9.3.1) works on any conic,
i.e., on any quadratic equation that is not a product of two lines. First we treat
the case of parabolas, which is much easier.

Proposition 9.3.2. Let C ′ : X2 = Y be a parabola. Then, all the rational points
on C are of the form (X,Y ) = (t, t2), for some t ∈ Q. If C is another quadratic
equation which reduces to C ′ via a linear change of variables ϕ : C → C ′ with
rational coefficients, then all the rational points on C are of the form ϕ−1((t, t2))
for some t ∈ Q.

Proof. Clearly, any point (t, t2) belongs to C ′(Q), for any t ∈ Q. Conversely, let
P = (x0, y0) be a rational point on the parabola C ′(Q). Then, x2

0 = y0, so y0 is a
perfect square, and P = (x0, x

2
0), so it is of the form (t, t2) for t = x0 ∈ Q.

If C reduces to C ′ and ϕ : C → C ′ is a change of variables, then ϕ is a
bijection, and since the coefficients are rational, then ϕ(C(Q)) ⊆ C ′(Q). Moreover,
the coefficients of ϕ−1 are also rational, and so ϕ−1(C ′(Q)) ⊆ C(Q). It follows that
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ϕ(C(Q)) = C ′(Q), and therefore every rational point on C is of the form ϕ−1(P )
for some rational point P = (t, t2) in C ′(Q). �
Example 9.3.3. Let C be the quadratic equation of Example 9.2.8, given by

C : 9x2 − 42xy + 30x+ 49y2 − 72y + 14 = 0,

or, equivalently, C : (3x− 7y + 5)2 − (2y + 11) = 0. The curve C is a parabola in
reduced form, C ′ : X2 = Y , via

ϕ(x, y) = (3x− 7y + 5, 2y + 11),

with inverse ϕ−1(X,Y ) =
(
1
3 (X + 7

2 (Y − 11)− 5), Y −11
2

)
. Therefore, by Proposi-

tion 9.3.2, the rational points on C(Q) are given by

C(Q) =

{(
t

3
+

7t2

6
− 29

2
,
t2 − 11

2

)
: t ∈ Q

}
.

For instance, if we evaluate t = 0, we obtain Q = (−29/2,−11/2) in C(Q).

Theorem 9.3.4. Let C : f(x, y) = 0 be a quadratic equation that is not the product
of two lines, and let P = (x0, y0) be a rational point on C(Q). Let Lm be the line
through P that has slope m ∈ Q ∪ {∞}; i.e., Lm : y − y0 = m(x− x0), for m ∈ Q

and L∞ : x = x0. Then, Lm intersects C at exactly another point Qm ∈ C(Q) (we
have Qm = P for some m), and

C(Q) = {Qm : m ∈ Q ∪ {∞}}.

Proof. Let C : f(x, y) = 0 be a quadratic equation that is not the product of two
lines, and let P = (x0, y0) be a rational point on C(Q). Let Lm be the line through
P that has slope m ∈ Q ∪ {∞}; i.e.,

Lm : y − y0 = m(x− x0),

for m ∈ Q and L∞ : x = x0, when the slope is “infinite”.
When m = ∞, the intersection of L∞ and C is given by p∞(y) = f(x0, y), which

is a polynomial of degree ≤ 2 in y. When m ∈ Q, let pm(x) = f(x,m(x−x0)+ y0),
and note that pm(x) ∈ Q[x]. Then, C ∩ Lm = {(x, y) ∈ Lm : pm(x) = 0}. Suppose
that pm(x), for m ∈ Q∪{∞}, is identically zero as a polynomial, so that pm(x) = 0
for all x. In other words, f(x0, x) = 0 or f(x,m(x−x0)+y0) = 0 for all x. Then, it
follows from Proposition 9.1.13 that C is a product of two lines, contradicting our
initial hypothesis. Hence, pm(x) is not identically zero. Then, pm(x) is a non-zero
polynomial of degree ≤ 2. Now Theorem 5.5.19 implies that pm(x) has at most
two roots (counted with multiplicity). Since P ∈ Lm ∩C, the polynomial equation
pm(x) = 0 has either one or two distinct roots. If there is only one distinct root,
we define Qm = P ; otherwise there is a second point Qm ∈ Lm ∩ C. Moreover,
since pm(x) ∈ Q[x] is of degree ≤ 2 and x0 ∈ Q is a root of pm(x), it follows from
Proposition 5.5.22 that a second root of pm(x) would also be defined over Q and
this means that the x-coordinate of Qm is rational. Since Qm is also in Lm, and
Lm is defined over Q, it follows that the y-coordinate of Qm is also rational. Hence,
Qm ∈ Lm(Q) ∩C(Q). We note here that the slope of the tangent line of C at P is
rational; hence, P is of the form Qm for some m ∈ Q ∪ {∞} (see Exercise 9.5.8).

Thus, for each slope m ∈ Q∪{∞}, we have defined a rational point Qm ∈ C(Q).
It remains to show that every rational point Q ∈ C(Q) is of the form Q = Qm for
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some slope m. Indeed, let Q = (x1, y1) ∈ C(Q) and let L be the line that passes
through P and Q. Then, the slope of L is

m =
y1 − y0
x1 − x0

,

if x1 �= x0, or m = ∞ and L : x = x0 if x1 = x0. In either case, the slope m is a
rational number or ∞. Hence, L = Lm, and Q = Qm as defined above.

Therefore,
C(Q) = {Qm : m ∈ Q ∪ {∞}},

as claimed. �

Example 9.3.5. Let C : f(x, y) = 0 be the quadratic equation given by

C : x2 + xy + y2 = 1,

and let us parametrize all the rational points on C. Luckily, it is easy to spot a
point on P ; namely P = (1, 0). Let Lm be the line that passes through P with
slope m ∈ Q ∪ {∞}. When m = ∞, we have L∞ : x = 1, so Lm ∩ C is given by
those (1, y) such that

f(1, y) = 1 + y + y2 = 1,

so y(y + 1) = 0, and y = 0 or y = −1. Thus, the two points of intersection are
P = (1, 0) and Q∞ = (1,−1).

Now let m ∈ Q, so that Lm : y = m(x− 1). We find the intersection points of
Lm and C ′′ by solving {

y = m(x− 1),

x2 + xy + y2 = 1.

When we substitute the equation for Lm into the equation for C, we obtain

f(x,m(x− 1)) = x2 +mx(x− 1) +m2(x− 1)2 − 1

= (1 +m+m2)x2 − (2m2 +m)x+m2 − 1.

Thus, the solutions of f(x,m(x− 1)) = 0 are given by

x =
2m2 +m±

√
(2m2 +m)2 − 4(1 +m+m2)(m2 − 1)

2(1 +m+m2)

=
2m2 +m±

√
m2 + 4m+ 4

2(1 +m+m2)
=

2m2 +m±
√
(m+ 2)2

2(1 +m+m2)

=

{
1 or

m2−1
m2+m+1 .

The solution x = 1 was to be expected as P = (1, 0) is in the intersection of Lm

and C, for all m ∈ Q. The second solution is the x-coordinate of Qm, the second
point of intersection. Using the fact that Qm is in Lm, we find

x(Qm) =
m2 − 1

m2 +m+ 1
,

y(Qm) = m(x(Qm)− 1) = − m2 + 2m

m2 +m+ 1
.
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Finally, by Theorem 9.3.4, we have

C(Q) = {Qm : m ∈ Q ∪ {∞}}

=

{(
m2 − 1

m2 +m+ 1
,− m2 + 2m

m2 +m+ 1

)
: m ∈ Q

}
∪ {(1,−1)}.

For instance, when m = 0, 1, or 2, we have Q0 = (−1, 0), Q1 = (0,−1), and
Q2 = (3/7,−8/7), respectively. For what value of m do we get Qm = P? Notice
that the slope dy

dx of the tangent line to C at a point (x, y) is given by implicit
differentiation of f(x, y) as follows:

2x+ y + x
dy

dx
+ 2y

dy

dx
= 0.

Thus, dy
dx = −(2x + y)/(x + 2y), which evaluated at P = (1, 0) gives dy

dx (P ) = −2.
Indeed, when m = −2 we obtain Q−2 = P .

Example 9.3.6. Let us find a parametrization of all the rational points on the
quadratic equation given by

C : f(x, y) = 7x2 − 46xy + 42x+ 22y2 + 12y − 49 = 0.

It is usually convenient to first find the reduced form of the curve C (as in Theorem
9.2.1), as it is easier to parametrize a reduced form. For instance, it is easier to
find points on a reduced form.

In this case, we saw in Example 9.2.9 that C can be reduced to C ′ : X2−15Y 2 =
−2940 via a change of variables X = 150y−210 and Y = 14x−46y+42. Therefore,
C is a hyperbola. In fact the curve C is also equivalent to C ′′ : 3X ′2 − 5Y ′2 = 147,
via X ′ = 7x− 23y + 21 and Y ′ = 15y − 21. The curve C ′′ has a rational (integral)
point P = (7, 0), so let us parametrize C ′′.

Let Lm be the line through P = (7, 0) of slope m ∈ Q ∪ {∞}. If m = ∞, then
L∞ : X ′ = 7, and there are no additional points in the intersection of L∞ and C,
because f ′(7, Y ′) = −5Y ′2 = 0 is only possible when Y ′ = 0, which corresponds to
P .

Thus, let m ∈ Q and let Lm be given by Y ′ = m(X ′ − 7). We find the
intersection points of Lm and C ′′ by solving{

Y ′ = m(X ′ − 7),

3X ′2 − 5Y ′2 = 147.

Substitution yields

0 = 3X ′2 − 5(m(X ′ − 7))2 − 147 = (3− 5m2)X ′2 + 70m2X ′ − 147− 245m2.

The solutions of the quadratic equation are

X ′ =
−70m2 ±

√
(70m2)2 − 4(3− 5m2)(−147− 245m2)

6− 10m2

=
−70m2 ±

√
1764

6− 10m2
=

−70m2 ± 42

6− 10m2
=

−35m2 ± 21

3− 5m2

=

{
7 or
35m2+21
5m2−3 .
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As is to be expected, X ′ = 7 is a solution, because P = (7, 0) belongs to the inter-
section Lm ∩ C ′′, for all m ∈ Q. The second X ′ coordinate, however, corresponds
to a second point of intersection Q′

m. Since Q′
m is also in Lm, we obtain

X ′(Q′
m) =

35m2 + 21

5m2 − 3
,

Y ′(Q′
m) = m(X ′ − 7) = m

(
35m2 + 21

5m2 − 3
− 7

)
=

42m

5m2 − 3
.

Thus, Q′
m =

(
35m2+21
5m2−3 , 42m

5m2−3

)
and, by Theorem 9.3.4, we have

C ′′(Q) =

{(
35m2 + 21

5m2 − 3
,

42m

5m2 − 3

)
: m ∈ Q

}
.

Since we have a bijection ϕ : C → C ′′ given by ϕ(x, y) = (7x− 23y + 21, 15y − 21)
and inverse function

ϕ−1(X ′, Y ′) =

(
1

7

(
X ′ + 23

(
Y ′ + 21

15

)
− 21

)
,
Y ′ + 21

15

)
,

which send rational points to rational points, it follows that

C(Q) = ϕ−1(C ′′(Q)) = ϕ−1({Q′
m : m ∈ Q}).

If we put Qm = ϕ−1(Q′
m), then C(Q) = {Qm : m ∈ Q}. Therefore, we obtain

C(Q) = {Qm : m ∈ Q} =

{(
65m2 + 46m− 9

25m2 − 15
,
35m2 + 14m− 21

25m2 − 15

)
: m ∈ Q

}
.

For instance, when m = 0 or m = 1, we have Q0 = (3/5, 7/5) or Q1 = (51/5, 14/5)
∈ C(Q), respectively. When m = 2, we have Q2 = (343/85, 147/85) in C(Q).

9.4. Integral Points on Quadratic Equations

In this section we use the reduced form of a quadratic equation C to find all of
its integral points. We shall assume that we know all the integral points on the
reduced form C ′ and deduce all the integral points on C from those in C ′. In the
later chapters of this second part of the book, we will explain how to find integral
points on reduced forms. The key result that simplifies the search for integral points
on a quadratic equation is next.

Theorem 9.4.1. Let C be a quadratic equation and let C ′ be its reduced form.
Then, there is a linear change of variables φ : C → C ′ such that φ(C(Z)) ⊆
φ(C ′(Z)), and, in fact, C(Z) = φ−1(C ′(Z)) ∩ (Z× Z), or, equivalently,

C(Z) = {(x0, y0) ∈ Z× Z : φ((x0, y0)) ∈ C ′(Z)}.
Moreover, the change of variables given in Corollary 9.2.12 satisfies this property.

Proof. Let C : f(x, y) = 0 be a quadratic equation given by a polynomial f
with integer coefficients. Let C ′ be its reduced form, and let φ : C → C ′ be the
bijective change of variables given in Corollary 9.2.12. In every case, the map φ
is given by φ(x, y) = (g(x, y), h(x, y)) with g = αx + βy + δ, h = γx + κy + τ
linear polynomials in x, y, with integer coefficients. Indeed, this is immediate when
a �= 0 or c �= 0. When a = c = 0, then the map is given by the composition of
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9.4. Integral Points on Quadratic Equations 261

ϕ(x, y) = (g0(x, y), h0(x, y)), where g0 and h0 are linear with integer coefficients,
with ψ(x, y) = (x+ y, x− y), and therefore

φ(x, y) = ϕ(ψ(x, y)) = ϕ(x+ y, x− y) = (g0(x+ y, x− y), h0(x+ y, x− y)),

and g(x, y) = g0(x+ y, x− y), h(x, y) = h0(x+ y, x− y) are linear in x and y, with
integer coefficients, because g0 and h0 are linear and with integer coefficients:

g = g0(x+ y, x− y)

= α(x+ y) + β(x− y) + δ

= (α+ β)x+ (α− β)y + δ,

and similarly h = h0(x+ y, x− y) = (γ+ κ)x+(γ − κ)y+ τ . Hence, it follows that
if (x0, y0) ∈ C(Z), then

ϕ(x0, y0) = (g(x0, y0), h(x0, y0)) ∈ C ′,

and g(x0, y0) = (α+β)x0 +(α−β)y0 + δ and h(x0, y0) = (γ+κ)x0+(γ−κ)y0 + τ
are integers, so ϕ(x0, y0) ∈ C ′(Z). This shows that ϕ(C(Z)) ⊆ C ′(Z).

It remains to show that C(Z) = ϕ−1(C ′(Z)) ∩ (Z × Z). Since ϕ is a bijection
and both ϕ and ϕ−1 send rational points to rational points, it follows that C(Q) =
ϕ−1(C ′(Q)) and C(Z) = ϕ−1(C ′(Q)) ∩ (Z × Z). Thus, it suffices to show that if
Q ∈ C ′(Q) and ϕ−1(Q) ∈ C(Z), then Q ∈ C ′(Z).

Indeed, suppose that Q ∈ C ′(Q) and P = ϕ−1(Q) ∈ C(Z). By the first part of
the proof, we have ϕ(P ) ∈ C ′(Z), and, therefore, ϕ(P ) = ϕ(ϕ−1(Q)) = Q ∈ C ′(Z),
as desired. In words, we have shown that every integral point on C comes from an
integral point on C ′ via ϕ−1. Equivalently, if Q ∈ C ′(Q) and ϕ−1(Q) ∈ C(Z), then
Q ∈ C ′(Z). This shows that C(Z) = ϕ−1(C ′(Z)) ∩ (Z× Z). �

Example 9.4.2. Let C be the quadratic equation of Examples 9.2.8 and 9.3.3,
given by

C : 9x2 − 42xy + 30x+ 49y2 − 72y + 14 = 0,

or, equivalently, C : (3x− 7y + 5)2 − (2y + 11) = 0. The curve C is a parabola in
reduced form, C ′ : X2 = Y , via

ϕ(x, y) = (3x− 7y + 5, 2y + 11),

with inverse ϕ−1(X,Y ) =
(
1
3 (X + 7

2 (Y − 11)− 5), Y−11
2

)
. In Example 9.3.3 we

have found a parametrization of all the rational points on C. Here we intend to find
all the integral points on C. First, we note that the rational points on C ′ are (t, t2),
for t ∈ Q, so the integral points are (n, n2) for n ∈ Z. Thus, by Theorem 9.4.1, the
integral points on C are those (x0, y0) ∈ Z × Z such that ϕ((x0, y0)) = (n, n2) for
some n ∈ Z; i.e.,

(1)

{
3x0 − 7y0 + 5 = n,

2y0 + 11 = n2.

In order to verify the second equation of the system (1), the number n needs to
satisfy n2 ≡ 11 ≡ 1 mod 2; i.e., n ≡ 1 mod 2 so n is odd, so that y0 = (n2 − 11)/2
is an integer. Let us assume n is odd and write n = 2k + 1. In order for the
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first equation of (1) to have a solution, we need n + 7y0 − 5 ≡ 0 mod 3, so that
x0 = (n+ 7y0 − 5)/3 is also an integer. In other words,

2k + 1 + 7((2k + 1)2 − 11)/2− 5 ≡ 0 mod 3,

or, equivalently,

0 ≡ 2k + 1 + 7(2k2 + 2k − 5)− 5 ≡ 14k2 + 16k − 39 ≡ 2k2 + k mod 3,

where, in the last congruence, we have simply reduced the coefficients modulo
3. Hence, it suffices that k(k + 2) ≡ 0 mod 3, and therefore k ≡ 0 mod 3 or
k + 2 ≡ 0 mod 3. Thus, k = 3h or k = 3h + 1, for some h ∈ Z. It follows that
n = 2k + 1 = 6h+ 1 or 6h+ 3 for some h ∈ Z. For such n, we have

(x0, y0) =

(
1

3

(
n+

7

2
(n2 − 11)− 5

)
,
n2 − 11

2

)
=

{
(42h2 + 16h− 13, 18h2 + 6h− 5) or
(42h2 + 44h− 3, 18h2 + 18h− 1),

for any h ∈ Z. Therefore, we have shown

C(Z) = {(42h2 + 16h− 13, 18h2 + 6h− 5) : h ∈ Z}
∪ {(42k2 + 44k − 3, 18k2 + 18k − 1) : k ∈ Z}.

For instance, when h = 0 and k = 0 we obtain integral points (−13,−5) and
(−3,−1) ∈ C(Z). When h = 1 and k = 1 we obtain points (45, 19) and (83, 35) ∈
C(Z), respectively.

In the previous example, in order to find all the integral points on a parabola,
we had to solve two different quadratic congruences in one variable; namely n2 ≡
1 mod 2, and 2k2 + k ≡ 0 mod 3. In the following chapter, Chapter 10, we will
study how to solve quadratic congruences in general and how to determine whether
quadratic congruences in one variable have solutions. Here we show that, in fact,
the problem of finding the integral points on a parabola can always be reduced to
solving a finite number of quadratic congruences in one variable.

Theorem 9.4.3. Let C : f(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0 be a
parabola, given by an equation with integer coefficients. Let e′ = 4ae− 2bd �= 0 and
f ′ = 4af − d2. Let a �= 0 (or switch the roles of x and y). Then, C has an integral
point if and only if

(1) the congruence N2 ≡ f ′ mod e′ has a solution N ≡ n1 mod e′ and
(2) the congruence

be′K2 + (2bn1 − e′)K + bt+ d− n1 ≡ 0 mod 2a

has a solution K ≡ k1 mod 2a, where t = (n2
1 − f ′)/e′.

Moreover, if C(Z) is non-empty, then every integral point on C is of the form
ϕ−1((n, n2)), for some n ≡ n1 + e′k1 mod 2ae′, for some n1 and k1 as in (1) and
(2) above, where ϕ is the bijection given in Corollary 9.2.12, part (b).

Proof. Let C : f(x, y) = ax2 + bxy + cy2 + · · · = 0 be a parabola, where the
coefficients of f are integers. It follows from Corollary 9.2.12 that c′ = 4ac− b2 = 0
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and either a or c is non-zero (if a = c = 0 and C is a parabola, then c′0 = 8b2 = 0, so
b = 0 as well and C would not be quadratic, a contradiction). Let us assume a �= 0
(otherwise we switch the roles of a and x by c and y). Thus, there is a bijection
from C to C ′ : X2 = Y of the form

ϕ(x, y) = (2ax+ by + d,−(e′y + f ′)),

and the inverse change of variables is given by

ϕ−1(X,Y ) =

(
1

2a

(
X +

b

e′
(Y + f ′)− d

)
,− 1

e′
(Y + f ′)

)
,

where e′ = 4ae − 2bd �= 0 and f ′ = 4af − d2. By Theorem 9.4.1, a point with
coordinates (x0, y0) ∈ Z×Z is an integral point on C(Z) if and only if there is some
n ∈ Z such that {

2ax0 + by0 + d = n,

−(e′y0 + f ′) = n2.
(9.1)

The second equation of (9.1) has a solution if and only if n2 ≡ −f ′ mod e′. Let
us assume this is the case, and let n ≡ n1 mod e′ be a solution. Then, the first
equation of (9.1) also has a solution if and only if we have

2ax0 + b(−(n2 + f ′)/e′) + d = n,

and if n = n1 + e′k, for some k ∈ Z, and n2
1 + f ′ = e′t, for some t ∈ Z, we have

2ax0 − b(t+ 2n1k + e′k2) + d = n1 + e′k.

Equivalently, we need the following quadratic equation in k to have a solution:

be′k2 + (e′ − 2bn1)k + bt− d+ n1 ≡ 0 mod 2a,(9.2)

for some k ∈ Z. Hence, if k ≡ k1 mod 2a is a solution to the quadratic congruence
in (9.2), so that k = k1 + 2ah for some h ∈ Z is a solution, then ϕ−1((n, n2)) is
an integral point on C(Z) for any n = n1 + e′k = n1 + e′(k1 + 2ah) = n1 + e′k1 +
2ae′h, for any h ∈ Z, i.e., as long as n ≡ n1 + e′k1 mod 2ae′. And conversely, if
Q = (x0, y0) ∈ C(Z), then we have just shown that Q = ϕ−1((n, n2)) for some
n ≡ n1 + e′k1 mod 2ae′, where n2

1 ≡ f ′ mod e′ and k1 satisfies the congruence in
(9.2). �

Example 9.4.4. Let C be the quadratic equation given by

C : 4x2 + 12xy + 20x+ 9y2 + 25y + 23 = 0.

The reader can verify that C is a parabola (Exercise 9.5.9). Let us find all the
integral points on C. By Theorem 9.4.3, first we need to solve the congruence
N2 ≡ f ′ mod e′, where e′ = −80 and f ′ = −32. In other words, we need to solve
the congruence

N2 ≡ −32 mod 80.

(Note that x ≡ s mod t if and only if x ≡ s mod (−t).) Since 80 is divisible by 5 if
N2 ≡ −32 mod 80, then we also have N2 ≡ −2 ≡ 3 mod 5, where N is an integer.
However, the squares modulo 5 are 0, 1, and 4 mod 5, but there is no integer N
such that N2 ≡ 3 mod 5. (We will revisit the question of what congruences are
squares in Chapter 10, in much more detail.) Hence, there is no integer N such
that N2 ≡ −32 mod 80. Therefore, by Theorem 9.4.3, the parabola C has no
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integral points! Of course, it does have infinitely many rational points, and the
reader can find a parametrization of all of them, using the methods of our previous
chapter. For instance, (−19/10,−2/5), (−17/10,−1/5), and (−107/30, 7/45) are
points in C(Q).

Example 9.4.5. Let C be the quadratic equation of Example 9.4.2, given by

C : 9x2 − 42xy + 30x+ 49y2 − 72y + 14 = 0.

Let us once again find the integral points, now using Theorem 9.4.3. In this case,
c′ = 4ac − b2 = 0, e′ = −72 �= 0, and f ′ = −396. First we need to solve the
congruence

N2 ≡ 396 mod (−72),

or, equivalently, N2 ≡ 36 mod 72 (the sign in the modulus of a congruence is
irrelevant), which has solutions, for instance N ≡ ±6 mod 72. In fact, a quick
search yields all the solutions: n1 ≡ 6, 18, 30, 42, 54, and 66 mod 72. For each one
of these values of n1, we obtain t = (n2

1 − 396)/(−72) = 5, 1, −7, −19, −35, and
−55, respectively. Now we need to solve the congruences:

(i) 3024K2 + 432K − 234 ≡ 0 mod 18, which holds for any K, because every
coefficient is ≡ 0 mod 18;

(ii) 3024K2 + 1440K − 54 ≡ 0 mod 18, which holds for any K, because every
coefficient is ≡ 0 mod 18;

(iii) 3024K2 + 2448K + 294 ≡ 0 mod 18, or 6 ≡ 0 mod 18, which is impossible;
(iv) 3024K2 + 3456K + 810 ≡ 0 mod 18, which holds for any K;
(v) 3024K2 + 4464K + 1494 ≡ 0 mod 18, which holds for any K;
(vi) 3024K2 + 5472K + 2346 ≡ 0 mod 18, or 6 ≡ 0 mod 18, which is impossible.

Hence, we need n ≡ n1 ≡ 6, 18, 42, or 54 mod 72, or, equivalently, n1 = 6k with
k ≡ 1, 3, 7, or 9 mod 12, or, equivalently, k ≡ 1 or 3 mod 6. Thus, n = 6(6h+ 1) or
6(6h+ 3) for some h ∈ Z. Since the change of variables is given by

ϕ−1(X,Y ) =

(
1

18

(
X +

7

12
(Y − 396)− 30

)
,
1

72
(Y − 396)

)
,

we can calculate ϕ−1((n, n2)) when n = 6(6h− 1):

(42h2 + 16h− 13, 18h2 + 6h− 5),

and when n = 6(6h+ 3):

(42h2 + 44h− 3, 18h2 + 18h− 1).

Therefore, we have shown

C(Z) = {(42h2 + 16h− 13, 18h2 + 6h− 5) : h ∈ Z}
∪ {(42k2 + 44k − 3, 18k2 + 18k − 1) : k ∈ Z},

as we had already shown in Example 9.4.2.

Next, we treat the case of integral points on an ellipse or hyperbola.
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Theorem 9.4.6. Let C : f(x, y) = ax2 + bxy+ cy2 + dx+ ey+ f = 0 be an ellipse
or a hyperbola, given by an equation with integer coefficients. Let c′ = 4ac−b2 �= 0,
e′ = 4ae− 2bd, and f ′ = 4af − d2, and let C ′ : X2 + 4c′Y 2 = D be a reduced form
of C, with D = e′2 − 4c′f ′.

(1) Let a �= 0 (or switch the roles of x and y if a = 0 and c �= 0). Then, C has
an integral point if and only if there is an integral point (X0, Y0) ∈ C ′(Z) such
that {

X0 ≡ e′ mod 2c′,

Y0 ≡ b((X0 − e′)/2c′) + d mod 2a.

(2) Suppose a = c = 0. Then C has an integral point if and only if there is
(X0, Y0) ∈ C ′(Z) such that⎧⎪⎨⎪⎩

X0 ≡ 8b(d− e) mod 8b2,

Y0 ≡ 2(d+ e) mod 2b,

(Y0 − 2(d+ e))/2b ≡ (X0 − 8b(d− e))/8b2 mod 2.

Proof. Let C : f(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0 be an ellipse or a
hyperbola, with integer coefficients. Let us first assume that a or c is non-zero, and
assume that a �= 0 without loss of generality. Then, there is a non-zero B and D
such that C is reduced to C ′ : X2+BY 2 = D, via a change of variables ϕ : C → C ′

of the form
ϕ(x, y) = (2c′y + e′, 2ax+ by + d),

and the inverse change of variables is given by

ϕ−1(X,Y ) =

(
1

2a

(
Y − b

2c′
(X − e′)− d

)
,
1

2c′
(X − e′)

)
.

By Theorem 9.4.1, a point (x0, y0) ∈ Z×Z is an integral point on C(Z) if and only
if there is an integral point (X0, Y0) ∈ C ′(Z) such that ϕ((x0, y0)) = (X0, Y0), or,
equivalently, if and only if the system{

2c′y0 + e′ = X0,

2ax0 + by0 + d = Y0

(9.3)

has a solution (x0, y0) ∈ Z × Z. Given (X0, Y0) ∈ C ′(Z), the first equation of the
system (9.3) has a solution if and only if X0 ≡ e′ mod 2c′. Let us assume this is
the case, and put t0 = (X0 − e′)/2c′ ∈ Z. Then, the second equation of (9.3) has a
solution if and only if

Y0 ≡ bt0 + d mod 2a.

This proves part (1).
For part (2), let us assume that a = c = 0 and b �= 0. Let C0 be the conic

defined in Corollary 9.2.12, given by

C0 : bV 2 − bW 2 + 2(d+ e)V + 2(d− e)W + 4f = 0

so c′0 = −4b2 �= 0, e′0 = 8b(d−e), and f ′
0 = 16bf − (d+e)2. Let C ′ : X2+BY 2 = D

be the reduced form of C0. Then, by part (1), a point (V0,W0) ∈ Z × Z is an
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integral point on C0(Z) if and only if there is an integral point (X0, Y0) ∈ C ′(Z)
such that {

X0 ≡ e′0 mod 2c′0,

Y0 ≡ b0((X0 − e′0)/2c
′
0) + d0 ≡ d0 mod 2a0,

(9.4)

because b0 = 0 in the equation for C0. Since ψ : C → C0 is a bijection given by
ψ((x0, y0)) = (x0 + y0, x0 − y0) and it sends integer points to integer points, it
remains to understand when ψ−1((V0,W0)) ∈ Z × Z, for some (V0,W0) ∈ C0(Z).
Since ψ−1((V0,W0)) = ((V0+W0)/2, (V0−W0)/2), it follows that ψ−1((V0,W0)) ∈
Z× Z if and only if V0 ≡ W0 mod 2.

Hence, (x0, y0) ∈ Z∩Z belongs to C(Z) if and only if there is (X0, Y0) ∈ C ′(Z)
such that (ψ ◦ ϕ)−1(X0, Y0) = (x0, y0) if and only if (X0, Y0) ∈ C ′(Z) maps to
(V0,W0) ∈ C0(Z) via ϕ−1 and (V0,W0) maps to (x0, y0) via ψ−1, which in turn is
equivalent to (9.4) and V0 ≡ W0 mod 2. Using the definition of ϕ−1, we see that
(x0, y0) ∈ Z ∩ Z belongs to C(Z) if and only if there is (X0, Y0) ∈ C ′(Z) such that⎧⎪⎨⎪⎩

X0 ≡ e′0 mod 2c′0,

Y0 ≡ d0 mod 2a0,

(Y0 − d0)/2a0 ≡ (X0 − e′0)/2c
′
0 mod 2,

(9.5)

as claimed. �

Example 9.4.7. Let C : f(x, y) = 0 be the quadratic equation given by

C : 3x2 + 5xy + 7y2 + x+ y − 20 = 0.

In the notation of Corollary 9.2.12, we have c′ = 59 �= 0, e′ = 2, and f ′ = −241,
B = 236, and D = 56880. Therefore, C can be reduced to

C ′ : X2 + 236Y 2 = 56880.

By Theorem 9.4.6, the ellipse C has an integral point if and only if C ′ has an
integral point (X0, Y0) such that{

X0 ≡ 2 mod 118,

Y0 ≡ 5((X0 − 2)/118) + 1 mod 6.

Let us first try to find such a point on C ′. Since C ′ is an ellipse, we know from its
equation for instance that |X| ≤

√
56880 ≤ 239. Since we need X0 ≡ 2 mod 118,

then there are only very limited options for X0, namely X0 = 2, 120, 238, −116,
or −234. Out of these, we calculate for which values of X0 we have that Y0 =
±
√
(56880−X2

0 )/236 is an integer, and we find only four valid options (X0, Y0) =
(−234,±3) and (238,±1). The point also needs to satisfy the congruence Y0 ≡
5((X0− 2)/118)+1 mod 6, and only (−234, 3), (−234,−3), and (238,−1) do. Now
we may use our inverse map ϕ−1 to find the corresponding integral points on C,
given by

ϕ−1(X,Y ) =

(
1

6

(
Y − 5

118
(X − 2)− 1

)
,

1

118
(X − 2)

)
.

Hence, the preimages of (−234,−3), (−234, 3), and (238,−1) via ϕ are, respectively,
(1,−2), (2,−2), and (−2, 2), and these are all the integral points on C. Notice that
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the integral point (238, 1) on C ′(Z) is mapped back to (−5/3, 2) in C(Q), which is
not integral.

Example 9.4.8. Let C : f(x, y) = 0 be the quadratic equation given by

C : x2 − 10xy + 14x− 128y2 − 274y + 357 = 0.

In the notation of Corollary 9.2.12, we have c′ = −612 �= 0, e′ = −816, and
f ′ = 1232, B = −2448, and D = 3681792. Therefore, C can be reduced to

C ′ : X2 − 2448Y 2 = 3681792.

By Theorem 9.4.6, the ellipse C has an integral point if and only if C ′ has an
integral point (X0, Y0) such that{

X0 ≡ −816 mod 1224,

Y0 ≡ −10(−(X0 + 816)/1224) + 14 mod 2.

The large coefficients in the equation of C ′ (and consequently the coefficients in
the congruence for X0) make the task of finding integral points on C ′ unnecessarily
difficult in this case, because we can find a simpler reduced model (this comment
goes back to our Remarks 9.2.3 and 9.2.13). Indeed,

f(x, y) = x2 − 10xy + 14x− 128y2 − 274y + 357

= (x2 + (−10y + 14)x)− 128y2 − 274y + 357

= (x− 5y + 7)2 − (−5y + 7)2 − 128y2 − 274y + 357

= (x− 5y + 7)2 − 153y2 − 204y + 308

= (x− 5y + 7)2 − 17(9y2 + 12y) + 308

= (x− 5y + 7)2 − 17(3y + 2)2 + 376.

Therefore, C can also be reduced to C ′′ : X2 − 17Y 2 = −376, via

ϕ(x, y) = (x− 5y + 7, 3y + 2).

In particular, C has an integral point (x0, y0) if and only if C ′′ has an integral point
(X0, Y0) such that

Y0 ≡ 2 mod 3.

Notice that the congruence in X0 would be modulo 1, so that is always verified!
Moreover, C ′′ has an integral point Q1 = (7, 5), and since Y0 = 5 ≡ 2 mod 3, then
Q1 corresponds to an integral point in C; namely,

P1 = (x, y) =

(
X0 + 5

(
Y0 − 2

3

)
− 7,

Y0 − 2

3

)
= (5, 1).

Similarly, Q2 = (41, 11) is a point on C ′′, and the Y -coordinate is 11 ≡ 2 mod 3.
Thus, Q2 corresponds to a point on C(Z); namely,

P2 = (x, y) =

(
X0 + 5

(
Y0 − 2

3

)
− 7,

Y0 − 2

3

)
= (41 + 15− 7, 3) = (49, 3).

In order to find all the integral points on C(Z), however, we first need to determine
all the integral points on C ′′(Z) with Y -coordinate ≡ 2 mod 3. In Chapters 14 and
13 we will discuss methods to find all the integral points on hyperbolas, such as
C ′′.
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9.5. Exercises

Exercise 9.5.1. Find the normal and tangent vectors to each curve C below at
the specified point P :

(a) C : x2 + y2 = 1 at P = (0, 1).
(b) C : x2 + y2 = 1 at P = (3/5, 4/5).
(c) C : x2 − y2 = 0 at P = (2, 2).
(d) C : x2 + xy − 2y2 + 4x− y + 3 = 0 at P = (3, 4).
(e) C : x2 + xy − 2y2 + 4x− y + 3 = 0 at P = (4, 5).

Exercise 9.5.2. Each of the quadratic equations below is a product of two lines L
and L′. Find the equations of the lines L and L′.

(a) C1 : 15x2 − 8xy − 55y2 − 29x+ 87y − 14 = 0.
(b) C2 : 18x2 + 60xy + 50y2 − 33x− 55y − 21 = 0.
(c) C3 : 9x2 − 42xy + 49y2 − 6x+ 14y − 2 = 0.

(d) C4 : −14x2 + 104xy + 152x+ 71y2 − 282y − 337 = 0.

Exercise 9.5.3. For each of the quadratic equations C in Exercise 9.5.2, determine
C(Q) and C(Z); i.e., find all the rational and integral points on C.

Exercise 9.5.4. Let k ∈ Q, and let C be the curve given by the quadratic equation

C : 8x2 + (2k + 12)xy + 3ky2 + 2x+ (k − 3)y − 1 = 0.

(a) Show that C is a product of two lines L and L′, for all values of k, and find
the equations for both lines.

(b) Find the values of k such that L and L′ are parallel.
(c) Is there a value of k such that L and L′ are perpendicular? (Two lines L and

L′ of slopes m and m′ are perpendicular if m′ = −1/m.)

Exercise 9.5.5. Classify the following quadratic equations C as products of two
lines, parabolas, ellipses, or hyperbolas, and find a reduced form C ′ and a change
of variables ϕ : C → C ′ such that ϕ(C(Z)) ⊆ C ′(Z).

(a) x2 + xy + y2 = 0.
(b) x2 + xy + y2 = 1.
(c) x2 − xy + y2 = 1.
(d) xy + 1 = 0.
(e) xy − 1 = 0.
(f) x2 + xy = 0.
(g) x2 + xy + 1 = 0.
(h) x2 + xy + y + 1 = 0.

Exercise 9.5.6. For each of the quadratic equations C in Exercise 9.5.5, determine
C(Q); i.e., find all the rational points on C. In addition, if C is a product of two
lines, a parabola, or an ellipse, then determine all the integral points on C as well.
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Exercise 9.5.7. Let k ∈ Q and let C be the curve given by the equation

C : x2 − 2xy + ky2 − 4y − 1 = 0.

Find all the values of k, if any, such that C is

(a) a product of two lines,
(b) a parabola,
(c) an ellipse,
(d) a hyperbola.

Exercise 9.5.8. Let C : f(x, y) = 0 be a quadratic equation with f(x, y) ∈ Z[x, y].
Let P = (x0, y0) be a rational point on C(Q). Show that the slope of the tangent
line L of C at P is a rational number and the tangent line L itself is defined by a
linear polynomial with rational coefficients.

Exercise 9.5.9. Let C be a quadratic equation given by

C : 4x2 + 12xy + 20x+ 9y2 + 25y + 23 = 0.

(a) Show that C is a parabola.
(b) Find a change of variables from C to C ′ : X2 = Y .
(c) Find a parametrization of C(Q), the rational points on C.

Exercise 9.5.10. Find all integral solutions to the diophantine equation

48x2 + 162xy + 105y2 = 129.

(Hint: first, factor the left-hand side as (ax+ by)(cx+ dy).)

Exercise 9.5.11. Find a rational point on the quadratic equation

C : 7x2 − 10xy − 5y2 − 32x− 20y = 39.

(Hint: first find a reduced form for C.)

Exercise 9.5.12. Let E be the ellipse given by x2 + 2y2 = 738.

(1) Find a parametrization for the rational points on the ellipse E.
(2) Find all the integral points on E.

Exercise 9.5.13. Let H be the hyperbola given by x2 − 5y2 = 16.

(1) Find a parametrization for the rational points on the hyperbola H.
(2) Can you find at least five distinct natural points on H?

Exercise 9.5.14. Let C be the parabola given by the equation

x2 + 2xy + y2 + x+ 4y + 1 = 0.

(a) Parametrize all the rational points on C.
(b) Parametrize all the integral points on C.

Exercise 9.5.15. Find all the integral points on the conic given by the equation

x2 + xy + y2 − x− y = 1.

Exercise 9.5.16. Find all the integral points on the conic given by the equation

5x2 + xy + y2 − 3x− 7y + 6 = 0.
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CHAPTER 10

QUADRATIC CONGRUENCES

It is not knowledge, but the act of learning, not
possession but the act of getting there, which grants
the greatest enjoyment.

In a letter from Carl Friedrich Gauss
to Farkas Bolyai (September 2, 1808)

In Chapter 4 we have learned how to solve linear congruences ax ≡ b mod m
(using Euclid’s algorithm and Bezout’s identity; see Section 4.4) and systems of
linear congruences (using the Chinese remainder theorem; see Section 4.5). The
goal of this chapter is to explain whether a quadratic congruence of the form

ax2 + bx+ c ≡ 0 mod m

has solutions and, if it has any, to explain how to find them. Before we begin, we
remind the reader of a couple of examples we have already seen in previous chapters,
where quadratic congruences appeared naturally and played an important role.

Example 10.0.1. In Example 4.2.8, we showed that the conic C : x2−5y2 = 2 has
no integral points. The proof was based on the fact that the quadratic congruence
x2 ≡ 2 mod 5 has no solutions.

Example 10.0.2. Let C be a parabola, given by a quadratic equation of the form
f(x, y) = 0. Are there integral points on C? In Chapter 9 (Section 9.4, Theorem
9.4.3) we saw that C has integral points if and only if certain quadratic congruences
have solutions. For instance, let C : 4x2+12xy+20x+9y2+25y+23 = 0. One of the
conditions needed for the existence of integral points on C is that N2 ≡ −32 mod 80
has a solution, but this congruence has no solutions modulo 80. See Examples 9.4.4
and 9.4.5.

271
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272 10. Quadratic Congruences

10.1. The Quadratic Formula

Let a, b, c and m > 1 be integers, with a �= 0. If we want to find the roots of a
quadratic polynomial ax2 + bx + c over the complex numbers, then we have the
well-known quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

Does this formula work modulo m? Indeed, it does work, as long as (2a,m) = 1.
Here is why. Suppose that x is an integer that satisfies ax2 + bx + c ≡ 0 mod m.
Then, we may complete the square to obtain an equivalent congruence:

0 ≡ x2 +
b

a
x+

c

a

≡ x2 + 2 ·
(

b

2a

)
x+

(
b

2a

)2

−
(

b

2a

)2

+
c

a

≡
(
x+

b

2a

)2

− b2 − 4ac

(2a)2
.

Notice that we were able to find an inverse for a and for 2a because (2a,m) = 1,
by assumption. Thus, (

x+
b

2a

)2

≡ b2 − 4ac

(2a)2
mod m.(10.1)

Proposition 10.1.1. Let a, b, c ∈ Z, with a �= 0, and let m > 1 be an integer
relatively prime to 2a.

(a) Suppose that α is an integer such that α2 ≡ b2 − 4ac mod m. Then

x ≡ −b± α

2a
≡ (2a)−1 · (−b± α) mod m

are solutions of ax2 + bx + c ≡ 0 mod m, where (2a)−1 is the multiplicative
inverse of 2a mod m.

(b) If ax2 + bx + c ≡ 0 mod m has a solution, then there exists α ∈ Z such that
α2 ≡ b2 − 4ac mod m and x ≡ (−b+ α) · (2a)−1 mod m.

Proof. Let a, b, c,m be as in the statement of the proposition. It follows from our
previous discussion that x ∈ Z is a solution of ax2 + bx+ c ≡ 0 mod m if and only
if (10.1) holds.

(1) Suppose that α is some integer with α2 ≡ b2 − 4ac mod m. Then, x is a
solution of the quadratic congruence if and only if(

x+
b

2a

)2

≡ α2

(2a)2
≡
( α

2a

)2
mod m.

Therefore, if x + b/(2a) ≡ ±α/(2a) mod m, then x will also verify the
original quadratic congruence. The latter congruence is equivalent to x ≡
(−b± α)/(2a) mod m, as desired.
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(2) Suppose x ∈ Z is a solution of ax2+ bx+ c ≡ 0 mod m, and therefore x is also
a solution of (10.1). Then,

b2 − 4ac ≡ (2a)2 ·
(
x+

b

2a

)2

≡
(
(2a) ·

(
x+

b

2a

))2

mod m.

Therefore, α ≡ 2a(x+b/2a) mod m satisfies α2 ≡ b2−4ac mod m, as claimed.
In particular, 2ax+ b ≡ α mod m, and therefore x ≡ (−b+α) · (2a)−1 mod m.

�

In particular, the previous proposition shows that m must be odd for the “qua-
dratic formula” to work modulo m, because we need to invert 2 modulo m. The
number α in the proposition is a square root of b2 − 4ac modulo m. If we write√
b2 − 4ac instead of α in the formulas, then we obtain the usual quadratic formula.

The quantity b2 − 4ac is called the discriminant of the quadratic equation.

Example 10.1.2. Find all the solutions of the quadratic congruence

3x2 + 5x+ 6 ≡ 0 mod 7.

By Proposition 10.1.1,

x ≡ −5± α

6
mod 7

where α2 ≡ 25 − 4 · 3 · 6 ≡ 4 + 5 ≡ 9 mod 7. Thus, α ≡ 3 mod 7 works. And
6−1 ≡ −1 mod 7. Hence,

x ≡ −(−5± 3) ≡ 2 or 1 mod 7.

Let us check that, for example, x ≡ 2 mod 7 is a solution:

3(2)2 + 5 · 2 + 6 ≡ 12 + 10 + 6 ≡ 28 ≡ 0 mod 7.

Finally, Z/pZ is a field and f(x) = 3x2 + 5x + 6 is a polynomial of degree 2 over
Z/pZ[x]. Hence, it has at most two distinct roots. Thus, x ≡ 1 and 2 mod 7 are
the only solutions modulo 7.

Example 10.1.3. Show that the following quadratic congruence has no solutions:

x2 + 5x+ 5 ≡ 0 mod 7.

By Proposition 10.1.1, if there was a solution, then the discriminant is a square
modulo 7; i.e., b2 − 4ac ≡ 25− 20 ≡ 5 ≡ α2 mod 7, for some α ∈ Z. However, 5 is
not a square modulo 7 because the only squares mod 7 are 0, 1, 2, and 4.

If the modulus of a quadratic congruence is not prime, then we may use the
Chinese remainder theorem to solve the congruence:

Example 10.1.4. Find all the solutions of the following quadratic congruence:

3x2 + 3x+ 17 ≡ 0 mod 35.(10.2)

We will solve this problem in two different ways; see Example 10.1.5 for an alter-
native solution. By Proposition 10.1.1, every solution of (10.2) is of the form

x ≡ (−3 + α) · (2 · 3)−1 mod 35,

where α satisfies α2 ≡ 32 − 4 · 3 · 17 ≡ 15 mod 35. Thus, in order to find all the
roots of (10.2), we first need to find all the roots of y2 ≡ 15 mod 35. We could do
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this by “brute force” (i.e., calculate y2 mod 35 for every 0 ≤ y < 35), since 35 is
small, but, instead, let us use the Chinese remainder theorem (Theorem 4.5.9).

The equation y2 ≡ 15 mod 35 has solutions if and only if the system{
y2 ≡ 0 mod 5,

y2 ≡ 1 mod 7

has a common solution, since 35 = 5 · 7, and 15 ≡ 0 mod 5, and 15 ≡ 1 mod 7.
This system is equivalent to y ≡ 0 mod 5, and y ≡ ±1 mod 7. Hence, there are two
possible solutions {

y ≡ 0 mod 5,

y ≡ 1 mod 7
and

{
y ≡ 0 mod 5,

y ≡ −1 mod 7.

Thus, y ≡ 15 mod 35, or y ≡ 20 mod 15. Therefore, there are two possibilities for
α ≡ 15 and 20 mod 15, which correspond to the following solutions of (10.2):

x ≡ −3 + 15

6
≡ 2 and x ≡ −3 + 20

6
≡ 32 mod 35.

Hence, the unique solutions of 3x2 +3x+17 ≡ 0 mod 35 are x ≡ 2 and 32 mod 35.

Example 10.1.5. Find all the solutions of the following quadratic congruence:

3x2 + 3x+ 17 ≡ 0 mod 35.(10.3)

In Example 10.1.4 we saw one solution; here we provide an alternative approach.
Let f(x) ≡ 3x2 + 3x + 17 mod 35. Then, by the Chinese remainder theorem,
f(x) ≡ 0 mod 35 if and only if f(x) ≡ 0 mod 5 and f(x) ≡ 0 mod 7, because
35 = 5 · 7 and (5, 7) = 1. Thus, we begin solving the congruence modulo 5 and 7,
separately:

• Mod 5: (10.3) mod 5 is equivalent to 3x2+3x+2 ≡ 0 mod 5. The discriminant
of this equation is 9−4·3·2 ≡ 0 mod 5 and 6−1 ≡ 1 mod 5. Thus, the solutions
are x ≡ −3±0 ≡ 2 mod 5. This means that 2 mod 5 is a double root. Indeed,

3x2 + 3x+ 2 ≡ 3(x2 + x+ 4) ≡ 3(x− 2)2 mod 5.

• Mod 7: (10.3) mod 7 is equivalent to 3x2 + 3x+ 3 ≡ 3(x2 + x+ 1) ≡ 0 mod 7
which, in turn, is equivalent to x2 + x + 1 ≡ 0 mod 7, because 3 �= 0 mod 7.
The discriminant of the latter equation is 1 − 4 · 1 · 1 ≡ −3 ≡ 4 ≡ 22 mod 7,
and 2−1 ≡ 4 mod 7. Thus, the solutions are x ≡ 4(−1± 2) ≡ 4 or 2 mod 7.

Now, we can reconstruct a solution modulo 35 using the Chinese remainder theorem.
The possibilities are{

x ≡ 2 mod 5,

x ≡ 2 mod 7
or

{
x ≡ 2 mod 5,

x ≡ 4 mod 7.

The solutions of these systems are, respectively, x ≡ 2 mod 35 and x ≡ 32 mod 35.
Therefore, x ≡ 2 and x ≡ 32 mod 35 are the unique solutions of (10.3).
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Example 10.1.6. Find all the solutions of the following quadratic congruence:

x2 + x+ 8 ≡ 0 mod 35.(10.4)

By Proposition 10.1.1, every solution of (10.4) is of the form

x ≡ (−1 + α) · 2−1 mod 35,

where α satisfies α2 ≡ 12 − 4 · 1 · 8 ≡ −31 ≡ 4 mod 35. Thus, in order to find all
the roots of (10.4), we first need to find all the roots of y2 ≡ 4 mod 35. Clearly,
y ≡ ±2 mod 35 are solutions. Working modulo 5 and modulo 7 and using the
Chinese remainder theorem, we can show that all the roots of y2 ≡ 4 mod 35 are
y ≡ ±2 and ±12 mod 35. Hence, the solutions of (10.4) are

x ≡ −1 + 2

2
≡ 18, x ≡ −1 + 33

2
≡ 16, x ≡ −1 + 12

2
≡ 23, x ≡ −1 + 23

2
≡ 11

modulo 35; i.e., the solutions are x ≡ 11, 16, 18, and 23 mod 35.
Alternatively, let f(x) ≡ x2 + x + 8 mod 35. We proceed as in the previous

example. Thus, we begin solving the congruence modulo 5 and 7, separately:

• Mod 5: (10.4) mod 5 is equivalent to x2 + x+3 ≡ 0 mod 5. The discriminant
of this equation is 1 − 4 · 3 ≡ −11 ≡ 4 mod 5 and 2−1 ≡ 3 mod 5. Thus, the
solutions are x ≡ 3(−1± 2) ≡ 3 or 1 mod 5.

• Mod 7: (10.4) mod 7 is equivalent to x2 + x+1 ≡ 0 mod 7. The discriminant
is 1 − 4 · 1 · 1 ≡ −3 ≡ 4 ≡ 22 mod 7 and 2−1 ≡ 4 mod 7. Thus, the solutions
are x ≡ 4(−1± 2) ≡ 4 or 2 mod 7.

Now, we can reconstruct a solution modulo 35 using the Chinese remainder theorem.
The possibilities are {

x ≡ 1 mod 5,

x ≡ 2 mod 7
or

{
x ≡ 1 mod 5,

x ≡ 4 mod 7

or {
x ≡ 3 mod 5,

x ≡ 2 mod 7
or

{
x ≡ 3 mod 5,

x ≡ 4 mod 7.

The solutions of these systems are, respectively, x ≡ 16 mod 35, x ≡ 11 mod 35,
x ≡ 23 mod 35, and x ≡ 18 mod 35. Therefore, the (10.4) has exactly four distinct
solutions: x ≡ 11, 16, 18, and 23 mod 35.

Remark 10.1.7. Notice that Z/35Z is not a field (3 and 5 are zero-divisors!) and,
therefore, a polynomial of degree 2 in Z/35Z[x] may have more than two distinct
roots, as the previous example illustrates.

10.2. Quadratic Residues

In the previous section we have shown that, at least for an odd modulus m > 1, in
order to solve any quadratic congruence ax2 + bx+ c ≡ 0 mod m, we need to solve
equations of the form x2 ≡ d mod m (where d is the discriminant of the quadratic
equation; i.e., we need to solve x2 ≡ b2 − 4ac mod m). Thus, we turn our attention
to identifying the squares and non-squares modulo m.
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Definition 10.2.1. Let m > 1 and let a ∈ Z, relatively prime to m; i.e., a is a
unit modulo m. We say that a is a quadratic residue modulo m (or a QR mod
m) if there is an integer b such that a ≡ b2 mod m. Otherwise, we say that a is a
quadratic non-residue modulo m (or a QNR mod m).

Example 10.2.2. The quadratic residues modulo 7 are 1, 2, and 4, because 1 ≡ 12,
2 ≡ 32, and 4 ≡ 22 mod 7. The quadratic non-residues are 3, 5, and 6 mod 7
because the equations x2 ≡ 3, 5, or 6 mod 7 have no solutions with x ∈ Z.

There is only one quadratic residue modulo 3, namely 1 mod 3. There is also
only one quadratic non-residue modulo 3, namely 2 mod 3.

The quadratic residues modulo 5 are {1, 4 mod 5} while the quadratic non-
residues are {2, 3 mod 5}.

The quadratic residues modulo 11 are {1, 3, 4, 5, 9} while the quadratic non-
residues are {2, 6, 7, 8, 10}. This can be shown by squaring every congruence class
modulo 11 and seeing what congruence classes appear upon squaring:

x mod 11 1 2 3 4 5 6 7 8 9 10

x2 mod 11 1 4 9 5 3 3 5 9 4 1

We remark that in all cases above, p > 2 is prime and there are precisely p−1
2

quadratic residues and p−1
2 quadratic non-residues modulo p.

Proposition 10.2.3. Let p > 2 be a prime. Then, there are precisely p−1
2 quadratic

residues and p−1
2 quadratic non-residues modulo p.

Proof. Let p > 2 be a prime. We claim that S =
{
12, 22, . . . ,

(
p−1
2

)2}
is a complete

set of representative of all quadratic residues modulo p. Indeed:

• Suppose that a is a QR mod p. Then, a ≡ b2 mod p, for some 1 ≤ b ≤ p− 1,
and b2 ≡ (−b)2 mod p. Thus, either b or −b is congruent to a number in the
range 1, . . . , p−1

2 . Hence we may assume 1 ≤ b ≤ p−1
2 with b2 ≡ a mod p and,

consequently, a is congruent to a number in S.
• All the elements of S are distinct modulo p. Suppose 1 ≤ i, j ≤ p−1

2 and
i2 ≡ j2 mod p. Then, i ≡ ±j mod p (because p is prime), but 1 ≤ i, j ≤ p−1

2
forces i ≡ j mod p.

Hence, all the elements of S are quadratic residues (since they are squares of units,
by definition), and we have shown that all quadratic residues have a representative
in S and all elements of S are distinct modulo p. Thus, there are exactly p−1

2

quadratic residues in Z/pZ. Since there are p−1 units, there are p−1− p−1
2 = p−1

2
quadratic non-residues. �
Remark 10.2.4. In Exercise 10.8.7 we outline an alternative proof of Proposition
10.2.3 that uses group theory.

Remark 10.2.5. Obviously, 1 mod p is always a quadratic residue modulo p, be-
cause 12 ≡ 1 mod p. When is 2 mod p a quadratic residue modulo p? This is far
from obvious and, more generally, deciding whether a mod p is a quadratic residue is
difficult. However, Gauss’s law of quadratic reciprocity will provide a very efficient
method to settle this question (see Section 10.4).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



10.2. Quadratic Residues 277

Example 10.2.6. Suppose that p > 2 is an odd prime. When is −1 mod p a
quadratic residue?

• When p = 3, the congruence class of −1 ≡ 2 mod 3 is a quadratic non-residue,
because −1 is not congruent to a square modulo 3.

• For p = 5, however, −1 ≡ 4 ≡ 22 mod 5 and so −1 is a QR mod 5.
• −1 is a QNR modulo 7, because, as we have seen above in Example 10.2.2,

the list of QNR’s modulo 7 is {3, 5, 6 mod 7}.
• −1 is also a QNR modulo 11, because the list of QNR’s modulo 11 is 2, 6, 7,

8, and 10 mod 11.

Here is a small table of odd primes p and square roots of −1 mod p, if there is one:

p 3 5 7 11 13 17 23 29 31 37 41√
−1 QNR ±2 QNR QNR ±5 ±4 QNR ±12 QNR ±6 ±9

Is there a pattern? It turns out that −1 mod p is a quadratic residue if and only if
p ≡ 1 mod 4. We shall prove this next in two different ways. In our first approach,
we shall use primitive roots, and then we will offer a proof that does not rely on
the existence of primitive roots.

Lemma 10.2.7. Let p > 2 be a prime and let a ∈ Z be relatively prime to p. Let
g ∈ Z be a primitive root modulo p and let n be the least positive integer such that
gn ≡ a mod p. Then, a mod p is a quadratic residue if and only if n is even.

Proof. Let p, a, g, and n be as in the statement of the lemma. Suppose first
that n is even, with n = 2m. Then, a ≡ gn ≡ (gm)2 mod p, and so a mod p is a
QR. Suppose now that a is a quadratic residue. Then, there is d ∈ Z such that
d2 ≡ a mod p. Let m be the least positive integer such that gm ≡ d mod p. Then,

a ≡ d2 ≡ g2m mod p.

Thus, we have that a ≡ g2m and also a ≡ gn mod p. It follows that g2m−n ≡
1 mod p. Since g is a primitive root, its order is p− 1 and, by Proposition 8.1.5, we
conclude that p− 1 divides 2m− n. In other words, there is some k ∈ Z such that
k(p− 1) = 2m− n, or n = 2m− k(p− 1). Since p > 2 is odd, p− 1 is even and so
must be n, as claimed. �

Theorem 10.2.8. Let p > 2 be an odd prime. Then, the congruence class of
−1 mod p is a quadratic residue modulo p if p ≡ 1 mod 4 and a quadratic non-
residue if p ≡ 3 mod 4.

Proof. Let p > 2 be a prime. By Theorem 8.4.1, there is a primitive root g mod p.
Since g is a unit, by Fermat’s little theorem we know that gp−1 ≡ 1 mod p. Since
p is odd, the number p−1

2 is an integer, and g(p−1)/2 is a root of x2 ≡ 1 mod p,
because

(g
p−1
2 )2 ≡ gp−1 ≡ 1 mod p.

Since p is prime, by Theorem 5.5.19, the polynomial x2 − 1 has at most two roots
in Z/pZ, so the only roots are ±1 mod p. Hence, g(p−1)/2 ≡ ±1 mod p. However,
g(p−1)/2 ≡ 1 mod p is not possible because ordp(g) = p − 1 and not (p − 1)/2. It
follows that g(p−1)/2 ≡ −1 mod p.
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Thus, n = p−1
2 is the least positive integer such that gn ≡ −1 mod p and,

therefore, by Lemma 10.2.7, the class of −1 mod p is a quadratic residue if and
only if n is even, i.e., if p−1

2 = 2k, for some k ∈ Z. It follows that −1 mod p is a
quadratic residue if and only if p = 1 + 4k, or p ≡ 1 mod 4. Similarly, −1 mod p is
a quadratic non-residue if and only if n is odd, i.e., if p−1

2 = 2k+1, for some k ∈ Z.
It follows that −1 mod p is a quadratic non-residue if and only if p = 3 + 4k, or
p ≡ 3 mod 4, as claimed. �

Example 10.2.9. The proof of Theorem 10.2.8 tells us that −1 mod p is a QR if
and only if p ≡ 1 mod 4, but it also tells us how to find a square root in the case
when p ≡ 1 mod 4. Indeed, a square root is given by g(p−1)/4, where g mod p is a
primitive root.

For instance, let p = 13. The class of 2 mod 13 is a primitive root and, therefore,
2(13−1)/4 must be a square root of −1 mod 13. Indeed,

2
13−1

4 ≡ 23 ≡ 8 mod 13,

and 82 ≡ (−5)2 ≡ 25 ≡ 12 ≡ −1 mod 13.

As promised, now we offer a second proof of Theorem 10.2.8 that does not
use primitive roots. First, we shall use Wilson’s theorem to compute the value of
((p− 1)/2)! mod p for an odd prime p.

Lemma 10.2.10. Let p be an odd prime, and let r = (p− 1)/2. Then,

(r!)2 ≡ (−1)(p+1)/2 mod p.

Proof. By Wilson’s theorem, Theorem 7.1.7, we have (p− 1)! ≡ −1 mod p. Thus,

−1 ≡ (p− 1)!

≡ 1 · 2 · 3 · · ·
(
p− 1

2

)
·
(
p+ 1

2

)
· · · (p− 3)(p− 2)(p− 1)

≡ (−1)(p−1)/2 ·
(
1 · 2 · 3 · · ·

(
p− 1

2

))2

,

where we have used the fact that p− k ≡ (−1) · k mod p, for all 1 ≤ k ≤ r, where
r = (p− 1)/2. Hence, −1 ≡ (−1)(p−1)/2(r!)2 mod p, or, equivalently,

(r!)2 ≡ (−1)(p+1)/2 mod p,

as desired. �

Now we are ready to write an alternative proof for Theorem 10.2.8.

Proof of Theorem 10.2.8. Suppose first that a2 ≡ −1 mod p for some integer
a ∈ Z relatively prime to p. Raising both sides of the congruence to the power of
(p− 1)/2 we obtain on one hand

(a2)(p−1)/2 ≡ ap−1 ≡ 1 mod p
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by Fermat’s little theorem and on the other hand

1 ≡ (a2)(p−1)/2 ≡ (−1)(p−1)/2 mod p.

Since p > 2 is odd, 1 �≡ −1 mod p, and therefore we must have that the exponent
(p− 1)/2 is even. This implies that p ≡ 1 mod 4.

For the converse, suppose that p ≡ 1 mod 4. Then, by Lemma 10.2.10 we have

(r!)2 ≡ (−1)(p+1)/2 mod p,

where r = (p − 1)/2. Since p ≡ 1 mod 4, it follows that (p + 1)/2 is odd, and
therefore (r!)2 ≡ −1 mod p. In particular, −1 is a quadratic residue modulo p, as
desired. �

Example 10.2.11. Lemma 10.2.10 gives a formula for the square root of −1 mod p,
when p ≡ 1 mod 4. For instance, let p = 13. The lemma shows that (r!)2 ≡
−1 mod 13, where r = (13− 1)/2 = 6. We can compute

6! ≡ 6 · 5 · 4 · 3 · 2 · 1 ≡ (6 · 2) · (4 · 3) · 5 ≡ (−1) · (−1) · 5 ≡ 5 mod 13,

and, indeed, 52 ≡ 25 ≡ −1 mod 13.

10.3. The Legendre Symbol

How can we tell if a given integer a is a quadratic residue or a quadratic non-residue
modulo a prime p? One could write down a complete list of all the quadratic residues
following the ideas of the proof of Proposition 10.2.3. However, if p is large, this
may be a daunting task! For instance, is 4699 a square modulo 4703? The following
definition, lemmas, and theorems (including the law of quadratic reciprocity) will
simplify this job enormously.

Definition 10.3.1. Let p > 2 be an odd prime and let a be an integer. The
Legendre symbol (or quadratic residue symbol) is defined as follows:

(
a

p

)
=

⎧⎪⎨⎪⎩
0 if p | a,
1 if a is a quadratic residue mod p,

−1 if a is a quadratic non-residue mod p.

Remark 10.3.2. The Legendre symbol
(
a

p

)
is only defined for odd primes p.

Example 10.3.3. Here are some values of the Legendre symbol:(
21

7

)
= 0,

(
23

7

)
= 1,

(
3

7

)
= −1,

(
73

7

)
= −1.

Reasons: 7 divides 21, 23 ≡ 2 ≡ 32 mod 7, 3 is a QNR mod 7, and 73 ≡ 3 mod 7,
so 73 is also a QNR.
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Here are some basic properties of the Legendre symbol:

Lemma 10.3.4. Let p > 2 be a prime and let a, b be integers relatively prime to p.
Then:

(1)
(
ab2

p

)
=

(
a

p

)
. In particular,

(
b2

p

)
= 1.

(2) If a ≡ b mod p, then
(
a

p

)
=

(
b

p

)
.

(3)
(
−1

p

)
= (−1)(p−1)/2.

Proof. Let p > 2 be a prime and let gcd(a, p) = gcd(b, p) = 1. Then:

(1) Since a, b are units modulo p, then ab2 is also a unit. The number ab2 ≡
d2 mod p if and only if a ≡ d2b−2 ≡ (db−1)2 mod p. Thus, ab2 is a QR if and
only if a is a QR mod p. Notice that b2 is a square, and so it is a QR mod p,
for any b relatively prime to p.

(2) Suppose a ≡ b mod p. Then a ≡ d2 mod p if and only if b ≡ a ≡ d2 mod p.
Hence, a is a QR if and only if b is a QR.

(3) In Theorem 10.2.8, we showed that −1 is a square modulo p if and only if
p ≡ 1 mod 4. Since p is odd, p ≡ 1 or 3 mod 4, and (p− 1)/2 is even (and so

(−1)(p−1)/2 = 1) if and only if p ≡ 1 mod 4. Thus,
(
−1

p

)
= (−1)(p−1)/2, as

claimed. �

Example 10.3.5. Is 39 a quadratic residue modulo 43? Equivalently, what is the
value of

(
39
43

)
? Notice that 39 ≡ −4 mod 43. Thus,(

39

43

)
=

(
−4

43

)
=

(
(−1) · 4

43

)
=

(
−1

43

)
= (−1)

42
2 = (−1)21 = −1,

where we have used properties (2), then (1), and then (3). Hence, 39 is a quadratic
non-residue modulo 43.

Proposition 10.3.6 (Euler’s criterion). Let p > 2 be a prime and let a ∈ Z be
relatively prime to p. Then, (

a

p

)
≡ a

p−1
2 mod p.

Proof. Let p > 2 be a prime, and let gcd(a, p) = 1. Let β ∈ Z be a primitive root
modulo p and let n be the least positive integer such that βn ≡ a mod p.

• If a mod p is a QR, then n = 2m is even, by Lemma 10.2.7. Thus,

a
p−1
2 ≡ (β2m)

p−1
2 ≡ (βp−1)m ≡ 1 ≡

(
a

p

)
mod p.
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• If a mod p is a QNR, then n = 2m+ 1 is odd. Thus,

a
p−1
2 ≡ (β2m+1)

p−1
2 ≡ (β

p−1
2 )2m+1 ≡ (−1)2m+1 ≡ −1 ≡

(
a

p

)
mod p

where we have used the fact that β(p−1)/2 ≡ −1 mod p because β is a primitive
root.

Thus, in both cases
(
a

p

)
≡ a

p−1
2 mod p. �

Remark 10.3.7. Alternatively, since p > 2 is odd, Corollary 8.6.14 says that a
is a quadratic residue mod p if and only if a(p−1)/2 ≡ 1 mod p. Since a(p−1)/2 ≡
±1 mod p, for all units a mod p, Euler’s criterion follows.

We offer yet another proof of Euler’s criterion that does not rely on primitive
roots.

Alternative proof of Euler’s criterion. Suppose first that a ∈ Z is relatively
prime to p and that it is a quadratic residue mod p, so that a ≡ b2 mod p, for some
integer b. Then,

a(p−1)/2 ≡ (b2)(p−1)/2 ≡ bp−1 ≡ 1 mod p

by Fermat’s little theorem.
Now suppose that a is not a quadratic residue. Since (a(p−1)/2)2 ≡ ap−1 ≡

1 mod p, it follows that a(p−1)/2 is a root of x2 ≡ 1 mod p, so a(p−1)/2 ≡ ±1 mod p
by Lemma 7.1.4. The polynomial x(p−1)/2 ≡ 1 mod p has at most (p− 1)/2 roots
in Z/pZ by Theorem 5.5.19, and the (p− 1)/2 quadratic residues mod p are roots
(we know there are (p − 1)/2 quadratic residues by Proposition 10.2.3). Thus, a
quadratic non-residue cannot be a root of x(p−1)/2 ≡ 1 mod p, and it follows that
a(p−1)/2 ≡ −1 mod p, as claimed. �

Example 10.3.8. Is 2 a quadratic residue modulo 17? We shall use Euler’s crite-
rion which, in this case, says that(

2

17

)
≡ 28 mod 17.

Clearly, 24 ≡ 16 ≡ −1 mod 17 and so 28 ≡ (−1)2 ≡ 1 mod 17. Therefore, 2 is a
quadratic residue.

The following result is a (surprising) corollary of Euler’s criterion.

Corollary 10.3.9. Let p > 2 be prime and let a, b ∈ Z. Then,(
a

p

)
·
(
b

p

)
=

(
ab

p

)
.
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Proof. If a or b ≡ 0 mod p, then the equality is trivial (0 = 0). Otherwise, we
shall use Euler’s criterion three times:(

a

p

)
·
(
b

p

)
≡ a

p−1
2 · b

p−1
2

≡ (ab)
p−1
2

≡
(
ab

p

)
mod p.

Since the integers involved are all equal to ±1, if they are congruent modulo p > 2,
then they must be equal. �

Remark 10.3.10. If the reader is not surprised by the statement of Corollary
10.3.9, then try reading the statement once again. Part of the statement is not
surprising at all: if a and b are quadratic residues, then a ≡ d2 and b ≡ e2 mod p
and, of course, ab ≡ (de)2 mod p and so ab is also a QR. The surprising part of
the statement is that if a and b are both quadratic non-residues, then ab must be
a quadratic residue! Thus, the previous corollary can be interpreted as follows:

QR × QR = QR, QR × QNR = QNR, and QNR × QNR = QR.

Example 10.3.11. Let p = 17. Find all the quadratic residues modulo p.
We know that there are exactly (17 − 1)/2 = 8 quadratic residues, by Propo-

sition 10.2.3. Clearly, 1, 4, 9, and 16 ≡ −1 mod 17 are quadratic residues. Thus,
all products of two of them must also be a QR. So 4 · 9 ≡ 36 ≡ 2, −4 ≡ 13, and
−9 ≡ 8 mod 17 are also QRs. And −2 ≡ 15 must be a QR as well. Hence, the
quadratic residues modulo 17 are 1, 2, 4, 8, 9, 13, 15, and 16 mod 17.

Notice that the set of congruences {1, 2, 4, 8, 9, 13, 15, 16} modulo 17 is closed
under multiplication. Now pick two quadratic non-residues, for example 3 and
5. Then, their product 15 must be a quadratic residue, and it is! Indeed 72 ≡
15 mod 17.

Lemma 10.3.4 determines when −1 is a square modulo p. When is 2 a quadratic
residue mod p? Is 2 a quadratic residue modulo 4001? How about modulo 4003?

Theorem 10.3.12. Let p > 2 be a prime. Then,(
2

p

)
= (−1)

p2−1
8 .

In other words, 2 is a quadratic residue of p if p ≡ ±1 mod 8 and a quadratic
non-residue if p ≡ ±3 mod 8.

Proof. First, we explain why the two formulations are equivalent. Let p = a+8k.
Then (p2 − 1)/8 = (a2 − 1)/8 + 2ak + 8k2 is even for a = 1, 7 and odd for a = 3, 5.
Hence, (−1)(p

2−1)/8 = 1 for p ≡ 1, 7 mod 8 and equals −1 for p ≡ 3, 5 mod 8.
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In order to prove the theorem, we will use Euler’s criterion, so we will calculate
2(p−1)/2 mod p. We distinguish two cases:

• If p ≡ 1 or 5 mod 8 (i.e., p ≡ 1 mod 4), we can write

2
p−1
2

(
p− 1

2

)
! ≡ 2

p−1
2 · 1 · 2 · 3 · · ·

(
p− 1

2

)
≡ 2

p−1
2 · 1 · 2 · 3 · · ·

(
p− 1

4

)
·
(
p+ 3

4

)
· · ·
(
p− 1

2

)
≡ 2 · 4 · 6 · · ·

(
p− 1

2

)
·
(
p+ 3

2

)
· · · (p− 3) · (p− 1)

≡ 2 · 4 · 6 · · ·
(
p− 1

2

)
·
(
−p− 3

2

)
· · · (−3) · (−1)

≡ 2 · 4 · 6 · · ·
(
p− 1

2

)
·
(
p− 3

2

)
· · · (3) · (1) · (−1)

p−1
4

≡ 1 · 2 · 3 · · ·
(
p− 1

2

)
· (−1)

p−1
4

≡ (−1)
p−1
4 ·

(
p− 1

2

)
! mod p

and since ((p− 1)/2)! mod p is a unit, we obtain(
2

p

)
≡ 2

p−1
2 ≡ (−1)

p−1
4 mod p

which equals 1 if p ≡ 1 mod 8 and equals −1 if p ≡ 5 mod 8.

• If p ≡ 3 or 7 mod 8 (i.e., p ≡ 3 mod 4), we can work similarly:

2
p−1
2

(
p− 1

2

)
! ≡ 2 · 4 · 6 · · ·

(
p− 3

2

)
·
(
p+ 1

2

)
· · · (p− 3) · (p− 1)

≡ 2 · 4 · 6 · · ·
(
p− 3

2

)
·
(
−p− 1

2

)
· · · (−3) · (−1)

≡ 1 · 2 · 3 · · ·
(
p− 1

2

)
· (−1)

p+1
4

≡ (−1)
p+1
4 ·

(
p− 1

2

)
! mod p.

Thus,
(

2
p

)
≡ 2

p−1
2 ≡ (−1)

p+1
4 mod p which equals 1 if p ≡ 7 mod 8 and equals

−1 if p ≡ 3 mod 8.

�

Example 10.3.13. The numbers p = 4001 and q = 4003 are primes. The number
2 is a quadratic residue for 4001 (because 4001 ≡ 1 mod 8) but it is not a quadratic
residue modulo 4003. Notice that finding a square root of 2 modulo 4001 is not
an easy task! But Theorem 10.3.12 says there is one. Here is one root: 11562 ≡
2 mod 4001.
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Example 10.3.14. Is 12 a quadratic residue modulo 43?
One may be tempted to attack this problem as follows:(

12

43

)
=

(
3

43

)
·
(

4

43

)
=

(
3

43

)
.

However, it is not clear a priori whether 3 is a QR or a QNR. Instead, let us try
another way: (

12

43

)
=

(
2

43

)
·
(

6

43

)
.

It is not hard to find a square root of 6 modulo 43 because 6 ≡ 49 mod 43. Hence 6
is a QR. Moreover, by Theorem 10.3.12, the number 2 is a QNR modulo 43 (because
43 ≡ 3 mod 8). Thus,(

12

43

)
=

(
2

43

)
·
(

6

43

)
= (−1) · 1 = −1.

Therefore, 12 is not a square modulo 43. By the way, this implies that 3 is not a
square either, because, as we saw above,

(
12
43

)
=
(

3
43

)
.

10.4. The Law of Quadratic Reciprocity

Thus far, we know how to calculate the following Legendre symbols:(
−1

p

)
,

(
2

p

)
, and

(
a2

p

)
.

Suppose we want to calculate
(

n
p

)
. Since the Legendre symbol is multiplicative

(by Corollary 10.3.9) and if n has a prime factorization n = qe11 qe22 · · · qerr , for some
primes qi, then,(

n

p

)
=

(
qe11 qe22 · · · qerr

p

)
=

(
qe11
p

)
·
(
qe22
p

)
· · ·
(
qerr
p

)
=

(
q1
p

)e1

· · ·
(
qr
p

)er

.

Therefore, if we knew how to calculate
(

q
p

)
, for any odd primes q and p, then we

could calculate
(

n
p

)
for any n ∈ Z.

Example 10.4.1. Just to fix ideas, let us repeat the same discussion with some
concrete numbers. Let n = 151875000 and calculate(

151875000

151875023

)
.

Yes, 151875023 is prime! First, factor n. It turns out that n = 151875000 =
23 · 35 · 57. Thus,(

151875000

151875023

)
=

(
23 · 35 · 57
151875023

)
=

(
23

151875023

)
·
(

35

151875023

)
·
(

57

151875023

)
=

(
2

151875023

)3

·
(

3

151875023

)5

·
(

5

151875023

)7

.
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By Theorem 10.3.12,
(

2
151875023

)
= 1 because the prime in the denominator is

congruent to 7 mod 8. Now, if we were able to calculate
(

3
151875023

)
and

(
5

151875023

)
,

we would be done! This is precisely what the law of quadratic reciprocity will help
us accomplish, in a simple way.

The law of quadratic reciprocity (see Theorem 10.4.2 below) was conjectured by
Euler and Legendre and first proven by Gauss. He referred to it as the “fundamental
theorem” in the Disquisitiones Arithmeticae and his papers, going as far as to write:

The fundamental theorem must certainly be regarded as one of the most
elegant of its type.

Gauss published six proofs in his lifetime, and two more were found in his post-
humous papers. There are now over 200 published proofs.

Figure 10.1. Johann Carl Friedrich Gauss (1777–1855) was a German math-
ematician and physical scientist who contributed significantly to many fields,
including number theory, algebra, statistics, analysis, differential geometry,
geodesy, geophysics, electrostatics, astronomy, and optics. Image source:
Wikimedia Commons.

Theorem 10.4.2 (Law of quadratic reciprocity). Let p and q be two distinct odd
primes. Then, (

q

p

)
·
(
p

q

)
= (−1)

p−1
2 · q−1

2 .

In other words:

• If p ≡ 1 mod 4 or q ≡ 1 mod 4, then(
q

p

)
=

(
p

q

)
.

• If p ≡ q ≡ 3 mod 4, then (
q

p

)
= −

(
p

q

)
.
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Example 10.4.3. Let p = 37 and q = 41. Since 41 ≡ 4 ≡ 22 mod 37, it follows
that (

q

p

)
=

(
41

37

)
=

(
4

37

)
= 1.

Using the fact that 41 ≡ 1 mod 4, the law of quadratic reciprocity says that

1 =

(
41

37

)
=

(
37

41

)
and, therefore, 37 is a quadratic residue modulo 41, which is not obvious. Indeed,
37 ≡ (±18)2 mod 41.

Example 10.4.4. Let q = 3 and let p be a prime congruent to 3 mod 4 and 2 mod
3; i.e., p ≡ 11 mod 12. Dirichlet’s theorem on primes in arithmetic progressions
(Theorem 3.3.11) implies that there are infinitely many such primes p. For instance,
p = 11 or p = 563 are primes congruent to 11 mod 12. Since p ≡ 2 mod 3, it follows
that (

p

q

)
=
(p
3

)
=

(
2

3

)
= −1.

And since p ≡ q ≡ 3 mod 4, the law of quadratic reciprocity shows that(
3

p

)
=

(
q

p

)
= −

(
p

q

)
= −

(p
3

)
= −(−1) = 1.

Thus, 3 is a quadratic residue for all primes p ≡ 11 mod 12. For instance,

3 ≡ (±5)2 mod 11 and 3 ≡ (±121)2 mod 563.

See Proposition 10.4.8 for a more general result about the value of
(

3
p

)
.

Out of the many published proofs of the law of quadratic reciprocity, we chose
to follow along the lines of a proof due to G. Rousseau (see [Rou91]) because it
matches the techniques we have already employed to prove the supplementary laws
for (−1

p ) and ( 2p ) in Theorem 10.2.8 (see the alternative proof at the end of Section
10.2) and Theorem 10.3.12, respectively. For a different proof see [Chi95, p. 405],
for example.

Proof. Consider G = (Z/pZ)× × (Z/qZ)×. We want to describe a subset H ⊆ G
with the following property:

(♠) For every g ∈ G, either g or −g belongs to H but not both.

Here −(a mod p, b mod q) ≡ (−a mod p,−b mod q). We present two ways to define
such a subset H:

(1) Let H1 = (Z/pZ)× × {1, . . . , (q − 1)/2 mod q}; i.e., H1 is the direct product
of (Z/pZ)× times “the first half” of (Z/qZ)×. In this case,

H1 = {(a, b) : 1 ≤ a ≤ p− 1, 1 ≤ b ≤ (q − 1)/2} ⊆ G.

(2) Notice that G = (Z/pZ)×× (Z/qZ)× is in bijection with (Z/pqZ)×, by Corol-
lary 7.4.4. Let H2 be “the first half” of (Z/pqZ)×, i.e., those elements in G of
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the form (k mod p, k mod q), with gcd(k, pq) = 1 and 1 ≤ k ≤ (pq − 1)/2. In
other words,

H2 = {(k, k) : 1 ≤ k ≤ (pq − 1)/2, gcd(k, pq) = 1} ⊆ G.

Now let us define π1 as the product of all the elements in H1 and similarly define
π2 as the product of all the elements in H2. Before we go on, we prove a lemma
about π1 and π2.

Lemma 10.4.5. Let p and q be two distinct odd primes. Let G = (Z/pZ)× ×
(Z/qZ)×, and let H1 and H2 be two subsets of G that satisfy property (♠). Let π1

be the product of all elements in H1, and define π2 similarly. Then π2 ≡ u · π1,
where u ≡ (1, 1) or (−1,−1) mod (p, q). In other words, either π2 ≡ π1 or π2 ≡
−π1 mod (p, q).

Proof. Let H1 = {g1, . . . , gn} and H2 = {h1, . . . , hn}. Since H2 satisfies (♠), it
follows that for every i = 1, . . . , n there is a unique hj ∈ H2 such that hj ≡ ±gi.
Notice that hj is unique, because if hk �≡ hj also satisfies hk = ±gi, then we
must have hk ≡ −hj , which is a contradiction because H2 satisfies (♠). After a
reordering, we may assume that hi = (−1)eigi, with ei = 0 or 1. Hence,

π2 ≡
n∏

i=1

hi ≡
n∏

i=1

(−1)eigi ≡ (−1)(
∑n

i=1 ei) ·
n∏

i=1

gi ≡ u · π1 mod (p, q),

where u = (−1)(
∑n

i=1 ei). �

Let us resume the proof of the law of quadratic reciprocity. First, we calculate
π1:

π1 ≡

⎛⎝p−1∏
i=1

i(q−1)/2 mod p,

(q−1)/2∏
j=1

jp−1 mod q

⎞⎠
≡
(
((p− 1)!)

q−1
2 mod p,

((
q − 1

2

)
!

)p−1

mod q

)
.

Notice that ((q − 1)/2)!2 ≡ (−1)(q−1)/2(q − 1)! mod q, so((
q − 1

2

)
!

)p−1

≡ ((−1)
q−1
2 (q − 1)!)

p−1
2 ≡ (−1)

p−1
2 · q−1

2 · ((q − 1)!)
p−1
2 mod q.

Hence,

π1 ≡ (((p− 1)!)
q−1
2 mod p, (−1)

p−1
2 · q−1

2 · ((q − 1)!)
p−1
2 mod q).

Let us now calculate the first coordinate of π2 modulo p. We will multiply together
all numbers that are not multiples of p and divide by the multiples of q, in the
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range 1 ≤ k ≤ (pq − 1)/2:∏
1≤k≤(pq−1)/2
gcd(k,pq)=1

k ≡ (1 · 2 · · · (p− 1))((p+ 1)(p+ 2) · · · (p+ (p− 1))) · · ·
q · (2q) · (3q) · · · ( p−1

2 q)

≡

(∏p−1
i=1 i

)(∏p−1
i=1 p+ i

)
· · ·
(∏p−1

i=1 (
q−1
2 − 1)p+ i

)(∏(p−1)/2
i=1

q−1
2 p+ i

)
((p− 1)/2)! · q(p−1)/2

≡ ((p− 1)!)
q−1
2 · ((p− 1)/2)!

((p− 1)/2)! · q(p−1)/2

≡ ((p− 1)!)
q−1
2

q(p−1)/2
≡ ((p− 1)!)

q−1
2 ·

(
q

p

)
mod p,

where in the last congruence we have used Euler’s criterion (Proposition 10.3.6),
the fact that ((p− 1)/2)! is a unit modulo p, and the trivial fact that 1

±1 = ±1, so

that
(

q
p

)−1

=
(

q
p

)
. A similar calculation yields

∏
1≤k≤(pq−1)/2
gcd(k,pq)=1

k ≡ ((q − 1)!)
p−1
2 ·

(
p

q

)
mod q.

Therefore,

π2 ≡
(
((p− 1)!)

q−1
2 ·

(
q

p

)
mod p, ((q − 1)!)

p−1
2 ·

(
p

q

)
mod q

)
.

By Lemma 10.4.5, there is a u = ±1 such that π2 ≡ uπ1. Thus,

((p− 1)!)
q−1
2 ·

(
q

p

)
≡ u · ((p− 1)!)

q−1
2 mod p

and

((q − 1)!)
p−1
2 ·

(
p

q

)
≡ u · (−1)

p−1
2 · q−1

2 · ((q − 1)!)
p−1
2 mod q.

If we cancel the appropriate terms in each of the two equations above, we obtain(
q

p

)
≡ u mod p and

(
p

q

)
≡ u · (−1)

p−1
2 · q−1

2 mod q.

Since all the numbers involved are by definition ±1 and p and q are odd, these
congruences are actually equalities. If we multiply both equalities together, we
obtain (

q

p

)
·
(
p

q

)
= u2 · (−1)

p−1
2 · q−1

2 = (−1)
p−1
2 · q−1

2 ,

as desired (here we used the fact that u = ±1, so u2 = 1). �

Example 10.4.6. Let us continue with the calculation of Example 10.4.1. We
needed to calculate

(
3

151875023

)
and

(
5

151875023

)
. Notice that 151875023 ≡ 3 mod 4.
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Therefore, by the law of quadratic reciprocity,(
3

151875023

)
= −

(
151875023

3

)
= −

(
2

3

)
= −(−1) = 1,(

5

151875023

)
=

(
151875023

5

)
=

(
3

5

)
= −1.

In the first line, besides the law of quadratic reciprocity, we used the facts that
151875023 ≡ 2 mod 3 and 151875023 ≡ 3 mod 5. Therefore, we now may conclude
the exercise:(

151875000

151875023

)
=

(
2

151875023

)3

·
(

3

151875023

)5

·
(

5

151875023

)7

= 13 · 15 · (−1)7 = −1.

Hence, 151875000 is a quadratic non-residue modulo 151875023.

We can also use the law of quadratic reciprocity to find rules for particular
primes. For example:

Example 10.4.7. For what primes p > 2 is 5 a quadratic residue modulo p? Let
p > 2 and p �= 5. By quadratic reciprocity,(

5

p

)
=
(p
5

)
=

{
1 if p ≡ ±1 mod 5,

−1 if p ≡ ±2 mod 5.

Here we have used the fact that p ≡ 1 mod 5 to be able to conclude
(

5
p

)
=
(
p
5

)
.

Proposition 10.4.8. Let p > 2, with p �= 3, be a prime. Then,(
3

p

)
=

{
1 if p ≡ ±1 mod 12,

−1 if p ≡ ±5 mod 12.

Proof. Let p > 2 be prime.

• If p ≡ 1 mod 4, then(
3

p

)
=
(p
3

)
=

{
1 if p ≡ 1 mod 3,

−1 if p ≡ 2 mod 3.

Thus, if p ≡ 1 mod 4 and p ≡ 1 mod 3 (so p ≡ 1 mod 12, by the Chinese
remainder theorem), then

(
3
p

)
= 1. If p ≡ 5 mod 12, then

(
3
p

)
= −1.

• If p ≡ 3 mod 4, then(
3

p

)
= −

(p
3

)
=

{
−1 if p ≡ 1 mod 3,

1 if p ≡ 2 mod 3.

Thus, if p ≡ 3 mod 4 and p ≡ 1 mod 3 (so p ≡ 7 mod 12, by the Chinese
remainder theorem), then

(
3
p

)
= −1. If p ≡ 11 mod 12, then

(
3
p

)
= 1. �
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Example 10.4.9. Is 40 a square modulo 43?(
40

43

)
=

(
−3

43

)
=

(
−1

43

)(
3

43

)
= (−1) · (−1) = 1

where we have used the fact that 43 ≡ 3 mod 4 and the fact that 41 ≡ 7 mod 12.
Thus, 40 is a square modulo 43. Indeed, 132 ≡ 40 mod 43.

10.5. The Jacobi Symbol

The Jacobi symbol is an extension of the Legendre symbol that allows (odd) com-
posite numbers in the lower part of the notation. For instance,

(−1
21

)
is not a

well-defined Legendre symbol (as 21 is not prime), but it will be a perfectly fine
Jacobi symbol. The Jacobi symbol is very useful in practice for fast computation
of Legendre symbols because its properties help us avoid factoring large numbers
as we carry out a calculation of a symbol (see Example 10.5.10).

Definition 10.5.1. Let a be an integer, and let n be an odd natural number. The
Jacobi symbol

(
a
n

)
is defined by(a

n

)
=

(
a

p1

)e1

·
(

a

p2

)e2

· · ·
(

a

pt

)et

,

where n = pe11 pe22 · · · pett is a factorization of n as a product of prime numbers

p1, . . . , pt ≥ 1, with t ≥ 1, and
(

a

pi

)
is the Legendre symbol, for each 1 ≤ i ≤ t. If

n = 1, we define
(
a
1

)
= 1 for a �= 0 and

(
0
1

)
= 0.

Figure 10.2. Carl Gustav Jacob Jacobi (1804–1851) was a German mathe-
matician who made fundamental contributions to elliptic functions, dynamics,
differential equations, and number theory. He introduced the Jacobi symbol
in 1837. Image source: Wikimedia Commons.
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Example 10.5.2. We can calculate the Jacobi symbol(
−1

21

)
=

(
−1

3

)
·
(
−1

7

)
= (−1) · (−1) = 1,

where we have used Lemma 10.3.4 to calculate the Legendre symbols
(−1

3

)
= −1

and
(−1

7

)
= −1.

Remark 10.5.3. It is important to notice that a positive value
(
a
n

)
= 1 of the

Jacobi symbol does not imply that a is a square modulo n (i.e., that x2 ≡ a mod n
has a solution), as it would be the case for the Legendre symbol. For instance,
consider Example 10.5.2 where we calculated

(−1
21

)
= 1. However, −1 is not a

square modulo 21, because if x2 ≡ −1 mod 21 had a solution, then, by the Chinese
remainder theorem (Theorem 4.5.9), the congruences x2 ≡ −1 mod 3 and x2 ≡
−1 mod 7 would have a solution. But −1 is not a quadratic residue modulo 3 or 7.

However, if the Jacobi symbol
(
a
n

)
= −1, then it does follow that a is neces-

sarily a quadratic non-residue modulo n. Indeed, if n = pe11 pe22 · · · pett is the unique
factorization of n and(a

n

)
=

(
a

p1

)e1

·
(

a

p2

)e2

· · ·
(

a

pt

)et

= −1,

then there must be a prime p in the factorization of n such that
(

a
p

)
= −1,

so that a is a quadratic non-residue mod p and p divide n. Suppose now for a
contradiction that a is a quadratic residue mod n. Then, there is another integer b
such that a ≡ b2 mod n. Since p | n, it follows that a ≡ b2 mod p, which contradicts(

a
p

)
= −1. Thus, a must be a quadratic non-residue mod n.

Remark 10.5.4. There is a further generalization of the Legendre and Jacobi
symbols, called the Kronecker symbol, that gives the expression

(
a
n

)
a value, for

any integers a and n (including negative or even values of n). However, we will not
need the Kronecker symbol and we will not define it here.

Let us show the basic properties of the Jacobi symbol, which follow directly
from the definition and the analogous properties of the Legendre symbol.

Proposition 10.5.5. Let a, b be integers, and let m,n be odd natural numbers.
Then, the following properties of the Jacobi symbol hold:

(1) If a ≡ b mod n, then
(a
n

)
=

(
b

n

)
.

(2)
( a

mn

)
=
( a

m

)
·
(a
n

)
.

(3)
(a
n

)
= 0 if and only if a = 0 or gcd(a, n) > 1.

(4)
(
ab

n

)
=
(a
n

)
·
(
b

n

)
.
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Proof. Let m = qf11 · · · qfss and n = pe11 · · · pett be the unique prime factorizations
of m and n, respectively. Then:

(1) Notice that a ≡ b mod n and p | n imply that a ≡ b mod p. Thus,(a
n

)
=

(
a

p1

)e1

· · ·
(

a

pt

)et

=

(
b

p1

)e1

· · ·
(

b

pt

)et

=

(
b

n

)
,

where we have used the fact that
(

a
p

)
=
(

b
p

)
for the Legendre symbol, when-

ever a ≡ b mod p, which was shown in Lemma 10.3.4.

(2) Note that mn = qf11 · · · qfss pe11 · · · pett , where some primes may be repeated (i.e.,
pi = qj is possible for some i, j ≥ 1). Thus,( a

mn

)
=

(
a

q1

)f1

· · ·
(

a

qs

)fs

·
(

a

p1

)e1

· · ·
(

a

pt

)et

=
( a

m

)
·
(a
n

)
.

(3) If gcd(a, n) = 1, then
(
a

p

)
= ±1 for each prime divisor p of n, and therefore(a

n

)
= ±1 as well. Conversely, if the Jacobi symbol of a on n vanishes, then

there must be a prime p | n such that the Jacobi symbol of a on p vanishes
and, therefore, gcd(a, n) ≥ p.

(4) If either gcd(a, n) or gcd(b, n) �= 1, then both sides of the equation are zero
by part (3). Thus, we may assume gcd(a, n) = gcd(b, n) = 1, and then(

ab

n

)
=

(
ab

p1

)e1

· · ·
(
ab

pt

)et

=

(
a

p1

)e1

·
(

b

p1

)e1

· · ·
(

a

pt

)et

·
(

b

pt

)et

=
(a
n

)
·
(
b

n

)
,

where we have used the multiplicativity of the Legendre symbol, as in Corol-
lary 10.3.9.

This concludes the proof of the proposition. �

Our next goal is to show that the Jacobi symbol also satisfies a version of the
law of quadratic reciprocity. Before we can prove this, we need a technical lemma.

Lemma 10.5.6. Let a, b, and c be odd positive integers. Then:

(1) (ab− 1)/2 ≡ (a− 1)/2 + (b− 1)/2 mod 2.
(2) (a2b2 − 1)/8 ≡ (a2 − 1)/8 + (b2 − 1)/8 mod 2.

(3) If
(
a
c

) (
c
a

)
= (−1)

a−1
2 · c−1

2 and
(
b
c

) (
c
b

)
= (−1)

b−1
2 · c−1

2 , then(
ab

c

)( c

ab

)
= (−1)

ab−1
2 · c−1

2 .

Proof. Let a, b, c be odd positive integers.

(1) Since a− 1 and b− 1 are even, it follows that (a− 1)(b− 1) ≡ 0 mod 4, and so
ab− a− b+1 ≡ 0 mod 4. Rearranging the terms in the congruence we obtain

ab− 1 ≡ (a− 1) + (b− 1) mod 4.
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Since ab − 1, a − 1, and b − 1 are even, we may divide through by 2 (see
Proposition 4.3.1) and we obtain (ab− 1)/2 ≡ (a− 1)/2+ (b− 1)/2 mod 2, as
desired.

(2) Since a and b are odd, it follows that a2 − 1 and b2 − 1 ≡ 0 mod 8 and
(a2 − 1)(b2 − 1) ≡ 0 mod 16. Hence a2b2 − a2 − b2 + 1 ≡ 0 mod 16, and it
follows that

a2b2 − 1 ≡ (a2 − 1) + (b2 − 1) mod 16.

Since (ab)2 − 1 is also divisible by 8, we may divide the congruence through
by 8 and obtain

a2b2 − 1

8
≡ a2 − 1

8
+

b2 − 1

8
mod 2,

as claimed.

(3) Suppose that
(
a
c

) (
c
a

)
= (−1)

a−1
2

c−1
2 and

(
b
c

) (
c
b

)
= (−1)

b−1
2

c−1
2 . Then(

ab

c

)( c

ab

)
=
(a
c

)(b

c

)( c
a

)(c
b

)
=
(a
c

)( c
a

)(b

c

)(c
b

)
= (−1)

a−1
2

c−1
2 + b−1

2
c−1
2 = (−1)(

a−1
2 + b−1

2 ) c−1
2

= (−1)
ab−1

2
c−1
2 ,

where we have first used parts (2) and (3) of Proposition 10.5.5 and then part
(1) of this lemma. �

Lemma 10.5.7. Let m be an odd natural number, and let p ≥ 3 be a prime number
relatively prime to m. Then,(

m

p

)( p

m

)
= (−1)

m−1
2

p−1
2 .

Proof. We shall prove the statement using complete induction on all odd numbers
m. The base case m = 1 holds, since every term in the equation equals 1. Now
suppose that the statement is true for all odd numbers t in the range 1 ≤ t ≤ m,
and consider the next odd number m + 2. If m + 2 = q is prime and q �= p, then
the statement holds by the law of quadratic reciprocity for p and q using Legendre
symbols (Theorem 10.4.2). If m + 2 is composite, then there are odd numbers a
and b, such that m+ 2 = ab and 1 < a, b < m+ 2. Hence, the statement holds for
a and b; i.e.,(

a

p

)(p
a

)
= (−1)

a−1
2

p−1
2 and

(
b

p

)(p
b

)
= (−1)

b−1
2

p−1
2 ,

and, therefore, by Lemma 10.5.6, we have(
m+ 2

p

)(
p

m+ 2

)
=

(
ab

p

)( p

ab

)
= (−1)

ab−1
2

p−1
2 = (−1)

(m+2)−1
2

c−1
2 ,

as we needed to prove. Hence, by the principle of (complete) mathematical induc-
tion, the result is true for all odd m ≥ 1 and any p ≥ 3. �
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We are ready to prove the most important properties of the Jacobi symbol,
including the law of quadratic reciprocity.

Theorem 10.5.8. Let m and n be odd natural numbers that are relatively prime.
Then:

(1)
(
−1

n

)
= (−1)(n−1)/2.

(2)
(
2

n

)
= (−1)(n

2−1)/8.

(3)
(m
n

)( n

m

)
= (−1)

m−1
2

n−1
2 .

Proof. We shall prove all three properties using complete induction on the odd
numbers n. The base case n = 1 holds because by definition

(a
1

)
= 1 for all

non-zero integer a, so we will concentrate in proving the induction step in each
case.

(1) Suppose part (1) of the theorem is true for all odd numbers 1 ≤ t ≤ n. If the
next odd number, n + 2 = p ≥ 3, is prime, then

(
−1
p

)
= (−1)(p−1)/2 is true

by Lemma 10.3.4. If the odd number n + 2 is composite, then there are odd
numbers a and b, such that n + 2 = ab and 1 < a, b < n + 2. Thus, by the
induction hypothesis,(

−1

a

)
= (−1)(a−1)/2 and

(
−1

b

)
= (−1)(b−1)/2.

Hence,(
−1

n+ 2

)
=

(
−1

ab

)
=

(
−1

a

)(
−1

b

)
= (−1)(a−1)/2+(b−1)/2

= (−1)(ab−1)/2 = (−1)((n+2)−1)/2,

as desired, where first we have used part (2) of Proposition 10.5.5 and then
part (1) of Lemma 10.5.6. Hence, by the principle of (complete) mathematical
induction, the result is true for all odd n ≥ 1.

(2) The proof of part (2) of the theorem is very similar to that of part (1) of the
theorem, so we have left it as an exercise for the reader (Exercise 10.8.33).

(3) Suppose part (3) of the theorem, the law of quadratic reciprocity, is true for
all odd numbers 1 ≤ t ≤ n and any odd m ≥ 1 relatively prime to t. Let us
consider the law for the next odd number n+2. If n+2 = p is prime, then the
law holds by Lemma 10.5.7. If n+2 is composite, then there are odd numbers
a and b, such that n + 2 = ab and 1 < a, b < n + 2. Hence, the statement
holds for a and b; i.e.,(m

a

)( a

m

)
= (−1)

m−1
2

a−1
2 and

(m
b

)( b

m

)
= (−1)

m−1
2

b−1
2 ,

and, therefore, by Lemma 10.5.6, we have(
m

n+ 2

)(
n+ 2

m

)
=
(m
ab

)(ab

m

)
= (−1)

ab−1
2

m−1
2 = (−1)

(n+2)−1
2

m−1
2 .
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Hence, the law also holds for n+2 and any odd m ≥ 1 relatively prime to n+2.
Thus, by the principle of (complete) mathematical induction, the statement
holds for any odd n ≥ 1 and any odd m ≥ 1 relatively prime to n.

This concludes the proof of the theorem. �

The Jacobi symbol can be used to simplify calculations of the Legendre symbol,
using the properties of Theorem 10.5.8.

Example 10.5.9. Let us calculate
(
539
541

)
in a few different ways.

(1) The number 541 is prime, so
(
539
541

)
is a Legendre symbol. Thus,(

539

541

)
=

(
−2

541

)
=

(
−1

541

)(
2

541

)
= 1 · (−1) = −1,

where we have used the fact that 541 ≡ 1 mod 4 and ≡ 5 mod 8, together with
Lemma 10.3.4 and Theorem 10.3.12.

(2) We can also calculate 539 = 72 · 11 and calculate(
539

541

)
=

(
72

541

)(
11

541

)
=

(
11

541

)
=

(
541

11

)
=

(
2

11

)
= −1,

where we have used the law of quadratic reciprocity (for Legendre symbols)
and the fact that 11 ≡ 3 mod 4.

(3) In the first two methods, we need to know first that 541 is prime, and for the
second method, a factorization of 539. Instead, we can use Jacobi symbols
without the need to check that 541 is prime or factoring 539:(

539

541

)
=

(
541

539

)
=

(
2

539

)
= −1,

where we have used the law of quadratic reciprocity for Jacobi symbols (note
that 541 ≡ 1 mod 4), and part (2) of Theorem 10.5.8 together with 539 ≡
3 mod 8.

Example 10.5.10. Let us calculate the value of the Legendre symbol
(

12345
104729

)
.

While it is given that 104729 is a prime number, a factorization of 12345 is not
given. Instead of factoring the number 12345, we interpret the Legendre symbol
as a Jacobi symbol, and we proceed using Theorem 10.5.8 to compute its value.
Notice that 12345 ≡ 1 mod 4. Then,(

12345

104729

)
=

(
104729

12345

)
=

(
5969

12345

)
=

(
12345

5969

)
=

(
407

5969

)
,

where we have used the fact that 104729 ≡ 5969 mod 12345 and 12345 ≡ 407 mod
5969. Since 5969 ≡ 1 mod 4, we continue using the law of quadratic reciprocity for
Jacobi symbols:(

12345

104729

)
= · · · =

(
407

5969

)
=

(
5969

407

)
=

(
207

407

)
= −

(
407

207

)
= −

(
200

207

)
.

Now, since 200 = 2 · 102, we obtain(
12345

104729

)
= · · · = −

(
200

207

)
= −

(
2

207

)
·
(
102

207

)
= −1 · 1 · 1 = −1,
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by Theorem 10.5.8, because 207 ≡ 7 mod 8. Thus, 12345 is a quadratic non-residue
modulo p = 104729.

Remark 10.5.11. Euler’s criterion does not hold for Jacobi symbols. For instance(
2
15

)
= 1 because 15 ≡ −1 mod 8, but

2(15−1)/2 ≡ 27 ≡ 25 · 22 ≡ 32 · 4 ≡ 2 · 4 ≡ 8 mod 15.

The failure of Euler’s criterion for Jacobi symbols will lead in Section 10.7.1 to the
Solovay–Strassen primality test.

10.6. Cipolla’s Algorithm

Let p be an odd prime, and let a be an integer relatively prime to p. As shown
in the examples above, the Legendre symbol (extended via the Jacobi symbol) is
a very efficient tool in determining whether a is a quadratic residue modulo p.
However, in the applications (such as finding the roots of a quadratic polynomial,
as in Proposition 10.1.1, or finding the integral points on a conic, as in Example
9.4.4), if a is a quadratic residue, then we would like to find a “square root” of a
modulo p, i.e., an integer b such that b2 ≡ a mod p. Unfortunately, the Legendre
and Jacobi symbols do not provide a clue of what the square root of a mod p may
be when

(
a
p

)
= 1. In this section we present an application of finite fields (see

Chapter 6) to the problem of finding a square root modulo p, usually known as
Cipolla’s algorithm (named after Michele Cipolla, an Italian mathematician who
described the method in 1907).

Figure 10.3. Michele Cipolla (1880–1947) was an Italian mathematician.
Image source: Wikimedia Commons.

The algorithm is based on the following theorem.

Theorem 10.6.1 (Cipolla’s algorithm). Let p > 2 be a prime, let s be a quadratic
residue modulo p, and let t ∈ Z such that t2−s is a quadratic non-residue modulo p.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



10.6. Cipolla’s Algorithm 297

Let

α =
(
t+
√

t2 − s
)(p+1)/2

∈ Fp

[√
t2 − s

]
.

Then, α ∈ Fp, and α2 ≡ s mod p.

Proof. Let p, s, and t be as in the statement, so that t2 − s is a quadratic non-
residue modulo p. Then, by Theorem 6.4.1, there is a field of p2 elements given by
Fp[x]/(x

2 − (t2 − s)), which we identify with Fp[
√
t2 − s] as in Section 6.5. Let us

write ω =
√
t2 − s.

Our first claim is that ωp ≡ −ω mod p. This equality follows from Exercise
7.6.28 (as a property of the Frobenius automorphism), but we will show it here for
the sake of completeness. Indeed,

ωp−1 ≡ (ω2)(p−1/2) ≡ (t2 − s)(p−1)/2 ≡ −1 mod p,

by Euler’s criterion (Proposition 10.3.6), since t2−s is a quadratic non-residue. And
ωp−1 ≡ −1 implies that ωp ≡ −ω mod p. In particular, it follows from Exercise
4.7.27 that if a, b ∈ Fp, then

(a+ bω)p ≡ ap + bpωp ≡ ap − bpω mod p.

In addition, if a, b ∈ Fp, then ap ≡ a and bp ≡ b mod p, by Fermat’s (little) theorem
(Theorem 7.2.1) and, therefore,

(a+ bω)p ≡ ap − bpω ≡ a− bω mod p.

In particular, if we put a = t ∈ Fp and b = 1, then we obtain (t+ω)p ≡ (t−ω) mod p.
Finally, let α = (t+ ω)(p+1)/2 ∈ Fp[ω]. Then,

α2 ≡ (t+ ω)(p+1) ≡ (t+ ω)(t+ ω)p

≡ (t+ ω)(t− ω) ≡ t2 − ω2

≡ t2 − (t2 − s) ≡ s mod p.

Hence, α2 ≡ s mod p, as claimed. This concludes the proof of the theorem. �

Example 10.6.2. Let us illustrate Cipolla’s algorithm with one example. Let
p = 13. The integer a = 3 is a quadratic residue modulo 13 because(

3

13

)
=

(
13

3

)
=

(
1

3

)
= 1.

Let us find a square root of 3 modulo 13. The reader probably realizes that (±4)2 ≡
3 mod 13, but here we are simply illustrating how Cipolla’s algorithm will arrive at
the same conclusion.

The first step of the algorithm is to find a number t such that t2 − a is a
quadratic non-residue modulo 13. In this case t = 1 works, because(

12 − 3

13

)
=

(
−2

13

)
=

(
−1

13

)(
2

13

)
= 1 · (−1) = −1,

because 13 ≡ 5 mod 8. Since −2 is not a square modulo 13, we may form the field
F13[

√
−2], as in Section 6.5. Cipolla’s algorithm says that

α ≡
(
t+
√
t2 − a

)(p+1)/2

≡
(
1 +

√
−2
)7 ∈ F13

[√
−2
]
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lives in fact in F13 and it is a square root of a = 3. Let us calculate α and verify
that α2 ≡ 3 mod 13:

(1 +
√
−2)2 ≡ 1− 2 + 2

√
−2 ≡ −1 + 2

√
−2 mod 13,

(1 +
√
−2)3 ≡ (1 +

√
−2)(1 +

√
−2)2 ≡ (1 +

√
−2)(−1 + 2

√
−2)

≡ −5 +
√
−2 mod 13,

(1 +
√
−2)4 ≡ ((1 +

√
−2)2)2 ≡ (−1 + 2

√
−2)2 ≡ −7− 4

√
−2,

(1 +
√
−2)7 ≡ (1 +

√
−2)3(1 +

√
−2)4 ≡ (−5 +

√
−2)(−7− 4

√
−2)

≡ 35 + 8 + (20− 7)
√
−2 ≡ 9 + 0

√
−2

≡ 9 mod 13.

Thus, α ≡ 9 mod 13, and α2 ≡ 81 ≡ 3 mod 13. Therefore, the square roots of 3
modulo 13 are ±9, or, equivalently, ±4 mod 13.

10.7. Applications

In this section we discuss applications of the Legendre and Jacobi symbols and
quadratic reciprocity to primality testing and graph theory.

10.7.1. The Solovay–Strassen Primality Test. In Section 7.5.1 we saw a pri-
mality test based on Fermat’s little theorem. The Solovay–Strassen test for the
primality of an integer n is based on Euler’s criterion (Proposition 10.3.6), which
says that

a(p−1)/2 ≡
(
a

p

)
mod p,

for any prime p > 2 and any integer a relatively prime to p. We state the contra-
positive of Euler’s theorem which will be used as the primality test.

Theorem 10.7.1 (Solovay–Strassen primality test). Let n > 1 be an odd integer,
and suppose that a is an integer 1 ≤ a ≤ n− 1, relatively prime to n, such that

a(n−1)/2 �≡
(a
n

)
mod n,

where
(
a
n

)
is the Jacobi symbol. Then, n is not prime.

Example 10.7.2. Is n = 561 a prime number? Fermat’s primality test is incon-
clusive for a = 5, because

5560 ≡ 1 mod 561.

In fact, n = 561 is a Carmichael number (see Example 7.5.4 and Exercises 7.6.19
and 7.6.20), so the Fermat’s primality test fails for many values of a. However,
Theorem 10.7.1 correctly identifies 561 as a composite number, for a = 5. Indeed,
5280 ≡ 67 mod 561, and (

5

561

)
=

(
561

5

)
=

(
1

5

)
= 1,

where we have used the law of quadratic reciprocity for the Jacobi symbol (Theorem
10.5.8) and part (1) of Proposition 10.5.5.
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The strength of the Solovay–Strassen primality test is that if n is not prime,
then at least 50% of all integers a in the interval [1, n − 1] either satisfy that
gcd(a, n) > 1 or a(n−1)/2 �≡

(
a
n

)
mod n. It follows that it is relatively easy to find

a suitable value of a to use Theorem 10.7.1.

Proposition 10.7.3. Let n > 1 be an odd natural number. Then, the set

H =
{
a mod n : gcd(a, n) = 1 and a(n−1)/2 ≡

(a
n

)
mod n

}
forms a subgroup of (Z/nZ)×.

Proof. Let a be an integer relatively prime to n, and let a′ be a multiplicative
inverse for a mod n. Then,(a

n

)(a′

n

)
=

(
aa′

n

)
=

(
1

n

)
= 1,

and so
(
a
n

)
=
(

a′

n

)
and

(
a
n

)−1
=
(

a′

n

)
. Thus, if a ∈ H, it follows that

a′(n−1)/2 ≡ (a(n−1)/2)−1 ≡
( a
n

)−1

≡
(
a′

n

)
mod n.

Hence, a′ ∈ H. Now it suffices to show that if a and b are in H, then ab ∈ H.
Indeed,

(ab)(n−1)/2 ≡ a(n−1)/2b(n−1)/2 ≡
(a
n

)( b

n

)
≡
(
ab

n

)
mod n,

and so ab ∈ H if a and b are in H, where we have used Proposition 10.5.5. �

We are now ready to prove the assertion that either gcd(a, n) > 1 or Theorem
10.7.1 works for at least 50% of all values of a in [1, n − 1]. Note that we can
determine whether gcd(a, n) = 1 efficiently using Euclid’s algorithm (Section 2.6),
which does not require factoring a or n. If gcd(a, n) > 1, then we have found a
non-trivial factor of n and, therefore, n would not be prime.

We shall prove the assertion for square-free n, and we leave the general case
(when n has a square factor) for the exercises (see Exercise 10.8.34).

Corollary 10.7.4. Let n > 1 be an odd natural number, and assume that n is
composite and square-free. Then, the set

C =
{
a : 1 ≤ a ≤ n− 1, such that a(n−1)/2 �≡

(a
n

)
mod n

}
∪
{
a : 1 ≤ a ≤ n− 1, such that

(a
n

)
≡ 0 mod n

}
has size at least n− 1− ϕ(n)

2 ≥ n−1
2 .

Proof. Let n > 1 be odd and composite. Notice that C contains all zero-divisors
Zn = {a : 1 ≤ a ≤ n− 1 and gcd(a, n) �= 1}, because

(
a
n

)
≡ 0 mod n if and only if(

a
n

)
= 0 if and only if gcd(a, n) �= 1. Moreover, if we define H by

H =
{
a mod n : gcd(a, n) = 1 and a(n−1)/2 ≡

(a
n

)
mod n

}
,
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then,
C = Zn ∪ ((Z/nZ)× −H),

and, therefore,

|C| = (n− 1− ϕ(n)) + (ϕ(n)− |H|) = n− 1− |H|.
By Proposition 10.7.3, the set H is a subgroup of (Z/nZ)×. If we assume that H
is a proper subgroup, i.e., H � G, then |H| is a proper divisor of |G| (by Lagrange’s
theorem, Theorem 5.2.19), and therefore |H| ≤ |G|/2 = ϕ(n)/2. Hence,

|C| = n− 1− |H| ≥ n− 1− ϕ(n)/2.

Moreover, ϕ(n) ≥ n− 1, and we conclude that |C| ≥ n− 1− (n− 1)/2 = (n− 1)/2,
as claimed. Thus, in order to prove the corollary it suffices to show that H is a
proper subgroup or, in other words, it suffices to show that there is some a mod n
in (Z/nZ)× that is not in H.

From now on, we assume that n is square-free (the non-square-free case is dealt
with in Exercise 10.8.34). Let p be a prime divisor of n. Then n = pn′ for some
n′ > 1 relatively prime to p. Let b mod p be a quadratic non-residue modulo p, and
let a mod n be a solution of the system of congruence{

x ≡ b mod p,

x ≡ 1 mod n′.

Notice a unique solution a mod n of the system exists by the Chinese remainder
theorem (Theorem 4.5.9), because gcd(p, n′) = 1. First, we calculate the Jacobi
symbol

(
a
n

)
:(a
n

)
=

(
a

pn′

)
=

(
a

p

)( a

n′

)
=

(
b

p

)(
1

n′

)
= (−1) · 1 = −1,

where we have used the properties of the Jacobi symbol, together with the facts
that a ≡ b mod p and b is a quadratic non-residue, and a ≡ 1 mod n′.

Suppose for a contradiction that a mod n as constructed in the previous para-
graph is in H, and so a(n−1)/2 ≡ −1 mod n. Since n′ is a divisor of n, it follows that
a(n−1)/2 ≡ −1 mod n′ as well, but a ≡ 1 mod n′, and therefore a(n−1)/2 ≡ 1 mod n′,
so we have reached a contradiction. Hence, a mod n is not in H, and we have shown
that H � (Z/nZ)×. This concludes the proof. �

Example 10.7.5. We exemplify the sets H and C as in the proof of Corollary
10.7.4, for n = 15. Here

Z15 = {a : 1 ≤ a ≤ 14 and gcd(a, 15) �= 1} = {3, 5, 6, 9, 10, 12 mod 15},
and comparing a7 mod 15 and

(
a
15

)
mod 15 for each a ∈ (Z/15Z)× yields

H = {1, 14 mod 15}.
Consequently,

C = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 mod 15},
and so |C| = 12. Hence, the value of |C| satisfies the bounds of Corollary 10.7.4.
Indeed,

|C| = 12 ≥ 14− ϕ(15)/2 = 14− 4 = 10 ≥ (15− 1)/2 = 7.
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Thus, if we tried to verify a7 ≡
(

a
15

)
mod 15 for any of the twelve values of a in C

(out of the fourteen possible values of a), we would conclude that 15 is not prime.

Example 10.7.6. Let n = 1729, which is sometimes called the Hardy–Ramanujan
number (see Example 15.0.1). Suppose we want to prove that 1729 is not prime
using Fermat’s primality test. It turns out that

a1728 �≡ 1 mod 1729

for 432 values of a in the range 1 ≤ a ≤ 1728. That is, the probability that we
would find a value of a that shows that n is composite is 432/1728 = 1/4 = 0.25,
or 25%.

If instead we use the Solovay–Strassen primality test, we find that

a(1729−1)/2 = a864 �≡
( a

1729

)
mod 1729

for 1080 values of a in [1, 1728]. Thus, the probability of finding a value of a that
shows that 1729 is not prime is 1080/1728 = 5/8 = 0.625, or 62.5%.

It is worth pointing out that Fermat’s primality test has a particularly poor per-
formance in this example because n = 1729 is a Carmichael number (see Example
7.5.4).

10.7.2. The Goldwasser–Micali Cryptosystem. In this section we discuss an
application of the quadratic residue symbol to cryptography. We have seen crypto-
graphic applications of congruences in Sections 7.5.3 and 8.9.1, which describe RSA
cryptography and the Diffie–Hellman key exchange, respectively. The Goldwasser–
Micali (GM) cryptosystem solves a common problem: encryption of messages that
can only be one of a small list of possibilities (e.g., yes or no; 0 or 1; plus or minus
one; a color; a US state capital, etc.), through public channels. The GM system
was proposed by Shafrira Goldwasser and Silvio Micali in 1982 (see Figure 10.4).

Suppose that Alice is sending 1-digit binary messages, either 1 or −1, to Bob,
through an insecure public channel. Since the cryptosystem being used is public
information, spies would know how to encrypt messages (but not necessarily how to
decrypt messages), so they only need to encrypt 1 and −1 to know their encrypted
versions and be able to decipher each of Alice’s messages. In order to prevent this
from happening, the Goldwasser–Micali (GM) cryptosystem embeds the binary
message into a large ciphertext that makes the entire message look random once
encrypted. The setup for GM is as follows.
Goldwasser–Micali cryptosystem:

(1) Bob sets up the system to receive transmissions from Alice. Bob chooses
distinct large primes p and q, computes N = pq, and chooses a number b
relatively prime to N , such that b is a quadratic non-residue modulo p and
also modulo q; i.e., (

b

p

)
=

(
b

q

)
= −1.

He publishes b and N through a public channel. (See Exercise 10.8.35 for the
existence of such a b.)
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Figure 10.4. Shafrira Goldwasser (left) is an American-Israeli computer sci-
entist, and Silvio Micali (right) is an Italian computer scientist. They were
awarded the 2012 Turing Award for their work in cryptography. Image credit:
Jason Dorfman, CSAIL/MIT.

(2) Alice chooses a message m = 1 or −1, an integer 1 < a < N , and computes
the encrypted message

e ≡
{
a2 mod N if m = 1 or
ba2 mod N if m = −1.

Alice sends her encrypted message e to Bob. (Note: Alice will select a new
value of a for each consecutive message.)

(3) Bob decrypts e by computing m =

(
e

p

)
.

Indeed, Bob retrieves Alice’s message in this way:

(
e

p

)
=

⎧⎨⎩
(

a2

p

)
= 1 if m = 1 or(

ba2

p

)
=
(

b
p

)(
a2

p

)
= −1 if m = −1,

where we have used the fact that p is a divisor of N , and therefore e ≡ a2 mod N
(resp. e ≡ ba2 mod N) implies that e ≡ a2 mod p (resp. e ≡ ba2 mod p).

Example 10.7.7. Bob sets up a Goldwasser–Micali cryptosystem with p = 37 and
q = 41, so that N = 1517. He chooses an integer b = 13, such that b is a quadratic
non-residue modulo 37 and modulo 41 (the reader should verify Bob is right, using
quadratic reciprocity). He publishes the pair (N, b) = (1517, 13).

Now, Alice would like to send three messages to Bob, namely m1 = 1, m2 = 1,
and m3 = −1. For this, she picks three integers a1 = 59, a2 = 61, and a3 = 65 and
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computes their GM-encrypted versions:⎧⎪⎨⎪⎩
e1 ≡ a21 ≡ 592 ≡ 447 mod 1157,

e2 ≡ a22 ≡ 612 ≡ 687 mod 1157, and
e3 ≡ b · a23 ≡ 13 · 652 ≡ 313 mod 1157.

She sends 447, 687, and 313 to Bob.
Now Bob can decrypt these messages computing Legendre symbols:⎧⎪⎨⎪⎩

m1 =
(
e1
37

)
=
(
447
37

)
= 1,

m2 =
(
e2
37

)
=
(
687
37

)
= 1, and

m3 =
(
e3
37

)
=
(
313
37

)
= −1.

We remark that m1 = m2 = 1, but their encrypted versions are different, e1 = 447
and e2 = 687, respectively, because Alice picked different values of a for each
message.

Remark 10.7.8. As in the case of the RSA cryptosystem (see Remark 7.5.12),
the security of the Goldwasser–Micali system depends on the difficulty of factoring
N = pq. Indeed, if spies do not know how to factor N , then they cannot retrieve
the message. Notice that a spy would know N , b, and an encrypted message e, but

( e

N

)
=

⎧⎨⎩
(

a2

N

)
= 1 and(

ba2

N

)
=
(

b
N

) (
a2

N

)
=
(

b
pq

)
=
(

b
p

)(
b
q

)
= (−1)(−1) = 1,

so computing the Legendre symbol
(

e
N

)
yields no information to our spy, where we

have used the properties of the Jacobi symbol (see Section 10.5).

10.7.3. The Rado Graph. In graph theory, the Rado graph (also known as the
random graph, or the Erdös–Rényi graph) is an infinite graph that contains all finite
and countably infinite graphs as subgraphs. Formally, the Rado graph is defined as
follows: it is the unique (up to isomorphism) countable graph R such that for every
finite graph G and every vertex v of G, every embedding of G− {v} as a subgraph
of R can be extended to an embedding of G into R.

The Rado graph was first constructed by Ackermann in 1937 and, in 1964,
Richard Rado rediscovered the graph. The graph can be described using binary
expansions of non-negative integers. The vertices of the graph are labelled by the
numbers 0, 1, 2, . . . and an edge connects the vertices x and y in the graph (with
x < y) whenever the xth bit of the binary representation of y is non-zero.

For example, 0 and 3 are connected because 3 = 1 + 2 is (11)2 in base 2; i.e.,
the 0th binary digit of 3 is non-zero. Similarly, every odd number is connected to
0. The number 1 is also connected to 3, because the 1st digit of 3 = (11)2 is also
non-zero.

The Rado graph satisfies the following extension property: for any finite disjoint
sets of vertices U and V , there exists a vertex x in R connected to everything in
U and to nothing in V . For instance, let R be the Rado graph as defined by Rado
above, in terms of binary digits. Let U and V be two finite disjoint sets of vertices

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



304 10. Quadratic Congruences

Figure 10.5. The Rado graph, as constructed by Richard Rado in 1964.
Image source: Wikimedia Commons.

of R. We can define a number x by

x =
∑
u∈U

2u + 2(max{U∪V }+1).

Then, every u in U is connected to x, because x > u for every u ∈ U ∪ V , and the
uth digit of x is 1. However, every v in V is disconnected from x, because the vth
digit of x is zero. As it turns out, it can be shown that the Rado graph is (up to
isomorphism) the unique countable graph with the extension property.

In 2001, Peter Cameron [Cam01] showed that the Rado graph can also be
constructed via quadratic reciprocity. Let R be a countable graph, such that the
vertices are labelled by the prime numbers that are congruent to 1 modulo 4 (e.g.,
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, etc.), and connect two vertices p and q by an
edge whenever one of the two numbers is a quadratic residue modulo the other, i.e.,
when

(
p
q

)
=
(

q
p

)
= 1 (by quadratic reciprocity and the restriction of the vertices

to primes congruent to 1 mod 4, this is a symmetric relation). For instance, 5 and
29 are connected, but 5 is not connected to 13 or 17.

Let us show that the graph R defined via quadratic reciprocity is the Rado
graph by showing that it satisfies the extension property. Let U = {p1, . . . , pn}
and V = {q1, . . . , qm} be any two finite disjoint sets of primes that are 1 mod 4.
For each 1 ≤ j ≤ m, let aj be a (non-zero) quadratic non-residue modulo qj , and
consider the following system of congruences:⎧⎪⎨⎪⎩

x ≡ 1 mod 4,

x ≡ 1 mod pi for 1 ≤ i ≤ n,

x ≡ aj mod qj for 1 ≤ j ≤ m.

By the Chinese remainder theorem (Theorem 4.5.9), the system has a unique so-
lution x ≡ a mod 4N , where N = p1 · · · pnq1 · · · qm, for some integer a (notice that
gcd(a,N) = 1). Hence, by Dirichlet’s theorem on primes in arithmetic progressions
(Theorem 3.3.11), there is a prime number p such that p ≡ a mod 4N . Hence,
this prime p is 1 mod 4 (hence a vertex in R), and it satisfies that p ≡ 1 mod pi,
so
(

p
pi

)
= 1 and p is connected to everything in U , but p ≡ aj mod qj and
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(
p
qj

)
=
(

aj

qj

)
= −1, so p is not connected to anything in V . Hence, this graph R

has the extension property and it is therefore isomorphic to the Rado graph.

10.8. Exercises

Exercise 10.8.1. Find the solutions of x2 + x+ 1 ≡ 0 mod 13.

Exercise 10.8.2. Find the solutions of 3x2 + 3x− 1 ≡ 0 mod 17.

Exercise 10.8.3. Find the solutions of 2x2 + 9x+ 10 ≡ 0 mod 11.

Exercise 10.8.4. Find all solutions (if any) of the following equations:

(1) x2 + 21x+ 82 ≡ 0 mod 137,
(2) x2 + 5x+ 3 ≡ 0 mod 37,
(3) x2 + 5x+ 7 ≡ 0 mod 37.

Exercise 10.8.5. Use the Chinese remainder theorem to find the solutions of
2x2 + 9x+ 10 ≡ 0 mod 77.

Exercise 10.8.6. Write down lists of all the quadratic residues modulo 2, 3, 5, 7,
11, and 13.

Exercise 10.8.7. In this exercise we give an alternative proof for Proposition
10.2.3, using group theory. We shall show that if p > 2 is prime, then there are
(p− 1)/2 quadratic residues and (p− 1)/2 quadratic non-residues modulo p.

(a) Let ψ : (Z/pZ)× → (Z/pZ)× be the map given by ψ(x mod p) ≡ x2 mod p.
Show that ψ is a well-defined group homomorphism (see Section 5.2.1).

(b) Show that the image of ψ is the set of quadratic residues modulo p. Conclude
that the set of quadratic residues is a subgroup of (Z/pZ)×, which we will
denote by ((Z/pZ)×)2.

(c) Show that the kernel of ψ, Ker(ψ) = {x mod p : ψ(x) ≡ 1 mod p}, has exactly
two elements.

(d) Let (Z/pZ)×/{±1 mod p} be the quotient group of (Z/pZ)× by its subgroup
{±1}, as defined in Exercise 5.6.7. Show that ψ induces an isomorphism of
groups

(Z/pZ)×/{±1} ∼= ((Z/pZ)×)2.

(e) Conclude that the size of ((Z/pZ)×)2 is (p− 1)/2.

Exercise 10.8.8. Let p be an odd prime, and let a ∈ Z be an integer relatively
prime to p. Prove that the congruence x2 ≡ a mod p has either two distinct solu-
tions or none.

Exercise 10.8.9. Prove that of any 23 integers, two can always be found such that
the difference of their squares is divisible by 100. (Hint: list all the squares modulo
100. See also Exercise 2.11.15.)

Exercise 10.8.10. Is 45 a quadratic residue modulo 47?

Exercise 10.8.11. Is −13 a square modulo 37?

Exercise 10.8.12. Is 14 a quadratic residue modulo 65?

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



306 10. Quadratic Congruences

Exercise 10.8.13. The following is a table of powers of 2 modulo 13:

x x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

2 4 8 3 6 12 11 9 5 10 7 1

(1) Without finding them, how many primitive roots are there in Z/13Z? Find
all primitive roots of 13.

(2) Use the table to find all quadratic residues modulo 13.

Exercise 10.8.14. Continue the table that appears in Example 10.2.6 up to all
the primes ≤ 100. In other words, for every prime p ≤ 100, determine whether −1
is a quadratic residude, and if it is, determine the square roots of −1 modulo p.

Exercise 10.8.15. Calculate the following values of the Legendre symbol:(
2

3

)
,

(
2

5

)
,

(
3

5

)
,

(
−2

7

)
,

(
−21

7

)
,

(
7

11

)
,

(
11

7

)
, and

(
−2

7

)
.

Exercise 10.8.16. Find the following values of the Legendre symbol:(
113

127

)
,

(
113

131

)
,

(
113

137

)
,

(
210

229

)
.

The numbers 113, 127, 131, 137 are primes.

Exercise 10.8.17. Prove that the equation x2 − 137y2 = 113 has no integer solu-
tions.

Exercise 10.8.18. Let p ≥ 2 be a prime, such that p ≡ 1 mod 8. Calculate the
following values of the Legendre symbol:(

p+ 1

p

)
,

(
p− 1

p

)
,

(
−2p

p

)
,

(
(p− 1)2

p

)
,

(
(p− 1)3

p

)
,

(
(p− 1)(p+ 2)

p

)
.

Exercise 10.8.19. Calculate the following values of the Legendre symbol:(
15

23

)
,

(
30

37

)
,

(
−30

41

)
,

(
60

97

)
,

(
53

97

)
, and

(
59

61

)
.

Exercise 10.8.20. For what odd primes is 7 a quadratic residue? Proceed as in
Example 10.4.7.

Exercise 10.8.21. Let p be an odd prime. Show that(
−2

p

)
=

{
1 if p ≡ 1, 3 mod 8,

−1 if p ≡ 5, 7 mod 8.

Also, find examples of primes p in each unit congruence class modulo 8, and find
an integer that squares to −2 mod p or prove there are none.

Exercise 10.8.22. Let p > 3 be a prime. Show that(
−3

p

)
=

{
1 if p ≡ 1 mod 6,

−1 if p ≡ 5 mod 6.

Also, find examples of primes p in each unit congruence class modulo 6, and find
an integer that squares to −3 mod p or prove there are none.
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Exercise 10.8.23. Let p �= 5 be an odd prime. Show that(
−5

p

)
=

{
1 if p ≡ 1, 3, 7, 9 mod 20,

−1 if p ≡ 11, 13, 17, 19 mod 20.

Exercise 10.8.24. For what primes p is −10 a quadratic residue? Are there
infinitely many primes p such that −10 is a quadratic residue modulo p? (Hint: use
quadratic reciprocity!)

Exercise 10.8.25. For what odd primes is −7 a quadratic residue?

Exercise 10.8.26. For what odd primes is 11 a quadratic residue?

Exercise 10.8.27. Find a prime p such that(
2

p

)
=

(
3

p

)
=

(
4

p

)
=

(
5

p

)
=

(
6

p

)
=

(
7

p

)
=

(
8

p

)
=

(
9

p

)
=

(
10

p

)
= 1.

Exercise 10.8.28. Find the value of the following Legendre symbol:
(
4699

4703

)
.

(Note: 4703 is prime but 4699 is not!)

Exercise 10.8.29. Are there two odd primes p, q such that p �= q, p ≡ q ≡ 3 mod 4
and such that p is a quadratic residue modulo q and q is a quadratic residue modulo
p? What is the smallest odd prime q such that 3 is a quadratic residue modulo q
and q is a quadratic residue modulo 3?

Exercise 10.8.30. Use induction to show that, for all n, there exists a set of n
distinct odd primes {p1, . . . , pn} such that(

pi
pj

)
= 1

for all 1 ≤ i, j ≤ n with i �= j; i.e., every prime in the list is a quadratic residue
modulo any other prime in the list.

Exercise 10.8.31. Suppose that p and q are twin primes. Is it possible that 2 is
a quadratic residue for both p and q? Is 2 necessarily a quadratic residue of p or
q? Find twin primes p and q such that 2 is a quadratic residue modulo p but not
modulo q.

Exercise 10.8.32. Recall that if b is a primitive root for p, then b(p−1)/2 ≡ −1 mod
p.

(1) Use the fact above to show that all primitive roots must be quadratic non-
residues modulo p.

(2) Let p be a prime such that p = 2q+1 (a.k.a. a Sophie Germain prime), where
q is another odd prime. (For example, 23 = 2 · 11 + 1.) Justify the following
assertion: p has exactly q quadratic non-residues and q − 1 primitive roots.
(Hint: use your answer to part (1).)

(3) Prove that the primitive roots of p = 2q+1 are just the quadratic non-residues
of p, with one exception. (Hint: use parts (1) and (2).)

(4) What quadratic non-residue of p is not a primitive root? (Hint: prove first
that p ≡ 3 mod 4, because q is an odd prime. Use this to find a quadratic
non-residue. Then use (3).)
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(5) Calculate the Legendre symbol
(
17
23

)
and use this value to find a primitive root

of p = 23. Explain. (Hint: use (3) and (4).)

Exercise 10.8.33. Show that for any odd natural number n, the Jacobi symbol

satisfies
(
2

n

)
= (−1)(n

2−1)/8. (Hint: use Theorem 10.3.12, Proposition 10.5.5, and

Lemma 10.5.6.)

Exercise 10.8.34. Let n > 1 be an odd natural number. Then, the set

H =
{
a mod n : gcd(a, n) = 1 and a(n−1)/2 ≡

(a
n

)
mod n

}
forms a subgroup of (Z/nZ)×, by Proposition 10.7.3. In the proof of Corollary
10.7.4 we showed that H � G when n is square-free. The goal of this exercise is to
prove that H � G even if n has a square factor.

(1) Let n be an odd natural number that is not square-free, and let p be a prime
such that p2 is a divisor of n. Let n = pn′. Use the binomial theorem (Exercise
2.11.14) to show that

(1 + n′)
p ≡ 1 mod n.

(2) Show that the multiplicative order of a ≡ 1+n′ mod n is exactly p. Conclude
that an−1 �≡ 1 mod n. (Hint: show that p does not divide n − 1; then use
Proposition 8.1.5.)

(3) Show that
( a
n

)
= 1 using the properties of the Jacobi symbol. Conclude that

a mod n is not in H.

Exercise 10.8.35. Let p and q be distinct odd primes, and let N = pq.

(1) How many numbers 1 ≤ b ≤ N , relatively prime to N , are quadratic non-
residues modulo p and also modulo q?

(2) Let N = 143. Find all the numbers 1 ≤ b ≤ N , relatively prime to N , that
are quadratic residues mod 11 and also mod 13.

Exercise 10.8.36. Let p = 13 and q = 47.

(1) Show that b = 11 is a quadratic non-residue for both p = 13 and q = 47.
(2) C3PO sets up a Goldwasser–Micali cryptosystem with N = 13 ·47 and b = 11.

R2D2 sends the encrypted messages m1 = 126 and m2 = 164 back to C3PO.
Do these messages correspond to 1 or −1?

(3) K2SO intercepts an Imperial Goldwasser–Micali transmission with b = 17 and
N = 62773913 and an encrypted message e = 34567. Can you break the code
and decrypt the message?

Exercise 10.8.37. Let R be the Rado graph defined using quadratic reciprocity (as
in Section 10.7.3). Draw the subgraph of R formed by the vertices that correspond
to the prime numbers 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, and 97.
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CHAPTER 11

THE HASSE–MINKOWSKI THEOREM

This lecture is particularly interesting, for it
contains the first example of the method which
Minkowski would develop some years later in his
famous “geometry of numbers”.

Jean Alexandre Eugène Dieudonné, referring to
Minkowski’s Habilitationsschrift

In Section 5.1.1 (Theorem 5.1.11) we saw that if a diophantine equation has
an integral solution, then it also has solutions in Z/mZ, for every m > 1, and we
asked ourselves whether the converse is true. In this chapter, we state the Hasse–
Minkowski theorem, which shows that a converse is true for quadratic equations
and rational points, as long as there exists a solution over R and a compatible family
of congruence classes modulo m, for every m > 1, that are solutions of the given
diophantine equation. However, as we shall see, this is not true in general for curves
of higher degree (more precisely, this is not true in higher genus, as in Section 1.5).

11.1. Quadratic Forms

In order to state the Hasse–Minkowski theorem, we first need to define the con-
cept of quadratic form. The impatient reader can skip to Remark 11.1.12 for the
relationship between quadratic forms and quadratic equations.

Definition 11.1.1. A quadratic form q(X) over Z in n ≥ 2 variables is a function
q(X1, . . . , Xn) given by a homogeneous polynomial of degree 2 in the variables
X1, . . . , Xn; i.e.,

q(X1, . . . , Xn) = a1,1X
2
1 + a1,2X1X2 + · · ·+ an,nX

2
n =

∑
1≤i≤j≤n

ai,jXiXj ,

with ai,j ∈ Z for every 1 ≤ i ≤ j ≤ n.

309
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Example 11.1.2. Let q be the quadratic form in three variables given by q(X,Y, Z)
= X2+Y 2−Z2. Then, (a, b, c) ∈ Z3 is a non-trivial integral solution of q(X,Y, Z) =
0 if and only if (a, b, c) ∈ Z3 is a pythagorean triple; i.e., a2 + b2 = c2.

Next, we state a basic property of quadratic forms, which explains the word
“quadratic” in the terminology.

Lemma 11.1.3. Let q(X1, . . . , Xn) be a quadratic form. Then,

q(αX1, . . . , αXn) = α2q(X1, . . . , Xn),

for every α ∈ Q.

Proof. Let α ∈ Q, and let q =
∑

i≤j ai,jXiXj . Then,

q(αX1, . . . , αXn) =
∑
i≤j

ai,j(αXi)(αXj) = α2
∑
i≤j

ai,jXiXj = α2q(X1, . . . , Xn),

as claimed. �

Example 11.1.4. Let q be the quadratic form in three variables given by q(X,Y, Z)
= X2 + Y 2 − Z2, and let α = 3. Then,

q(3X, 3Y, 3Z) = (3X)2 + (3Y )2 − (3Z)2 = 9X2 + 9Y 2 − 9Z2 = 9q(X,Y, Z).

Remark 11.1.5. Let q(X1, . . . , Xn) =
∑

i,j ai,jXiXj be a quadratic form, and let
Aq be the matrix ⎛⎜⎜⎜⎜⎝

a1,1
1
2a1,2 · · · 1

2a1,n
1
2a1,2 a2,2 · · · 1

2a2,n
...

...
. . .

...
1
2an,1

1
2an,2 · · · an,n

⎞⎟⎟⎟⎟⎠ .

Let �X = (X1, . . . , Xn) and let �Xt be the same vector regarded as a column vector.
Then, the reader can verify that

�X ·Aq · �Xt = q(X),

where the operator · represents matrix multiplication.

Definition 11.1.6. Let q(X1, . . . , Xn) be a quadratic form. The matrix Aq defined
in Remark 11.1.5 is called the Gram matrix of the quadratic form q. The determi-
nant of Aq is called the discriminant (or determinant) of the quadratic form q, and
it will be denoted by disc(q). Finally, we say that a quadratic form is regular if its
discriminant is non-zero.

Example 11.1.7. Let q(X,Y, Z) = X2 + Y 2 −Z2. The Gram matrix of q is given
by

Aq =

⎛⎜⎝ 1 0 0

0 1 0

0 0 −1

⎞⎟⎠ ,

and disc(q) = det(Aq) = −1. Hence, q is a regular quadratic form.
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Example 11.1.8. Let q(X,Y, Z) = X2−Y 2+XZ+Y Z. Its Gram matrix is given
by

Aq =

⎛⎜⎝ 1 0 1
2

0 −1 1
2

1
2

1
2 0

⎞⎟⎠ ,

and disc(q) = det(Aq) = −1/4+1/4 = 0. Hence, q is not a regular quadratic form.
(Note that X2 − Y 2 +XZ + Y Z = (X − Y + Z)(X + Y ).)

Proposition 11.1.9. Let q(X1, X2, X3) = (aX + bY + cZ)(dX + eY + fZ) be a
quadratic form. Then, q is not regular.

Proof. This is left as an exercise for the reader; see Exercise 11.7.2. �

Let us turn to the question of whether the equation q(X1, . . . , Xn) = 0 has
solutions.

Lemma 11.1.10. Let q(X1, . . . , Xn) be a quadratic form. Then, the equation q = 0
has a rational solution (t1, . . . , tn) ∈ Qn if and only if q = 0 has an integral solution
(a1, . . . , an) ∈ Zn. Moreover, if q = 0 has a non-trivial integral solution (i.e., one
coordinate is non-zero), then there exists a solution (b1, . . . , bn) ∈ Zn such that
gcd(b1, . . . , bn) = 1.

Proof. Since Zn ⊂ Qn, one direction is clear (an integral solution is also rational).
Now, suppose that (t1, . . . , tn) ∈ Qn is a solution of q(X1, . . . , Xn) = 0, where
each ti = ci/di ∈ Q, for 1 ≤ i ≤ n, with gcd(ci, di) = 1. Let m be the least
common multiple of the denominators di, so that, for each 1 ≤ i ≤ n, there is an
integer fi such that m = difi. We claim that (c1f1, . . . , cnfn) ∈ Zn is a solution of
q(X1, . . . , Xn) = 0. Indeed,

q(c1f1, . . . , cnfn) = q

(
c1
d1

m, . . . ,
cn
dn

m

)
= m2q

(
c1
d1

, . . . ,
cn
dn

)
= m2q(t1, . . . , tn) = 0,

where we have used Lemma 11.1.3 with α = m.
Finally, let (a1, . . . , an) ∈ Zn be a solution of q = 0, with some ai �= 0, and let

d = gcd(a1, . . . , an). Then, for each 1 ≤ i ≤ n, there is a bi such that ai = dbi.
Then,

gcd(b1, . . . , bn) = gcd
(a1
d
, . . . ,

an
d

)
= 1,

by Exercise 2.11.25, and (b1, . . . , bn) is a solution of q = 0, because

q(b1, . . . , bn) = q
(a1
d
, . . . ,

an
d

)
=

1

d2
q (a1, . . . , an) = 0,

by Lemma 11.1.3. �

Definition 11.1.11. Let q(X1, . . . , Xn) be a quadratic form. We say that
(b1, . . . , bn) ∈ Zn is a primitive solution of q = 0 if q(b1, . . . , bn) = 0 and
gcd(b1, . . . , bn) = 1.
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Remark 11.1.12. The relationship between quadratic forms and quadratic equa-
tions is as follows. Suppose f(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0, with
coefficients in Z, and define

q(X,Y, Z) = Z2 · f
(
X

Z
,
Y

Z

)
= aX2 + bXY + cY 2 + dXZ + eY Z + fZ2.

Then, q is a quadratic form with the following property:

• There is a bijection between primitive (integral) solutions (u, v, w) ∈ Z3 of
q = 0 with w �= 0 and rational solutions (a, b) ∈ Q2 of f(x, y) = 0.

The bijection ψ is given by

(u, v, w) �→
( u
w
,
v

w

)
and

(a
b
,
c

d

)
�→
(an

b
,
cn

d
, n
)
,

where a/b and c/d are rational numbers written in reduced form and n = lcm(b, d).
We leave it as Exercise 11.7.3 to prove that ψ is indeed a bijection.

Example 11.1.13. Let f(x, y) = x2 + y2 − 1. The solutions of f(x, y) = 0 cor-
respond to the points on the curve C : x2 + y2 = 1. The associated quadratic
form is q(X,Y, Z) = X2 + Y 2 − Z2. A rational point (3/5, 4/5) on C corresponds
to a primitive solution (3, 4, 5) of the equation q(X,Y, Z) = X2 + Y 2 − Z2 = 0.
Conversely, a solution of q = 0, such as (5, 12, 13), corresponds to a rational point
on C, namely (5/13, 12/13).

Proposition 11.1.14. Let f(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0, with
coefficients in Z, and suppose that b2 − 4ac is not a square. Let q(X,Y, Z) =
Z2 · f(X/Z, Y/Z) be the quadratic form associated to f . Then, the following are
equivalent:

(1) The quadratic form q has a non-trivial integral point; i.e., there are integers
a1, a2, a3, not all zero, such that q(a1, a2, a3) = 0.

(2) The curve C : f(x, y) = 0 has a rational point; i.e., there are rational numbers
t1, t2 such that f(t1, t2) = 0.

Proof. By Remark 11.1.12 there is a bijection between the rational solutions of
f(x, y) = 0 and the primitive integral solutions (u, v, w) ∈ Z3 of q = 0 with w �= 0.
By Lemma 11.1.3, if there is an integral solution of q = 0, then there is a primitive
solution. Hence, in order to conclude the proof, we need to show that if b2 − 4ac is
not a square, then every integral solution (u, v, w) of q = 0 has w �= 0. Suppose for
a contradiction that (u, v, w) is an integral solution with w = 0. Then,

0 = q(u, v, 0) = au2 + buv + cv2.

If ac = 0, then b2 − 4ac = b2 would be a square. Thus, a and c are non-zero. Then,
au2 + buv + cv2 = 0 implies that

u =
−bv ±

√
b2v2 − 4acv2

2a
=

(
−b±

√
b2 − 4ac

2a

)
· v.

It follows that ±
√
b2 − 4ac = 2au/v+ b, and so b2 − 4ac = (2au/v+ b)2, a rational

square. But we have assumed that b2 − 4ac is not a square, and we have reached a
contradiction. Therefore, if (u, v, w) is an integral solution of q = 0, then w �= 0. �
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11.2. The Hasse–Minkowski Theorem

Before we state the Hasse–Minkowski theorem, we need to introduce the notion of
a compatible family of congruence classes.

Example 11.2.1. Let us consider the congruence class of 8 mod 15:

8 mod 15 = {. . . , −22, −7, 8, 23, 38, 53, . . .}.
Since 3 is a divisor of 15, a number in the congruence class of 8 mod 15 is also in
the class of 8 ≡ 2 mod 3. Thus, we say that 8 mod 15 and 2 mod 3 are compatible
(the concept of compatible and incompatible congruences already appeared when
we studied systems of congruences; see, for instance, Example 4.5.8). Similarly,
since 5 divides 15, a number in the congruence class of 8 mod 15 is also in the
class of 8 ≡ 3 mod 5, and we say that the congruences 8 mod 15 and 3 mod 5 are
compatible.

Now consider the set of congruence classes

S = {2 mod 3, 3 mod 5, 4 mod 7, 8 mod 15, 18 mod 35}.
We say that the set S is a system of compatible congruence classes because the
following condition is satisfied:

• If gcd(m,n) = d and a mod n and b mod m are in S, then a ≡ b mod d.

For instance, n = 7 is a divisor of m = 35, and 18 ≡ 4 mod 7. For instance, 8 mod
15 and 18 mod 35 are in S, and 18 ≡ 8 mod 5, where 5 = gcd(15, 35). Equivalently,
the system S is compatible because the system of linear congruences⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x ≡ 2 mod 3,

x ≡ 3 mod 5,

x ≡ 4 mod 7,

x ≡ 8 mod 15,

x ≡ 18 mod 35

has solutions in the integers. For example, x = 53 is a solution (and the reader can
verify that the solutions are x ≡ 53 mod 105).

Example 11.2.2. The curve C : x2 − 61y2 = 1 is an example of a Pell’s equation
which we will study in Chapter 14, when we discuss hyperbolas. The curve C has
infinitely many integral points but their coefficients are quite large, so they are
not easy to find by brute force. For instance, the integral point with the smallest
positive coefficients is P = (1766319049, 226153980). Indeed,

17663190492 − 61 · 2261539802 = 1.

The existence of P implies that there exist solutions to x2 − 61y2 ≡ 1 mod m, for
all integers m ≥ 2. Indeed, S = {(1766319049, 226153980) mod m}m≥2 is such a
collection of solutions. For example,

(1, 0) mod 4, (4, 0) mod 5, (5, 3) mod 7, (1, 4) mod 8, (19, 3) mod 21,

and (19, 10) mod 35 are all examples of solutions (a, b) mod m of C over Z/mZ,
such that P ≡ (a, b) mod m. Moreover, the family S has an important property:
it is compatible, in the sense that if gcd(m,n) = d, then the solution mod m and
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the solution mod n reduce to the solution mod d. For example (1, 4) mod 8 reduces
to (1, 0) modulo 4. The solution (19, 10) mod 35 reduces to (5, 3) mod 7 and to
(4, 0) mod 5. The solutions (19, 3) mod 21 and (19, 10) mod 35 both reduce to the
solution (5, 3) modulo gcd(21, 35) = 7.

The Hasse–Minkowski theorem will answer the following question: if C is a
curve defined over Q, with points over R, and S is a compatible family of solutions
for C modulo m, for every m ≥ 2, is there a rational solution for C? Notice that,
as we explained in Remark 5.1.14, we cannot expect the existence of an integral
solution in general, so the Hasse–Minkowski theorem will predict the existence of
rational solutions.

First, we write down a formal definition of compatible family of solutions.

Definition 11.2.3. Let {mk}k≥1 be a sequence of positive integers. We say that
S = {ak mod mk}k≥1 forms a compatible (or coherent) family of congruence classes
if the following condition is satisfied: if gcd(mj ,mk) = d, then ak ≡ aj mod d.
Equivalently, S is compatible if every system of finitely many linear congruences in
S has an integer solution.

In particular, if p is a prime and mk = pk for all k, then we say {ak mod pk}k≥1

forms a compatible family of congruences if ak ≡ ah mod ph for every 1 ≤ h < k.

Example 11.2.4. Let {mk} = {m ≥ 2} be the sequence of all positive integers
≥ 2. The sequence

{(m− 1) mod m}∞m=2 = {1 mod 2, 2 mod 3, 3 mod 4, . . .}

forms a compatible family of congruences, because if gcd(n,m) = d and m = dk
and n = dj, then

m− 1 ≡ dk − 1 ≡ 0− 1 ≡ dj − 1 ≡ n− 1 mod d,

as desired. Equivalently, if {m1, . . . ,mk} is a finite set of integers ≥ 2, then the
system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ≡ (m1 − 1) mod m1,

x ≡ (m2 − 1) mod m2,
...
x ≡ (mk − 1) mod mk

has an integer solution; namely x = −1.

Example 11.2.5. Let p = 5. Then, the sequence {ak mod 5k}, where ak = 3 +
5 + 52 + · · ·+ 5k−1, i.e.,

{3 mod 5, 8 mod 25, 33 mod 125, 158 mod 625, . . .},

is a compatible family of congruence classes, because if h < k, then 5h is a divisor
of 5k, and

ak ≡ 3+5+52+ · · ·+5h−1+5h+ · · ·+5k−1 ≡ 3+5+52+ · · ·+5h−1 ≡ ah mod 5h.

Definition 11.2.6. Let q be a quadratic form in n variables. A sequence of so-
lutions {(a1,m, . . . , an,m) mod m}m≥1 of q ≡ 0 mod m, for each m ≥ 1, forms a
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compatible family of solutions if each coordinate forms a compatible family of con-
gruences; i.e., {ai,m mod m}m≥1 forms a compatible family of congruences, for each
i = 1, . . . , n.

We say that a compatible family of solutions {(a1,m, . . . , an,m) mod m}m≥1 is
non-trivial if there is some m ≥ 2 such that the solution (a1,m, . . . , an,m) mod m is
not congruent to (0, . . . , 0) mod m.

We are now ready to state the Hasse–Minkowski theorem, which was originally
proved by Hermann Minkowski and generalized by Helmut Hasse.

Figure 11.1. Hermann Minkowski (1864–1909) and Helmut Hasse (1898–
1979). Images source (left): Wikimedia Commons. Image author (right):
Konrad Jacobs (Erlangen). Image source: Archives of the Mathematisches
Forschungsinstitut Oberwolfach.

Theorem 11.2.7 (Hasse–Minkowski theorem). Let q(X1, . . . , Xn) be a regular qua-
dratic form defined over Q. Then, q = 0 has a non-trivial integral solution (i.e.,
not all coordinates are zero) if and only if there is a non-trivial solution over R and
the congruences q ≡ 0 mod m, for all m > 1, have a non-trivial compatible system
of solutions.

Example 11.2.8. Let n be a natural number. In Example 11.1.7 we have shown
that q = X2+Y 2−nZ2 is a regular quadratic form. Now, Theorem 11.2.7 says that
X2 + Y 2 = nZ2 has a non-trivial integral solution if and only if X2 + Y 2 = nZ2

has a non-trivial solution over R and the congruences X2 + Y 2 ≡ nZ2 mod m, for
all m > 1, have a non-trivial compatible system of solutions.

The proof of the Hasse–Minkowski theorem is, unfortunately, beyond the scope
of this book (see [Ger08] or [Ser73] for a proof). In the rest of this section, we
will rephrase the theorem in different ways, and we will state consequences of the
theorem in certain particular cases that we are interested in.

Our first simplification of Theorem 11.2.7 makes use of the Chinese remainder
theorem to reduce the Hasse–Minkowski theorem to a statement about congruences
modulo prime powers, instead of natural numbers m ≥ 2.
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Proposition 11.2.9. The congruences q ≡ 0 mod m, for every m > 1, have a non-
trivial compatible system of solutions if and only if for each prime p, the congruences
q ≡ 0 mod pk, for each k ≥ 1, have a non-trivial compatible system of solutions.

Proof. Suppose first that S = {(a1,m, . . . , an,m) mod m}m≥1 is a compatible sys-
tem of solutions of q ≡ 0 mod m, and let p be a fixed prime. Then, for each k ≥ 1
and m = pk, the sequence Sp = {(a1,pk , . . . , an,pk) mod pk}k≥1 is a system of solu-
tions of q ≡ 0 mod pk and, moreover, it is compatible. Indeed, if 1 ≤ h < k, then ph

is a divisor of pk, and by the compatibility of S it follows that ai,pk ≡ ai,ph mod ph

for all i = 1, . . . , n. Hence, for every p there is a compatible system of solutions Sp.
For the converse, suppose that for every p there is a compatible system of

solutions Sp = {(b1,pk , . . . , bn,pk) mod pk}k≥1 for the congruences q ≡ 0 mod pk.
Let m > 1 be arbitrary. We want to construct a compatible system of solutions for
q ≡ 0 mod m. For this, write the unique prime factorization of m, namely,

m = pe11 · · · perr ,

for primes p1 < · · · < pr and ei ≥ 1 for i = 1, . . . , r. Let Spi
be the compatible

systems of solutions that exist by hypothesis. By the Chinese remainder theorem
(Theorem 4.5.9) and for each i = 1, . . . , n, the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ≡ bi,pe1
1

mod pe11 ,

x ≡ bi,pe2
2

mod pe22 ,
...
x ≡ bi,per

r
mod perr

has a unique solution x ≡ ai,m mod m. We claim that thus constructed, S =
{(a1,m, . . . , an,m) mod m}m≥1 is a compatible system of solutions for q ≡ 0 mod m,
for all m ≥ 2. Indeed, for a fixed m and for each j = 1, . . . , r, we have

q(a1,m, . . . , an,m) ≡ q(b1,pei
i
, . . . , bn,pei

i
) ≡ 0 mod peii ,

because each Spi
is a system of solutions. Consequently, q(a1,m, . . . , an,m) ≡ 0 mod

pe11 · · · perr = m, and S is a system of solutions of q ≡ 0 mod m.
It remains to show that S is a compatible system. For this, suppose that � and

m are integers with GCD equal to d. Then d = pf11 · · · pfrr for some 0 ≤ fj ≤ ej , for
each j = 1, . . . , r. Let i ∈ {1, . . . , n} be fixed. Then, for each j = 1, . . . , r, we have

ai,m ≡ b
i,p

ej
j

≡ b
i,p

fj
j

≡ ai,� mod p
fj
j ,

where we have used the fact that Spj
is compatible. In particular, ai,m ≡ ai,� mod

p
fj
j for each j = 1, . . . , r and, again by the Chinese remainder theorem, we conclude

that ai,m ≡ ai,� mod d, as desired. Hence S is a compatible system of solutions of
q ≡ 0 mod m, for all m ≥ 2, and the proof is done. �

Therefore, the theorem of Hasse–Minkowski has the following equivalent for-
mulation.

Theorem 11.2.10 (Hasse–Minkowski, second version). Let q(X1, . . . , Xn) be a
regular quadratic form defined over Q. Then, q = 0 has a non-trivial integral
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solution if and only if there is a non-trivial solution over R and, for each prime p,
there is a non-trivial compatible system of solutions of q ≡ 0 mod pk, for all k ≥ 1.

Example 11.2.11. Let n be a natural number. The quadratic form q = X2+Y 2−
nZ2 is regular. Now, Theorem 11.2.10 says that X2 + Y 2 = nZ2 has a non-trivial
integral solution if and only if it has a non-trivial solution over R and for each
prime p the congruences X2 + Y 2 ≡ nZ2 mod pk, for all k ≥ 1, have a non-trivial
compatible system of solutions.

In Section 11.4 we will show that, in fact, for most odd primes, it suffices
to check for solutions in Z/pZ, and one does not need to verify the existence of
solutions in Z/pkZ for k > 1. In certain cases, it also suffices to find solutions
in Z/8Z, and there is no need to worry about Z/2kZ for k ≥ 4. However, this is
still a criterion that would be difficult to use, as we would need to check infinitely
many conditions, at least one for each prime p. As it turns out, Theorem 11.2.10
is equivalent to the following formulation, in which the criterion is reduced to a
condition that only involves finitely many primes (see [Ger08, Theorems 4.3 and
5.7 and Remark 5.11].)

Theorem 11.2.12 (Hasse–Minkowski, third version). Let q =
∑

i≤j ai,jXiXj be
a regular quadratic form defined over Z. Then, q = 0 has a non-trivial integral
solution if and only if there is a non-trivial solution over R and for each prime
p equal to 2 or dividing Q =

∏
i,j ai,j, there is a non-trivial compatible system of

solutions of q ≡ 0 mod pk, for all k ≥ 1.

Example 11.2.13. Let n be a natural number. The quadratic form q = X2+Y 2−
nZ2 is regular. Now, Theorem 11.2.12 says that X2 + Y 2 = nZ2 has a non-trivial
integral solution if and only if it has a non-trivial solution over R and, for p = 2
and all primes p dividing n, the congruence X2+Y 2 ≡ nZ2 mod pk, for each k ≥ 1,
have a non-trivial compatible system of solutions.

Finally, the Hasse–Minkowski theorem is often stated in terms of p-adic num-
bers. In Section 11.5 we will define the p-adic integers Zp and the p-adic numbers
Qp as compatible sequences of integers and rational numbers, respectively. Here we
simply state the p-adic version of the theorem, for completeness.

Theorem 11.2.14 (Hasse–Minkowski, p-adic version). Let q(X1, . . . , Xn) be a reg-
ular quadratic form defined over Q. Then, q = 0 has a non-trivial integral solution
if and only if there is a non-trivial solution over R and over Qp for each prime p.

Similarly to Theorem 11.2.12, one can improve the p-adic version of the Hasse–
Minkowski theorem so that we only need to check for solvability in Qp for p = 2
and those primes dividing a coefficient of the quadratic form q.

Example 11.2.15. Let n be a natural number. The quadratic form q = X2+Y 2−
nZ2 is regular. Now, Theorem 11.2.14 says that X2 + Y 2 = nZ2 has a non-trivial
integral solution if and only if it has a non-trivial solution over R and over Qp for
p = 2 and each prime p dividing n.
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11.3. An Example of Hasse–Minkowski

In this section we shall explore the usage and consequences of the theorem of Hasse–
Minkowski in a particular example. We will come back and answer the same ques-
tion in Section 12.1 (see Theorem 12.1.10) without using the Hasse–Minkowski
theorem.

Question 11.3.1. Let n > 1 be a fixed natural number. Are there rational points
on the circle x2 + y2 = n? Alternatively, is n a sum of two (rational) squares?

For instance,

1 = 12 + 02 = (3/5)2 + (4/5)2,

2 = 12 + 12 = (7/13)2 + (17/13)2,

5 = 12 + 22 = (22/17)2 + (31/17)2,

8 = 22 + 22 = (2/29)2 + (82/29)2,

9 = 32 + 02 = (9/5)2 + (12/5)2.

Is 3 a sum of two squares? How about 6 or 7?

Example 11.3.2. Let us show that x2 + y2 = 3 has no rational solutions. Let
f(x, y) = x2 + y2 − 3. Since b2 − 4ac = −4 is not a square, Remark 11.1.12 and
Proposition 11.1.14 imply that f(x, y) = 0 has a rational solution if and only if
q(X,Y, Z) = X2 + Y 2 − 3Z2 = 0 has a non-trivial primitive integral solution. By
the Hasse–Minkowski theorem (Theorem 11.2.7), this is equivalent to q = 0 having
solutions over R and the existence of a non-trivial compatible system of solutions
for each X2 + Y 2 ≡ 3Z2 mod m, for all m > 1. Clearly q = 0 has real solutions,
namely (±

√
3, 0,±1).

However, X2 + Y 2 ≡ 3Z2 mod m has no non-trivial compatible system of
solutions. Indeed, when m = 2, the only non-trivial solutions of X2 + Y 2 ≡
3Z2 mod 2 are (1, 1, 0), (1, 0, 1), and (0, 1, 1). When m = 4, the squares modulo 4
are 0, 1 mod 4, and the only possible non-trivial solutions of X2+Y 2 ≡ 3Z2 mod 4
are (2, 0, 0), (0, 2, 0), (2, 0, 2), and (0, 2, 2). Since the solutions modulo 4 reduce to
the trivial solution (0, 0, 0) mod 2, there is no solution that is compatible modulo 2
and modulo 4.

First, let us simplify Question 11.3.1 by noticing that we can reduce it to the
case of a square-free odd number n.

Lemma 11.3.3. Let n > 1. The following statements are equivalent:

(1) The number n is a sum of two (rational) squares.
(2) The number 2kn is a sum of two (rational) squares, for every k ≥ 1.
(3) The number nt2 is a sum of two (rational) squares, for any t ∈ Z.

Proof. Let us first show that (1) and (2) are equivalent. If n is a sum of two
squares, say n = x2 + y2, then

2n = 2(x2 + y2) = (x− y)2 + (x+ y)2
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is also a sum of two squares. Now, by induction, we can show that 2kn is a sum of
two squares as well. Conversely, if m = 2n is a sum of two squares, say 2n = a2+b2,
then

n =

(
a+ b

2

)2

+

(
a− b

2

)2

is also a sum of two squares (see Exercise 11.7.8). Hence, if 2kn is a sum of squares,
using induction we can show that n is also a sum of two squares.

It remains to show that (1) and (3) are equivalent. Clearly, if n = x2+y2, then
nt2 = (xt)2 + (yt)2. Conversely, if nt2 = a2 + b2, then n = (a/t)2 + (b/t)2. Hence
(1), (2), and (3) are all equivalent conditions. �
Example 11.3.4. Let n = 13 = 9 + 4 = 32 + 22. Thus, 2n = 26 is also a sum of
two squares, and Lemma 11.3.3 tells us how to find such squares:

26 = 2 · 13 = 2(32 + 22) = (3− 2)2 + (3 + 2)2 = 12 + 52.

Conversely, m = 74 = 2 · 37 is a sum of two squares, namely a2 + b2 = 49 + 25,
so Lemma 11.3.3 says that 37 is also a sum of two squares (see Exercise 11.7.8);
namely

37 =

(
7 + 5

2

)2

+

(
7− 5

2

)2

= 62 + 12.

Finally, n = 425 = 17 · 52 is a sum of squares; for instance, a2+ b2 = 192+82. This
implies that 17 is also a sum of two (rational) squares,

17 =

(
19

5

)2

+

(
8

5

)2

,

and, in fact, 17 is also a sum of two integral squares, as 17 = 42 + 12.

In Section 11.4 we will show the following lemma (Theorems 11.4.9 and 11.4.7),
which we will use here to answer our Question 11.3.1 on rational points on the circle.

Lemma 11.3.5. Let c be an integer not divisible by a prime p. Then:

(1) Let p = 2. For every k ≥ 1, the congruence x2 ≡ c mod 2k has a non-trivial
compatible system of solutions if and only if c ≡ 1 mod 8.

(2) Let p > 2. For every k ≥ 1, the congruence x2 ≡ c mod pk has a non-trivial
compatible system of solutions for every k ≥ 1 if and only if x2 ≡ c mod p has
a solution.

Example 11.3.6. Let p = 7. The congruence x2 ≡ 2 mod 7 has solutions; namely
x ≡ ±3 mod 7. Let s ≡ 3 mod 7. Is there a solution of x2 ≡ 2 mod 49 such that
x ≡ 3 mod 7? Lemma 11.3.5 says that the answer must be yes and, indeed,

102 ≡ 100 ≡ 2 mod 49,

so s2 ≡ 10 mod 49 is a solution of x2 ≡ 2 mod 49 such that s2 ≡ s mod 7. Moreover,
Lemma 11.3.5 says that, for each k ≥ 1, there is a solution sk mod pk, with sk ≡
sk−1 mod pk−1. One such compatible system of solutions is given by

{sk}k≥1 = {3 mod 7, 10 mod 49, 108 mod 73, 2166 mod 74, 4567 mod 75, . . .}.
In Section 11.4 we will prove Lemma 11.3.5 and show how to find compatible
systems of solutions for polynomial congruences in general.
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Let us assume Lemma 11.3.5 for now and deduce some consequences.

Corollary 11.3.7. Let n be an odd integer. Then, the congruences X2 + Y 2 ≡
nZ2 mod 2k, for each k ≥ 1, have a non-trivial compatible system of solutions for
all k ≥ 1 if and only if n ≡ 1 mod 4.

Proof. Let n be odd. The pair of congruences X2 + y2 ≡ nZ2 mod 2 and mod4
have non-trivial compatible solutions if and only if n ≡ 1 mod 4 (see Exercise
11.7.12). Thus, if n ≡ 3 mod 4, there is no non-trivial compatible system of solu-
tions for the congruences X2 + y2 ≡ nZ2 mod 2k, for k ≥ 1.

Now, let us assume that n ≡ 1 mod 4. Let k ≥ 3 be fixed and let us consider
whether X2+Y 2 ≡ nZ2 mod 2k has a compatible system of solutions. If n ≡ 1 mod
8, then there is a compatible system, namely (x0,k, 0, 1) mod 2k where {x0,k mod
2k}k≥1 is a non-trivial compatible system of solutions of x2 ≡ n mod 2k (whose
existence is guaranteed by Lemma 11.3.5). If n ≡ 5 mod 8, then n− 4 ≡ 1 mod 8,
and therefore x2 ≡ n − 4 mod 2k has a non-trivial compatible system of solutions
{x0,k mod 2k}. It follows that X2+Y 2 ≡ nZ2 mod 2k has a non-trivial compatible
system of solutions {(x0,k, 2, 1) mod 2k}. Since we have shown that there is a non-
trivial compatible system whenever n ≡ 1 or 5 mod 8, it follows that it is also true
when n ≡ 1 mod 4.

Hence, we have shown that X2 + Y 2 ≡ nZ2 mod 2k for all k ≥ 1 has a non-
trivial compatible system of solutions if and only if n ≡ 1 mod 4. �

Corollary 11.3.8. Let n be an integer, and let p be a prime divisor of n, such that
p2 is not a divisor of n (or assume that n is square-free). Then, the congruences
X2 + Y 2 ≡ nZ2 mod pk, for each k ≥ 1, have a non-trivial compatible system of
solutions if and only if p ≡ 1 mod 4.

Proof. Suppose first that p ≡ 1 mod 4. Then, −1 is a square modulo p (by Lemma
10.3.4); i.e., x2 ≡ −1 mod p has a solution. It follows that −1 is also a square
modulo pk, for every k ≥ 1 and, in fact, by Lemma 11.3.5, there is a compatible
system of solutions {bk mod pk} for x2 ≡ −1 mod pk, for each k ≥ 1. Hence,
{(1, bk, 0) mod pk} is a non-trivial compatible system of solutions of X2 + Y 2 ≡
nZ2 mod pk, for each k ≥ 1, as desired.

Conversely, if p ≡ 3 mod 4 and V = {vk ≡ (ak, bk, ck) mod pk} was a non-trivial
compatible system of solutions of X2 + Y 2 ≡ nZ2 mod pk, for all k ≥ 1, then v1
would be a solution modulo p, and therefore a21 + b21 ≡ 0 mod p. If a1b1 �≡ 0 mod p,
then (a1b

−1
1 )2 ≡ −1 mod p, but this is impossible because p ≡ 3 mod 4 and so −1

is not a quadratic residue modulo p (again by Lemma 10.3.4). Thus, we must have
that one of a1 or b1 ≡ 0 mod p, but then a21 + b21 ≡ 0 mod p implies that both are
zero modulo p. Since v1 was non-trivial, we conclude that v1 ≡ (0, 0, c1) mod p, for
some c1 �≡ 0 mod p. Now consider v2 ≡ (a2, b2, c2) mod p2. Since V is compatible,
we know that v2 ≡ v1 mod p, and so a2 ≡ a1 ≡ 0 ≡ b1 ≡ b2 mod p, and c2 ≡ c1 �≡
0 mod p. In particular a22 ≡ b22 ≡ 0 mod p2, and so

a22 + b22 ≡ nc22 mod p2

implies that nc22 ≡ 0 mod p2. Since n is divisible by p but not p2, then n = pn′

with n′ �≡ 0 mod p, and so n′c22 ≡ 0 mod p, and since n′ is invertible modulo p, we
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conclude that c22 ≡ 0 mod p. But this is impossible because c2 �≡ 0 mod p. Hence,
we conclude that the system V cannot exist. �

Finally, we shall use the Hasse–Minkowski theorem (specifically Theorem
11.2.12) in order to answer Question 11.3.1. In Section 12.1 we will see an al-
ternative self-contained proof, which does not use the Hasse–Minkowski theorem
(Theorem 12.1.10).

Theorem 11.3.9. Let n be a natural number. The circle Cn : x2 + y2 = n has a
rational point if and only if every prime divisor p of n with p ≡ 3 mod 4 appears
to an even power in the prime factorization of n. Equivalently, the circle Cn has a
rational point if and only if the square-free part of n is not divisible by any prime
p of the form p ≡ 3 mod 4.

Proof. It follows from Lemma 11.3.3 that we may assume n is odd and square-free,
and the theorem is reduced to proving that Cn has a rational point if and only if n
is not divisible by primes of the form p ≡ 3 mod 4.

Let f(x, y) = x2 + y2 − n. Since b2 − 4ac = −4 is not a square, Proposition
11.1.14 implies that f(x, y) = 0 has a rational solution if and only if q(X,Y, Z) =
X2 + Y 2 − nZ2 = 0 has a non-trivial integral solution. By Theorem 11.2.7, this
is equivalent to X2 + Y 2 = nZ2 having solutions over R and the congruences
X2 + Y 2 ≡ nZ2 mod m for all m > 1 having a compatible system of solutions.
Clearly, there are solutions over R, for example (±

√
n, 0,±1) or (0,±

√
n,±1). Now,

Theorem 11.2.12 says that it suffices to check whether there are compatible systems
of solutions over Z/2kZ and Z/pkZ, for each k ≥ 1 and for each p dividing n.

Finally, by Corollary 11.3.7 and 11.3.8, the equations X2 + Y 2 ≡ nZ2 mod pk,
for all k ≥ 1, have a non-trivial compatible system of solutions, for p = 2 and
every p|n, if and only if n ≡ 1 mod 4, and every prime divisor of n is of the form
p ≡ 1 mod 4 (notice that the condition on the prime divisors implies the first
condition that n ≡ 1 mod 4). Hence, the proof of the theorem is finished. �

Now that we have answered Question 11.3.1 about rational points on the circle
of radius n, we might ask ourselves about integral points as well.

Question 11.3.10. Let n > 1 be a fixed natural number. Are there integral points
on the circle x2 + y2 = n? Alternatively, is n a sum of two (integral) squares?

The following proposition shows that Questions 11.3.1 and 11.3.10 are, in fact,
equivalent.

Proposition 11.3.11. The circle Cn : x2 + y2 = n has an integral solution if and
only if it has a rational solution.

Proof. An integral solution is rational, so the forward direction is clear. Let us
assume that Cn has a rational solution, and let us show that there is also an integral
solution. It suffices to show that the square-free part n′ of n is a sum of two integral
squares (for if n = n′s2 and n′ = x2 + y2, then n = (xs)2 + (ys)2). By Lemma
11.3.3, the circle Cn has a rational point if and only if Cn′ has a rational point. So
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suppose n′ = x2 + y2 has a solution (a/c, b/d) with gcd(a, c) = gcd(b, d) = 1, so
that

n′(cd)2 = (ad)2 + (bc)2.

Thus, there are integers μ, α, β with n′μ2 = α2 + β2, with gcd(α, β) = 1. Indeed,
if gcd(ad, bc) = δ, then δ2 must divide (cd)2 (because n′ is square-free), so we may
pick μ = cd/δ, α = ad/δ, and β = bc/δ.

If n′ = 1, then n = s2, and Cn has an integral point (s, 0). So let us assume
n′ is square-free and greater than 1. Let t be the unique positive integer such that
t2 < n′ < (t + 1)2. Since there are (t + 1)2 > n′ integers of the form αu + βv
with 0 ≤ u, v ≤ t, it follows that n′ divides the difference α(u − u′) + β(v − v′)
of two of them (see Exercise 4.7.12). Setting x = u − u′ and y = v − v′, we have
the inequalities |x|, |y| ≤ t. The integer n′ then divides (αx + βy)(αx − βy) =
α2x2 − β2y2; since it also divides n′μ2 = (α2 + β2)y2 = α2y2 + β2y2, it divides
their sum, which is equal to α2(x2+ y2). Now, the integers α and n′ being coprime
(because gcd(α, β) = 1), it follows that n′ divides x2+y2 (by Corollary 2.7.6). The
inequalities 0 < x2 + y2 ≤ 2t2 < 2n′ finally imply that n′ = x2 + y2. Hence

n = n′s2 = (x2 + y2)s2 = (xs)2 + (ys)2

is also a sum of two integral squares, and the proof is done. �

Let us illustrate the method above to find an integral point on C : x2+y2 = 13
starting from a given rational point on C.

Example 11.3.12. Let n = 13. The circle of radius 13, given by C : x2 + y2 = 13,
has a rational point

(
6
5 ,

17
5

)
. Since 13 is square-free, here n = n′ = 13, and 13 ·52 =

62 + 172, so that α = 6, β = 17, and μ = 5. Also, 32 < 13 < 42, so t = 3. Consider

S = {6u+ 17v : 0 ≤ u, v ≤ 3}
= {0, 6, 12, 17, 18, 23, 29, 34, 35, 40, 46, 51, 52, 57, 63, 69}.

In particular, 12− 51 = −39 is divisible by 13, so let x = 2−0 = 2 and y = 0−3 =
−3. Then, 13 divides (6 · 2− 17 · 3)(6 · 2+ 17 · 3) = 6222 − 17232 and it also divides
(62+172)·32, so it divides their sum 6222+6232 = 62(22+32). Since gcd(13, 6) = 1,
it follows that 13 divides 22 + 32, and since 0 < 22 + 32 < 2 · 13, we conclude that
13 = 22 + 32.

In the following example we give a geometric construction that produces an
integral point on a circle starting from a rational point. This method can be made
into an alternative proof of Proposition 11.3.11 (see Theorem 2.1 in [Con3]).

Example 11.3.13. The circle C : x2 + y2 = 193 has a rational point P1 with

coordinates
(
933

101
,
1048

101

)
. Let us find an integral point on C. First, we find the

point Q1 on the plane with integral coordinates closest to P1:

P1 =

(
933

101
,
1048

101

)
≈ (9.237 . . . , 10.376 . . .) ≈ (9, 10) = Q1.

The point Q1 is not on C. We define L1 as the line that goes through P1 and Q1.
Thus, L1 is given by the equation

L1 : y =
19

12
x− 17

4
,
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and the points of intersection of C and L1 are P1 and a second point P2 given by

P2 =

(
−27

5
,−64

5

)
.

The point P2 is on C, and the denominator is smaller than that of P1, but P2 is
not integral. Hence, we repeat the process, and we find a point Q2 on the plane,
with integral coefficients, and closest to P2:

P1 =

(
−27

5
,−64

5

)
= (−5.4,−12.8) ≈ (−5,−13) = Q2.

We define L2 as the line that goes through P2 and Q2, which is thus given by
L2 : y = − 1

2x − 31
2 . The points of intersection of C and L2 are P2 and a point

P3 = (−7,−12) which is on C and has integral points, as desired.

11.3.1. Another Example of Hasse–Minkowski. In this section we will use
Hasse–Minkowski to investigate the rational points on the curve C : x2−29y2 = −1.
By Theorem 11.2.12, we only need to concern ourselves with R, p = 2, and p = 29.

(R) Clearly, C has points over the real numbers; for instance, (0, 1/
√
29) is a real

point on C.
(2) We shall use Lemma 11.3.5 to show that C has a system of solutions that

form a compatible system modulo 2k for all k ≥ 1. Indeed, let Pk = (2xk, 3),
with xk an integer. Then, Pk is a point on C modulo 2k if and only if 4x2

k ≡
29 · 9 − 1 ≡ 4 · 65 mod 2k. Thus, if x2

k ≡ 65 mod 2k, then Pk is a point
on C modulo 2k. Since 65 ≡ 1 mod 8, Lemma 11.3.5 implies that there is
a compatible system xk mod 2k, for each k ≥ 1, such that x2

k ≡ 65 mod 2k.
Hence, Pk = (2xk, 3) is a compatible system of points on C modulo 2k. For
example, we can pick

P1 = (0, 1), P2 = (2, 3) = P3 = P4 = P5 = P6,

P7 = (66, 3) = P8 = P9 = P10, P11 = (3138, 3), . . . .

(29) Finally, Lemma 11.3.5 shows that x2 ≡ −1 mod 29k has a compatible system
of solutions xk modulo 29k, because x2 ≡ −1 mod 29 has a solution (29 ≡
1 mod 4, so −1 is a quadratic non-residue). Hence, the points Pk = (xk, 0)
form a compatible system of points on C modulo 29k for all k ≥ 1. For
instance, one such system is given by

P1 = (12, 0), P2 = (41, 0), P3 = (10133, 0), P4 = (34522, 0), . . . .

Since there are solutions of C in R and compatible systems of solutions modulo 2k

and 29k, Theorem 11.2.12 shows that there are rational points on C. For instance,
the points (

5

2
,
1

2

)
,

(
2

5
,
1

5

)
,

(
26

7
,
5

7

)
,

(
23

14
,
5

14

)
, . . .

are rational points on C. Are there any integral points on C? The theorem of Hasse–
Minkowski does not say either way. However, we will show later that there are also
integral points on the hyperbola C; for instance, (70, 13) or (1372210, 254813) is on
C. We will use the theory of continued fractions (Chapter 13) to find and determine
all of the integral points (see Example 14.3.1).
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11.4. Polynomial Congruences for Prime Powers

In Section 11.3 we discussed the need for Lemma 11.3.5, where we deduce the
existence of certain solutions to quadratic congruences x2 ≡ c modulo pk from
the existence of a solution modulo p (see also Example 11.3.6). We will prove
Lemma 11.3.5 below, in Theorems 11.4.7 and 11.4.9, but we will begin with a
discussion of the same problem for polynomial congruences in general; i.e., if p(x)
is a polynomial in Z[x] such that s ∈ Z is a root modulo p, is there a solution sk ∈ Z

of p(x) ≡ 0 mod pk, for each k ≥ 1? If so, how do we find such solutions?

Example 11.4.1. Let f(x) = x2−2. Can we find a compatible system of solutions
for the congruences f(x) ≡ 0 mod 7k, for every k ≥ 1? In other words, can we find
a sequence {sk mod 7k} such that s2k ≡ 2 mod 7k and sk+1 ≡ sk mod 7k, for all
k ≥ 1?

In order to find such a sequence, we begin with one root of f(x) ≡ 0 mod
7, namely s1 ≡ 3 mod 7, and then we shall use the algorithm usually known as
Newton’s method (or Newton–Raphson’s method) to construct consecutive terms
of the sequence. The successive terms in the sequence are given by the formula

sk+1 ≡ sk − f(sk) · (f ′(sk))
−1 mod 7k+1,

where f ′(x) is the derivative of the polynomial f(x) and (f ′(sk))
−1 is the multi-

plicative inverse of f ′(sk) mod 7k+1, if such an inverse exists (we will give conditions
below that guarantee this method to work). For instance,

s2 ≡ 3− (32 − 2) · (2 · 3)−1 ≡ 3− 7 · 41 ≡ 10 mod 49.

Now we can check that 102 ≡ 100 ≡ 2 mod 49 and s2 ≡ 10 ≡ 3 ≡ s1 mod 7, so s2
and s1 are compatible solutions. Similarly, we can construct a few more terms in
the sequence:

s3 ≡ 10− 98 · (20)−1 ≡ 10− 98 · 223 ≡ 108 mod 73,

s4 ≡ 108− 11662 · (216)−1 ≡ 108− 11662 · 1056 ≡ 2166 mod 74,

s5 ≡ 2166− 4691554 · (4332)−1 ≡ 2166− 4691554 · 1742 ≡ 4567 mod 75.

The reader can verify that {s1, s2, s3, s4, s5} form a compatible system of solutions
for f(x) ≡ 0 mod 7k, for k = 1, 2, 3, 4, 5.

When f(x) is a quadratic equation, finding compatible systems of solutions
modulo 2k for all k ≥ 1 is particularly tricky and needs special care. Similarly, if
f(x) is of degree p, then finding solutions modulo pk is a special case. Let us see a
couple of examples.

Example 11.4.2. Let f(x) = x2−41. Can we find a compatible system of solutions
for the congruences f(x) ≡ 0 mod 2k, for every k ≥ 1? In other words, can we find
a sequence {sk mod 2k} such that s2k ≡ 41 mod 2k and sk+1 ≡ sk mod 2k, for all
k ≥ 1?

Let us try to apply Newton’s method as in Example 11.4.1. We begin by finding
a root modulo 2, and this is simple enough as s1 ≡ 1 mod 2 works. However, if we
try to find the successive terms in the sequence sk using the formula

sk+1 ≡ sk − f(sk) · (f ′(sk))
−1 mod 2k+1,
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we will run into trouble when calculating (f ′(sk))
−1 mod 2k+1, because f ′(x) = 2x,

and therefore f ′(sk) is not invertible for any sk ∈ Z. However, if we consider
f(sk) · (f ′(sk))

−1 as a rational number and the denominator turns out to be odd,
then we can proceed ahead with the formula. In our case,

s2 ≡ s1 − f(s1) · (f ′(s1))
−1 ≡ 1− (−40) · 1

2
≡ 21 ≡ 1 mod 4.

Similarly,

s3 ≡ 1− (−40) · 2−1 ≡ 21 ≡ 5 mod 8,

s4 ≡ 5− (−16) · (10)−1 ≡ 5 + 8 · 13 ≡ 109 ≡ 13 mod 16,

s5 ≡ 13− 128 · (26)−1 ≡ 13− 64 · 5 ≡ 13 mod 32,

which produces the first few terms of a compatible system {1, 1, 5, 13, 13, . . .} of
solutions of x2 ≡ 41 mod 2k.

Example 11.4.3. Let f(x) = x2−21. Can we find a compatible system of solutions
for the congruences f(x) ≡ 0 mod 2k, for every k ≥ 1? Let us try Newton’s method
once again, with s1 ≡ 1 mod 2. Now,

s2 ≡ s1 − f(s1) · (f ′(s1))
−1 ≡ 1− (−20) · 1

2
≡ 11 ≡ 3 mod 4.

So far, so good. Let us compute s3:

s3 ≡ s2 − f(s2) · (f ′(s2))
−1 ≡ 3− (−12) · 1

6
≡ 5 mod 8.

Something went wrong, because 52 − 21 ≡ 4 mod 8, so 5 mod 8 is not a solution
of x2 ≡ 21 mod 8. In fact, the reader can check that there are no solutions of
x2 ≡ 21 mod 8! So the method was doomed to fail.

In the next few results we will explain when Newton’s method is guaranteed to
work and why.

Lemma 11.4.4. Let p be a prime, let k be a positive integer, and let f(x) ∈ Z[x]
be a polynomial. Then, for any integer t we have a congruence of polynomials

f(x+ pkt) ≡ f(x) + f ′(x)pkt mod pk+1Z[x].

In other words, there is a polynomial h(x) ∈ Z[x] such that f(x + pkt) −
(f(x) + f ′(x)pkt) is divisible by pk+1h(x), for any t ∈ Z.

Proof. We will use induction on the degree of the polynomial f(x). If the degree is
0, then f(x) = f0 is constant, thus f ′(x) = 0, and f(x+pkt) = f0 = f(x)+f ′(x)pkt,
so the result holds. Let us assume, then, the result for polynomials of degree n and
suppose f(x) has degree n + 1. Then, we may write f(x) = a + xg(x), for some
a ∈ Z and a polynomial g(x) of degree n. It follows that f ′(x) = g(x) + xg′(x).
Moreover, by the induction hypothesis, the lemma is true for g(x), and therefore

f(x+ pkt) ≡ a+ (x+ pkt)g(x+ pkt) ≡ a+ (x+ pkt)(g(x) + g′(x)pkt)

≡ a+ xg(x) + (xg′(x) + g(x))pkt+ g′(x)t2p2k

≡ a+ xg(x) + (xg′(x) + g(x))pkt

≡ f(x) + f ′(x)pkt mod pk+1Z[x],
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as desired. This proves the induction step and, therefore, by the principle of math-
ematical induction, the result is true for polynomials of any degree. �

Theorem 11.4.5. Let p be a prime, let k be a positive integer, and let f(x) ∈ Z[x]
be a polynomial. Suppose that sk ∈ Z is a solution of f(x) ≡ 0 mod pk.

(1) If f ′(sk) is not divisible by p, then there is precisely one solution sk+1 of
f(x) ≡ 0 mod pk+1 such that sk+1 ≡ sk mod pk. Moreover, sk+1 is given by

sk+1 ≡ sk − f(sk) · (f ′(sk))
−1 mod pk+1.

(2) If p | f ′(sk) and pk+1 | f(sk), then there are p solutions of f(x) ≡ 0 mod pk+1

that are congruent to sk modulo p, given by sk + pk · j for j = 0, 1, . . . , p− 1.
(3) If p | f ′(sk) but f(sk) is not divisible by pk+1, then there are no solutions of

f(x) ≡ 0 mod pk+1 that are congruent to sk modulo pk.

In particular, if s1 ∈ Z is a solution of f(x) ≡ 0 mod p and f ′(s1) �≡ 0 mod p, then
there is an integer sk ∈ Z, unique modulo pk, such that f(sk) ≡ 0 mod pk for all
k ≥ 1 and such that sk+1 ≡ sk mod pk.

Proof. Let sk+1 be a solution of f(x) ≡ 0 mod pk+1 such that sk+1 ≡ sk mod pk.
It follows that sk+1 ≡ sk + pkt for some integer t. Lemma 11.4.4 implies that

0 ≡ f(sk+1) ≡ f(sk + pkt) ≡ f(sk) + f ′(sk)p
kt mod pk+1.

Since f(sk) ≡ 0 mod pk, it follows that f(sk)/p
k is an integer and f ′(sk)t ≡

−f(sk)/p
k mod p. We distinguish three cases:

(1) If f ′(sk) and p are relatively prime, then Corollary 4.4.4 shows that f ′(sk)t ≡
−f(sk)/p

k mod p has a unique solution t modulo p, namely

t ≡ −f(sk)/(f
′(sk)p

k) mod p,

and therefore sk+1 ≡ sk − f(sk) · (f ′(sk))
−1 mod pk+1, as claimed.

(2) If f ′(sk) is divisible by p, then f(sk)/p
k ≡ 0 mod p. Thus, we must have

f(sk) ≡ 0 mod pk+1, and any value of t mod p works. Thus sk+1 ≡ sk +
pkt mod pk+1, with t = 0, 1, . . . , p− 1.

(3) Finally, if p | f ′(sk) but f(sk) is not divisible by pk+1, then f ′(sk)t ≡
−f(sk)/p

k mod p is impossible and there is no solution sk+1 of the required
form.

Finally, if s1 ∈ Z is a solution of f(x) ≡ 0 mod p and f ′(s1) �≡ 0 mod p, then part
(1) says that there is a unique solution s2 mod p2. Moreover, since s2 ≡ s1 mod p,
it follows that f ′(s2) ≡ f ′(s1) �≡ 0 mod p. Hence, we may apply part (1) recursively
to show the existence of unique values sk mod pk of the required form. �

Example 11.4.6. Let us review Example 11.4.3 using the results in Theorem
11.4.5. There we had f(x) = x2 − 21 and p = 2. We begin with s1 ≡ 1 mod 2.
Since 2 divides f ′(1) = 2 and f(1) = −20 ≡ 0 mod 4, there are two possibilities
for s2; namely s2 = 1 + 0 = 1 and s′2 = 1 + 2 = 3. However, f ′(s2) = 2 and
f ′(s′2) = 6 are divisible by 2, but neither f(s2) = −20 nor f(s′2) = −12 is divisible
by 8. Thus, Theorem 11.4.5 shows that there is no compatible system of solutions
of x2 − 21 mod 2k for all k ≥ 1.
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In the rest of this section we will apply Newton’s method (i.e., Theorem 11.4.5)
to the particular case of polynomials of the form f(x) = x2 − a, for a ∈ Z, and
determine conditions on a such that there exists a compatible system of solutions
modulo pk. As illustrated in Example 11.4.1, the case of p �= 2 is easier to handle.
See Exercise 11.7.18 for an example of Newton’s method applied to finding roots of
a cubic congruence.

Theorem 11.4.7. Let p be an odd prime, and let a ∈ Z be an integer relatively
prime to p. If x2 ≡ a mod p is solvable, then x2 ≡ a mod pk has exactly two
compatible systems of solutions for all k ≥ 1. Otherwise, if x2 ≡ a mod p has no
solutions, then there are no solutions for any x2 ≡ a mod pk.

Proof. By Exercise 10.8.8 we know that x2 ≡ a mod p has either two solutions
or none. Since any solution of x2 ≡ a mod pk would reduce to a solution of x2 ≡
a mod p, we deduce that if there are none modulo p, then there are none modulo
pk for all k ≥ 1. Thus, let us assume that there are two solutions modulo p; namely
s1,1 and s1,2 ≡ −s1,1 mod p. Notice that s21,i ≡ a mod p and a �≡ 0 mod p, so
s1,i �≡ 0 mod p either for i = 1, 2. Since f(s1,i) ≡ 0 mod p and f ′(s1,i) = 2s1,i �≡
0 mod p because p is odd and s1,i �≡ 0 mod p, our Theorem 11.4.5 implies that
there exist, for each i = 1, 2, a unique compatible system of solutions {s1,i, s2,i, . . .}
of x2 ≡ a mod pk such that sk,i ≡ s1,i for each k ≥ 1. Hence, the equation
x2 ≡ a mod pk has exactly two compatible systems of solutions, as claimed. �
Example 11.4.8. For instance, x2 ≡ 2 mod 7 has two solutions; namely x ≡ 3 and
−3 ≡ 4 mod 7. Thus, the congruences x2 ≡ 2 mod 7k have two compatible systems
of solutions x1 and x2 = −x1, which are

x1 = (3 mod 7, 10 mod 72, 108 mod 73, 2166 mod 74, 4567 mod 75, . . .),

x2 = (4 mod 7, 39 mod 72, 235 mod 73, 235 mod 74, 12240 mod 75, . . .).

Finally, we need to prove a version of Theorem 11.4.7 for powers of p = 2.

Theorem 11.4.9. Let a ∈ Z be odd. Then x2 ≡ a mod 2 has exactly one solution,
and

(1) the equation x2 ≡ a mod 4 is solvable if and only if a ≡ 1 mod 4, in which
case there are two solutions modulo 4, and

(2) the equation x2 ≡ a mod 2k, with k ≥ 3, is solvable if and only if a ≡ 1 mod 8,
in which case there are exactly four solutions modulo 2k. In particular, if s is
any solution, then all of the solutions are given by ±s and ±s+ 2k−1.

Proof. Part (1) is a simple exercise in Z/4Z arithmetic, so we will concentrate on
proving part (2) . The square of any odd number 2n+1 is (2n+1)2 ≡ 4n(n+1)+1 ≡
1 mod 8. Thus, if a �≡ 1 mod 8, the equation x2 ≡ a mod 2k cannot be solvable for
k ≥ 3.

Let us now assume that a ≡ 1 mod 8, and let k ≥ 3 be fixed. First, notice that
there are 2k−3 numbers in the interval [1, 2k] that are congruent to 1 mod 8 (see
Exercise 4.7.28). Since every square of an odd number is ≡ 1 mod 8, it suffices to
show that there are 2k−3 squares of odd numbers that are distinct modulo 2k. Let
S = {a1, . . . , a2k−3} be the set of the 2k−3 odd numbers in the interval [1, 2k−2].
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We claim that the squares of elements in S are distinct modulo 2k. Indeed, if
a2 ≡ b2 mod 2k with a, b ∈ S and a > b, then 2k|(a − b)(a + b). Since a and b are
odd, either (a − b) or (a + b) is ≡ 2 mod 4 and the other one is ≡ 0 mod 4 (see
Exercise 4.7.9). Hence, either (a−b) or (a+b) is divisible by 2 but not by 4, and the
other one is divisible by 2k−1. However, 1 ≤ b < a ≤ 2k−3 < 2k−1, so neither a− b
nor a+ b can be divisible by 2k−1, and we have reached a contradiction. Hence, the
squares of elements in S are 2k−3 distinct values modulo 2k, and therefore every
odd number a ≡ 1 mod 8 is congruent to a square of a number in S modulo 2k.
Therefore, x2 ≡ a mod 2k has solutions.

It remains to count the number of distinct solutions to x2 ≡ a mod 2k. Clearly,
if s mod 2k is a solution, then ±s+ λ · 2k−1 mod 2k, with λ ∈ Z (whose value only
matters modulo 2), are also solutions, because

(±s+ λ · 2k−1)2 ≡ s2 + λ · 2k + λ2 · 22(k−1) ≡ a mod 2k.

If a is odd, then the numbers s,−s, s+ 2k−1,−s+ 2k−1 are all distinct modulo 2k,
and so, the equation x2 ≡ a mod 2k has at least four distinct solutions. Notice that
if a �≡ a′ mod 2k, then the solutions of x2 ≡ a and x2 ≡ a′ mod 2k are necessarily
distinct. Since there are 2k−3 numbers a ≡ 1 mod 8 in [1, 2k], then putting together
all the solutions of systems x2 ≡ a mod 8, they account for at least 4 · 2k−3 = 2k−1

distinct odd numbers in [1, 2k], which is in fact the total number of odd numbers in
[1, 2k]. Hence, there cannot be more than four distinct solutions for each equation
x2 ≡ a mod 2k, and therefore we have shown that there are exactly four distinct
solutions modulo 2k. �

11.5. The p-Adic Numbers

In this section we briefly introduce the p-adic integers Zp and the p-adic numbers
Qp. We strongly recommend [Gou97] to learn more about the p-adics.

Let p ≥ 2 be a prime. The p-adic numbers may be thought of as a generalization
of Z/pZ. The main difference is that the p-adic numbers form a ring of character-
istic zero (see Definition 6.6.2), while Z/pZ has characteristic p. In Z/pZ we only
consider congruences modulo p, while in Zp we consider congruences modulo pn for
all n > 0, simultaneously.

Definition 11.5.1. The p-adic integers, denoted by Zp, are defined as follows:

Zp = {(a1, a2, . . .) : an ∈ Z/pnZ such that an+1 ≡ an mod pn}.

In other words, a p-adic integer is an infinite vector (an)∞n=1 = (an mod pn)∞n=1

such that the nth coordinate is a congruence class in Z/pnZ and the sequence is
compatible under congruences; i.e., an+1 ∈ Z/pn+1Z reduces to the previous term
an modulo pn; that is, an+1 ≡ an mod pn. For instance,

(2, 2, 29, 29, 272, 758, . . .)

are the first few terms of a 3-adic integer. Notice that all the coordinates are
compatible with the previous terms under congruences modulo powers of 3. The
vector (2, 2, 2, 2, . . .) is another element of Z3 (which we will denote simply by 2).
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The p-adic integers have addition and multiplication operations, defined coor-
dinate by coordinate:

(an)
∞
n=1 + (bn)

∞
n=1 = (an + bn mod pn)∞n=1,

and
(an)

∞
n=1 · (bn)∞n=1 = (an · bn mod pn)∞n=1.

The reader should check that the sum and product of two compatible vectors of
congruences are also compatible under congruences and, therefore, a new element
of Zp. These operations make Zp a commutative ring with identity element 1 =
(1, 1, 1, 1, . . .) and zero element 0 = (0, 0, 0, 0, . . .).

Remark 11.5.2. For any prime p ≥ 2, the p-adic integers contain a copy of Z,
where the integer m is represented by the element

m = (m mod p, m mod p2, m mod p3, . . .).

For example, the number 200 in Z3 is given by

200 = (2, 2, 11, 38, 200, 200, 200, 200, 200, 200, . . .).

Thus, we may write Z ⊆ Zp (see Exercise 11.7.19). However, there are elements in
Zp that are not in Z, so Z � Zp, as the following example shows.

Example 11.5.3. Let p = 7. We are going to show that Z7, unlike Z, contains
an element whose square is 2 (which we will denote by “

√
2”). Indeed, 2 is a

quadratic residue in Z/7Z, and 2 has two square roots, namely 3 and 4 modulo 7.
By Example 11.4.8, we know that 2 is, in fact, a quadratic residue modulo 7n for
all n ≥ 1. Thus, there exist integers an such that a2n ≡ 2 mod 7n for all n ≥ 1.
Moreover, the compatible systems {an mod 7n} constructed in Example 11.4.8 are
such that a2n ≡ 2 mod 7n and an+1 ≡ an mod 7n (we say that an can be lifted to
Z/7n+1Z; see Exercise 11.7.20). Indeed, here are the first few coordinates of an
element α of Z7 such that α2 = (2, 2, 2, . . .):

α = (3, 10, 108, 2166, 4567, . . .).

Thus, α should be regarded as “
√
2 ” inside Z7, and −α is another square root of 2.

Remark 11.5.4. The usual integers, Z, are not a field because not every non-zero
element has a multiplicative inverse (only ±1 have inverses!). Similarly, the p-adic
integers Zp do not form a field either. For example, p = (p, p, p, . . .) is not invertible
in Zp and non-zero (p �≡ 0 mod p2), but many elements of Zp are invertible. For
instance, if p > 2, then 2 is invertible in Zp (in other words, there is a number
1
2 ∈ Zp). Indeed, the inverse of 2 is given by

1

2
=

(
1 + p

2
mod p,

1 + p2

2
mod p2, . . . ,

1 + pn

2
mod pn, . . .

)
.

For example, in Z5, the inverse of 2 is given by (3, 13, 63, 313, . . .). One can show
that if α = (an)

∞
n=1 with a1 �≡ 0 mod p, then α is invertible in Zp, while if a1 ≡

0 mod p, then α is not invertible. Moreover, for any α ∈ Zp there is an r ≥ 0 such
that α = prβ, where β ∈ Zp is invertible. We summarize these facts in the following
statement.
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Lemma 11.5.5. Let Z×
p be the group of all invertible p-adic integers.

(a) Z×
p = {z ∈ Zp : z �≡ 0 mod p}.

(b) Every element of α ∈ Zp can be written as α = prβ with r ≥ 0 and an
invertible β ∈ Z×

p . Moreover, this decomposition is unique; i.e., there is a
unique r ∈ Z and β ∈ Z×

p such that α = prβ.

We leave the proof of the lemma as Exercise 11.7.24 for the reader. Here we
will provide an example to illustrate the lemma.

Example 11.5.6. Let p = 3, and consider the p-adic integer α that has the fol-
lowing expansion:

α = (0 mod 3, 0 mod 9, 18 mod 27, 72 mod 34, 153 mod 35, 639 mod 36, . . .).

Let us write α as prβ, with β invertible and r ≥ 0. Since α ≡ 0 mod 9 but
α �≡ 0 mod 27, we set r = 2. Let us write β = (bn mod 3n)n≥1. Since 18 ≡
α ≡ 9β mod 27, it follows that 18 ≡ 9β mod 27 and, therefore, 2 ≡ β mod 3 (by
Proposition 4.3.1). Thus, β ≡ b1 ≡ 2 mod 3, and this is the unique value of
b1 mod 3 that is valid. Similarly, 72 ≡ 9β mod 34 implies that β ≡ b2 ≡ 8 mod 9.
If we continue in this manner, we obtain the first few coordinates of β:

β = (2 mod 3, 8 mod 9, 17 mod 27, 71 mod 81, . . .).

It remains to show that β = (bn mod 3n)n≥1 is invertible. Since b1 ≡ 2 mod 3 and
bn ≡ b1 ≡ 2 �≡ 0 mod 3, it follows that each bn mod 3n is invertible, so β−1 =
(b−1

n mod 3n)n≥1. Thus,

β−1 = (2 mod 3, 8 mod 9, 8 mod 27, 8 mod 81, . . .).

Even though Zp is not a field, we can embed Zp in a field in the same way that
Z sits inside Q. We define the field of p-adic numbers as follows.

Definition 11.5.7. We define the field of p-adic numbers by

Qp =
{
pr · β : r ∈ Z and β ∈ Z×

p

}
.

Thus, Zp = {pr · β : r ≥ 0 and β ∈ Z×
p } is a subring of Qp. We now show

that the second version and the p-adic version of the Hasse–Minkowski theorem
(Theorems 11.2.10 and 11.2.14) are equivalent. Indeed, it suffices to show that a
quadratic form equation has a compatible system of solutions modulo pk, for every
k ≥ 1, if and only if it has a p-adic solution.

Proposition 11.5.8. Let q(x1, . . . , xn) = 0 be a diophantine equation (i.e., q ∈
Z[x1, . . . , xn]), and let p be a prime number. Then, q = 0 has a compatible system
of solutions modulo pk, for every k ≥ 1, if and only if there is a p-adic solution
(z1, . . . , zn) ∈ (Qp)

n of q = 0.

Proof. Suppose first that (s1,k mod pk, . . . , sn,k mod pk)k≥1 is a compatible system
of solutions modulo pk of q = 0. In other words, there are integers si,k, for k ≥ 1
and 1 ≤ i ≤ n, such that

q(s1,k, . . . , sn,k) ≡ 0 mod pk
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and si,k+1 ≡ si,k mod pk. Therefore, the sequences

zi = (si,1 mod p, si,2 mod p2, . . . , si,k mod pk, . . .)

define p-adic integers z1, . . . , zn because the compatibility condition si,k+1 ≡ si,k
mod pk is satisfied. Moreover, since each n-tuple (s1,k, . . . , sn,k) satisfy the equation
q ≡ 0 mod pk, it follows that q(z1, . . . , zn) = 0.

Conversely, suppose z1, . . . , zn ∈ Qp are p-adic numbers such that

q(z1, . . . , zn) = 0,

and let m = min{νp(zi) : 1 ≤ i ≤ n}. Then, z′i = p−mzi are p-adic integers (see
Exercise 11.7.26), and

q(z′1, . . . , z
′
n) = q(p−mz1, . . . , p

−mzn) = p−2mq(z1, . . . , zn) = 0,

where we have used Lemma 11.1.3. Thus, q = 0 also has a solution with coordinates
in Zp, so we may assume that z1, . . . , zn are in Zp in the first place. Now, the p-
adic coordinates mod pk of each zi = (si,k mod pk)k≥1 form a compatible system
of solutions of q ≡ 0 mod pk, for all k ≥ 1, as desired. �

11.6. Hensel’s Lemma

The following results are used to show the existence of a solution to polynomial
equations over Qp. Here we will only discuss the application to the p-adics, Qp.
Before we state Hensel’s lemma, we define the p-adic valuation of a p-adic number.

Definition 11.6.1. Let p ≥ 2, let Qp be the field of p-adic numbers, and let Zp

be the p-adic integers. The p-adic valuation is a function νp : Q
∗
p = Qp \ {0} → Z

defined as follows: if t ∈ Q∗
p is written as t = pr · β, with β ∈ Z×

p , then νp(t) = r.

Example 11.6.2. Here are some values of p-adic valuations:

ν3(27) = 3, ν2(384) = ν2(2
7 · 3) = 7, ν7(27/49) = −2.

Theorem 11.6.3 (Hensel’s lemma). Let p ≥ 2, let Qp be the field of p-adic num-
bers, and let Zp be the p-adic integers. Let νp be the p-adic valuation (as in Defi-
nition 11.6.1). Let f(x) be a polynomial with coefficients in Zp and suppose there
exists α0 ∈ Zp such that

νp(f(α0)) > νp(f
′(α0)

2).

Then, there exists a root α ∈ Qp of f(x). Moreover, the sequence

αi+1 = αi −
f(αi)

f ′(αi)

converges to α. Furthermore,

νp(α− α0) ≥ νp

(
f(αi)

f ′(αi)

)
> 0.

Notice the similarities with Newton’s method (in particular, with Theorem
11.4.5). We will not prove the most general case of Hensel’s lemma here. For a
proof, see [Con2]. The so-called “trivial case” of Hensel’s lemma, stated below, is
just a rephrasing of the first part of Theorem 11.4.5.
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Corollary 11.6.4 (Trivial case of Hensel’s lemma). Let p ≥ 2, and let Zp and Qp

be as before. Let f(x) be a polynomial with coefficients in Zp and suppose there
exists α0 ∈ Zp such that

f(α0) ≡ 0 mod p, f ′(α0) �≡ 0 mod p.

Then, there exists a root α ∈ Qp of f(x); i.e., f(α) = 0.

Example 11.6.5. Let p be a prime number greater than 2 and let p �= 7. Are
there solutions to x2 + 7 = 0 in Zp? Suppose α ∈ Zp is a solution. If we write
α = (an mod pn)n≥1, then we would have a21 + 7 ≡ 0 mod p. Thus, −7 must be a
quadratic residue modulo p. Thus, let p �= 7 be an odd prime such that(

−7

p

)
= 1,

where ( ·
p ) is Legendre’s quadratic residue symbol. Hence, there exist α0 ∈ Z such

that α2
0 ≡ −7 mod p. We claim that x2 + 7 = 0 has a solution in Zp if and only if

−7 is a quadratic residue modulo p. Indeed, if we let f(x) = x2+7 (so f ′(x) = 2x),
the element α0 ∈ Zp satisfies the conditions of the (trivial case of) Hensel’s lemma.
Therefore, there exists a root α ∈ Zp of x2 + 7 = 0. We leave it to the reader to
show that x2 + 7 = 0 has no solutions in Z7 (nor in Q7; see Exercise 11.7.27).

For example, −7 is a square modulo 11, since −7 ≡ 4 mod 11. There are two
roots α1 and α2 of x2 + 7 = 0 in Z11; namely

α1 = (2, 90, 1058, 10375, 156785, 317836, . . .),

α2 = −α1 = (9, 31, 273, 4266, 4266, 1453725, . . .).

Example 11.6.6. Let p = 2. Are there any solutions to x2 + 7 = 0 in Q2? Notice
that if we let f(x) = x2 + 7, then f ′(x) = 2x and, for any α0 ∈ Z2, the number
f ′(α0) = 2α0 is congruent to 0 modulo 2. Thus, we cannot use the trivial case of
Hensel’s lemma (i.e., Corollary 11.6.4).

Let α0 = 1 ∈ Z2. Notice that f(1) = 8 and f ′(1) = 2. Thus,

3 = ν2(8) > ν2(2
2) = 2

and the general case of Hensel’s lemma applies. Hence, there exists a 2-adic solution
to x2 + 7 = 0.

In the following result, we use Hensel’s lemma to classify all the square numbers
in Q2. Below, we will use congruences between p-adic integers, which we define as
follows: if α = (an mod pn)n≥1 and β = (bn mod pn)n≥1 and k ≥ 1 is fixed, then
we say that α ≡ β mod pk if ak ≡ bk mod pk.

Theorem 11.6.7. Let α ∈ Q2. Then, α is a perfect square (i.e., α ∈ (Q2)
2) if and

only if α = 2ku where k ∈ 2Z and u ∈ Z2 with u ≡ 1 mod 8.

Proof. Let us suppose first that α ∈ Q2 is a perfect square; i.e., α = β2 for some
β ∈ Q2. Then, by the definition of Q2, we have β = 2hv, for some h ∈ Z and some
v ∈ Z2 with v ≡ 1 mod 2. In particular,

α = β2 = (2hv)2 = 22hv2.
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Moreover, since v ≡ 1 mod 2, we have v = 1 + 2w, for some w ∈ Z2, and so

u = v2 = (1 + 2w)2 = 1 + 4w + 4w2 = 1 + 4w(w + 1).

But either w or w + 1 ≡ 0 mod 2, and so w(w + 1) ≡ 0 mod 2. It follows that
4w(w + 1) ≡ 0 mod 8, and so

v2 = 1 + 4(w(w + 1)) ≡ 1 mod 8.

For the converse, assume that α = 2ku where k = 2h ∈ 2Z and u ∈ Z2 with
u ≡ 1 mod 8. It suffices to show that u = v2 for some v ∈ (Z2)

2, because then
α = (2hv)2. In order to show that u is a square, we use Hensel’s lemma. Consider
f(x) = x2 − u, and let α0 = 1 ∈ Z2. Then, f(1) = 1− u ≡ 0 mod 8, and f ′(1) = 2.
Thus,

3 = ν2(8) > ν2(2
2) = 2,

and the general case of Hensel’s lemma applies. Hence, there exists a 2-adic solution
v to x2 − u = 0, or, in other words, v2 = u. Hence, u is a square, as claimed. This
concludes the proof of the theorem. �

11.7. Exercises

Exercise 11.7.1. Compute the Gram matrix for the following quadratic forms and
decide whether they are regular:

(a) q(X,Y, Z) = X2 + Y 2 + Z2 +XY + Y Z +XZ.
(b) q(X,Y, Z, T ) = X2 + Y 2 + Z2 − T 2. (Note: this quadratic form is related to

the theory of special relativity.)
(c) q(X,Y, Z, T ) = XY − ZT .
(d) q(X,Y, Z, T ) = X2 −XZ +XT − Y 2 + Y Z + Y T − ZT .
(e) q(X,Y ) = X2 −XY − Y 2.

Exercise 11.7.2. Let q(X1, X2, X3) = (aX + bY + cZ)(dX + eY + fZ) be a
quadratic form. Show that q is not regular.

Exercise 11.7.3. Show that the map ψ defined in Remark 11.1.12 is a bijection.

Exercise 11.7.4. Determine whether the following sequences of congruences form
a compatible system in the sense of Definition 11.2.3:

(a) {2 mod 3k}k≥1 = {2 mod 3, 2 mod 9, 2 mod 27, . . .}.
(b) {pk−1 mod pk}k≥1 where p is a prime number.
(c) {p · (pk−1 − 1) mod pk}k≥1 where p is a prime number.
(d) {1 + (m− 1)! mod (m!)}m≥2 = {0 mod 2, 3 mod 6, 7 mod 24, . . .}.
(e) {1! + 2! + 3! + · · ·+ (m− 1)! mod (m!)}m≥2 = {1 mod 2, 3 mod 6, . . .}.

Exercise 11.7.5. Show that the equation 5X2+13Y 2−7Z2 = 0 has no non-trivial
integral solutions. (Hint: work mod 2 and mod 4.)

Exercise 11.7.6. Show that the equation X2 + Y 2 + Z2 +XY +XZ + Y Z = 0
has no non-trivial integral solutions. (Hint: complete squares, and work over R.)
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Exercise 11.7.7. Show that the equation Y 2 −X2 − Z2 +XY − 3XZ + Y Z = 0
has no non-trivial integral solutions.

Exercise 11.7.8. Let n be an odd number such that 2n is a sum of two integral
squares; i.e., there are a, b ∈ N such that 2n = a2 + b2. Show that

n =

(
a+ b

2

)2

+

(
a− b

2

)2

is a representation of n as a sum of integral squares.

Exercise 11.7.9. Find the first five terms of a compatible system of congruences
{sk mod 5k}k≥1 that are a solution of x2 ≡ 11 mod 5k. In other words, find integers
s1, . . . , s5 such that s2k ≡ 11 mod 5k and sk+1 ≡ sk mod 5k.

Exercise 11.7.10. Find the first six terms of a compatible system of congruences
{sk mod 2k}k≥1 that are a solution of x2 ≡ 17 mod 2k. In other words, find integers
s1, . . . , s6 such that s2k ≡ 17 mod 2k and sk+1 ≡ sk mod 2k.

Exercise 11.7.11. Decide whether the following systems of congruences have a
non-trivial compatible system of solutions, for all k ≥ 1:

(a) x2 ≡ 13 mod 2k.
(b) x2 ≡ 68 mod 2k.
(c) x2 ≡ 7 mod 13k.
(d) 5x2 ≡ 11 mod 13k.
(e) x2 ≡ 1289 mod 4001k.

Exercise 11.7.12. Let n be an odd integer. Show that the congruences X2 +
Y 2 ≡ nZ2 modulo 2 and modulo 4 have non-trivial compatible solutions (i.e.,
u ≡ (a2, b2, c2) mod 2 with a22 + b22 ≡ nc22 mod 2 and a2, b2, or c2 �≡ 0 mod 2, and
v ≡ (a4, b4, c4) mod 4 with a24+b24 ≡ nc24 mod 4, such that v ≡ u mod 2, coordinate-
wise) if and only if n ≡ 1 mod 4.

Exercise 11.7.13. Use the Hasse–Minkowski theorem to show that the hyperbola
C : x2 − 4001y2 = 1289 has a rational point. (Hint: proceed as in Section 11.3.1.)

Exercise 11.7.14. Show that the ellipse C : x2 + 1289y2 = 4001 has a rational
point.

Exercise 11.7.15. Show that the hyperbola C : x2−4001y2 = 1249 does not have
a rational point.

Exercise 11.7.16. The circle C : x2 + y2 = 298 has a rational point ( 12113 , 189
13 ).

Use the geometric method of Example 11.3.13 to find an integral point on C.

Exercise 11.7.17. Use Newton’s method (Theorem 11.4.5) to find the first four
terms of a compatible system of congruences {sk mod 13k} that are solutions of
x2 ≡ 10 mod 13k.

Exercise 11.7.18. Use Newton’s method to find the first three terms of a com-
patible system of congruences {sk mod 17k} that are solutions of x3 + 2x + 1 ≡
0 mod 17k.
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Exercise 11.7.19. Show that if q and t are distinct integers (in Z), then their
representatives in Zp for any prime p ≥ 2, given by q = (q mod pn)∞n=1 and t =
(t mod pn)∞n=1, are also distinct in Zp.

Exercise 11.7.20. Let p > 2 be a prime number.

(1) Let b ∈ Z with gcd(b, p) = 1, and let n ≥ 1. Suppose an ∈ Z such that a2n ≡
b mod pn. Show that there exists an+1 ∈ Z such that a2n+1 ≡ b mod pn+1 and
an+1 ≡ an mod pn. (Hint: write a2n = b+ kpn and consider f(x) = an + xpn.
Find x such that f(x)2 ≡ b mod pn+1.)

(2) Suppose a21 ≡ b mod p, where gcd(b, p) = 1. Show that the vector α =
(an)

∞
n=1, defined recursively by

an+1 ≡ an − a2n − b

2an
mod pn+1,

is a well-defined element of Zp and, moreover, α2 = b; i.e.,

α2 = (b mod p, b mod p2, b mod p3, . . .),

so α is a square root of b.

Exercise 11.7.21. Find the first four coordinates of the 5-adic expansion of 1
3 in

Z5.

Exercise 11.7.22. Let p �= 3 be a prime. Show that 1
3 ∈ Zp, and find a formula

(as in Remark 11.5.4) for 1/3 in terms of p. (Hint: write a formula for primes
p ≡ 1 mod 3 and another formula for primes p ≡ 2 mod 3.)

Exercise 11.7.23. Find the first four coordinates of the 5-adic expansions of ±
√
6

in Z5; i.e., find the first four coordinates of α and −α such that α2 = 6 in Z5.

Exercise 11.7.24. In this exercise we prove Lemma 11.5.5.

(a) Show that Z×
p , i.e., the group of invertible p-adic integers, is given by {z ∈

Zp : z �≡ 0 mod p}.
(b) Let z ∈ Zp, and let n ≥ 1 be an integer such that z ≡ 0 mod pn but z �≡

0 mod pn+1 (i.e., νp(z) = n). Show that there is another element y ∈ Zp such
that pny = z. Moreover, show that y is unique and invertible in Zp. (Hint:
describe each coordinate y = (ym mod pm)m≥1 in terms of the coordinates of
z.)

Exercise 11.7.25. Let νp be the p-adic valuation, as in Definition 11.6.1. Show
the following properties, for any non-zero v, w ∈ Qp:

(a) νp(v · w) = νp(v) + νp(w).
(b) νp(v + w) ≥ min{νp(v), νp(w)}.
(c) If νp(v) �= νp(w), then νp(v + w) = min{νp(v), νp(w)}.

Exercise 11.7.26. Let z ∈ Qp, and let m = νp(z). Show that p−mz ∈ Zp (i.e.,
νp(p

−mz) = 0).

Exercise 11.7.27. Show that the equation x2 + 7 = 0 has no solutions over Q7.
(Hint: use the 7-adic valuation.)
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Exercise 11.7.28. Use Hensel’s lemma to show that the following equations have
a p-adic solution:

(a) x2 = 41 over Q5.
(b) x2 = 41 over Q2.
(c) x3 + x+ 2 = 0 over Q7.
(d) x2 − 4001y2 = 1289 over Q4001.
(e) x2 − 4001y2 = 1289 over Q1289.
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CHAPTER 12

CIRCLES, ELLIPSES, AND THE SUM
OF TWO SQUARES PROBLEM

The description of right lines and circles, upon
which geometry is founded, belongs to mechanics.
Geometry does not teach us to draw these lines, but
requires them to be drawn.

Sir Isaac Newton, from Principia Mathematica

In Chapter 9 we saw that for any quadratic equation C : f(x, y) = 0 with
integer coefficients that is classified as an ellipse (as in Definition 9.2.7), there is
a change of variables φ : C → C ′, where C ′ : X2 + BY 2 = D for some integers
B > 0 and D �= 0, that sends C(Z) to C ′(Z), integral points to integral points (see
Theorem 9.4.1; the map ϕ is explicitly described in Corollary 9.2.12). Therefore,
our task in this chapter is to describe the rational and integral points on ellipses of
the form C ′ : X2 +BY 2 = D. In Section 12.1 we analyze the special case of circles
(i.e., B = 1).

12.1. Rational and Integral Points on a Circle

In this section we study the rational points and integral points on circles, i.e., on
quadratic curves of the form x2 + y2 = r, for some rational number r ∈ Q.
Question 12.1.1. Let r ∈ Q be a fixed non-zero rational number. Are there rational
points on the circle x2+y2 = r? Alternatively, is r a sum of two (rational) squares?
Are there integral points on the circle x2 + y2 = r?

The first thing to notice is that we may assume r is an integer.
Lemma 12.1.2. Let r ∈ Q be a non-zero rational number, such that r = n/m where
n ∈ Z and m > 1 are relatively prime. Then, the circle Cn/m : x2 + y2 = n/m has
rational points if and only if the circle Cnm : x2 + y2 = nm has rational points.

337
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Proof. The proof follows from the fact that the map ψ : Cn/m → Cnm given by
ψ((a, b)) = (ma,mb) is a bijection between Cn/m(Q) and Cnm(Q). We leave it to
the reader to check the details in Exercise 12.8.1. �

For example, if we want to find a rational point on x2 + y2 = 13/5, it suffices
to find a point on x2 + y2 = 65. The latter has an integral point (7, 4) which
corresponds to a rational point (7/5, 4/5) in the circle x2 + y2 = 13/5. Next, we
show that it suffices to look for integral points.

Lemma 12.1.3. Let r be a non-zero rational number, and let Cr be the circle with
equation x2 + y2 = r.

(1) If Cr has an integral point, then r is an integer.
(2) Let r be an integer. Then, Cr has an integral point if and only if Cr has a

rational point.

Proof. If (a, b) is an integral point, then r = a2 + b2 ∈ Z, which shows the first
part. The second part was shown in Proposition 11.3.11. �

Therefore, we have reduced Question 12.1.1 to the following equivalent question:

Question 12.1.4. Let n > 1 be a fixed natural number. Are there integral points
on the circle x2 + y2 = n? In other words, can n be written as the sum of two
(integral) squares?

We have already answered this question, in Chapter 11 (in particular, see
Section 11.3 and Theorem 11.3.9), but we used the deep theorem of Hasse and
Minkowski to do so (Theorem 11.2.12), which we will not prove in this book as it
is beyond our scope. In this section, however, we provide a self-contained answer
to Question 12.1.4, i.e., a proof of Theorem 11.3.9 that does not make use of the
Hasse–Minkowski theorem.

Let us begin by considering the case when n = p is a prime number. What
primes p can be written as the sum of two (integral) squares? Clearly p = 2 =
12+12, so we may concentrate on odd primes p ≥ 3. Since for a fixed prime p there
are only finitely many possibilities for a, b ∈ Z such that a2 + b2 = p (because a
and b must be ≤ √

p/2), we can find out what odd primes ≤ 100 are a sum of two
squares:

5 = 22 + 12, 13 = 32 + 22, 17 = 42 + 12, 29 = 52 + 22,

37 = 62 + 12, 41 = 52 + 42, 53 = 72 + 22, 61 = 62 + 52,

73 = 82 + 32, 89 = 82 + 52, and 97 = 92 + 42,

while the primes 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, and 83 are not the sum of
two squares. The reader may have realized that the primes (at least those ≤ 100)
that are a sum of two squares satisfy p ≡ 1 mod 4, while every prime p ≡ 3 mod 4
cannot be expressed as a sum of two squares. Thus, our data suggests that an odd
prime p is a sum of two squares if and only if p ≡ 1 mod 4. The following theorem
was claimed and stated by Pierre de Fermat in 1640, but the first published proof
is due to Euler, in 1749. Nonetheless, it is usually known as Fermat’s theorem on
sums of two squares.
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Theorem 12.1.5. An odd prime number p is a sum of two squares if and only if
p ≡ 1 mod 4.

Proof. Let p be an odd prime and suppose that p = a2 + b2 is a sum of two
squares, for some a, b ∈ Z. Notice that gcd(ab, p) = 1, because if p|a, say, then
p|(p−a2) = b2, and so p|b which would imply that p2|(a2+b2) = p, a contradiction.
Thus, a and b are units modulo p and therefore invertible. Since a2+ b2 ≡ 0 mod p,
it follows that a2 ≡ −b2 mod p, and therefore (a/b)2 ≡ −1 mod p. We conclude
that −1 is a square modulo p and, by Lemma 10.3.4, we conclude that (p− 1)/2 is
even; i.e., p ≡ 1 mod 4.

For the converse, let us assume that p ≡ 1 mod 4. Then, Lemma 10.3.4 shows
that −1 is a square modulo p. Thus, there is some integer s such that s2 ≡
−1 mod p. Let �√p � be the floor of √p, i.e., the largest integer ≤ √

p, and consider
the set of integers

S = {(x, y) : 0 ≤ x, y < �√p�}.
We claim that there are two different pairs (x1, y1) and (x2, y2) ∈ S such that
sx1 − y1 ≡ sx2 − y2 mod p. Indeed, if all the possible values sx − y for (x, y) ∈ S
were different modulo p, then there would be (�√p�+ 1)2 distinct values modulo p
in S, but

(�√p�+ 1)2 > (
√
p)2 = p.

Since there are exactly p distinct values in a complete set of representatives modulo
p, this is a contradiction.

Hence, there are two distinct pairs (x1, y1) and (x2, y2) ∈ S such that sx1−y1 ≡
sx2−y2 mod p, or, equivalently, sx0 ≡ y0 mod p where x0 = x1−x2 and y0 = y1−y2.
Since (x1, y1) �= (x2, y2), either x0 �= 0 or y0 �= 0. Moreover, since sx0 ≡ y0 mod p, it
follows that s2x2

0 ≡ y20 mod p, and therefore −x2
0 ≡ y20 mod p, or x2

0+y20 ≡ 0 mod p.
Thus, x2

0 + y20 is a non-zero multiple of p and

0 < x2
0 + y20 ≤ (�√p�)2 + (�√p�)2 = 2(�√p�)2 < 2(

√
p)2 = 2p.

The only non-zero multiple of p strictly between 0 and 2p is precisely p, and therefore
x2
0 + y20 = p, as desired. �

Example 12.1.6. The proof of Theorem 12.1.5 is constructive. Let p = 41 ≡
1 mod 4 and let us find x, y ∈ Z such that x2 + y2 = 41, using the method outlined
in the proof. We first find s such that s2 ≡ −1 mod 41. Since 81 ≡ 40 ≡ −1 mod 41,
we see that s = 9 works. Now we calculate �

√
41� = 6 and we construct

S = (x, y) : 0 ≤ x, y ≤ 6.

The set S has 49 elements and we need to find two different pairs (x1, y1) and
(x2, y2) such that 9x1 − y1 ≡ 9x2 − y2 mod 41. For instance, we find

9 · 4− 0 ≡ 36 ≡ 9 · 0− 5 mod 41,

and we can take x0 = |4− 0| = 4 and y0 = |0− 5| = 5. Indeed,

42 + 52 = 16 + 25 = 41,

as desired.
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Theorem 12.1.5 confirms our suspicion that only the primes that are 1 mod 4
can be written as the sum of two squares. Now we turn to the case of composite
numbers. The following identity shows that if m and n are sums of two squares,
then their product mn is also the sum of two squares.

Lemma 12.1.7. Let m,n ∈ Z such that m = a2 + b2 and n = c2 + d2, for some
a, b, c, d ∈ Z. Then,

mn = (ac+ bd)2 + (ad− bc)2 = (ac− bd)2 + (ad+ bc)2.

Proof. The proof amounts to verifying the validity of the algebraic equality, so we
leave it as an exercise for the reader. See also Exercise 12.8.3 for an alternative
proof that explains a reason for the equality to hold. �
Example 12.1.8. Let m = 5 and n = 41. Then, our previous lemma says that
205 = 5 · 41 is also a sum of two squares. Indeed, m = 5 = 22 + 12 and n = 41 =
52 + 42. Thus, using the formula given by the lemma, we obtain

205 = (2 · 5 + 1 · 4)2 + (2 · 4− 1 · 5)2 = (2 · 5− 1 · 4)2 + (2 · 4 + 1 · 5)2

= 142 + 32 = 62 + 132.

So, in fact, we have obtained two distinct representations of 205 as a sum of two
squares.

As a consequence of Lemma 12.1.7 and Theorem 12.1.5, every integer whose
prime factorization contains only primes that are ≡ 1 mod 4 is a sum of two squares.
However, 45 = 62 + 32 is also a sum of two squares, and 45 = 32 · 5, so there is a
prime ≡ 3 mod 4 in the prime factorization. Next, we show that if n is a sum of
two squares and q ≡ 3 mod 4 is a prime divisor of n, then q2 is a divisor of n.

Lemma 12.1.9. Let n be an integer such that n = a2 + b2 for some a, b ∈ Z, and
suppose q is a prime such that q ≡ 3 mod 4.

(1) If q|n, then q|a and q|b. In particular, q2|n.
(2) If q|n, then q appears to an even power in the prime factorization of n.

Proof. For (1), let q ≡ 3 mod 4 be a prime divisor of n = a2 + b2. Suppose for a
contradiction that a is not divisible by q. Then, a is a unit modulo q, and there
is a′ ∈ Z such that aa′ ≡ 1 mod q. Since q|n, it follows that a2 + b2 ≡ 0 mod q,
and therefore (aa′)2 +(a′b)2 ≡ 0 mod q, or, equivalently, (a′b)2 ≡ −1 mod q, which
is impossible because −1 is not a square modulo q, by Lemma 10.3.4. Hence a is
divisible by q, and the same argument shows that b is also divisible by q.

For (2), suppose for a contradiction that n = a2 + b2 and n = n′q2e+1, with
gcd(n′, q) = 1. By part (1), the prime q divides a and b, so that a = qa1 and
b = qb1, for some integers a1, b1. Therefore

n1 = n/q2 = n′q2(e−1)+1 = a21 + b21.

Applying part (1) repeatedly, we obtain a sequence

ni = n/(q2i) = n′q2(e−i)+1 = a2i + b2i ,

for some integers ai, bi and for every i = 1, . . . , e. In particular,

ne = n/(q2e) = n′q = a2n + b2n,
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and therefore, once again by part (1), the prime q would divide an and bn, and this
would imply that q2 is a divisor of n′q, and so q|n′. But this is impossible because
gcd(n′, q) = 1. Hence, the power of a prime q ≡ 3 mod 4 dividing a sum of squares
n must be even. �

We are finally ready to state and prove a complete classification of what natural
numbers can be expressed as the sum of two squares, which does not use the Hasse–
Minkoswki theorem (as in Theorem 11.3.9).

Theorem 12.1.10. Let n > 1 be a natural number. The circle Cn : x2+y2 = n has
an integral point if and only if every prime divisor p of n with p ≡ 3 mod 4 appears
to an even power in the prime factorization of n. Equivalently, n can be written as
a sum of two squares if and only if the square-free part of n is not divisible by any
prime p of the form p ≡ 3 mod 4.

Proof. Suppose first that n > 1 is a sum of two squares, i.e., n = a2 + b2, for
some a, b ∈ Z, and suppose that n has a prime divisor q ≡ 3 mod 4. Then, Lemma
12.1.9, the prime q appears to an even power in the prime factorization of n.

For the converse, suppose that n = n′m2, where n′ is square-free, and assume
that n′ is not divisible by any prime p of the form p ≡ 3 mod 4. Then, n′ =
2ep1p2 · · · pt, for e = 0 or 1, and some primes pi ≡ 1 mod 4, for i = 1, . . . , t. Clearly
2 = 12+12, and by Theorem 12.1.5, each pi is a sum of two squares, say pi = a2i +b2i ,
for some ai, bi ∈ Z. Hence, applying Lemma 12.1.7 repeatedly, we see that n′ can
also be written as the sum of two squares, say n′ = a′2 + b′2. Consequently,

n = n′m2 = (a′2 + b′2)m2 = (a′m)2 + (b′m)2,

and therefore n is also a sum of two squares, as desired. �

Example 12.1.11. The number 3978 factors as 2 · 32 · 13 · 17. Since 13 and 17 are
congruent to 1 mod 4, it follows from Theorem 12.1.10 that 3978 must be the sum
of two squares. Let us find a, b ∈ Z such that 3978 = a2 + b2 following the proof of
the theorem. First, we easily find

2 = 12 + 12, 13 = 32 + 22, and 17 = 42 + 12,

so, using the formula in Lemma 12.1.7, we obtain

26 = 2 · 13 = (12 + 12)(32 + 22) = (3 + 2)2 + (2− 3)2 = 52 + 12

and

442 = 26 · 17 = (52 + 12)(42 + 12) = (20 + 1)2 + (5− 4)2 = 212 + 12.

Finally,
3978 = 32 · 442 = 32 · (212 + 12) = 632 + 32.

In fact, 3978 can also be represented as 729 + 3249 = 272 + 572.

We finish this section with the statement of a theorem on the number of rep-
resentations of an integer as the sum of two squares. Here, we will count

5 = 22 + 12 = (−2)2 + 12 = 22 + (−1)2 = (−2)2 + (−1)2

= 12 + 22 = 12 + (−2)2 = (−1)2 + 22 = (−1)2 + (−2)2
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as eight distinct representations of 5 as a sum of two squares, but we will say they
are all essentially the same representation.

Theorem 12.1.12. Suppose n can be represented as a sum of two squares and
write

n = 2a · pa1
1 · · · pas

s · qb11 · · · qbtt ,

where each pi (resp. qj) is a prime congruent to 1 mod 4 (resp. 3 mod 4) and
ai, bj ≥ 1, with bj even. Then, n can be written as a sum of two squares in

N(n) = 4
s∏

i=1

(ai + 1)

ways. Moreover, if N(n) is divisible by 8, then there are exactly N(n)/8 essentially
distinct representations of n as a sum of two squares. If N(n) is not divisible by 8,
then N(n) = 8k+4 for some k ≥ 0, and there are exactly k+1 essentially distinct
representations.

A proof of Theorem 12.1.12 can be found, for example, in [AC95, Theorem
8.11].

Example 12.1.13. A prime p ≡ 1 mod 4 can be represented as a sum of two
squares in eight different ways (which are essentially the same representation). For
instance,

13 = 32 + 22 = (−3)2 + 22 = 32 + (−2)2 = (−3)2 + (−2)2

= 32 + 22 = 32 + (−2)2 = (−3)2 + 22 = (−3)2 + (−2)2.

In Example 12.1.11 we saw that 3978 is the sum of two squares. Since 3978 =
2 · 13 · 17 · 32, Theorem 12.1.12 says that 3978 can be represented as a sum of two
squares in

4 · (1 + 1) · (1 + 1) = 16

different ways. Indeed,

3978 = 632 + 32 = (−63)2 + 32 = 632 + (−3)2 = (−63)2 + (−3)2

= 32 + 632 = 32 + (−63)2 = (−3)2 + 632 = (−3)2 + (−63)2

= 572 + 272 = (−57)2 + 272 = 572 + (−27)2 = (−57)2 + (−27)2

= 272 + 572 = 272 + (−57)2 = (−27)2 + 572 = (−27)2 + (−57)2.

Theorem 12.1.12 can be reinterpreted in terms of integral points as follows.

Corollary 12.1.14. Let n be a natural number such that the circle Cn : x2+y2 = n
has at least one integral point, and let n′ = 2apa1

1 · · · pas
s be the square-free part of

n. Then, Cn has exactly

4
s∏

i=1

(ai + 1)

integral points.

Example 12.1.15. Let n = 15925 and consider the circle C : x2 + y2 = 15925.
Since n = 52 · 72 · 13, it follows that n can be written as the sum of two squares,
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by Theorem 12.1.10. Hence, C has integral points, and by Corollary 12.1.14, there
must be

4 · (2 + 1) · (1 + 1) = 24

integral points on C. Indeed, the set C(Z) of integral points on C consists of

(−126, 7), (−126,−7), (−119, 42), (−119,−42), (−105, 70), (−105,−70),

(−70, 105), (−70,−105), (−42, 119), (−42,−119), (−7, 126), (−7,−126),

(7, 126), (7,−126), (42, 119), (42,−119), (70, 105), (70,−105),

(105, 70), (105,−70), (119, 42), (119,−42), (126, 7), and (16,−7)

and these are all the points in the set C(Z) of integral points on the circle.

12.2. Pythagorean Triples

In this section we use a parametrization of a circle (as seen in Example 9.3.1) to
determine all the pythagorean triples, i.e., the integer solutions of the diophantine
equation x2 + y2 = z2. Let us begin with a proof of Pythagoras’s theorem.

Theorem 12.2.1 (Pythagoras of Samos (c. 570 – c. 495 BC)). Let T be a right
triangle whose hypotenuse’s length is c, and let the other two sides have lengths a
and b. Then,

a2 + b2 = c2.

Conversely, every triple of positive numbers (a, b, c) such that a2 + b2 = c2 corre-
sponds to the lengths of the sides of a right triangle.

Proof. We present here the proof that is commonly attributed to Pythagoras. The
idea is to express the area of a square of side length a + b (i.e., (a + b)2) in two
different ways, as depicted in Figure 12.1.

Figure 12.1. Pythagoras’s proof by “rearrangement” of his famous theorem.
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Let A be the area of the triangle T described by the statement of the theorem.
The picture on the right-hand side of Figure 12.1 has area

(a+ b)2 = a2 + 2ab+ b2 = 4 · ab
2

+ a2 + b2 = 4A+ a2 + b2.

In order to calculate the area of the square in the left-hand side of the picture, it
needs to be shown that the tilted region in the center is a square. It suffices to
verify that the angles are π/2 each. However, this follows from the fact that the
angle of T where the sides of length a and c meet and the angle where b and c meet
add up to π/2 (since the third angle in T is π/2, and all three angles should add
up to π). Therefore, the center is a tilted square with side length c, and the area
of the larger square is given by

(a+ b)2 = 4A+ c2.

Hence, we must have

4A+ a2 + b2 = (a+ b)2 = 4A+ c2

and the equation a2 + b2 = c2 follows.
For the converse, let T be a right triangle with sides of length a and b next to

the π/2 angle. Since we just proved that the length h of the hypotenuse of a right
triangle is given by

√
a2 + b2, it follows that

h =
√

a2 + b2 =
√
c2 = |c| = c.

Thus, the lengths of the sides of T are a, b, and c, as desired. �

Certainly, integral solutions of the diophantine equation x2 + y2 = z2 exist,
and some are well known; e.g., 32 + 42 = 52. The question, however, is whether we
can describe all the integral solutions to Pythagoras’s equation, or, equivalently,
whether we can find all the right triangles with sides of integer length. Such solu-
tions are called pythagorean triples, which we define formally next.

Definition 12.2.2. A triple of natural numbers (a, b, c) is called a pythagorean
triple if a2 + b2 = c2. The triples (a, b, c) and (b, a, c) are considered as the same
pythagorean triple.

Example 12.2.3. The triple (3, 4, 5) is a pythagorean triple, because 32 + 42 =
9 + 16 = 25 = 52. If we multiply both sides of the equation by a square, then we
obtain a new pythagorean triple. For instance,

4 · (32 + 42) = 4 · 52

yields 62+82 = 102. Thus, (6, 8, 10) is also a pythagorean triple and so is (3λ, 4λ, 5λ)
for any λ ≥ 1. The triple, (3, 4, 5), that generates this family of pythagorean triples
is called primitive. Note that the coordinates of the pythagorean triple (3λ, 4λ, 5λ)
share a greatest common divisor of λ, and the primitive one corresponds to a
gcd = 1.

Definition 12.2.4. A triple of natural numbers (a, b, c) is called a primitive pythag-
orean triple if a2 + b2 = c2 and gcd(a, b, c) = 1.
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Remark 12.2.5. If (a, b, c) is a primitive pythagorean triple, then a, b, c are also
pairwise coprime. Indeed, if any two coordinates share a common factor d, then d
also divides the third coordinate in the triple, because

a2 = c2 − b2, b2 = c2 − a2, and c2 = a2 + b2.

See also Exercise 2.11.37. This implies that

gcd(a, b) = gcd(b, c) = gcd(a, c) = gcd(a, b, c)

for any pythagorean triple (a, b, c).

Remark 12.2.6. If (a, b, c) is a pythagorean triple, then it is a multiple of a prim-
itive pythagorean triple. Indeed, if d = gcd(a, b, c), then (a′, b′, c′) = (a/d, b/d, c/d)
is a triple of integers that satisfy

a′2 + b′2 =
(a
d

)2
+

(
b

d

)2

=
1

d2
(
a2 + b2

)
=

1

d2
· c2 =

( c
d

)2
= c′2,

and gcd(a′, b′, c′) = gcd(a/d, b/d, c/d) = 1 by Exercise 2.11.25. Hence, (a′, b′, c′) is
a primitive pythagorean triple, and (a, b, c) = (da′, db′, cd′).

For instance, the pythagorean triple (15, 36, 39) shares a gcd(15, 36, 39) = 3
and is a multiple of the primitive triple (5, 12, 13).

Example 12.2.7. The smallest primitive pythagorean triples (such that c ≤ 100)
are the following:

(3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (20, 21, 29), (12, 35, 37),

(9, 40, 41), (28, 45, 53), (11, 60, 61), (16, 63, 65), (33, 56, 65), (48, 55, 73),

(13, 84, 85), (36, 77, 85), (39, 80, 89), (65, 72, 97).

Let us now tackle the problem of describing all pythagorean triples. First,
notice that if (a, b, c) is a pythagorean triple, then a2 + b2 = c2 by definition, and
it follows that

(
a
c

)2
+
(
b
c

)2
= 1. Thus,

(
a
c ,

b
c

)
is a point on the circle x2 + y2 = 1

of radius 1. Conversely, we can start with a rational point on a circle of radius 1
and obtain a pythagorean triple. If (r, s) is a rational point in the circle, then we
may write r = e

f and s = g
h as rational numbers for some integers e, f, g, h (since

(±r,±s) are also points in the circle, we may assume e, f, g, h are non-negative
integers). Then, (e/f)2 + (g/h)2 = 1 implies

(eh)2 + (gf)2 = (fh)2

and therefore (eh, gf, fh) is a pythagorean triple. In the next theorem, we shall use
our parametrization of the points on a circle of radius 1 given by Example 9.3.1 to
give a description of all pythagorean triples.

Remark 12.2.8. Before we state the theorem, we note that if (a, b, c) is a primitive
pythagorean triple, then one of a or b is even and the other one is odd (see Exercise
4.7.10).

Theorem 12.2.9. The set of all primitive pythagorean triples (a, b, c), with a odd
and b even, is the set of all triples

(n2 −m2, 2nm, n2 +m2)
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where n,m are positive integers of opposite parity, with n > m > 0, and gcd(n,m) =
1. Thus, every pythagorean triple is of the form

(λ(n2 −m2), λ(2nm), λ(n2 +m2))

for some λ ≥ 1 and some n > m > 0.

Proof. Let us first verify that τ = (n2−m2, 2nm, n2+m2) is a pythagorean triple:

(n2−m2)2+(2nm)2 = n4−2n2m2+m2+4n2m2 = n4+2n2m2+m4 = (n2+m2)2.

Moreover, τ is primitive when n,m are positive integers of opposite parity, with
n > m > 0, and gcd(n,m) = 1 (this was left as an exercise for the reader in Exercise
1.8.16, but we will provide a proof here for completeness). Suppose p is a common
prime divisor of a, b, c. Then, p is a divisor of b = 2nm and therefore p = 2, or p
divides n or m. Since n or m is even, it suffices to show the case when p divides
n or m. Without loss of generality, let us assume that p divides n. Then, p is a
divisor of n and a divisor of a = n2−m2. It follows that p divides m as well, which
contradicts gcd(n,m) = 1.

Let us show now that every primitive pythagorean triple can be written as
stated in the theorem. Let (a, b, c) be a primitive pythagorean triple. Then,
(a/c, b/c) is a point on the circle of radius R = 1. By our work in Example 9.3.1
(changing the slope value m of the line for −t in the notation of the example), there
is a value of t ∈ Q such that(

a

c
,
b

c

)
=

(
2t

1 + t2
,
1− t2

1 + t2

)
.

Since a/c > 0, the number t must be positive. And since t ∈ Q, there are integers
m,n ≥ 1 such that t = m/n. Moreover, we may require m/n to be written in lowest
terms, so that gcd(m,n) = 1. Thus,(

a

c
,
b

c

)
=

(
2t

1 + t2
,
1− t2

1 + t2

)
=

(
2 · m

n

1 +
(
m
n

)2 , 1−
(
m
n

)2
1 +

(
m
n

)2
)

=

(
2nm

n2 +m2
,
n2 −m2

n2 +m2

)
.

Since gcd(a, c) = gcd(b, c) = 1 because (a, b, c) is primitive and since we have shown
above that gcd(2nm, n2 +m2) = gcd(n2 −m2, n2 +m2) = 1, it follows that

a = 2nm, b = n2 −m2, and c = n2 +m2.

Notice that n > m because b > 0 and that n and m must have different parities;
otherwise we would have gcd(b, c) = gcd(n2 −m2, n2 +m2) ≥ 2.

Finally, it follows from Remark 12.2.6 that every pythagorean triple is a multi-
ple of a primitive one. Hence, every pythagorean triple is of the form
(λ(n2 −m2), λ(2nm), λ(n2 +m2)). �

Example 12.2.10. Let n = 2 and m = 1, which are positive, of opposite par-
ity, and relatively prime. Then, the pair (n,m) = (2, 1) produces a primitive
pythagorean triple

(n2 −m2, 2nm, n2 +m2) = (22 − 1, 2 · 2 · 1, 22 + 12) = (3, 4, 5).
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Table 12.1. Primitive pythagorean triples corresponding to 0 < m < n ≤ 6.

n

2 3 4 5 6

1 (3, 4, 5) (15, 8, 17) (35, 12, 37)

2 (5, 12, 13) (21, 20, 29)

m 3 (7, 24, 25) (27, 36, 45)

4 (9, 40, 41)

5 (11, 60, 61)

In Table 12.1 we have used the formula given by Theorem 12.2.9 to calculate all
the primitive pythagorean triples of the form (n2 − m2, 2nm, n2 + m2) with 0 <
m < n ≤ 6.

Remark 12.2.11. If n,m are any positive integers with n > m > 0, then
(n2 −m2, 2nm, n2 +m2) is a pythagorean triple, but perhaps not a primitive one.
However, not every non-primitive pythagorean triple can be constructed in this
way. For instance, consider the pythagorean triple (9, 12, 15), which is a multiple
of the primitive triple (3, 4, 5). There are no n,m such that

(9, 12, 15) = (n2 −m2, 2nm, n2 +m2).

Indeed, if there were such n,m, then 15 would be a sum of two squares, which is
impossible (this can be seen directly or by using Theorem 12.1.10).

12.3. Fermat’s Last Theorem for n = 4

As an application of our classification of pythagorean triples in Theorem 12.2.9, we
will prove Fermat’s last theorem for n = 4; i.e., we will show that X4 + Y 4 = Z4

has no integer solutions with XY Z �= 0. We will, in fact, prove something stronger:
the diophantine equation x4 + y4 = z2 has no integral solutions with xyz �= 0.

Theorem 12.3.1. The diophantine equation x4+y4 = z2 has no integral solutions
with xyz �= 0.

Proof. Suppose for a contradiction that there is a solution (x0, y0, z0), for some
x0, y0, z0 ∈ Z, with x0y0z0 �= 0. Then, (±x0,±y0,±z0) are also solutions, so we
may assume that x0, y0, z0 > 0. By the well-ordering principle (see Section 2.1),
we may also assume that (x0, y0, z0) is the solution with positive coordinates and
smallest value of z0.

We claim that (x2
0, y

2
0 , z0) is a primitive pythagorean triple. Indeed, we have

((x0)
2)2 + ((y0)

2)2 = z20 , and if p is a common prime divisor of x2
0, y20 , and z0,

then p divides x0, y0, and z0 as well, and so ((x0/p)
2, (y0/p)

2, z0/p) is another
integral solution, with positive coordinates, but 0 < z0/p < z0, which contradicts
the minimality of z0. Thus, (x2

0, y
2
0 , z0) is a primitive pythagorean triple, and by
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Theorem 12.2.9, there are m,n > 0 of opposite parity and relatively prime such
that

x2
0 = n2 −m2, y20 = 2nm, z0 = n2 +m2.

In particular, x2
0 +m2 = n2, and since gcd(m,n) = 1, it follows that (x0,m, n) is

another primitive pythagorean triple. Thus, there are u, v > 0 of opposite parity
and relatively prime such that

x0 = v2 − u2, m = 2uv, n = v2 + u2.

Notice that y20 = 2nm = 4nuv and that gcd(n,m) = gcd(u, v) = 1, together with
Exercise 2.11.36, implies that u, v, and n must each be a perfect square, say u = a2,
v = b2, and n = c2. Hence, the equation v2 + u2 = n becomes a4 + b4 = c2. Thus,
we have found a new solution (a, b, c) of x4 + y4 = z4 with positive coordinates
a, b, c > 0. Moreover, the z-coordinate of this solution is c, and

c ≤ c2 = n < n2 +m2 = z0,

but c < z0 contradicts the minimality of the z-coordinate of the solution (x0, y0, z0)
we started from. This contradiction means that (x0, y0, z0) cannot exist in the first
place and concludes the proof of the theorem. �

Corollary 12.3.2. Fermat’s last theorem is true for n = 4; i.e., the equation
X4 + Y 4 = Z4 does not have integral solutions with XY Z �= 0.

Proof. Clearly, a solution (a, b, c) of X4 + Y 4 = Z4, with abc �= 0, would yield a
solution (a, b, c2) of x4 + y4 = z2, contradicting Theorem 12.3.1. Hence, no such
integral solution can exist. �

12.4. Ellipses

In the previous section we analyzed the particular case of circles. In this section,
we move on to the general question of whether an ellipse C : X2 +BY 2 = D, with
B,D > 0, has rational or integral solutions. In the case of a circle X2 + Y 2 = D,
we showed that the existence of rational solutions is equivalent to the existence
of integral solutions (Proposition 11.3.11). However, the situation is more subtle
when dealing with ellipses, as the following example shows.

Example 12.4.1. Let C be the ellipse given by X2 + 7Y 2 = 2. Clearly, C does
not have any integral solutions, for if (x0, y0) was an integral point, then |x0| ≤ 1
and y0 = 0, but (±1, 0) are not on C. However,(

1

2

)2

+ 7 ·
(
1

2

)2

= 2,

and so (1/2, 1/2) ∈ C(Q). Using the methods of Section 9.3, we can find a
parametrization of the rational points on C:

C(Q) =

{(
7m2 − 14m− 1

14m2 + 2
,
−7m2 − 2m+ 1

14m2 + 2

)
: m ∈ Q

}
∪
{(

1

2
,−1

2

)}
.

Thus, C has infinitely many rational points but no integral points.
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Given some fixed B,D > 0, we can decide whether C : X2 + BY 2 = D has
a rational solution using the Hasse–Minkowski theorem (Theorem 11.2.12 or its
p-adic formulation, Theorem 11.2.14; see also Section 11.3 for an example of an
application). Thus, for the remainder of the section, we will concentrate on the
question of whether an ellipse has an integral point and how to find one (or all).
As the following lemma points out, determining if an ellipse X2 + BY 2 = D has
integral points is a finite computation that could be tackled by a “brute force” search
(testing whether �

√
D/B�+ 1 numbers are perfect squares).

Lemma 12.4.2. Let B,D > 0 be integers. The ellipse C : X2 +BY 2 = D has an
integral point if and only if the finite subset of integers

S = {D −B · n2 : n ∈ Z with 0 ≤ n ≤
√

D/B}

contains a perfect square. The set S has �
√

D/B�+1 elements, and if D−Bn2 =
m2 is a perfect square, for n,m ∈ Z, then (m,n) ∈ C(Z).

Proof. Suppose first that S contains a square m2. Then, there is n such that
D −Bn2 = m2, and therefore m2 +Bn2 = D. It follows that (m,n) ∈ C(Z).

Conversely, if x2
0+By20 = D, for some x0, y0 ∈ Z, then we may assume x0, y0 ≥

0, and then
B · y20 ≤ D − |x0|2 ≤ D.

Thus, 0 ≤ y0 ≤ �
√
D/B�, and D−By20 = x2

0 is a perfect square. Thus, x0 ∈ S. �

A brute force search can be tedious (when
√

D/B is large), so we are interested
in results to search for integral points in a smarter way and results to prove the
existence (or non-existence) of such points. In the following example we show how
the theory of quadratic residues (Chapter 10) and quadratic reciprocity (Section
10.4) can be used to prove the non-existence of integral points in certain cases (see
also previous related Examples 4.2.8, 9.4.4, and 9.4.5).

Example 12.4.3. Let C : X2 + 15Y 2 = 4001. By Lemma 12.4.2 one would
only have to check �

√
4001/15�+1 = 17 possible values of Y in order to determine

whether C has an integral point. Instead of doing this, we notice that if a2+15b2 =
4001 is a solution, for some a, b ∈ Z, then a2 ≡ 4001 mod 3 and a2 ≡ 4001 mod 5.
Although 4001 ≡ 1 mod 5 is a quadratic residue modulo 5, we also have 4001 ≡
2 mod 3, which is a quadratic non-residue modulo 3. Thus, the congruence a2 ≡
4001 ≡ 2 mod 3 has no solutions, and it follows that (a, b) with a2 + 15b2 = 4001
cannot exist. In other words, C(Z) is empty (and, in fact, C(Q) is empty as well;
see Exercise 12.8.15).

Example 12.4.4. The theory of quadratic residues can also be used to find an
integral solution (when there is one). Let C : X2 + 23Y 2 = 223. If (a, b) is an
integral point, for some a, b ≥ 0, then a2 ≡ 223 ≡ 16 mod 23. Since 16 is a square
modulo 23, there is no contradiction as in the previous example. However, this tells
us that a ≡ ±4 mod 23. Also, we know that 0 ≤ a ≤ �

√
223� = 14. Thus, if we put

these two constraints together, we reach the conclusion that the only possibility is
a = 4. Since (223− 16)/23 = 9, it follows that (4, 3) is an integral point on C and,
in fact, C(Z) = {(±4,±3)}.
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In Section 12.6 we will reduce the question of whether an ellipse has an integral
point to the case of X2 + BY 2 = p, where p is prime, but first, we need to take a
necessary detour and introduce quadratic fields and their norms.

12.5. Quadratic Fields and Norms

Let B > 0 be fixed, and suppose that X2 + BY 2 = n and X2 + BY 2 = m have
integral solutions, for some n,m ≥ 1. Is there an integral solution of X2 +BY 2 =
nm as well? For instance X2+3Y 2 = 13 and X2+3Y 2 = 7 have integral solutions
P = (1, 2) and Q = (2, 1), respectively, and X2+3Y 2 = 91 has an integral solution
R = (4, 5). Is there a systematic way to find R in terms of P and Q?

In this subsection we show that the answers to these questions are always pos-
itive. Moreover, we introduce the theory of quadratic fields, which gives a nice
theoretical framework for our answer. First, however, we observe that there is a
purely algebraic formula that explains this “multiplicative” behavior of integral so-
lutions of ellipses (and hyperbolas), which generalizes the formula shown in Lemma
12.1.7 for the sum of two squares.

Lemma 12.5.1. Let B �= 0 be fixed, and let a, b, c, d be arbitrary integers. Then,

(a2 +Bb2)(c2 +Bd2) = (ac−Bbd)2 +B(ad+ bc)2.

In particular, if (a, b) and (c, d) are solutions of X2+BY 2 = n and X2+BY 2 = m,
respectively, then (ac−Bbd, ad+ bc) is a solution of X2 +BY 2 = nm.

The proof of the lemma is a simple algebraic calculation and has been left to
the reader as an exercise (Exercise 12.8.16).

Example 12.5.2. The points P = (1, 2) and Q = (2, 1) lie on the conics X2+3Y 2 =
13 and X2 + 3Y 2 = 7, respectively. Thus, Lemma 12.5.1 shows that

(1 · 2− 3 · 2 · 1, 1 · 1 + 2 · 2) = (−4, 5)

belongs to X2 + 3Y 2 = 91, and so do (±4,±5). Moreover, since P ′ = (1,−2) is
also a solution of X2 +BY 2 = 13, together with Q = (2, 1), we find

(1 · 2− 3 · (−2) · 1, 1 · 1− 2 · 2) = (8,−3)

also satisfies X2 + 3Y 2 = 91, and so do (±8,±3).

The reader is probably wondering about the origin of the formula in Lemma
12.5.1. As we shall see next, the formula is a consequence of the multiplicative
properties of norms in quadratic fields.

Proposition 12.5.3. Let d be a non-zero square-free integer. Let Q(
√
d) be the

subring of complex numbers C generated by 1 and
√
d, with the addition and mul-

tiplication operations inherited from C. Then:

(1) The ring elements of Q(
√
d) are precisely

Q(
√
d) =

{
a+ b

√
d : a, b ∈ Q

}
.

(2) The ring Q(
√
d) is a field.
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Proof. By definition, Q(
√
d) is the subring of C generated by 1 and

√
d. Thus,

R =
{
a+ b

√
d : a, b ∈ Q

}
⊆ Q(

√
d).

In order to show equality, it suffices to show that the set R on the left is closed
under addition and multiplication (and therefore the smallest ring containing 1 and√
d). Indeed,

a+ b
√
d+ e+ f

√
d = (a+ e) + (b+ f)

√
d ∈ R,

and
(a+ b

√
d)(e+ f

√
d) = (ae+ dbf) + (af + be)

√
d ∈ R,

for any a, b, e, f ∈ Q. Hence, R = Q(
√
d).

Since Q(
√
d) is a ring, in order to show that it is a field, it suffices to show that

every non-zero element of Q(
√
d) is invertible. Indeed,

1

a+ b
√
d
=

(a− b
√
d)

(a+ b
√
d)(a− b

√
d)

=
a− b

√
d

a2 − db2
=

a

a2 − db2
− b

a2 − db2
·
√
d,

for any a, b ∈ Q. Moreover, a2 − db2 = 0 if and only if a = b = 0 because d is
assumed to be square-free. Hence, if a+b

√
d �= 0, then (a, b) �= (0, 0), and it follows

that (a+ b
√
d)−1 ∈ Q(

√
d), as desired. �

Definition 12.5.4. Let d be a non-zero square-free integer. The field Q(
√
d) is

called a quadratic field. If d > 0, we say Q(
√
d) is a real quadratic field, and if d < 0,

then we say it is an imaginary quadratic field.

Example 12.5.5. Let d = −3 and let α = −1+
√
−3

2 . Then,

1

α
=

1
−1+

√
−3

2

=
2 · (−1−

√
−3)

(−1 +
√
−3)(−1−

√
−3)

=
2 · (−1−

√
−3)

4
= −1 +

√
−3

2
.

Thus, α−1 also belongs to the field Q(
√
−3). It is interesting to note that

α2 =

(
−1 +

√
−3

2

)2

= −1 +
√
−3

2
=

1

α
.

Therefore, α2 = 1/α and so α3 = 1. In other words, α is a third root of unity.

The quantity a2 − db2 that appears in the denominator of the inverse of α =
a+ b

√
d is called the norm of α in Q(

√
d).

Definition 12.5.6. Let d be a non-zero square-free integer, let Q(
√
d) be the

associated quadratic field, and let α = a+ b
√
d ∈ Q(

√
d), for some a, b ∈ Q. Then,

the (absolute) norm of α, denoted by N(α), is defined by

N(α) = N(a+ b
√
d) = a2 − db2.

Example 12.5.7. The norm of α = −1+
√
−3

2 in Q(
√
−3) is

N(α) =

(
−1

2

)2

+ 3 ·
(
1

2

)2

=
1

4
+

3

4
= 1.

The norm of β = 1 + i, where i =
√
−1, in the quadratic field Q(i) is

N(β) = 12 + 12 = 2.
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Remark 12.5.8. When d < 0, the norm N(a + b
√
d) = a2 − db2 is precisely the

square of the usual complex norm (also called the complex modulus) of the complex
number a+ b

√
d. Indeed, if α = s+ t · i is a complex number, for some s, t ∈ R and

i =
√
−1, then the usual complex norm is

|α| = |s+ t · i| =
√
s2 + t2.

Hence, if we put d = −n, for some n > 0, then

|a+ b
√
d|2 = |a+ b

√
−n|2 = |a+ b

√
n · i|2 = a2 + (b

√
n)2

= a2 + nb2 = a2 − db2 = N(a+ b
√
d).

Since the complex norm | · | is known to be multiplicative (see Exercise 12.8.3), i.e.,
|α · β| = |α| · |β| for any α, β ∈ C, we deduce that the norm N(·) in the quadratic
field Q(

√
d) is also multiplicative, at least when d < 0. Next, we show that the

norm in quadratic fields is always multiplicative, which will explain the origin of
the algebraic identity in Lemma 12.5.1.

Lemma 12.5.9. Let d be a non-zero square-free integer, let a, b, e, f ∈ Q, and
define elements α = a+ b

√
d and β = e+ f

√
d in Q(

√
d). Then,

N(αβ) = N(α)N(β).

Proof. Let α, β ∈ Q(
√
d) be as in the statement of the lemma. We calculate

α · β = (a+ b
√
d)(e+ f

√
d) = (ae+ dbf) + (af + be)

√
d.

Thus,

N(αβ) = N((ae+ dbf) + (af + be)
√
d)

= (ae+ dbf)2 − d(af + be)2

= (a2 − db2)(e2 − df2) = N(α)N(β),

where we have used Lemma 12.5.1 with B = −d. �

Example 12.5.10. Consider the quadratic field Q(
√
2), and let α = 5 +

√
2 and

β = 3 + 2
√
2. Then,

N(α) = 52 − 2 = 23, N(β) = 32 − 2 · 22 = 1.

Therefore, N(αβ) = N(α)N(β) = 23 as well. Let us verify this directly:

αβ = (5 +
√
2)(3 + 2

√
2) = 19 + 13

√
2,

and
N(αβ) = N(19 + 13

√
2) = 192 − 2 · 132 = 361− 2 · 169 = 23,

as claimed. This means that both (3, 2) and (19, 13) are points on the hyperbola
X2 − 2Y 2 = 23.

We will come back to the topic of quadratic fields in Section 14.3.1, where we
will discuss quadratic rings of algebraic integers and their unit subgroups.
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12.6. Integral Points on Ellipses

The multiplicative property of the norm for a quadratic field implies that, in order
to find an integral point on C : X2 + BY 2 = D and if D factors as D1D2 for
some D1, D2 ≥ 1, then it suffices to find integral points on the auxiliary ellipses
C1 : X2 + BY 2 = D1 and C2 : X2 + BY 2 = D2. In fact, we show next that it
suffices to find an integral point on X2 + BY 2 = D′, where D′ is the square-free
part of D.

Proposition 12.6.1. Let B,D > 0 be fixed integers, and suppose that there is
a factorization D = D1D2(D

′)2, for some D1, D2, D
′ ≥ 1, such that the conics

C1 : X2 + BY 2 = D1 and C2 : X2 + BY 2 = D2 have integral points. Then,
X2 +BY 2 = D also has an integral point.

Proof. Let B and D = D1D2(D
′)2 be as in the statement, and suppose that (a, b)

and (c, d) are integral points on the curves C1 and C2, respectively. Then,

D1D2 = (a2 +Bb2)(c2 +Bd2) = (ac−Bbd)2 +B(ad+ bc)2,

or, in other words, (ac− Bbd, ad+ bc) is an integral point on X2 +BY 2 = D1D2.
Thus,

((ac−Bbd)D′, (ad+ bc)D′)

is an integral point on X2 +BY 2 = D1D2(D
′)2 = D, as desired. �

Example 12.6.2. Let us find an integral point on the ellipse C : X2+6Y 2 = 2625.
Note that 2625 = 3 · 53 · 7. The equation X2 + 6Y 2 = 3 has no integral solutions;
however

12 + 6 · 12 = 7 and 32 + 6 · 12 = 15.

Since 2625 = 7 · 15 · 52, we conclude that C does have an integral point, by Propo-
sition 12.6.1, and the formula in the proof gives

(3− 6 · 1, 1 + 3) = (−3, 4)

for an integral point on X2 + 6Y 2 = 105 and

(−3 · 5, 4 · 5) = (−15, 20)

as a point on X2 + 6Y 2 = 2625. Thus, (±15,±20) are integral points on C. Note
that if instead we use the points (1,−1) and (3, 1) in the formula, we obtain

((3 + 6) · 5, (1− 3) · 5) = (45,−10),

and so we find four additional integral points, (±45,±10), on C.

12.7. Primes of the Form X2 +BY 2

As a consequence of Proposition 12.6.1 and for a fixed B > 0, we are interested
to know for which square-free numbers D the ellipse X2 + BY 2 = D has integral
solutions. We are particularly interested in the case when D = p is a prime. In
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other words, we are interested to determine what primes can be expressed in the
form x2 +By2, for some x, y ∈ Z. When B = 1, we have shown:

(i) A prime p is of the form x2 + y2 if and only if p = 2, or p ≡ 1 mod 4.

This was shown in Theorem 11.3.9, using the Hasse–Minkowski theorem, and di-
rectly in Theorem 12.1.5. Using similar techniques, one can show analogous theo-
rems for expressions of the form x2 +By2. For instance:

(ii) A prime p is of the form x2 + 2y2 if and only if p = 2, or p ≡ 1 or 3 mod 8.

(iii) A prime p is of the form x2 + 3y2 if and only if p = 3, or p ≡ 1 mod 6.

These two statements were claimed by Fermat (in a letter to Pascal in 1654),
correctly, but without proof. Euler proved statements (i), (ii), and (iii) above, i.e.,
the characterizations of primes of the form p = X2 + BY 2, for B = 1, 2, 3, and
conjectured the case of B = 5:

(v) A prime p is of the form x2 + 5y2 if and only if p = 5, or p ≡ 1 or 9 mod 20.

The reader may have noticed that we skipped over (iv):

(iv) A prime p is of the form x2 + 4y2 if and only if p ≡ 1 mod 4,

which of course is equivalent to (i), i.e., to Theorem 12.1.5. Indeed, if p is odd and
of the form x2 + y2, then one of x or y must be even, say y = 2y′, and therefore
p = x2 + 4y′2.

The most general result of the type (i)–(v) is given by the following theorem.
We remind the reader that we defined the discriminant of a polynomial in Section
5.5.1.

Theorem 12.7.1. Let n > 0 be an integer. Then, there is a monic irreducible
polynomial fn(x) ∈ Z[x] such that if an odd prime p is not a divisor of n or of the
discriminant of fn(x), then p is of the form x2+ny2 if and only if −n is a quadratic
residue mod p and the congruence equation fn(x) ≡ 0 mod p has a solution.

Unfortunately, the proof of Theorem 12.7.1 is far beyond the scope of this book
(see [Cox13, Theorem 9.2] for a proof—at the graduate level).

Remark 12.7.2. The polynomial fn(x) of Theorem 12.7.1 may be computed via
an alternative description (it may be taken to be the minimal polynomial of a real
algebraic integer α for which L = K(α) is the ring class field of the order Z[

√
−n]

in the imaginary quadratic field K = Q(
√
−n)). Here is a table for 1 ≤ n ≤ 20 that
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provides a polynomial fn(x) that works for n and the discriminant Δ of fn(x):

n fn(x) Δ

1, 2, 3, 4, 7 x 1

5, 10, 15 x2 + x− 1 5

6, 8, 16 x2 − 2 8

9, 12 x2 − 3 12

11 x3 + x2 + x− 1 −44

13 x2 + x− 3 13

14 x4 + 2x3 + x2 + 2x+ 1 −448

17 x4 + x3 − 2x2 + x+ 1 −1156

18 x2 − 6 24

19 x3 + x2 + 3x+ 1 −76

20 x4 − x2 − 1 −400

Example 12.7.3. Let n = 1, 2, or 3. According to Theorem 12.7.1 and Remark
12.7.2, a prime p is of the form x2 + ny2 if and only if −n is a quadratic residue
modulo p and the congruence equation fn(x) = x ≡ 0 mod p has a solution. Clearly,
x ≡ 0 mod p has a solution for every prime p (namely, x ≡ 0 mod p). Moreover:

(i) Let n = 1. The number −1 is a quadratic residue modulo p if and only if p = 2,
or p ≡ 1 mod 4. Hence, p = x2 + y2 if and only if p = 2, or p ≡ 1 mod 4.
Thus, we have recovered the conclusion of Theorem 12.1.5.

(ii) Let n = 2. The number −2 is a quadratic residue modulo p > 2 if and only
if p ≡ 1 or 3 mod 8 (see Exercise 10.8.21). Thus, a prime p is of the form
x2 + 2y2 if and only if p = 2, or p ≡ 1, 3 mod 8, which recovers the statement
(ii) we mentioned earlier in this section.

(iii) Let n = 3. The number −3 is a quadratic residue modulo p > 3 if and only if
p ≡ 1 mod 6 (see Exercise 10.8.22). Thus, a prime p is of the form x2 + 3y2

if and only if p = 3, or p ≡ 1 mod 6, which recovers the statement (iii) we
mentioned earlier in this section.

Example 12.7.4. Let n = 5. According to Theorem 12.7.1 and Remark 12.7.2, a
prime p is of the form x2 + 5y2 if and only if −5 is a quadratic residue modulo p
and the congruence equation f5(x) = x2 + x − 1 ≡ 0 mod p has a solution. Using
the law of quadratic reciprocity (see Exercise 10.8.23) one can show that if p �= 2, 5,
then (

−5

p

)
=

{
1 if p ≡ 1, 3, 7, 9 mod 20,

−1 if p ≡ 11, 13, 17, 19 mod 20.

In addition, the quadratic congruence equation x2 + x − 1 ≡ 0 mod p will have a
solution for a prime p > 2 if and only if its discriminant Δ ≡ 5 mod p is a quadratic
residue (by Proposition 10.1.1). Notice that −5 and 5 mod p are quadratic residues
if and only if −5 and −1 mod p are quadratic residues. Thus, we need p ≡ 1 mod 4
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and p ≡ 1, 3, 7, 9 mod 20, which leaves p ≡ 1, 9 mod 20 as the only possibilities. It
follows that p is of the form x2 + 5y2 if and only if p = 5, or p ≡ 1, 9 mod 20, as
claimed in the statement (v) mentioned earlier in this section.

Example 12.7.5. Let C be the ellipse given by X2+6Y 2 = 144175. Let us attempt
to find an integral point on C using Theorem 12.7.1 and Proposition 12.6.1. Since

144175 = 52 · 73 · 79,
it would suffice to find points on C1 : X2 + 6Y 2 = 73 and C2 : X2 + 6Y 2 = 79.
The coefficients here are small enough that we could determine whether there are
points by “brute force”, but where is the fun in that? Let us instead determine what
primes are of the form x2+6y2. By Theorem 12.7.1, a prime p �= 2, 3 is of the form
x2+6y2 if and only if −6 is a quadratic residue modulo p and x2−2 ≡ 0 mod p has
a solution (i.e., 2 is a quadratic residue mod p). These conditions are equivalent to 2
and −3 being quadratic residues simultaneously mod p, which in turn are equivalent
to p ≡ ±1 mod 8 and p ≡ 1 mod 6. Using the Chinese remainder theorem, we find
that p �= 2, 3 is of the form x2 + 6y2 if and only if p ≡ 1, 7 mod 24.

Since 73 and 79 are, respectively, congruent to 1 and 7 mod 24, it follows that
X2 + 6Y 2 = 73 and X2 + 6Y 2 = 79 must have integral points. Indeed,

72 + 6 · 22 = 73 and 52 + 6 · 32 = 79.

Hence, by the method of Proposition 12.6.1 we have

73 · 79 = (72 + 6 · 22) · (52 + 6 · 32)
= (7 · 5− 6 · 2 · 3)2 + 6 · (7 · 3 + 2 · 5)2

= (−1)2 + 6 · 312 = 12 + 6 · 312 = 5767.

Finally, we can multiply through by 52 to find an integral point on C:

144175 = 52 · 73 · 79 = 52 · (12 + 6 · 312) = 52 + 6 · 1552,
and so (5, 155) ∈ C(Z), as desired.

Remark 12.7.6. Note, however, that not every integral point on an ellipse C :
X2 + BY 2 = D can be found using the method outlined in Example 12.7.5. For
instance, take C : X2 + 6Y 2 = 2695. The ellipse C has an integral point (31, 17) ∈
C(Z). However,

2695 = 5 · 72 · 11,
and neither 5 nor 11 is of the form x2 +6y2. But 5 · 11 is of this form; for instance,
55 = 72+6 ·12. Notice also that although 72 is a divisor of 2695, neither coefficient
of (31, 17) is divisible by 7.

12.8. Exercises

Exercise 12.8.1. For r ∈ Q, let Cr : x2 + y2 = r. Let ψ : Cn/m → Cnm be given
by ψ((a, b)) = (ma,mb).

(1) Prove that ψ is well-defined; i.e., ψ((a, b)) ∈ Cnm, for any (a, b) ∈ Cn/m.
(2) Prove that ψ has a well-defined inverse function and therefore it is a bijection.
(3) Prove that ψ provides a bijection between Cn/m(Q) and Cnm(Q).
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Exercise 12.8.2. Find a, b ∈ Z such that p = a2 + b2 following the method
described in the proof of Theorem 12.1.5 (as in Example 12.1.6), for

(1) p = 29,
(2) p = 37,
(3) p = 53.

Exercise 12.8.3. The norm of a complex number α = a+ bi is defined by N(α) =
a2 + b2.

(1) Let α = a+ bi and β = c+ di be two complex numbers. Show that N(αβ) =
N(α)N(β).

(2) Use the first part to show that if n and m are natural numbers that can be
written as the sum of two (integral) squares, then nm can also be written as
the sum of two (integral) squares.

Exercise 12.8.4. Use the fact that 26 = 25 + 1 and 50 = 49 + 1 to write 1300 as
a sum of two squares. (Hint: use Lemma 12.1.7.)

Exercise 12.8.5. Determine which of the following numbers can be written as a
sum of two squares and, if so, in how many (essentially distinct) ways:

(a) 1450.
(b) 1451.
(c) 1452.
(d) 1453.
(e) 1215445.

Exercise 12.8.6. Use the following illustration to come up with a proof of Pythago-
ras’s theorem. (Hint: the area of a large square equals the sum of the areas of a
small square and four rectangles.)
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Exercise 12.8.7. Use the following illustration to come up with a proof of Pythago-
ras’s theorem. (Hint: the area of a large square equals the sum of the areas of a
small square and two rectangles.)

Exercise 12.8.8. Use the following illustration to come up with a proof of Pythago-
ras’s theorem. (Hint: use the formula for the area of a trapezoid.)

Note: this proof is due to the United States’ President James A. Garfield (1831–
1881).

Exercise 12.8.9. Are there infinitely many pythagorean triples of the form
(a, b, b + 1), such as (3, 4, 5) or (5, 12, 13)? If so, give a parametrization of all
such triples.

Exercise 12.8.10. (a) Let (a, b, c) be a primitive pythagorean triple. Show that
c is a sum of two squares.

(b) Suppose c ≥ 5 is a number that is a sum of two squares. Is c the hypotenuse
of a right triangle?

Exercise 12.8.11. Can two (distinct) perfect squares average to be a perfect

square? In other words, are there integers 0 < a < b < c such that
a2 + b2

2
= c2?

If so, find an infinite family of such squares. (Hint: Lemma 11.3.3.)

Exercise 12.8.12. Show that the diophantine equation X2 + Y 2 = 3Z2 has only
one integral solution, namely (0, 0, 0).

Exercise 12.8.13. Suppose that Fermat’s last theorem is known for prime expo-
nents (i.e., Xp + Y p = Zp has no integral solutions with XY Z �= 0, when p > 2 is
prime). Then, deduce Fermat’s last theorem for all exponents n ≥ 3. (Hint: use
Corollary 12.3.2.)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



12.8. Exercises 359

Exercise 12.8.14. Show that the diophantine equation x4−y4 = z2 has no integral
solutions with xyz �= 0. (Hint: use an argument similar to the proof of Theorem
12.3.1.)

Exercise 12.8.15. Show that C : X2 + 15Y 2 = 4001 does not have any rational
solutions. (Hint: show that there are no integral solutions of X2+15Y 2 = 4001Z2,
other than X = Y = Z = 0.)

Exercise 12.8.16. Verify directly the algebraic identity

(a2 +Bb2)(c2 +Bd2) = (ac−Bbd)2 + B(ad+ bc)2

stated in Lemma 12.5.1.

Exercise 12.8.17. Find five different elements of Q(
√
2) with norm 1 and five

elements with norm −1.

Exercise 12.8.18. Find an integral point on each of the following ellipses or show
that no such point exists:

(a) x2 + 6y2 = 7.
(b) x2 + 6y2 = −7.
(c) x2 + 6y2 = 83.
(d) x2 + 6y2 = 97.
(e) x2 + 6y2 = 103.
(f) x2 + 6y2 = 629433.

Exercise 12.8.19. Find an integral point on each of the following ellipses or show
that no such point exists:

(a) x2 + 5y2 = 29.
(b) x2 + 5y2 = 6.
(c) x2 + 5y2 = 4001. (Hint: 4001, 4003, and 4013 are primes.)
(d) x2 + 5y2 = 4003.
(e) x2 + 5y2 = 4013.
(f) x2 + 5y2 = 34112526.

Exercise 12.8.20. Use Theorem 12.7.1 (and Remark 12.7.2) to characterize those
primes p �= 2, 3 such that p is of the form:

(a) x2 + 8y2.
(b) x2 + 16y2.
(c) x2 + 9y2.
(d) x2 + 12y2.
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CHAPTER 13

CONTINUED FRACTIONS

“Can you do Addition?” the White Queen asked.
“What’s one and one and one and one and one and one and one and
one and one and one?”
“I don’t know,” said Alice. “I lost count.”
“She can’t do Addition,” the Red Queen interrupted. “Can you do
Subtraction? Take nine from eight.”
“Nine from eight I can’t, you know,” Alice replied very readily: “but—”
“She can’t do Subtraction,” said the White Queen.

Lewis Carroll, from Through the Looking Glass

In this section we take a detour to study continued fractions which we will
use to find rational and integral points on hyperbolas in the next chapter. A finite
continued fraction is a rational number p

q written as a sequence of iterated fractions
of the form p

q = a+ 1
b , where b is another rational number also of the form a′ + 1

b′ .
For instance,

83

13
= 6 +

1

2 +
1

1 +
1

1 +
1

2

.

The first thing to notice is that if b > 1, then a+ 1/b is approximately a. Thus, a
continued fraction expression provides several approximations of p

q . For instance,
83
13 = 6.384615 is approximately 6. It is also approximately

6 +
1

2
=

13

2
= 6.5.

361
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The continued fraction expansion provides the following approximations of 83
13 :

6, 6 +
1

2
=

13

2
= 6.5, 6 +

1

2 +
1

1

=
19

3
= 6.3, and 6 +

1

2 +
1

1 +
1

1

=
32

5
= 6.4.

If we write the approximations in increasing order, we find them ordered as follows:

6 < 6.3 <
83

13
< 6.4 < 6.5

and if we write c0 = 6, c1 = 13/2, c2 = 19/3, and c3 = 32/5, then

c0 < c2 <
83

13
< c3 < c1,

and | 8313 − ck| decreases as k increases. We shall see that every rational number
has a continued fraction expansion and that the associated approximations satisfy
similar inequalities.

More importantly, we will show that an arbitrary real number can be written
as an infinite continued fraction expansion. For example, in Example 13.2.7 we
shall see that

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 + . . .

.

In particular, π is approximately 3 or 3+ 1
7 = 22

7 or 3+ 1
7+1/15 = 333

106 or 3+ 1
7+1/16 =

355
113 . The approximation π ∼= 22/7 is well known. Indeed, as we shall see, these
rational approximations of π are best possible, in the sense that each is closer to π
than any other fraction with the same or a smaller denominator.

Why are continued fractions important in arithmetic geometry? Let us see an
example. Consider the hyperbola C : x2 − 23y2 = 1 and suppose (p, q) ∈ C(Z) is
an integral solution, so that p2 − 23q2 = 1. This implies that

p2 − 1

q2
= 23,

and if we take square roots of both sides, we obtain

√
23 =

√
p2

q2
− 1

q2
=

√
p2 − 1

q
.

Since
√

p2 − 1 is approximately p, we obtain a rational approximation
√
23 ≈ p

q .
This suggests that a place to look for integral points (p, q) in C(Z) is among the
rational approximations p

q of
√
23. As we will see later in the chapter, the irrational
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number
√
23 has an infinite continued fraction expansion that begins as follows:

√
23 = 4 +

1

1 +
1

3 +
1

1 +
1

8 + . . .

.

In particular,
√
23 is approximately

4 <
19

4
< · · · <

√
23 < · · · < 24

5
< 5,

where each approximation is computed by truncating the infinite expansion into a
finite one. For instance,

√
23 <

24

5
= 4 +

1

1 +
1

3 +
1

1

.

Do any of these approximations give us an integral point on C? The candidates so
far are (4, 1), (5, 1), (19, 4), and (24, 5). Let us check:

42 − 23 = −7, 52 − 23 = 2, 192 − 23 · 42 = −7, and 242 − 23 · 52 = 1.

Hence, we have found one integral point, namely (24, 5). In fact, there are other
approximations coming from the continued fraction expansion that also provide
rational points on C; for instance,

√
23 ≈ 1151

240 and 11512 − 23 · 2402 = 1. Can we
find all the points on C in this way?

13.1. Finite Continued Fractions

Let us begin with the definition of a finite continued fraction.

Definition 13.1.1. Let a0, a1, . . . , an be real numbers, all positive except perhaps
a0. We define the continued fraction [a0, a1, . . . , an] by

[a0, a1, . . . , an] = a0 +
1

a1 +
1

. . . +
1

an−1 +
1

an

.

We say that a continued fraction is simple if a0 ∈ Z and ai ∈ N for all i > 0.

Example 13.1.2. Let c be the continued fraction [1, 2, 3, 4]. Then,

c = 1 +
1

2 +
1

3 +
1

4

= 1 +
1

2 +
4

13

= 1 +
13

30
=

43

30
.
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Let us see how one can use Euclid’s algorithm to find a continued fraction expression
for c:

43 = 30 · 1 + 13,

30 = 13 · 2 + 4,

13 = 4 · 3 + 1.

Now we can find a continued fraction expansion, starting from the first line of the
work of Euclid’s algorithm:

43

30
= 1 +

13

30
= 1 +

1

30

13

= 1 +
1

2 +
4

13

= 1 +
1

2 +
1

13

4

= 1 +
1

2 +
1

3 +
1

4

.

In the following result we show that every rational number a/b has a continued
fraction expansion, which can be found from the work of Euclid’s algorithm as in
the previous example.

Theorem 13.1.3. Every rational number has a simple continued fraction expan-
sion.

Proof. Let c ∈ Q. Suppose first that c < 0. Then, c = �c�+ {c} where �c� < 0 is
the greatest integer function (and so that c− 1 < �c� ≤ c) and {c} is the fractional
part of c (and so 0 ≤ {c} < 1). Thus, either c ∈ Z or {c} �= 0 and we may write

c = �c�+ 1
1

{c}
.

Since 1
{c} is a positive rational number, it follows that we have reduced the proof

to the case of positive rational numbers.
Let us assume that c = a/b is a positive rational number, with relatively prime

positive integers a and b. We carry out Euclid’s algorithm for the pair (a, b) and
obtain positive integers qi, ri for i = 1, . . . , n (except for rn = 0) such that

a = b · q1 + r1,

b = r1q2 + r2,

r1 = r2q3 + r3,

...
rn−2 = rn−1qn + rn = rn−1qn.
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Then,

c =
a

b
= q1 +

r1
b

= q1 +
1

b

r1

= q1 +
1

q2 +
r2

r1

= q1 +
1

q2 +
1

q3 +
r3

r2

= · · · = q1 +
1

q2 +
1

. . . +
1

qn−1 +
1

qn

.

Therefore, we have shown that c = [q1, q2, . . . , qn], where the numbers qi are the
quotients that appear in Euclid’s algorithm for a and b. �

Example 13.1.4. Let us find a simple continued fraction for c = −57/20. We
begin with Euclid’s algorithm for −57 and 20:

−57 = 20 · (−3) + 3,

20 = 3 · 6 + 2,

3 = 2 · 1 + 1,

2 = 1 · 2 + 0.

This means that

c = −57

20
= −3 +

1

20

3

= −3 +
1

6 +
1

3

2

= −3 +
1

6 +
1

1 +
1

2

.

Thus, we find that −57/20 = [−3, 6, 1, 2]. Notice, however, that we could have done
one additional step:

c = −57

20
= −3 +

1

20

3

= −3 +
1

6 +
1

3

2

= −3 +
1

6 +
1

1 +
1

2

= −3 +
1

6 +
1

1 +
1

1 +
1

1

.

This shows that −57/20 = [−3, 6, 1, 2] = [−3, 6, 1, 1, 1] has two simple continued
fractions. In the next result, we will show that there are no other simple continued
fraction expansions.

Proposition 13.1.5. Let c be a real number.

(1) If c ∈ Z, then there are exactly two simple continued fraction expansions for
c, namely [c] and [c− 1, 1].

(2) If c is not an integer, then there is a unique integer n = �c� and a unique
positive real number t, with t > 1, such that c = n+ 1

t .
(3) If c is a rational number, then there are exactly two simple continued fractions

for c.
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Proof. For (1), we always have c = [c]. Now, suppose we have another simple
continued fraction expansion for c of the form [a0, a1, . . . , an] with ai ∈ Z and with
ai > 0 for i ≥ 1. Then, we have c = a0 + 1/t, where t = [a1, . . . , an] > 0. Since c is
an integer, we have c − a0 = 1/t is an integer, which can only happen if t = 1. In
this case, c = [c− 1, 1], and the result follows.

For (2), if c is not an integer, the existence of a pair (n, t) ∈ Z×R>1 such that
c = n + 1/t follows simply from the fact that n = �c� and t = 1/(c − �c�) work
(note that 0 < c− �c� < 1 and therefore t > 1).

For the uniqueness, suppose that c = n + 1/t = m + 1/s, with m,n ∈ Z and
s, t ∈ R>1. Then, n − m = 1/t − 1/s is an integer. But s, t > 1 implies that
|1/t− 1/s| < 1 and so 1/t− 1/s = 0 and t = s. Thus, n = m also.

Let us show (3). We suppose that c is rational, but not an integer. Hence, if c is
given by the continued fraction [a0, . . . , an−1, an], then a0 is uniquely determined.
Similarly, a1, . . . , an−2 are uniquely determined. There are two remaining cases to
consider:

• If an > 1, then the expression an−1+
1
an

uniquely determines an−1, and there
are two continued fractions for an, namely [an] and [an − 1, 1]. Thus,

c = [a0, . . . , an−1, an] = [a0, . . . , an−1, an − 1, 1]

are the two unique continued fraction expansions for c.
• If an = 1, then an−2 +

1
an−1+

1
an

= an−2 +
1

an−1+1 uniquely determines an−2

and (an−1 + 1). Thus,

c = [a0, . . . , an−2, an−1, an] = [a0, . . . , an−2, an−1 + 1]

are the two unique continued fraction expansions for c.

In all cases we have described exactly two continued fractions for c, and this con-
cludes the proof of the proposition. �

Remark 13.1.6. A rational number can have more than two continued fractions,
if we do not require our expansions to be simple. For instance,

4 = [4] = [3, 1] = [π, (4− π)−1].

That is,

4 = 3 +
1

1
= π +

1

1

4− π

.

In fact, if α is any real number with 3 < α < 4, then 4 = [α, (4 − α)−1] is a
continued fraction. For the most part, in this book we will be only concerned with
simple continued fractions.

Given a continued fraction [a0, a1, . . . , an], we are interested in the values of
the truncated continued fractions [a0, a1, . . . , ak] for 0 ≤ k ≤ n.

Definition 13.1.7. Let c = [a0, a1, . . . , an] be a continued fraction. For each
0 ≤ k ≤ n, the number ck = [a0, a1, . . . , ak] is called the kth convergent of c.
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Example 13.1.8. Let c = −57/20 = [−3, 6, 1, 2]. Then, the convergents of c are

c0 = −3, c1 = −3 +
1

6
= −17

6
, c2 = −3 +

1

6 + 1
1

= −20

7
, and c3 = c = −57

20
.

The following result provides an algorithm to find the values (as a reduced
fraction) of the convergents of a continued fraction.

Theorem 13.1.9. Let c = [a0, a1, . . . , an] be a simple continued fraction, and define
sequences pk and qk, for k ≥ −1, by⎧⎪⎨⎪⎩

p−1 = 1,

p0 = a0,

pk = akpk−1 + pk−2 for k ≥ 1,

and

⎧⎪⎨⎪⎩
q−1 = 0,

q0 = 1,

qk = akqk−1 + qk−2 for k ≥ 1.

Then:

(1) The number qk ≥ k for all k ≥ 0.
(2) For any real number x and any k ≥ 0,

[a0, a1, . . . , ak, x] =
x · pk + pk−1

x · qk + qk−1
.

(3) The kth convergent of c is given by [a0, a1, . . . , ak] =
pk
qk

.

Proof. Part (1) follows directly from the definition of qk. Indeed, q0 = 1, ak ≥ 1
for all k ≥ 1 because c is simple, q1 = a1 ≥ 1, and qk = akqk−1 + qk−2 > qk−1 for
all k ≥ 2. Thus, by induction, it follows that qk ≥ k for all k ≥ 0.

We shall prove (2) by induction on k. When k = 0, we have

x · p0 + p−1

x · q0 + q−1
=

xa0 + 1

x
= a0 +

1

x
= [a0, x].

Now assume the results holds for k, for any real x. Then,

[a0, a1, . . . , ak, ak+1, x] =

[
a0, a1, . . . , ak, ak+1 +

1

x

]
=

(ak+1 +
1
x ) · pk + pk−1

(ak+1 +
1
x ) · qk + qk−1

=
x(ak+1pk + pk−1) + pk
x(ak+1qk + qk−1) + qk

=
xpk+1 + pk
xqk+1 + qk

,

where we have used the induction hypothesis for k and x = ak+1 + 1/x and the
definition of the sequences pk and qk. This completes the proof of the induction
step and the proof of (2).

For (3), we simply evaluate the expression in (2) for k − 1 at x = ak:

[a0, a1, . . . , ak−1, ak] =
ak · pk−1 + pk−2

ak · qk−1 + qk−2
=

pk
qk

,

as desired. �
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Example 13.1.10. Consider the continued fraction c = [1, 2, 1, 2, 1, 2]. Then,
p−1 = 1, p0 = 1, p1 = 2 · 1+ 1 = 3, and q−1 = 0, q0 = 1, and q1 = 2 · 1+ 0 = 2. For
efficiency and ease, we usually compute the terms in the sequences pk and qk using
a table as the one below:

k −1 0 1 2 3 4 5

ak 1 2 1 2 1 2

pk 1 1 3 4 11 15 41

qk 0 1 2 3 8 11 30

Thus, c = c5 = 41/30, and the rest of the convergents are c0 = 1, c1 = 3/2,
c2 = 4/3, c3 = 11/8, and c4 = 15/11.

The reader may have noticed a curious arithmetic pattern in the convergents:
1 · 2 − 3 · 1 = −1 and 3 · 3 − 4 · 2 = 1 and 4 · 8 − 11 · 3 = −1, etc. In other words,
pk · qk+1 − pk+1qk alternates between 1 and −1. Let us prove this fact.

Proposition 13.1.11. Let c = [a0, . . . , an] be a continued fraction, and let {pk}
and {qk} be the sequences defined in Theorem 13.1.9. Then,

pkqk+1 − pk+1qk = (−1)k+1

holds for all k ≥ −1.

Proof. We proceed by induction on k. For k = −1, we have

1 · 1− a0 · 0 = 1 = (−1)−1+1.

Now suppose that the result holds for k. Then,

pk+1qk+2 − pk+2qk+1 = pk+1(ak+2qk+1 + qk)− (ak+2pk+1 + pk)qk+1

= pk+1qk − pkqk+1

= −(pkqk+1 − pk+1qk) = −(−1)k+1 = (−1)k+2,

as desired. This completes the induction step and the proof. �

As a corollary we show that the expression ck = pk/qk is actually given in
reduced terms; that is, the numerator and denominator are relatively prime.

Corollary 13.1.12. Let c = [a0, . . . , an] be a continued fraction, and let {pk} and
{qk} be the sequences defined in Theorem 13.1.9. Then, gcd(pk, qk) = 1 for all
k ≥ 0.

Proof. By Proposition 13.1.11, we have pkqk+1−pk+1qk = (−1)k+1. In particular,
gcd(pk, qk) is a positive divisor of 1 (by Proposition 2.9.1), and therefore it is equal
to 1. �

It turns out that consecutive even (resp. odd) convergents also satisfy a similar
equation to the one in Proposition 13.1.11.

Corollary 13.1.13. Let c = [a0, . . . , an] be a continued fraction, and let {pk} and
{qk} be the sequences defined in Theorem 13.1.9. Then,

pkqk+2 − pk+2qk = (−1)k+1ak+2

holds for all k ≥ −1.
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Proof. The result follows from Proposition 13.1.11:

pkqk+2 − pk+2qk = pk(ak+2qk+1 + qk)− (ak+2pk+1 + pk)qk

= ak+2(pkqk+1 − pk+1qk)

= (−1)k+1ak+2,

as desired. �

Example 13.1.14. For example, if c = [1, 2, 1, 2, 1, 2], we have c1 = 3/2, c3 = 11/8,
and we have

3 · 8− 11 · 2 = 2 = (−1)2 · 2.
In Example 13.1.10 we calculated c0 through c5 = c. Notice that, as we noticed in
the introduction, here the convergents are also ordered in the following manner:

1 <
4

3
<

15

11
<

41

30
<

11

8
<

3

2
;

i.e., c0 < c2 < c4 < c = c5 < c3 < c1. Next, we prove that the convergents are
always ordered in a similar manner.

Theorem 13.1.15. Let c = [a0, . . . , an] be a continued fraction. Then, the conver-
gents ck for k = 0, . . . , n satisfy

c0 < c2 < c4 < · · · < c < · · · < c5 < c3 < c1.

Proof. By Corollary 13.1.13, we have that

pkqk+2 − pk+2qk = (−1)k+1ak+2

holds for all k ≥ −1. If we divide the expression above by qkqk+2 throughout, we
obtain, for k ≥ 0,

ck − ck+2 = (−1)k+1 ak+2

qkqk+2

where we have used Theorem 13.1.9 to write ck = pk/qk. Since ak+2 and qk are
positive for k ≥ 0 (see part (1) of Theorem 13.1.9), it follows that ck − ck+2 is
positive for odd k and negative for even k. In other words, ck+2 < ck when k ≥ 1
is odd, and ck < ck+2 when k ≥ 0 is even.

Next, we show that ck < ck+1 if k is even. For this, we divide the expression
in Proposition 13.1.11 by qkqk+1 to obtain

ck − ck+1 = (−1)k+1 · 1

qkqk+1
(13.1)

for k ≥ 0. In particular, if k is even, then ck − ck+1 < 0, as desired.
It remains to show that ck < cj if k is even and j is odd. Let us write k = 2n

and j = 2m + 1, and let us assume n ≤ m (the case n > m is very similar). The
facts we have shown imply that

ck = c2n < c2m < c2m+1 = cj

where we have used that c2n < c2m because the indices are even and 2n ≤ 2m and
that c2m < c2m+1 because the indices are consecutive with 2m even. Therefore, we
have shown ck < cj , as desired.

Finally, since c = cn, then ck < c < cj for any even k ≤ n and any odd j ≥ n.
This completes the proof of the theorem. �
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13.2. Infinite Continued Fractions

In this section we begin exploring infinite continued fractions. In other words, we
would like to build a theory for expressions of the form

[a0, a1, . . . , an, . . .] = a0 +
1

a1 +
1

. . . +
1

an +
1

. . .

.

We will define such a continued fraction as a limit of its convergents, but first we
need to show that the convergents. . . converge!

Theorem 13.2.1. Let a0 be an integer, and let {ai}i≥1 be a sequence of positive
integers. Let ck be the (finite, simple) continued fraction [a0, a1, . . . , ak]. Then:

(1) The limit α = limk→∞ ck exists and it is finite (i.e., α ∈ R).
(2) For any k, j ≥ 0, we have c2k < α < c2j+1.

Proof. Let us first consider two sequences {c2k}k≥0 and {c2k+1}k≥0 and prove that
both sequences converge. Indeed, the sequence {c2k} is increasing because if k < j,
then c2j = [a0, a1, . . . , a2j ] is a simple continued fraction and c2k is a convergent of
c2j . By Theorem 13.1.15, we have c2k < c2j . Moreover, the same theorem implies
that c2k < c1 for any k ≥ 0. Hence, the sequence {c2k} is strictly increasing and
bounded above and therefore convergent by the monotone convergence theorem.
Similarly, {c2k+1} converges because it is strictly decreasing and bounded below.

Let α1 = limk→∞ c2k and α2 = limj→∞ c2j+1. Let j be fixed, let k ≥ 0 be
arbitrary, and put m = max{k, j}. Consider the finite simple continued fraction
c2m+1 = [a0, . . . , a2m+1]. By Theorem 13.1.15, c2k and c2j+1 are convergents for
c2m+1 and c2k < c2j+1. Since this holds for any k, it follows that α1 = limk→∞ c2k ≤
c2j+1. Moreover, since this holds for any j ≥ 0, it follows that α1 ≤ limj→∞ c2j+1 =
α2. Hence, α1 ≤ α2 and, further,

c2k < α1 ≤ α2 < c2j+1

for any k, j ≥ 0. In particular, c2k < α1 ≤ α2 < c2k+1, and for k ≥ 1 we have

|ck − ck+1| =
1

qkqk+1
≤ 1

k(k + 1)

where we have used (13.1) from the proof of Theorem 13.1.15 and Theorem 13.1.9
to show that qk ≥ k for k ≥ 1. It follows that |ck − ck+1| goes to 0 as k → ∞, and
therefore we must have α1 = α2.

We have shown that all three sequence {ck}, {c2k}, and {c2j+1} converge to
α = α1 = α2 ∈ R, and c2k < α < c2j+1 for any k, j ≥ 0, as desired. �

We are now ready to give a formal definition of infinite continued fraction.

Definition 13.2.2. Let a0 ∈ Z and let {ak}k≥1 be a sequence of positive integers.
We define the infinite simple continued fraction [a0, a1, . . . , ak, . . .] to be the value
of the limit limk→∞ ck, where ck is the kth convergent [a0, a1, . . . , ak].
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Example 13.2.3. Let us attempt to calculate the value of an infinite continued
fraction. Let

α = 1 +
1

1 +
1

. . . +
1

1 +
1

. . .

;

i.e., α = [1, 1, . . . , 1, . . .]. In particular, notice that

α = 1 +
1

α
.

It follows that α2 − α − 1 = 0, and there are two possible values for α, namely
α = 1+

√
5

2 or 1−
√
5

2 . However, α is positive (in fact, we know that α > c0 = 1) and
(1 −

√
5)/2 = −0.61 . . . is negative. We conclude that α must be ϕ = 1+

√
5

2 , the
golden ratio.

We may now use the convergents of the continued fraction expansion to find
rational approximations of the golden ratio. We shall extend the technique we used
in Example 13.1.10 to compute the sequences of pk and qk to infinite continued
fractions as follows:

k −1 0 1 2 3 4 5 6 7 · · ·
ak 1 1 1 1 1 1 1 1 · · ·
pk 1 1 2 3 5 8 13 21 34 · · ·
qk 0 1 1 2 3 5 8 13 21 · · ·

Thus,

1 <
3

2
<

8

5
<

21

13
<

1 +
√
5

2
<

34

21
<

13

8
<

5

3
< 2,

where the closest convergent is 34/21 = 1.619047 . . . while 1+
√
5

2 = 1.618033 . . ..
The reader may have recognized the numbers in the sequences pk and qk as

Fibonacci numbers Fn. Recall that the Fibonacci numbers are defined by F0 = 1,
F1 = 1, and Fn+1 = Fn + Fn−1. Since ak = 1 for all k ≥ 0, the recursive equations
that define pk and qk are

pk+1 = pk + pk−1 and qk+1 = qk + qk−1.

Moreover, p−1 = 1 = p0 and q0 = 1 = q1, and it follows that qk = Fk and pk = Fk+1

are Fibonacci numbers. In particular, Theorem 13.2.1 implies that the limit of the
sequence of convergents pk/qk = Fk+1/Fk is the golden ratio; i.e., the sequence
of ratios of consecutive Fibonacci numbers converges to the golden ratio. This
provides an alternative proof of Exercise 2.11.39.

We continue investigating the basic properties of infinite simple continued frac-
tions. First, we shall establish that the limit of an infinite simple continued fraction
is an irrational number (e.g., (1 +

√
5)/2 as in Example 13.2.3).

Theorem 13.2.4. The value of any infinite simple continued fraction is irrational.
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Proof. Let α = [a0, . . . , ak, . . .] be a continued fraction with a0 ∈ Z and ai ∈ N
for all i ≥ 1, and suppose for a contradiction that α is a rational number m/n, for
some relatively prime integers m,n with n > 0.

Fix an even number k for the moment. Then, by Theorem 13.2.1, we have
ck < α < ck+1 where ck, ck+1 are consecutive convergents. In particular,

0 <
m

n
− ck =

m

n
− pk

qk
<

pk+1

qk+1
− pk

qk
=

1

qkqk+1

where the last equality comes from (13.1). Next we multiply through by nqk to
obtain

0 < mqk − npk <
n

qk+1
≤ n

k + 1

where we have used the fact that qk ≥ k for all k ≥ 1 (see Theorem 13.1.9). Hence,
for a sufficiently large value of k (that is, when k ≥ n) we will have inequalities
0 < mqk−npk < 1, but mqk−npk is an integer, so we have reached a contradiction.
Thus, α cannot be rational. �

Remark 13.2.5. Theorem 13.2.4 provides an infinite supply of irrational numbers
that are easy to describe, one for each sequence of integers a0 ∈ Z and ak ≥ 1. In
fact, this is an uncountable set of irrational numbers (see Exercise 13.4.10).

Next, we will show that if a real number α has an infinite simple continued
fraction, then this expression is unique.

Proposition 13.2.6. Let α = [a0, a1, . . . , ak, . . .] = [b0, b1, . . . , bk, . . .] be infinite
simple continued fractions for the same real number α. Then, ak = bk for all
k ≥ 0.

Proof. Suppose that α has two infinite continued fraction expansions as in the
statement. Then,

α = a0 +
1

β1
= b0 +

1

β2

where β1 = [a1, . . . , ak, . . .] and β2 = [b1, . . . , bk, . . .]. Since ai, bi are integers ≥ 1
for all i ≥ 1, it follows that β1, β2 are positive real numbers > a1, b1 ≥ 1, by
Theorem 13.2.1, and a0, b0 ∈ Z by definition. By Theorem 13.2.4, the number α is
irrational (thus, definitely not an integer). Hence, Proposition 13.1.5 implies that
a0 = b0 = �α� and β1 = β2. The same argument shows that a1 = b1 = �β1� and
[a2, . . .] = [b2, . . .]. If we proceed by induction, then we can easily show that ai = bi
for all i ≥ 0, as claimed. �

Now it remains to show that every real number α has at least one infinite
simple continued fraction expansion. Let us first see an example of how to find
such a continued fraction.

Example 13.2.7. Let us find a continued fraction expansion for π; i.e., let us
find [a0, a1, . . . , ak, . . .] such that the limit of convergents is π. As in the proof of
Proposition 13.2.6, or by Proposition 13.1.5, we must have a0 = �π� = 3. We shall
write α0 = α and then define α1 such that

π = α0 = a0 +
1

α1
= 3 +

1

α1
.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



13.2. Infinite Continued Fractions 373

In other words, α1 = 1/(α0 − a0) = 1/(π − 3) = 7.0625133059310457700 . . .. Now,
we need to find a continued fraction expansion for α1, and by the same argument
the expansion should start with �α1� = 7; i.e.,

α1 = 7 +
1

α2

where α2 = 1/(α1 − 7) = 15.996594406685719832 . . .. We continue by defining
α3 = 1.0034 . . ., α4 = 292.6345 . . ., etc., in this manner, such that

αk+1 = 1/(αk − �αk�)
and ak = �αk�. Thus, the first few terms of the infinite simple continued fraction
for α = π are

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

α5

;

i.e., π = [3, 7, 15, 1, 292, α5]. A few more terms of the continued fraction would be
given by

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, . . .].

It is important to realize that here we have only shown that if π has a continued
fraction, then it must start as given above. However, we must show that the limit
of convergents actually equals π. We will show this next and extend the same
technique to any real number.

Theorem 13.2.8. Let α ∈ R be an irrational number and define sequences {αk}
and {ak} for k ≥ 0 by α0 = α, a0 = �α0�, and

αk+1 =
1

αk − ak
, where ak = �αk�,

for every k ≥ 0. Then:

(1) For any k ≥ 0, we have α = [a0, a1, . . . , ak, αk+1] and ak ≥ 1 when k ≥ 1.
(2) Let ck = [a0, . . . , ak] =

pk

qk
. Then,

α− pk
qk

=
(−1)k

qk(αk+1qk + qk−1)
.

(3) We have α = [a0, . . . , ak, . . .].
(4) More generally, αk = [ak, ak+1, . . .].

Proof. Let us start with a proof of (1) using induction on k. By Proposition 13.1.5,
if α is any irrational number, then there is a unique integer a = �α� and a unique
irrational number α′ > 1 such that α = a+1/α′, so that α′ = 1/(α−a). Using this
fact for α = α0, we obtain α = α0 = [a0, α1]. This proves the base case of k = 0.
Now assume that α = [a0, . . . , ak, αk+1]. Then, we can apply Proposition 13.1.5 to
αk+1 to obtain αk+1 = ak+1+1/αk+2, and therefore α = [a0, . . . , ak, ak+1, αk+2], as
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needed. This completes the proof by induction of (1). Notice that 0 < αk−�αk� < 1
for any k ≥ 0, and so αk+1 > 1 and ak+1 = �αk+1� ≥ 1, as claimed.

For (2) and (3), let us define c as the value of the infinite simple continued
fraction defined by [a0, a1, . . . , ak, . . .] where ak = �αk� for all k ≥ 0. We want to
prove that c = α. Let ck = pk/qk be the kth convergent of c. By part (1), we have
α = [a0, . . . , ak, αk+1], and part (2) of Theorem 13.1.9 with x = αk+1 implies that

α =
αk+1pk + pk−1

αk+1qk + qk−1
.

Hence,

α− pk
qk

=
αk+1pk + pk−1

αk+1qk + qk−1
− pk

qk
=

qk(αk+1pk + pk−1)− pk(αk+1qk + qk−1)

qk(αk+1qk + qk−1)

=
pk−1qk − pkqk−1

qk(αk+1qk + qk−1)
=

(−1)k

qk(αk+1qk + qk−1)
,

where the last equation follows from Proposition 13.1.11. Since we know that
αk+1 > 1 and qk ≥ k for k ≥ 1, then

|α− ck| =
1

qk(αk+1qk + qk−1)
<

1

k2

and so, limk→∞ ck = α. It follows that c = α, as desired.
Finally, to prove (4), if we set α′ = αk, then we can apply (3) to α′ to show

that α′ = [a′0, a
′
1, . . .] = [ak, ak+1, . . .], because a′0 = �α′� = �αk� = ak, and α′

1 =
1/(α′ − ak) = αk+1, and so α′

j = αk+j , and a′j = ak+j for all j ≥ 0. �

Example 13.2.9. Let us find the infinite continued fraction of α = e (the base
of the natural logarithm) using the sequences αk and ak as described in Theorem
13.2.8:

α0 = e = 2.7182818284 . . . ,

a0 = �α0� = �e� = 2,

α1 =
1

α0 − a0
=

1

e− 2
= 1.3922111911 . . . ,

a1 = �α1� = 1,

α2 =
1

α1 − a1
=

1

0.3922111911 . . .
= 2.5496467783 . . . ,

a2 = �α2� = 2,

α3 =
1

α2 − a2
=

1

0.5496467783 . . .
= 1.8193502435 . . . ,

a3 = �α3� = 1,

α4 =
1

α3 − a3
=

1

0.8193502435 . . .
= 1.2204792857 . . . ,

a4 = �α4� = 1,

α5 =
1

α4 − a4
=

1

0.2204792857 . . .
= 4.5355734730 . . . ,

a5 = �α5� = 4.
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Thus, the first few coefficients of the continued fraction of e are

e = [2, 1, 2, 1, 1, 4, . . .] = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

. . .

.

In fact,
e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, . . .],

a fact due to Euler (see [Coh06] for a proof).

Example 13.2.10. Let us find the infinite continued fraction of α =
√
2:

α0 =
√
2,

a0 = �α0� = �
√
2� = 1,

α1 =
1

α0 − a0
=

1√
2− 1

= 2.4142135623 . . . ,

a1 = �α1� = 2,

α2 =
1

α1 − a1
=

1

0.4142135623 . . .
= 2.4142135623 . . . ,

a2 = �α2� = 2.

We observe a numerical coincidence, as it seems that α1 = α2. Is that so? Let us
check:

α2 =
1

α1 − a1
=

1
1√
2−1

− 2
=

1
1−2(

√
2−1)√

2−1

=
1

3−2
√
2√

2−1

=
1√
2− 1

= α1,

where the last equality follows from (
√
2−1)2 = 3−2

√
2. Thus, we have shown that

α1 = α2 and a1 = a2. It also follows that α3 = 1/(α2−a2) = 1/(α1−a1) = α2, and
therefore α3 = α2 = α1 and a3 = a2 = a1 = 2. Hence αk = α1 and ak = a1 = 2 for
all k ≥ 1. We have shown that

√
2 = [1, 2, 2, 2, 2, 2, . . . , 2, . . .] = 1 +

1

2 +
1

2 +
1

. . .

.

In the next section, we will explore periodic continued fractions in depth.

13.2.1. Periodic Continued Fractions. In Example 13.2.10 we computed the
continued fraction expansion of

√
2 and noted that it is periodic; namely,

√
2 =

[1, 2, 2, 2, 2, . . .] = [1, 2]. The number
√
2 is an example of a quadratic irrational

number.
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Definition 13.2.11. A number α ∈ C is said to be a quadratic irrational number
if it is of the form a+ b

√
d, for some u, v ∈ Q and a non-zero integer d that is not

a perfect square. If α = u+ v
√
d, then the conjugate of α is α = u− v

√
d.

In Exercise 13.4.13 we show that a number α is a quadratic irrational if and only
if there is a quadratic equation with integer coefficients whose roots are precisely
α and α. In this section we will show that the continued fraction of any quadratic
irrational number is periodic and, conversely, any periodic continued fraction cor-
responds to a quadratic irrational number.

Definition 13.2.12. We say that an infinite continued fraction c = [a0, a1, . . .] is
periodic if there are numbers n ≥ 0 and m ≥ 1 such that ak = ak+m for all k ≥ n.
In other words, c is of the form

c = [a0, a1, . . . , an−1, b1, . . . , bm, b1, . . . , bm, . . .]

where the sequence b1, . . . , bm repeats indefinitely. In this case, we write c =
[a0, a1, . . . , an−1, b1, . . . , bm]. If n and m are the smallest numbers with this prop-
erty, then we say that b1, . . . , bm is the period of c and m is the length of the period.
If n = 0, then we say that c is purely periodic.

Let us work out another example of computing a continued fraction of a qua-
dratic irrational.

Example 13.2.13. Let us compute the continued fraction of α = 1 +
√
6. Once

again, we follow the notation of Theorem 13.2.8. This time, however, we will not
write decimal expansions. Instead, we will simplify every quadratic number in the
form (a+ b

√
c)/d. In order to compute �αk� at each stage, we will only use the fact

that 2 <
√
6 < 3:

α0 = 1 +
√
6,

a0 = �α0� = �1 +
√
6� = 3,

α1 =
1

α0 − a0
=

1

1 +
√
6− 3

=
1√
6− 2

=
2 +

√
6

2
,

a1 = �α1� = 2,

α2 =
1

α1 − a1
=

1
2+

√
6

2 − 2
=

2√
6− 2

= 2 +
√
6,

a2 = �α2� = 4,

α3 =
1

α2 − a2
=

1

2 +
√
6− 4

=
1√
6− 2

=
2 +

√
6

2
= α1,

a3 = �α3� = �α1� = a1 = 2.

Thus, we have reached a repetition in the sequence; namely α1 = α3. It follows
that

α4 =
1

α3 − a3
=

1

α1 − a1
= α2

and also a4 = a2. Therefore, α2j+1 = α1 and α2j+2 = α2 for all j ≥ 0, and so

a2j+1 = a1 = 2 and a2j+2 = a2 = 4
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for all j ≥ 0. Hence,

1 +
√
6 = [3, 2, 4, 2, 4, 2, 4, . . .] = [3, 2, 4].

Example 13.2.14. Conversely, let us calculate the value of a periodic continued
fraction. Suppose that c = [1, 2, 3]. This, in particular, means that c = [1, 2, 3, c].
Computing convergents for [1, 2, 3, c] we find that

k −1 0 1 2 3

ak 1 2 3 c

pk 1 1 3 10 10c+ 3

qk 0 1 2 7 7c+ 2

and therefore c = 10c+3
7c+2 , or, equivalently, 7c2 − 8c− 3 = 0. Thus,

c =
8±

√
64 + 84

14
=

8±
√
148

14
=

4±
√
37

7
.

Since c > 0, we conclude that c = (4 +
√
37)/7.

Example 13.2.15. As another example, let us calculate the value of α = [1, 2, 3].
First, we compute the value of the period, i.e., the value of β = [3]. Note that

β = 3 +
1

β

and therefore β2 − 3β − 1 = 0. Since β > 3 we must have β = 3+
√
13

2 . Now we are
ready to compute the value of α using convergents of α = [1, 2, β], i.e.,

k −1 0 1 2

ak 1 2 β

pk 1 1 3 3β + 1

qk 0 1 2 2β + 1

Thus, we conclude

α =
3β + 1

2β + 1
=

3 · 3+
√
13

2 + 1

2 · 3+
√
13

2 + 1
=

3 · (3 +
√
13) + 2

2 · (4 +
√
13)

=
(11 + 3

√
13)(4−

√
13)

6
=

5 +
√
13

6
.

Let us generalize the strategy of Examples 13.2.14 and 13.2.15 to show that
every periodic continued fraction corresponds to a quadratic irrational number.

Theorem 13.2.16. Let α = [a0, a1, . . . , an, b1, b2, . . . , bm] be a simple, periodic
continued fraction. Then, the number α is a quadratic irrational number; i.e.,
α = a+ b

√
d, for some rationals a, b and a square-free integer d.
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Proof. Let us first show that β = [b1, b2, . . . , bm] is a quadratic irrational. Indeed,
the definition of a periodic continued fraction implies an equality of the form β =
[b1, b2, . . . , bm, β]. Let ck = [b1, . . . , bk] = pk/qk and note that ck is a finite simple
continued fraction. Then, Theorem 13.1.9 implies that

β = [b1, b2, . . . , bm, β] =
β · pk + pk−1

β · qk + qk−1
.

In particular, qkβ2+(qk−1−pk)β−pk−1 = 0. Thus, β satisfies a quadratic equation
and it is irrational (by Theorem 13.2.4), and so β is a quadratic irrational number,
say of the form β = a + b

√
d and, in particular, β belongs to the field Q(

√
d)

(see Section 12.5 to read more about these number fields, and in particular see
Proposition 12.5.3 to see that Q(

√
d) is a field).

Now we write α = [a0, a1, . . . , an, β]. Then, if dk = p′k/q
′
k = [a0, a1, . . . , ak],

then Theorem 13.1.9 again implies that

α =
β · p′n + p′n−1

β · q′n + q′n−1

.

Since β ∈ Q(
√
d) and p′k, q

′
k are integers, it follows that α belongs to the field

Q(
√
d). Hence, α is again of the form a′ + b′

√
d for some rational numbers a′, b′.

This means that α is also a quadratic irrational number. �

The goal for the rest of this section is two-fold: first, we want to show that the
converse of Theorem 13.2.16 also holds; i.e., we want to show that the continued
fraction of a quadratic irrational number is periodic. Second, we want to describe
a method to simplify the calculations of the continued fraction of a quadratic irra-
tional (such as in Example 13.2.13). We begin with a preparatory lemma.

Lemma 13.2.17. Let α be a quadratic irrational number. Then, there exist integers
r and s and a positive integer d that is not a perfect square, such that s is a divisor
of d− r2 and α = (r +

√
d)/s.

Proof. Suppose that α is a quadratic irrational number. Then, by Exercise 13.4.13,
the number α satisfies a quadratic equation aα2 + bα + c = 0, for some a, b, c ∈ Z

with b2 − 4ac not zero and not a perfect square. Then, α = −b±
√
b2−4ac
2a . Let

d = b2 − 4ac (in particular, d is not a perfect square and it is non-zero) and let r, s
be defined by

(r, s) =

{
(−b, 2a) if α = (−b+

√
d)/2a,

(b,−2a) if α = (−b−
√
d)/2a.

The reader can check that the choices of d, r, and s are such that s|(d − r2) and
α = (r +

√
d)/s. �

Example 13.2.18. Let α = 4+
√
37

7 . Then, α is already in the form (r +
√
d)/s of

Lemma 13.2.17, because 7|(37− 16) = 21.

Let β = 1+2
√
5

3 . Then, β is a quadratic irrational number but not in the form
of Lemma 13.2.17, so let us find r, s, and d as in the lemma. First, note that
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3β − 1 = 2
√
5 and therefore

9β2 − 6β − 19 = 0.

Thus, β = 6+
√
720

18 and we can pick d = 720, r = 6, and s = 18.

Remark 13.2.19. If α = n+m
√
t

q for some n,m, t, q ∈ Z, then α = n+
√
tm2

q . If q is
not a divisor of tm2 − n2, then we may pick

d = tm2q2, r = n · |q|, and s = q · |q|,
and now α = (r +

√
d)/s and s is a divisor of (d − r2), by Exercise 13.4.15. For

instance, let α = (1 + 2
√
5)/3 as in Example 13.2.18. If we pick

d = 5 · 22 · 32 = 180, r = 1 · |3| = 3, and s = 3 · |3| = 9,

then α = 3+
√
180

9 and 9 is a divisor of 180− 9 = 171.

We can now state a theorem that describes an algorithm to find expressions
for α = α0, α1, α2, etc., so that we can find a continued fraction for a quadratic
irrational α.

Theorem 13.2.20. Let α be a quadratic irrational number, and let αk and ak be
as in Theorem 13.2.8. Let α = α0 = (r0 +

√
d)/s0, where d is not a perfect square

and s0 is a divisor of d− r20. We define sequences {rk}k≥0 and {sk}k≥0 by

rk+1 = aksk − rk and sk+1 = (d− r2k+1)/sk.

Then, for all k ≥ 0, we have αk = rk+
√
d

sk
, with rk, sk ∈ Z where sk is a non-zero-

divisor of d− r2k.

Proof. As usual, we will proceed by induction on k. By Lemma 13.2.17, we can
write α = α0 as (r0+

√
d)/s0, where d is not a perfect square and r0, s0 are integers

with s0|(d− r20). This shows the case of k = 0.

Let us now assume that αk = rk+
√
d

sk
, with rk, sk ∈ Z where sk is a non-

zero-divisor of d − r2k. Clearly, the number rk+1 = aksk − rk is an integer, since
ak, rk, sk ∈ Z by the induction hypothesis and the fact that α = [a0, a1, . . .] is
simple. Moreover, rk+1 ≡ −rk mod sk. Hence,

d− r2k+1 ≡ d− r2k ≡ 0 mod sk

because sk|(d− r2k) by the induction hypothesis for k. Hence, sk+1 = (d− r2k+1)/sk
is an integer as claimed and non-zero because d is not a perfect square. Further,
the definition of sk+1 implies that sk+1sk = d− r2k+1, and therefore sk+1 is also a
divisor of d− r2k+1. It remains to show that αk+1 = (rk+1 +

√
d)/sk+1. Indeed,

αk+1 =
1

αk − ak
=

1
rk+

√
d

sk
− ak

=
1

rk−aksk+
√
d

sk

=
1

−rk+1+
√
d

sk

=
(rk+1 +

√
d)

(−rk+1+
√
d)(rk+1+

√
d)

sk

=
rk+1 +

√
d

d−r2k+1

sk

=
rk+1 +

√
d

sk+1
.
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Hence, we have proved the induction step, and this concludes the proof by induction.
�

Example 13.2.21. Let us compute the continued fraction expansion of 1+
√
6 as

in Example 13.2.13, but this time using the algorithm outlined by Theorem 13.2.20.
In order to do so, we set up a table similar to the one in Example 13.1.10, but this
time we calculate values of rk, sk, and ak, instead of pk and qk. We proceed as
follows. We begin with α = α0 = 1+

√
6 and we bring α0 to the form (r0+

√
d)/s0,

with s0|(d − r20). In our case, d = 6, r0 = 1, and s0 = 1, so we are done. In each
consecutive step, we will determine rk+1, sk+1, and ak = �(rk +

√
d)/sk�, in that

order. For example, we begin with a0 = �1 +
√
6� = 3 and then compute

r1 = 3 · 1− 1 = 2, s1 = (6− 4)/1 = 2, and a1 =

⌊
2 +

√
6

2

⌋
= 2.

We continue computing terms in the sequence in the table below. In our computa-
tions of floor functions, we use that 2 <

√
6 < 3:

k 0 1 2 3 · · ·
rk 1 2 2 2 · · ·
sk 1 2 1 2 · · ·
ak 3 2 4 2 · · ·

As soon as there is a repetition in a triple (rk, sk, ak) we can stop. We notice that
(r1, s1, a1) = (2, 2, 2) = (r3, s3, a3). It follows that

r4 = a3s3 − r3 = a1s1 − r1 = r2 and s4 =
d− r24
s3

=
d− r22
s1

= s2.

It follows also that a4 = �(r4 +
√
d)/s4� = �(r2 +

√
d)/s2� = a2, and we begin a

periodic cycle of coefficients in the continued fraction. Hence,

1 +
√
6 = [3, 2, 4, 2, 4, 2, 4, . . .] = [3, 2, 4].

Example 13.2.22. Let us find the continued fraction of α = 1+2
√
5

3 . Since α is
not in the form (r0 +

√
d)/s0, we first need to bring it to that form: α = 3+

√
180

9

by Remark 13.2.19. Also note that 13 <
√
180 < 14; therefore a0 = 1. We begin

our table with the parameters d = 180, r0 = 3, s0 = 9, and a0 = 1. We obtain

k 0 1 2 3 4 5 6 7 · · ·
rk 3 6 10 10 6 12 12 6 · · ·
sk 9 16 5 16 9 4 9 16 · · ·
ak 1 1 4 1 2 6 2 1 · · ·

Since (r1, s1, a1) = (6, 16, 1) = (r7, s7, a7), we can stop here. Thus,

α =
1 + 2

√
5

3
= [1, 1, 4, 1, 2, 6, 2, 1, 4, 1, 2, 6, 2, . . .] = [1, 1, 4, 1, 2, 6, 2].

In particular, the continued fraction is periodic (and the period is of length six).
Notice that it would suffice to look for a repetition of a pair (rk, sk) because ak is
determined by rk and sk. In the following theorem we will show that every quadratic
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irrational number has a periodic continued fraction by proving that the integers
rk, sk are bounded. Therefore, there are a finite number of possible combinations
for (rk, sk) and a repetition must occur.

Before we prove our next theorem, we shall need a technical lemma.

Lemma 13.2.23. Let α be a quadratic irrational number, and let αk and ak be the
sequences defined in Theorem 13.2.8.

(1) There is some m > 0 such that αm < 0, where αm is the conjugate of αm (see
Definition 13.2.11 and Exercise 13.4.14).

(2) If m > 0 is such that αm < 0, then −1 < αn < 0 for every n > m.

Proof. Let ck = [a0, . . . , ak] =
pk

qk
. Then, by Theorem 13.2.8, we have

α− pk
qk

=
(−1)k

qk(αk+1qk + qk−1)
and α− pk

qk
=

(−1)k

qk(αk+1qk + qk−1)
,

where we have used the properties of conjugates to derive the second equality from
the first (see Exercise 13.4.14). Thus,(

α− pk
qk

)(
α− pk

qk

)
=

1

q2k(αk+1qk + qk−1)(αk+1qk + qk−1)
.(13.2)

Since α is a quadratic irrational (in particular, not rational), we have α �= α.
Moreover, ck = pk/qk converges to α by Theorem 13.2.1, and c2k < α < c2j+1 for
any k, j ≥ 0. Therefore, there is some k ≥ 0 such that ck is strictly between α
and α. For such k, the quantity (α − ck)(α − ck) is negative. Since qk ≥ 1 and
αk+1 > 0 for any k ≥ 0 (recall ak ≥ 1 for all k ≥ 1), it follows from (13.2) that
αk+1qk + qk−1 < 0, and therefore αk+1 < 0. Thus, m = k+1 works and proves (1).

For (2), it suffices to show that if αm < 0, then −1 < αm+1 < 0. By definition
αm+1 = 1/(αm − am), and therefore αm+1 = 1/(αm − am) < 0. Since am ≥ 1
for m ≥ 1, it follows that αm − am < −1 and it follows that −1 < αm+1 < 0, as
desired. �

The following theorem is originally due to Lagrange (see Figure 5.1).

Theorem 13.2.24. The continued fraction expansion of a quadratic irrational
number is periodic.

Proof. Let α be a quadratic irrational number and let {αk} be the sequence defined
in Theorem 13.2.8. For each k ≥ 0, we shall write αk = (rk+

√
d)/sk as in Theorem

13.2.20. In order to prove the theorem, we will first show that there is an integer
m > 0 such that rk and sk are uniformly bounded for all k > m (i.e., independently
of k).

By Lemma 13.2.23, there is an integer m > 0 such that −1 < αk < 0 for all
k > m. Since αk = [ak, ak+1, . . .] > 1 for all k ≥ 1 (because ak ≥ 1 for k ≥ 1) and
if we write αk = (rk +

√
d)/sk , then

1 < αk − αk =
2
√
d

sk
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for all k > m. In particular, it follows that 0 < sk < 2
√
d, and so sk is bounded.

Moreover,

αk · αk =
rk +

√
d

sk
· rk −

√
d

sk
=

r2k − d

s2k
.

Hence, if k > m, then αk ·αk < 0, and so r2k−d < 0 as well. Hence, −
√
d < rk <

√
d.

Moreover, αk > 1 and αk > −1 and so

0 < αk + αk =
2rk
sk

.

This means that rk > 0, and therefore 0 < rk <
√
d.

Hence, we have shown that if k > m, then there are at most 2d possibilities
for the pair (rk, sk). Since the sequence {(rk, sk)}k>m is infinite, there must be a
repetition, i.e., (rj , sj) = (rj+n, sj+n) for some n ≥ 1, and therefore (rj , sj , aj) =
(rj+n, sj+n, aj+n) since aj is determined by rj and sj . Now, by the recurrence
relations that define rk and sk, we see that

(rj+t, sj+t, aj+t) = (rj+n+t, sj+n+t, aj+n+t)

for all t ≥ 0, and therefore the continued fraction is periodic, as desired. �

In the proof of Theorem 13.2.24 we first had to find a value of m such that
−1 < αk < 0 for all k > m. It turns out that if α > 1 is a quadratic irrational and
−1 < α < 0, then the continued fraction of α is purely periodic and, in fact, the
converse is also true.

Example 13.2.25. In order to illustrate the phenomenon to be proved in the next
proposition, let us consider α = (4 +

√
37)/7. In Example 13.2.14 we showed that

α = [1, 2, 3]. Let us compute the continued fraction of β = −1/α. First, note that

β = − 1

α
= − 1

4−
√
37

7

= − 7 · (4 +
√
37)

(4−
√
37)(4 +

√
37)

=
4 +

√
37

3
.

Since 3 is a divisor of 37− 42 = 21, we can use the algorithm of Theorem 13.2.20,
where r0 = 4, s0 = 3, and d = 37 (and 6 <

√
37 < 7):

k 0 1 2 3 · · ·
rk 4 5 3 4 · · ·
sk 3 4 7 3 · · ·
ak 3 2 1 3 · · ·

We see that (r0, s0) = (r3, s3), and therefore the continued fraction is periodic with
length of period equal to 3. Thus, β = −1/α = [3, 2, 1] while α = [1, 2, 3].

Definition 13.2.26. A quadratic irrational number α is said to be reduced if α > 1
and −1 < α < 0.

Proposition 13.2.27. Let α be a quadratic irrational number, and let αk be the
sequence defined in Theorem 13.2.8. Then:

(1) If α is reduced, then αk is reduced for all k ≥ 0.
(2) If α = [a0, a1, . . . , am−1] is purely periodic, then −1/α = [am−1, . . . , a1, a0].
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(3) The number α has a purely periodic continued fraction (i.e., a continued frac-
tion of the form [a0, . . . , an−1]) if and only if α is reduced.

Proof. If α is reduced, then α0 = α is reduced and, in particular, αk < 0. Then,
by Lemma 13.2.23, the numbers αk are reduced for all k ≥ 0 (note that αk is always
greater than 1 for all k ≥ 1). This proves (1).

For (2), the equation αk+1 = 1/(αk−ak) implies that αk+1 = 1/(αk−ak) and,
in turn, this is equivalent to

αk = ak +
1

αk+1
.

If we put βk = −1/αk, then −1/βk = ak−βk+1, or, equivalently, βk+1 = ak+1/βk.
Now suppose that α = α0 = [a0, . . . , am−1]. We will show that β0 = −1/α0 =
[am−1, . . . , a0]. If m = 1, then α = [a0], and α = a0 +

1
α . Thus,

− 1

α
= a0 − α = a0 +

1

− 1
α

.

Taking conjugates, we obtain β0 = a0 + 1/β0, and therefore β0 = [a0], as desired.
Now let us assume that m > 1. Since the expansion is periodic of length m, we
have α0 = αm and in particular a0 ≥ 1, and so ak ≥ 1 for all k ≥ 0. Moreover, if
we use the equation βk+1 = ak + 1/βk for k = m− 1 and k = m− 2, we obtain

β0 = βm = am−1 +
1

βm−1
= am−1 +

1

am−2 +
1

βm−2

= [am−1, am−2, βm−2].

If we repeat this process, we obtain

β0 = [am−1, am−2, . . . , a0, β0] = [am−1, am−2, . . . , a0],

as claimed.
For (3), let us first assume that α is reduced. Since αk is reduced by part (1),

we know that −1 < αk < 0, and therefore 0 < 1/βk < 1. Hence, using the equation
βk+1 = ak + 1/βk from part (2), we see that �βk+1� = ak. Moreover, by Theorem
13.2.24, the continued fraction for α is periodic with period of, say, length m ≥ 1.
This means that αm+j = αj for some j ≥ 0. Let j be minimal with this property.
If j = 0, then we are done because this means the continued fraction is purely
periodic. Otherwise, suppose j > 0 and j is minimal with the property αm+j = αj .
Taking conjugates, we also obtain βm+j = βj . In particular, if j > 0, we have

aj−1 +
1

βj−1
= βj = βm+j = am+j−1 +

1

βm+j−1
.

It follows that aj−1 = �βj� = �βm+j� = am+j−1 and, therefore, 1/βj−1 = 1/βm+j−1.
But this means that αj−1 = αm+j−1, which contradicts the minimality of j. Hence,
we have reached a contradiction with j > 0, and we must have j = 0; i.e., the con-
tinued fraction is purely periodic.

For the converse, assume that α = [a0, . . . , am−1] is purely periodic. First note
that a0 = am ≥ 1, and therefore α > 1. Moreover, part (2) implies that the
continued fraction of −1/α is also purely periodic, and in particular −1/α > 1.
This implies that −1 < α < 0, as needed. �
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Example 13.2.28. Let α =
√
7. Then, α = −

√
7 is between −3 and −2. Thus,

−1 < 2 −
√
7 < 0, and α′ = 2 +

√
7 is reduced. Hence, Proposition 13.2.27 says

that the continued fraction of α′ must be purely periodic. Indeed,

2 +
√
7 = [4, 1, 1, 1].

It follows that
√
7 = [2, 1, 1, 1, 4].

In the next section we will investigate the continued fraction of
√
d for any

positive integer d that is not a perfect square.

13.2.2. The Continued Fraction of
√
d. Let us begin with an example.

Example 13.2.29. Let α =
√
19. We may apply our algorithm in Theorem 13.2.20

starting with r0 = 0, s0 = 1, and d = 19:

k 0 1 2 3 4 5 6 7 · · ·
rk 0 4 2 3 3 2 4 4 · · ·
sk 1 3 5 2 5 3 1 3 · · ·
ak 4 2 1 3 1 2 8 2 · · ·

Since (r1, s1) = (4, 3) = (r7, s7), we may stop here and conclude that
√
19 = [4, 2, 1, 3, 1, 2, 8].

The number
√
19 is not reduced (as in Definition 13.2.26), but 4 +

√
19 is reduced

and, indeed, the continued fraction of 4 +
√
19 is purely periodic:

4 +
√
19 = [8, 2, 1, 3, 1, 2] = [8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, . . .].

The reader has probably noticed that there is a certain symmetry to the coefficients
of the continued fraction (the expansion is a palindrome centered at 3 if we ignore
the number 8). The same symmetry occurs for the continued fraction of a quadratic
irrational of the form

√
d; for instance,

√
6 = [2, 2, 4],

√
15 = [3, 1, 6],

√
23 = [4, 1, 3, 1, 8],

√
29 = [5, 2, 1, 1, 2, 10].

Let us see why this is so.

Proposition 13.2.30. Let d be a positive integer that is not a perfect square, and
let a0 = �

√
d�. Then, the simple continued fraction of

√
d is given by

√
d = [a0, a1, a2, . . . , a2, a1, 2a0].

In other words,
√
d = [a0, a1, . . . , am], with am = 2a0 and ai = am−i for all 1 ≤

i ≤ m− 1.

Proof. Let d ≥ 2 be an integer that is not a perfect square, let α =
√
d, and put

a0 = �
√
d�. Then, β = a0 + α is reduced, because β > 1 and β = a0 −

√
d =

�
√
d� −

√
d is between −1 and 0 by the definition of the floor function. It follows

from Proposition 13.2.27 that the (simple) continued fraction of β is purely periodic,
say β = [b0, . . . , bm−1]. It follows that

[b0, . . . , bm−1] = β = a0 + α = [2a0, a1, . . . , am−1, . . .]
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and so
√
d = [a0, a1, . . . , am] with b0 = am = 2a0 and ai = bi for 1 ≤ i ≤ m. It

remains to show the symmetry property ai = am−i for all 1 ≤ i ≤ m− 1.
By Proposition 13.2.27, we know that

−1/β = [am−1, am−2, . . . , a1, 2a0].

Moreover, −1/β = −1/(a0−α) = 1/(α−a0). Also, from the expansion for α =
√
d

we deduce that α− a0 = [0, a1, . . . , am−1, 2a0]. In particular

[am−1, am−2, . . . , a1, 2a0] = −1/β = 1/(α− a0) = [a1, . . . , am−1, 2a0].

Hence, a1 = am−1, a2 = am−2, and ai = am−i for all 1 ≤ i ≤ m− 1, as desired. �

The proposition we just proved says that the period of
√
d begins with a1 and

ends with some am = 2a0. In the next proposition we shall prove that the very first
time we have ak = 2a0 is actually the end of the period. First, we need a lemma.

Lemma 13.2.31. Let d be a positive integer that is not a perfect square, let α =
√
d,

and let ak, αk, rk, and sk be defined as in Theorem 13.2.20. Then:

(1) For all k ≥ 1, we have 0 < rk <
√
d and 0 < sk < 2

√
d.

(2) sk = 1 if and only if k is a positive multiple of m, where m is the length of
the period of the continued fraction of

√
d.

Proof. Part (1) was proved already in the proof of Theorem 13.2.24. For (2), let m
be the length of the period of the continued fraction of

√
d, and let us assume first

that k is a positive multiple of m. By Proposition 13.2.30, the continued fraction
of

√
d is of the form √

d = [a0, a1, a2, . . . , am−1, 2a0].

By the definition of αm, we have
√
d = [a0, . . . , am−1, αm], and from the shape

of the period of
√
d we see that αm = [2a0, a1, . . . , am−1], which equals

√
d + a0.

Similarly,
√
d+ a0 = αm = α2m = · · · = αjm for all j ≥ 1. This shows that if k is

a positive multiple of m, then αk = a0 +
√
d and therefore rk = a0 and sk = 1.

For the converse, suppose that sk = 1 for some k ≥ 1. The shape of the
continued fraction of

√
d implies that every αk, for k ≥ 1, has a purely periodic

continued fraction. Thus, Proposition 13.2.27 says that αk must be reduced, and
therefore −1 < αk < 0. If αk = (rk+

√
d)/sk with sk = 1, then αk = (rk−

√
d)/sk =

rk −
√
d. It follows that −1 < rk −

√
d < 0, or, equivalently, that 0 <

√
d− rk < 1,

and so rk must be �
√
d�. In other words,

αk = �
√
d�+

√
d = a0 +

√
d = [2a0, a1, . . . , am−1].

On the other hand, from the continued fraction of
√
d, we know that the continued

fraction of αk is of the form

αk = [ak, ak+1, . . . , am−1, 2a0, a1, . . . , ak−1].

But then we would have a1 = ak+1, a2 = ak+2, and aj = aj+k for all j ≥ 1. Since
the length of the period of

√
d is m, the minimality of m (see Definition 13.2.12)

implies that k must be a multiple of m, and the proof is complete. �
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Proposition 13.2.32. Let d be a positive integer that is not a perfect square, and
suppose that the continued fraction of

√
d is of the form

√
d = [a0, a1, a2, . . . , a2, a1, 2a0].

Then, ak ≤ a0 for all k ≤ m − 1. In particular, ak = 2a0 if and only if k is a
positive multiple of m.

Proof. Since a0 ≤ a0, we can assume 1 ≤ k ≤ m − 1. Let α =
√
d, and let

ak, αk, rk, and sk be defined as in Theorem 13.2.20. By Lemma 13.2.31 we have
2 ≤ sk < 2

√
d and 0 < rk <

√
d. Thus,

αk =
rk +

√
d

sk
<

√
d+

√
d

2
=

√
d.

It follows that ak = �αk� ≤ �
√
d� = a0, as desired. �

Example 13.2.33. The statement of Proposition 13.2.32 is exemplified in the
continued fractions we already found in Example 13.2.29; namely

√
6 = [2, 2, 4],

√
15 = [3, 1, 6],

√
23 = [4, 1, 3, 1, 8],

√
29 = [5, 2, 1, 1, 2, 10].

13.3. Approximations of Irrational Numbers

In the introduction to this chapter we mentioned the well-known approximation
π ≈ 22/7, and in Example 13.2.7 we calculate the continued fraction expansion for
π, from which one can deduce other approximations using convergents, such as

22

7
,
333

106
,
355

113
, or

103993

33102
.

In this section we want to address the following question: what can we say about
the approximations that appear as convergents of π? There are, of course, other
approximations of π, such as 31

10 , or 314
100 = 157

50 . Why is 157
50 not a convergent of π?

More generally, given a rational approximation m/n of an irrational number α, can
we decide whether m/n is a convergent of α? In our first result in this section, we
show that convergents are some of the most “economical” approximations, in terms
of the size of the denominator.

Proposition 13.3.1. Let k ≥ 0 and let ck = pk/qk and ck+1 = pk+1/qk+1 be,
respectively, the kth and (k + 1)th convergents of an irrational number α. Then,
for every k ≥ 0 we have

(1) |ck − ck+1| =
1

qkqk+1
,

(2) |α− ck| <
1

qkqk+1
,

(3) |α− ck| < 1/q2k, and
(4) |qk+1α− pk+1| < |qkα− pk|.

Proof. Let k ≥ 0 be fixed. Part (1) follows directly from (13.1) in the proof of
Theorem 13.1.15. Moreover, Theorem 13.2.1 says that either ck < α < ck+1 or
ck+1 < α < ck according to the parity of k. Thus, |α − ck| < |ck − ck+1| and (2)
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follows from (1). Finally, since the sequence {qk}k≥−1 is increasing, it follows that
|α− ck| < 1/q2k, as claimed by (3).

For (4), we use Theorem 13.2.8 to write∣∣∣∣α− pk+1

qk+1

∣∣∣∣ = 1

qk+1(αk+2qk+1 + qk)
.

Multiplying throughout by qk+1 yields |qk+1α − pk+1| = 1/(αk+2qk+1 + qk). Since
aj = �αj� ≥ 0 for j ≥ 1, we have

αk+2qk+1 + qk > ak+2qk+1 + qk ≥ qk+1 + qk = (ak+1qk + qk−1) + qk

= (ak+1 + 1)qk + qk−1 > αk+1qk + qk−1.

It follows that

|qk+1α− pk+1| =
1

αk+2qk+1 + qk
<

1

αk+1qk + qk−1
= |qkα− pk|.

This shows (4) and completes the proof of the proposition. �

Example 13.3.2. Let α = π. Then, the first convergents are

c0 = 3, c1 =
22

7
, c2 =

333

106
, c3 =

355

113
, . . . .

The distance from π to c1 = 22/7 is

|π − c1| =
∣∣∣∣π − 22

7

∣∣∣∣ = 0.00126448 . . .

and 1/72 = 1/49 = 0.02040816 . . ., so it follows that |π − 22/7| < 1/72 as we
expected from Proposition 13.3.1. Similarly, |π − 333/106| = 0.00008321 . . . is
smaller than the theoretical bound of 1/1062 = 0.00008899 . . ..

Is 31/10 a convergent of π? Suppose it was. Then, Proposition 13.3.1 would
imply that |π−31/10| < 1/102. However, |π−31/10| = 0.04159265 . . . and 1/102 =
0.01. Thus, the bound of |π− 31/10| < 1/102 is not satisfied. It follows that 31/10
cannot be a convergent. Similarly, |π − 314/100| = |π − 157/50| = 0.00159265 . . .
which is larger than 1/502 = 0.0004. Hence, 314/100 = 157/50 cannot be a con-
vergent.

In the following result, we show that if an approximation is “economical enough”,
then it is in fact a convergent. The key point is to spell out what “economical” means
in this context.

Theorem 13.3.3. Let α be an irrational number, and suppose that s/t is a rational
number with t > 1 and with the property that, for all integers u, v,

|tα− s| < |vα − u| whenever 1 ≤ v < t.(13.3)

Then, s/t is a convergent of α.

Proof. Let α be irrational, and let ck = pk/qk, for each k ≥ 0, be the convergents
associated to the infinite continued fraction of α. Recall that the convergents are
ordered as

c0 < c2 < · · · < c2j < · · · < α < · · · < c2j+1 < · · · < c3 < c1
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by Theorems 13.1.15 and 13.2.1. Let s/t ∈ Q be as in the statement of the theorem.
Let us assume for a contradiction that s/t �= ck for all k ≥ 0.

Suppose first that s/t < c0. Then,

|tα− s| ≥ 1

t
· |tα− s| =

∣∣∣α− s

t

∣∣∣ > |α− c0| = |q0α− p0|

where we have used the fact that c0 = p0/q0 and q0 = 1 < t. This contradicts the
property in equation (13.3) and so we must have s/t > c0 instead.

If s/t > c1, then

|tα− s| > |tc1 − s| = 1

q1
· |tp1 − sq1| ≥

1

q1
> |q0α− p0|

where we have used s/t �= c1 to bound |tp1 − sq1| ≥ 1 and Proposition 13.3.1,
part (2), for the inequality |q0α − p0| < 1/q1. The inequality |tα − s| > |q0α − p0|
contradicts (13.3) and so we must have c0 < s/t < c1.

It follows that s/t is located between two convergents cn−1 and cn+1 for some
n ≥ 1. Thus, |s/t− cn−1| < |cn − cn−1|. If we multiply this inequality through by
tqnqn−1, then we obtain

qn|sqn−1 − tpn−1| < t|pnqn−1 − pn−1qn| = t,

where we have used Proposition 13.1.11 to show that |pnqn−1 − pn−1qn| = 1. Since
s/t �= cn−1, it follows that sqn−1 − tpn−1 �= 0 and therefore qn < t. Moreover,
|α− s/t| > |cn+1 − s/t| and so

|tα− s| > 1

qn+1
· |tpn+1 − sqn+1| ≥

1

qn+1
> |qnα− pn|

where the last inequality comes from Proposition 13.3.1, part (2). Since we have
shown that qn < t, the inequality |tα−s| > |qnα−pn| contradicts (13.3). Thus, it is
impossible for s/t to be between cn−1 and cn+1 and we have reached a contradiction.

�

Theorem 13.3.3 has the following important corollaries, which imply, in par-
ticular, that the convergents are the “most economical” rational approximations in
terms of the size of their numerators.

Corollary 13.3.4. Let α be an irrational number, let ck = pk/qk be the convergents
of α, and let s/t be a rational approximation of α, with t > 1.

(1) If |tα− s| < |qkα− pk|, then d ≥ qk+1.
(2) If |α− s/t| < |α− pk/qk| for some k ≥ 1, then d > qk.

Proof. Let d ≥ 2 be the smallest positive integer for which there is an integer c
such that |dα − c| < |qkα − pk|. Theorem 13.3.3 implies that c/d = cn for some
n ≥ 0. Since the convergent c/d is closer to α than ck = pk/qk, Proposition 13.3.1
implies that n > k. Thus, d ≥ qk+1. Since d is the smallest such value, it follows
that t ≥ d ≥ qk+1, as claimed in (1).

For (2), suppose for a contradiction that |α − s/t| < |α − pk/qk| but we have
t ≤ qk. Multiplying by t on the left and by qk on the right leads to

|tα− s| ≤ |qkα− pk|.
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Then, by part (1), we have t ≥ qk+1. Hence, we would have qk ≥ t ≥ qk+1, but
this is impossible by Theorem 13.1.9 because qk < qk+1 for all k ≥ 1. This shows
(2). �

We end this section with a bound that assures that a rational approximation
is a convergent, which does not rely on a comparison with any other convergent.

Theorem 13.3.5. Let α be an irrational number, and let s/t be a rational approx-
imation of α, with t ≥ 1, and such that∣∣∣α− s

t

∣∣∣ < 1

2t2
.

Then, s/t is one of the convergents of the infinite continued fraction of α.

Proof. If t = 1 and |α − s| < 1/2, then s = �α� or �α�+ 1, and the result follows
from Exercise 13.4.11, so we shall assume t > 1. We shall apply Theorem 13.3.3. To
do so, we need to show that |tα−s| < |vα−u| whenever 1 ≤ v < t, or, equivalently,
that if |vα−u| ≤ |tα−s|, then t ≤ v. Suppose the latter occurs for some u/v �= s/t.
Then, ∣∣∣u

v
− s

t

∣∣∣ ≤ ∣∣∣α− u

v

∣∣∣+ ∣∣∣α− s

t

∣∣∣
by the triangle inequality. By assumption, |tα− s| < 1/(2t) and this, together with
|vα− u| ≤ |tα− s|, implies that |α− u/v| < 1/(2tv). Thus,∣∣∣u

v
− s

t

∣∣∣ ≤ ∣∣∣α− u

v

∣∣∣+ ∣∣∣α− s

t

∣∣∣ < 1

2tv
+

1

2t2
.

If we multiply throughout by tv, we obtain |tu− sv| < 1/2+ v/(2t). But u/v �= s/t
implies that |tu− sv| ≥ 1 and therefore v/(2t) ≥ 1/2, and so t ≤ v, as desired. �

Example 13.3.6. Let α = π and consider the rational approximation 22/7. Then,
|π − 22/7| = 0.0016244 . . . and 1/(2 · 49) = 0.010204081 . . .. Thus,∣∣∣∣π − 22

7

∣∣∣∣ < 1

2 · 72

and 22/7 must be a convergent of π, by Theorem 13.3.5.
However, the bound in Theorem 13.3.5 is not a necessary condition; i.e., the

theorem cannot be extended to an if and only if statement. For instance, take
333/106 which is another convergent of π. Then |π − 333/106| = 0.0000832 . . . but
1/(2 · 1062) = 0.0000444 . . . is smaller. So not every convergent of α satisfies the
bound of Theorem 13.3.5.

13.4. Exercises

Exercise 13.4.1. Find the continued fraction expansion for each of the following
rational numbers:

(a)
35

31
, (b)

17

31
, (c) − 17

31
, (d)

101

37
.

Exercise 13.4.2. Compute the rational numbers with the following continued
fraction expansions:

(a) [1, 1, 1], (b) [1, 1, 1, 1], (c) [1, 2, 1], (d) [−2, 1, 2, 1].
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Exercise 13.4.3. Find the convergents c0, . . . , c5 for the rational number with
continued fraction expansion [1, 2, 3, 4, 5, 6].

Exercise 13.4.4. Find the continued fraction expansion of q = 225/157 and then
use a table (as in Example 13.1.10) to compute the convergents of q.

Exercise 13.4.5. Let c = [a0, a1, . . . , an] be a simple continued fraction, and define
sequences pk and qk as in Theorem 13.1.9. Show that qk ≥ 2k/2 for all k ≥ 2, as
follows:

(1) Show the result for k = 2 and k = 3.
(2) Show that qk+2 > 2qk for all k ≥ 1.
(3) Show that if qk ≥ 2k/2, then qk+2 ≥ 2(k+2)/2.

(4) Use induction to prove qk ≥ 2k/2 for all even integers k ≥ 2 (respectively, all
odd integers k ≥ 3).

Exercise 13.4.6. Let a and b be relatively prime natural numbers, let [a0, . . . , an]
be the continued fraction expansion of a/b, and let ck = pk/qk be the kth convergent
of a/b. Show that

aqn−1 − bpn−1 = (−1)n−1.

In other words, (qn−1,−pn−1) is an integer solution of ax + by = (−1)n−1, and
(−qn−1, pn−1) is a solution of ax+ by = (−1)n. (Hint: use Proposition 13.1.11.)

Exercise 13.4.7. Use Exercises 13.4.4 and 13.4.6 to find an integer point on the
line L : 225x+157y = 1, and then determine/parametrize all the integral points on
L.

Exercise 13.4.8. Find an infinite simple continued fraction α = [a0, a1, . . .] such
that 0.001 < α < 0.002.

Exercise 13.4.9. Find the first six coefficients of the (infinite) continued fraction
expansion of the following numbers, using the methods of Section 13.2:

(a) π2, (b) e+ π, (c)
√
2 +

√
3, (d)

√
2 +

√
2, (e) log(2).

Exercise 13.4.10. Use Cantor’s diagonalization argument (and Proposition 13.2.6)
to show that the set of values of all infinite simple continued fractions is uncount-
able.

Exercise 13.4.11. Let α be an irrational number such that α− �α� > 1/2.

(1) Show that the integers �α� and �α�+ 1 are the first two convergents of α.

(2) Find a square-free number d > 0 such that
√
d− �

√
d� > 1/2, and determine

the continued fraction expansion of
√
d.

Exercise 13.4.12. Let α be an irrational number with α > 1 and an infinite
continued fraction expansion α = [a0, a1, a2, . . .].

(1) Show that 1
α = [0, a0, a1, a2, . . .].

(2) Let ck = pk/qk and Ck = Pk/Qk be, respectively, the kth convergent of α and
1/α. Show that Ck = Pk/Qk = qk−1/pk−1 = 1/ck−1.
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Exercise 13.4.13. By definition, a number α ∈ C is a quadratic irrational number
if it is of the form u + v

√
d, for some u, v ∈ Q and a non-zero integer d that is

not a perfect square. Show that α is a quadratic irrational if and only if there are
integers a, b, c ∈ Z such that aα2 + bα + c = 0 where b2 − 4ac �= 0 is not a perfect
square. Moreover, show that α and α (the conjugate of α, as in Definition 13.2.11)
satisfy the same quadratic equation.

Exercise 13.4.14. Let u, v be rational numbers and let d be a non-zero integer
that is not a perfect square. The conjugate of α = u + v

√
d is defined to be

α = u− v
√
d. Prove the following properties of conjugates for quadratic irrational

numbers α = u+ v
√
d and β = x+ y

√
e, where u, v, x, y ∈ Q and d, e are non-zero

integers that are not perfect squares:

(1) α �= α.

(2) α+ β = α+ β.

(3) α · β = α · β
(4) α/β = α/β if β �= 0.

Exercise 13.4.15. Let α = n+m
√
t

q for some n,m, t, q ∈ Z, and suppose that q is
not a divisor of tm2 − n2. Show that if we define

d = tm2q2, r = n · |q|, and s = q · |q|,

then α = (r +
√
d)/s and s is a divisor of (d− r2).

Exercise 13.4.16. For each quadratic irrational number α below, use Exercise
13.4.15 to find r, d, and s such that α = (r +

√
d)/s and s is a divisor of (d− r2):

(a) 2 +
√
5, (b)

2 +
√
5

3
, (c)

2 +
√
5

5
, (d)

1 + 3
√
5

6
.

Exercise 13.4.17. Find the continued fraction expansion of the following irrational
numbers (as in Examples 13.2.21 and 13.2.22):

(a) 2 +
√
5, (b)

2 +
√
5

3
, (c)

2 +
√
5

5
, (d)

1 + 3
√
5

6
.

Exercise 13.4.18. Find the continued fraction expansion of the following irrational
numbers:

(a)
√
7, (b)

√
10, (c)

√
11, (d)

√
13, (e)

√
14.

Exercise 13.4.19. Determine the values of the following continued fractions:

(a) [4, 5], (b) [1, 4, 5], (c) [1, 1, 4, 5], (d) [1, 2, 4, 1, 2], (e) [1, 3, 5].

Exercise 13.4.20. Let d be a positive integer such that d = n2+1, for some integer
n > 1. Show that the integers �

√
d� and �

√
d� + 1 are the first two convergents of

the continued fraction of
√
d.

Exercise 13.4.21. Prove that
√
9n2 + 6 = [3n, n, 6n], for all n ≥ 1. Use this to

compute the continued fraction of
√
15,

√
42, and

√
231.
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Exercise 13.4.22. Find the best rational approximation a/b of
√
2 with denomi-

nator not exceeding 100. Without calculating
√
2− a/b, explain why |

√
2− a/b| <

0.000085. (Hint: use Corollary 13.3.4, part (2), to find a/b, and use Proposition
13.3.1, part (2), for the error estimate.)

Exercise 13.4.23. Find the best rational approximation a/b of e with denominator
not exceeding 100. Without calculating e− a/b, estimate |e− a/b|. (The continued
fraction of e was given in Example 13.2.9.)

Exercise 13.4.24. Find the best rational approximation a/b of log(2) with denom-
inator not exceeding 100. Without calculating log(2)−a/b, estimate | log(2)−a/b|.
Exercise 13.4.25. Without computing any convergents, decide whether 22/9 is a
convergent of

√
6. (Hint: Theorem 13.3.5.)
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CHAPTER 14

HYPERBOLAS AND
PELL’S EQUATION

Out of nothing I have created a strange new universe.

János Bolyai, in reference to the creation of a
non-euclidean geometry

In Chapter 9 we saw that for any quadratic equation C : f(x, y) = 0 with
integer coefficients that is classified as a hyperbola (as in Definition 9.2.7), there is
a change of variables φ : C → C ′, where C ′ : X2−BY 2 = D for some integers B > 0
and D �= 0, that sends C(Z) to C ′(Z), i.e., integral points to integral points (see
Theorem 9.4.1; the map ϕ is explicitly described in Corollary 9.2.12). Therefore,
our task in this chapter is to describe the rational and integral points on ellipses of
the form C ′ : X2 −BY 2 = D. Our analysis begins in Section 14.1 with the special
case of square hyperbolas (i.e., the case of B = 1).

14.1. Square Hyperbolas

In this section we treat the special case of hyperbolas of the form x2 − By2 = D,
when B = E2 is a perfect square. In this case,

(x− Ey)(x+ Ey) = D,

so if we put X = x − Ey and Y = x + Ey, we obtain XY = D. This shows that
the integral points on x2 −By2 = D are intimately related to the divisors of D.

Proposition 14.1.1. Let D,E be non-zero integers, and let C and C ′ be the hyper-
bolas given by x2 −E2y2 = D and XY = D, respectively. Then, there is a bijective
map φ : C → C ′ defined by

φ(x, y) = (x− Ey, x+ Ey)

393
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−4. −3. −2. −1. 1. 2. 3. 4.

−1.

1.

0

Figure 14.1. The square hyperbola x2 − 49y2 = 1 and its two main tangent
lines y = x/7 and y = −x/7.

with inverse

φ−1(X,Y ) =

(
X + Y

2
,
X − Y

2E

)
such that

(1) φ(C(Z)) ⊆ C ′(Z) and C(Z) ⊆ φ−1(C ′(Z)) and
(2) if (a, b) ∈ C ′(Z), then φ−1((a, b)) ∈ C(Z) if and only if a ≡ b mod 2E.

Proof. The map φ as defined in the statement is well-defined, as it sends points
on C to points on C ′. The map (X,Y ) �→ ((X + Y )/2, (X − Y )/(2E)) is easily
checked to be the inverse map of φ, and therefore φ is a bijection. Since E is an
integer, the fact that φ(C(Z)) ⊆ C ′(Z) is immediate from the definition of φ. Since
φ is a bijection, it follows that C(Z) ⊆ φ−1(C ′(Z)) as claimed in (1).

Finally, let (a, b) ∈ C ′(Z). Then, φ−1((a, b)) ∈ C(Z) if and only if (a + b)/2
and (a− b)/(2E) are integers. The quantity (a− b)/(2E) is an integer if and only
if a ≡ b mod 2E. Moreover, if a ≡ b mod 2E, then, in particular, a ≡ b mod 2 and
so a ≡ −b mod 2 as well, so (a+ b)/2 is an integer. This concludes the proof. �

The following corollary gives us a criterion for the existence of integral points
on square hyperbolas.

Corollary 14.1.2. Let C : x2 − By2 = D be a hyperbola, such that B, D are
non-zero integers and B = E2 is a perfect square. Then:

(1) The curve C always has rational points (±(1 + D)/2,±(1 − D)/(2E)) and
therefore infinitely many rational points.

(2) The curve C has an integral point if and only if there is a factorization a·b = D
with integers a, b ∈ Z such that a ≡ b mod 2E. In such case, the point on C
is given by ((a+ b)/2, (a− b)/(2E)).

(3) The square hyperbola C has only finitely many integral points.

Proof. Let C : x2 − E2y2 = D and C ′ : XY = D, and let φ : C → C ′ be the
map defined in Proposition 14.1.1. Since (1, D) is on C ′, we obtain a rational point
φ−1((1, D)) on C, which coincides with the point given in (1). Thus, there are
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14.2. Pell’s Equation x2 −By2 = 1 395

infinitely many points by Theorem 9.3.4, since x2 −By2 = D is not the product of
two lines (because B,D �= 0; see Definition 9.2.7).

For part (2), note that Proposition 14.1.1 says that C(Z) ⊆ φ−1(C ′(Z)), so
every integral point on C comes from an integral point on C ′, which in turn corre-
sponds to factorizations a · b = D with integers a, b. Further, φ−1((a, b)) ∈ C(Z) if
and only if a ≡ b mod 2E, as claimed.

Finally, the finiteness of the possible factorizations of D in the integers implies
that there are only finitely many integral points on C. �

Example 14.1.3. Let C : x2−49y2 = 51. Then, Corollary 14.1.2 gives the rational
points (±26,±25/7) on C, and the reader can use the methods of Section 9.3 to find
a parametrization of all rational points on C (see Exercise 14.4.1). Moreover, our
result also provides a method to find the integral points. The possible factorizations
of 51 are

1 · 51, 3 · 17, (−1)(−51), (−3)(−17).

Since 51 �≡ 1 mod 14, the pairs (1, 51) and (−1,−51) do not provide integral points.
However, 17 ≡ 3 mod 14, so the factorizations 3 · 17 = 17 · 3 = (−3)(−17) =
(−17)(−3) produce the four integral points (±10,±1) on C. By Corollary 14.1.2,
these are the only integral points on C.

Example 14.1.4. Let C : x2−49y2 = 52. Then, Corollary 14.1.2 gives the rational
points (±53/2,±51/14) on C. Also, we can show that there are no integral points.
Indeed, the possible factorizations of D = 52 are

1 · 52, 2 · 26, 4 · 13, (−1) · (−52), (−2) · (−26), (−4) · (−13).

However, 51, 24, and 9 are not 0 mod 14. Thus, Corollary 14.1.2 implies that there
are no integral points on C.

14.2. Pell’s Equation x2 −By2 = 1

For the rest of the chapter, the number B will be a positive integer that is not a
perfect square.

Our second step in understanding the points on hyperbolas is analyzing the
particular case of curves of the form x2 − By2 = 1. Such curves are called Pell’s
equations, named after the English mathematician John Pell (see Figure 14.2).
However, Pell’s equation predates Pell, as it appeared in texts of Bhahmagupta as
early as the 7th century. In correspondence with Fermat, the mathematician Lord
William Brouncker rediscovered an efficient method to solve Pell’s equation that
had essentially appeared in the work of Bhaskara in the 12th century. The method
of Bhaskara and Brouncker is essentially the same as the method used to compute
the infinite continued fraction of

√
B. We will describe this method in detail in this

section.
The connection between Pell’s equation and the continued fraction of

√
B is as

follows. Suppose that (a, b) is an integral point on x2 − By2 = 1, with a, b > 0.
Then, a2 −Bb2 = 1 and if follows that

B =
a2 − 1

b2
=
(a
b

)2
− 1

b2
.
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Figure 14.2. John Pell (1611–1685) was an English diplomat and mathemati-
cian. Image source: Wikimedia Commons.

In particular,
√
B =

√(a
b

)2
− 1

b2

and it follows that a/b is a rational approximation of
√
B. In Chapter 13 we

studied continued fractions and we have seen that they can be used to find good
rational approximations of irrational numbers, called convergents. In particular, in
Section 13.3, we saw that the convergents of an irrational number are the “most
economical” rational approximations in terms of the size of the denominator (see
Corollary 13.3.4 for the precise meaning of this). Our goal here is to prove that the
approximation of

√
B given by an integral solution of Pell’s equation x2 −By2 = 1

is indeed a convergent.

Definition 14.2.1. Let B ∈ N but not a perfect square. A pair of integers (a, b) ∈
Z× Z is a positive integral solution (or positive solution) of the Pell equation x2 −
By2 = 1 if a2 −Bb2 = 1 and a, b > 0.

Remark 14.2.2. Suppose that (a, b) and (c, d) are positive integral solutions of
x2 −By2 = 1. Then, a < c if and only if a2 < c2 if and only if b2 < d2, which is in
turn equivalent to b < d. Thus, if there are integral solutions, then there is a least
positive solution, a second positive solution, a third, etc.

Theorem 14.2.3. Suppose (a, b) is a positive integral solution of x2 − By2 = 1.
Then, a/b is one of the convergents of the infinite continued fraction of

√
B.

Proof. Let a, b > 0 such that a2−Bb2 = 1. We shall use Theorem 13.3.5. In order
to apply the theorem we must prove that∣∣∣√B − a

b

∣∣∣ < 1

2b2
.
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Since a2 −Bb2 = 1, it follows that (a− b
√
B) = 1/(a+ b

√
B), and so a/b−

√
B =

1/b(a+ b
√
B). Moreover, a2 = 1 +Bb2, so a > b

√
B. Thus,

a

b
−
√
B =

1

b(a+ b
√
B)

<
1

2b2
√
B

<
1

2b2
.

Hence, Theorem 13.3.5 applies and a/b must be a convergent of
√
B. �

Example 14.2.4. Consider C : x2 − 5y2 = 1. Then, the pairs (9, 4) and (161, 72)

are positive (integral) solutions of C. The first few convergents of
√
5 are

2,
9

4
,
38

17
,
161

72
,
682

305
, . . . ,

so, in agreement with Theorem 14.2.3, the quotient of the coordinates of positive
solutions, namely 9/4 and 161/72, are convergents. However, it is important to
notice that not all convergents are solutions. For instance, 22 − 5 · 12 = −1 =
382 − 5 · 172.

Example 14.2.5. Let C : x2 − 7y2 = 1. We shall use Theorem 14.2.3 to try to
find positive solutions. First, we find a few convergents ck = pk/qk of

√
7:

2, 3,
5

2
,
8

3
,
37

14
,
45

17
,
82

31
,
127

48
,
590

223
, . . . .

Next, we check if (pk, qk) is an integral point on C. In Table 14.1 we calculate ck
and p2k − 7 · q2k for 0 ≤ k ≤ 8. Thus, out of the convergents ck with 0 ≤ k ≤ 8,
only the convergents c3 = 8/3 and c7 = 127/48 provide positive solutions (8, 3),
(127, 48). However, there seems to be a pattern in the values of p2k − 7 · q2k. If it
holds, then c11 and c15, for instance, should also provide positive solutions. Indeed,
c11 = 2024/765, c15 = 32257/12192, and

20242 − 7 · 7652 = 1 = 322572 − 7 · 121922.

Thus, (2024, 765) and (32257, 12192) are also positive solutions of C.

Table 14.1. Convergents pk/qk for
√
7 and the values of p2k − 7 · q2k.

k 0 1 2 3 4 5 6 7 8

pk/qk 2 3 5
2

8
3

37
14

45
17

82
31

127
48

590
223

p2k − 7 · q2k −3 2 −3 1 −3 2 −3 1 −3

Theorem 14.2.3 and Example 14.2.5 raise two questions. First, all positive
solutions are convergents, but which convergents are solutions? And, second, is
there always at least one positive solution of Pell’s equation x2 − By2 = 1 among
the convergents of

√
B? Before we answer these questions, let us dig deeper into

Example 14.2.5.

Example 14.2.6. Let C be the conic x2−7y2 = 1 as in Example 14.2.5. Where are
the values of p2k−7q2k (see Table 14.1) coming from? Let us step back and compute
the continued fraction of

√
7 using the method of Theorem 13.2.20 in Section 13.2.1.
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In order to begin, we write
√
7 = (0 +

√
7)/1 so that r0 = 1 and s0 = 1:

k 0 1 2 3 4 · · ·
rk 0 2 1 1 2 · · ·
sk 1 3 2 3 1 · · ·
ak 2 1 1 1 4 · · ·

By Proposition 13.2.32, we are done when we reach am = 2a0, and so we have found
that

√
7 = [2, 1, 1, 1, 4]. Now we see that the values of p2k − 7q2k seem to be given

by (−1)k+1sk+1. If that is the case and if (pk, qk) is an integral solution, then we
must have (−1)k+1sk+1 = 1 and, in particular, sk+1 = 1. By Lemma 13.2.31, the
value sk+1 = 1 only happens when k + 1 is a multiple of m. Thus, we should have
(pk, qk) is a solution whenever k+1 ≡ 0 mod m and k+1 is even. In our particular
case of

√
7 we have m = 4, so every multiple of m is even, and therefore (pk, qk)

should be an integral point on x2 − 7y2 = 1 if and only if k ≡ 3 mod 4. Indeed, we
saw in Example 14.2.5 that c3, c7, c11, and c15, for instance, provide points. We
shall prove these facts next, in a more general context.

Lemma 14.2.7. Let B be a positive integer that is not a perfect square, let α =
√
B,

and let ak, αk, rk, and sk be defined as in Theorem 13.2.20. Let ck = pk/qk be the
convergents of the continued fraction of

√
d. Then, for every k ≥ 0 we have

(1)
pk + qk

√
B

pk−1 + qk−1

√
B

=
rk+1 +

√
B

sk
,

(2) p2k−1 −Bq2k−1 = (−1)ksk.

Proof. We prove (1) by induction on k. For k = 0, we have
√
B = (0 +

√
B)/1

and therefore r0 = 0 and s0 = 1. It follows from the definition of the sequence rk
in Theorem 13.2.20 that r1 = a0s0 − r0 = a0. Moreover, from the definitions of pk
and qk (see Theorem 13.1.9) we know that p−1 = 1, q−1 = 0, p0 = a0, and q0 = 1.
Hence,

p0 + q0
√
B

p−1 + q−1

√
B

= a0 +
√
B =

r1 +
√
B

s0
.

This proves the base case k = 0. Next, suppose (1) holds for k ≥ 0. By the
recurrence relations defining pk and qk we have

pk+1 + qk+1

√
B = ak+1(pk + qk

√
B) + pk−1 + qk−1

√
B,

and if we divide both sides of the previous equation by pk + qk
√
B, then we obtain

pk+1 + qk+1

√
B

pk + qk
√
B

= ak+1 +
pk−1 + qk−1

√
B

pk + qk
√
B

.

If we use our induction hypothesis (i.e., (1) in the case of k), then we obtain

pk+1 + qk+1

√
B

pk + qk
√
B

= ak+1 +
sk

rk+1 +
√
B
.
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Next we rationalize the denominator in the right-hand side of the previous equation
to obtain that

sk

rk+1 +
√
B

= sk

√
B − rk+1

B − r2k+1

=

√
B − rk+1

sk+1
,

where we have used the definition of sk+1 in terms of sk and rk+1. Hence,

pk+1 + qk+1

√
B

pk + qk
√
B

= ak+1 +

√
B − rk+1

sk+1
=

ak+1sk+1 − rk+1 +
√
B

sk+1
=

rk+2 +
√
B

sk+1
,

which is equation (1) in the case of k+1. This completes the proof of the induction
step, and therefore our proof by induction of (1) is complete.

In order to prove part (2), let us multiply the equation in (1) by its conjugate
to obtain

p2k −Bq2k
p2k−1 −Bq2k−1

=
r2k+1 −B

s2k
= −sksk+1

s2k
= −sk+1

sk
,(14.1)

where we have used the identity sksk+1 = B − r2k+1. If we write tk = p2k − Bq2k,
then (14.1) reads tk/tk−1 = −sk+1/sk. It follows that

tk−1

t−1
=

k−1∏
j=0

tj
tj−1

=

k−1∏
j=0

(
−sj+1

sj

)
= (−1)k

sk
s0

.

Finally, using the values p−1 = s0 = 1 and q−1 = 0, we obtain that tk−1 =
p2k−1 −Bq2k−1 = (−1)ksk, which proves (2). �

We are now ready to prove the patterns we observed in Examples 14.2.4, 14.2.5,
and 14.2.6 by putting together our results of Lemma 13.2.31, Theorem 14.2.3, and
Lemma 14.2.7.

Theorem 14.2.8. Let B be a positive integer that is not a perfect square, assume
that the period of the continued fraction of

√
B has length m, and let pk/qk be the

associated convergents.

(1) If m is even, then all the positive integral solutions of x2 −By2 = 1 are given
by (x, y) = (pjm−1, qjm−1) for all j ≥ 1.

(2) If m is odd, then all the positive integral solutions of x2 − By2 = 1 are given
by (x, y) = (p2jm−1, q2jm−1) for all j ≥ 1.

In particular, Pell’s equation x2 −By2 = 1 always has integral solutions.

Proof. As we have seen in Theorem 14.2.3, every positive integral solution (a, b)

of x2 − By2 = 1 arises from a convergent a/b of
√
B. That is, (a, b) = (pk, qk) for

some k ≥ 0, where pk/qk is the kth convergent of
√
B. By Lemma 14.2.7, part (2),

we have that
p2k −Bq2k = (−1)k+1sk+1.

Moreover, recall that sk ≥ 1 for all k (by part (1) of Lemma 13.2.31). Thus, (pk, qk)
is a solution of Pell’s equation if and only if k is odd and sk+1 = 1. Further, Lemma
13.2.31 shows that sk+1 = 1 if and only if k + 1 is a positive multiple of m.
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Hence, if m is even, (a, b) is a solution of Pell’s equation if and only if (a, b) =
(pk, qk) with k = jm − 1 for some j ≥ 1, and if m is odd, then k = 2jm − 1 for
some j ≥ 1. This completes the proof of the theorem. �

Remark 14.2.9. Recall from Theorem 13.1.9 that pk = akpk−1 + pk−2 and qk =
akqk−1 + qk−2 for k ≥ 1. Thus, the sequences {pk} and {qk} are increasing. It
follows from Theorem 14.2.8 that the smallest positive integral solution of a Pell’s
equation x2−By2 = 1 is given by (pm−1, qm−1) if m is even and by (p2jm−1, q2jm−1)
if m is odd. The least positive solution is called the fundamental solution of the
equation.

Example 14.2.10. Let us find the two smallest positive integral solutions of the
equation x2 − 19y2 = 1. The first step is to find the continued fraction of

√
19,

which we already computed in Example 13.2.29:
√
19 = [4, 2, 1, 3, 1, 2, 8 ].

In particular, we note that the length of the period is m = 6, even. Hence, Theorem
14.2.8 tells us that the two smallest positive solutions of the equation are given by

(p5, q5) and (p11, q11).

Thus, it remains to compute the convergents c5 and c11:

k −1 0 1 2 3 4 5 . . .

ak 4 2 1 3 1 2

pk 1 4 9 13 48 61 170

qk 0 1 2 3 11 14 39

k . . . 6 7 8 9 10 11

ak 8 2 1 3 1 2

pk 1421 3012 4433 16311 20744 57799

qk 326 691 1017 3742 4759 13260

We deduce that c5 = 170/39 and c11 = 57799/13260, and therefore the first two
positive integral solutions are (170, 39) and (57799, 13260).

Example 14.2.11. Let us now find the first two positive solutions of x2−13y2 = 1.
First, we compute the continued fraction of

√
13, which turns out to be

√
13 =

[3, 1, 1, 1, 1, 6 ]. Thus, the length of the period is m = 5, odd, and the first two
solutions will correspond to the convergents ck with k = 2 · 5 − 1 = 9 and k =
2 · 2 · 5 − 1 = 19, i.e., (p9, q9) and (p19, q19). We will not compute a table of
convergents here, and we leave it up to the reader to verify that the solutions are
(649, 180) and (842401, 233640).

We remark here that the cm−1 = c4 convergent does not provide a solution of
x2−13y2 = 1. If m is odd, then Lemma 14.2.7 says that (pm−1, qm−1) is a solution
of x2 − 13y2 = −1 instead. Indeed, c4 = 18/5 and 182 − 13 · 52 = −1. In the next
section we shall explore the solutions of more general Pell equations of the form
x2 −By2 = N .
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14.3. Generalized Pell’s Equations x2 −By2 = N

In the previous section we found all solutions to Pell’s equation x2 − By2 = 1.
We will begin this section by showing that our previous work also determines the
solutions of x2 − By2 = −1 and then study even more general Pell’s equations of
the form x2 −By2 = N , for some non-zero integer N .

Example 14.3.1. After we discussed the Hasse–Minkowski theorem, in Section
11.3.1, we showed that the curve C : x2 − 29y2 = −1 has rational points (e.g.,
(5/2, 1/2)). Are there any integral solutions of x2 − 29y2 = −1? Here we shall
use continued fractions to determine all the integral points on C. Suppose that
(a, b) is an integral solution. Then, Exercise 14.4.4 shows that a/b must be a
convergent of

√
29; i.e., a/b = pk/qk for some k ≥ 0. By Lemma 14.2.7 we know

that p2k − Bq2k = (−1)k+1sk+1 so we must have sk+1 = 1 and k + 1 odd. However,
by Lemma 13.2.31 we have sk+1 = 1 if and only if k + 1 is a multiple of m, the
length of the period of the continued fraction of

√
29. Said continued fraction is

[5, 2, 1, 1, 2, 10 ] and so m = 5. Hence, all the (posivite) integral points on C are of
the form (p5(2j+1)−1), q5(2j+1)−1) = (p10j+4, q10j+4) for any j ≥ 0. For instance,

(p4, q4) = (70, 13) and (p14, q14) = (1372210, 254813)

are the two smallest positive solutions of x2 − 29y2 = −1. The next solution is
given by the 24th convergent, with coordinates (26898060350, 4994844413).

Example 14.3.2. Of course, some Pell’s equations of the form C : x2 − By2 =
−1 lack integral points altogether due to simple congruence considerations. For
instance, if p is a prime and p ≡ 3 mod 4 and B is an integer divisible by p, then
there cannot be any integral points on C (see Exercise 14.4.10). For instance, let
B = 3 and consider x2 − 3y2 = −1. Since the continued fraction of

√
3 is [1, 1, 2 ],

the length of the period is m = 2, even, and it follows from our considerations in
Example 14.3.1 that there cannot be integral points. In the next result we formalize
our observations about the equation x2 −By2 = −1.

Theorem 14.3.3. Let B be a positive integer that is not a perfect square, assume
that the period of the continued fraction of

√
B has length m, and let pk/qk be the

associated convergents.

(1) If m is even, then the equation x2 −By2 = −1 has no integral solutions.
(2) If m is odd, then all the positive integral solutions of x2 − By2 = 1 are given

by (x, y) = (p2jm+(m−1), q2jm+(m−1)) for all j ≥ 0.

Since the proof is very similar to that of Theorem 14.2.8, we leave it as an
exercise for the reader (see Exercise 14.4.11).

Definition 14.3.4. Let B be a positive integer that is not a perfect square, and
let N be a non-zero integer. The equation x2 −By2 = N is known as a generalized
Pell’s equation, or of Pell type. The equation x2 − By2 = −1 is sometimes called
a negative Pell’s equation.

Our next example shows the range of possibilities in the integral solvability of
generalized Pell’s equations.
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Example 14.3.5. Consider the generalized Pell’s equations x2 − 3y2 = N , for
N = 1, −1, 7, and 13.

• When N = 1, Theorem 14.2.8 says that the equation has solutions and, in
fact, determines all of them. Since

√
3 = [1, 1, 2 ], the length of the period is

m = 2, and the solutions are given by (p2j−1, q2j−1) for all j ≥ 1, where pk/ck
is the kth convergent. For instance, the first few solutions are (2, 1), (7, 4),
(26, 15), etc.

• When N = −1, Example 14.3.2 shows that there are no integral solutions.
• When N = 7, the equation x2 − 3y2 = 7 has no solutions. To see this, we

reduce modulo 7 to reach x2 ≡ 3y2 mod 7. Since 3 is a quadratic non-residue
modulo 7, it turns out the only solution would be x ≡ y ≡ 0 mod 7. However,
if both x and y are divisible by 7, then 72 divides x2 − 3y2 = 7 and we have
a contradiction.

• When N = 13, we can find at least one point by inspection, namely (4, 1).
Are there others? Recall that in Lemma 12.5.1 we have shown that out of a
solution of equations x2 − By2 = n and x2 − By2 = m, we can construct a
solution of x2 − By2 = nm. More precisely, if (4, 1) solves x2 − 3y2 = 13 and
(a, b) solves x2 − 3y2 = 1, then

(4 · a+ 3 · 1 · b, 4 · b+ 1 · a) = (4a+ 3b, 4b+ a)

is a solution of x2 − 3y2 = 1 · 13 = 13. Since we know that (p2j−1, q2j−1) is a
point on the Pell’s equation with N = 1, we conclude that

(4p2j−1 + 3q2j−1, 4q2j−1 + p2j−1)

is a point on x2 − 3y2 = 13 for all j ≥ 1. For instance, (11, 6), (40, 23), and
(149, 86) are the points we obtain for j = 1, 2, and 3, respectively.

More generally, we can show the following result about generalized Pell’s equa-
tions, as consequences of Lemma 12.5.1 and Theorem 14.2.8.

Proposition 14.3.6. Let N and M be non-zero integers, and let B be a non-zero
integer that is not a square. Then:

(1) If x2−By2 = N and x2−By2 = M have integral solutions, so does x2−By2 =
NM .

(2) If x2−By2 = N has at least one integral solution, then it has infinitely many.

The proof is simple, so we leave it as Exercise 14.4.12. We note, however,
that Example 14.3.5 and Proposition 14.3.6 prompt the following natural question:
can we construct all the positive integral solutions of a generalized Pell’s equation
C : x2 − By2 = N using the smallest positive solution of C and all the solutions
of x2 − By2 = 1? For instance, are the solutions we found in Example 14.3.5 for
N = 13 all the positive integral solutions of x2 − 3y2 = 13? The answer to this
question is, in fact, yes, and we will discuss the reason in the next section by taking
a different point of view (i.e., quadratic fields).

We conclude this section by showing that, just like in the cases of N = 1 and
N = −1, the positive solutions of certain generalized Pell’s equations x2−By2 = N
come from convergents of

√
B.
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Theorem 14.3.7. If |N | ≤
√
B and (a, b) is a positive integer solution of x2 −

By2 = N , then a/b is a convergent associated to the continued fraction expansion
of

√
B.

Proof. Let us first assume that N is positive. Then,

a

b
−
√
B =

a− b
√
B

b
=

(a− b
√
B)(a+ b

√
B)

b(a+ b
√
B)

=
N

b(a+ b
√
B)

,

where we have used the fact that a2−Bb2 = N . Since (a+b
√
B)(a−b

√
B) = N > 0,

we must have a− b
√
B > 0 as well, and so a > b

√
B. Thus, we conclude

0 <
a− b

√
B

b
=

a

b
−
√
B =

N

b(a+ b
√
B)

<

√
B

b(2b
√
B)

=
1

2b2
.

Thus, Theorem 13.3.5 applies here and a/b must be a convergent of
√
B.

Now suppose that N is negative. Then,

−N

B
= b2 − 1

B
a2.

A similar argument to the one carried out above for positive N yields

0 <
b

a
−
√

1

B
<

1

2a2

and Theorem 13.3.5 now implies that b/a is a convergent of 1/
√
B. Finally, Exercise

13.4.12 shows that if b/a is a convergent of 1/
√
B, then a/b must be a convergent

of
√
B. This completes the proof of the theorem. �

Example 14.3.8. Consider the generalized Pell’s equation C : x2−7y2 = 2 and the
point (45, 17) on C. Since N = 2 <

√
7, it follows from Theorem 14.3.7 that 45/17

must be a convergent of
√
7. Indeed, in Example 14.2.5, we listed a few convergents,

and 45/17 is one of them (c5 to be precise). Notice that we also computed sk+1,
and Lemma 14.2.7 says that a convergent ck = pk/qk of

√
7 will be a solution of

x2 − 7y2 = 2 precisely when sk+1 = 2 and k + 1 is even (k is odd). Thus, Table
14.1 shows that c1 = 3/1 = 3 also provides a point (3, 1) on x2 − 7y2 = 2.

Remark 14.3.9. As a word of caution, we note here that Theorem 14.3.7 does not
say that if |N | ≤

√
B, then x2 − By2 = N must have a solution. For example, if

we consider x2 − 7y2 = −2, then there cannot be any integral solutions, as −2 is a
quadratic non-residue modulo 7.

14.3.1. Quadratic Rings and Units. In this section we will reinterpret the
solutions of Pell’s equation and generalized Pell’s equations as elements in quadratic
fields with a certain norm. We encountered quadratic fields for the first time in
Section 12.5, when discussing ellipses. Recall that the set

Q(
√
B) = {a+ b

√
B : a, b ∈ Q}

is, in fact, a field (Proposition 12.5.3). In this section we will work with a subring
of Q(

√
B), namely Z[

√
B], which we define as follows:

Z[
√
B] = {a+ b

√
B : a, b ∈ Z}.
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We leave it to the reader to verify that Z[
√
B] is a ring (Exercise 14.4.14). We say

that Z[
√
B] is a quadratic ring. Also recall (Definition 12.5.6) that we have a norm

map N : Q(
√
B) → Q given by

N(a+ b
√
B) = a2 −Bb2.

Recall that the norm is multiplicative; that is, N(αβ) = N(α) · N(β) for all α and
β ∈ Q(

√
B) (see Lemma 12.5.9). Also, note that it follows from the definition of

the norm that if we restrict the norm map to Z[
√
B], then the image of the norm

is contained in Z; that is, N(a+ b
√
B) = a2 − Bb2 is an integer, for all a, b ∈ Z.

Now, let M be a non-zero integer. From the definitions above we see that
an element α = a + b

√
B ∈ Z[

√
B] has norm M (i.e., N(α) = M) if and only if

a2 − Bb2 = M if and only if (a, b) is an integral point in the generalized Pell’s
equation x2 − By2 = M . Let us first identify the elements of norm 1 as the units
of the ring Z[

√
B].

Proposition 14.3.10. Let B be a non-zero integer that is not a square, and let
Z[
√
B] be the quadratic ring defined by

Z[
√
B] = {a+ b

√
B : a, b ∈ Z}.

Then:

(1) An element α ∈ Z[
√
B] is a unit if and only if N(α) = ±1.

(2) If B < 0, then the only units in Z[
√
B] are ±1, unless B = −1, in which case

the units are ±1 and ±i.
(3) If B > 0, then the ring Z[

√
B] has infinitely many units.

Proof. Let us suppose first that u = a + b
√
B ∈ Z[

√
B] is a unit. Thus, by

Definition 5.3.7, there is v = c+ d
√
B ∈ Z[

√
B] such that u · v = 1. Since the norm

is multiplicative, we obtain

1 = N(1) = N(u · v) = N(u) ·N(v),

and since u, v ∈ Z[
√
B], their norms N(u), N(v) are integers that multiply to 1.

Hence, N(u) and N(v) are ±1.

Conversely, suppose that u = a+ b
√
B has norm ε = ±1. Then,

ε = N(u) = a2 −Bb2 = (a+ b
√
B)(a− b

√
B).

Hence, if we let v = ε · (a− b
√
B), then u · v = ε2 = 1, and therefore u is a unit.

Now, let us assume that B < 0. Then, x2−By2 = −1 is impossible for x, y ∈ Z,
and therefore by part (1) there are no units of norm −1. If x2 −By2 = 1 and since
|B| > 1, it follows that y = 0 and x = ±1. Thus, the only units are ±1, as claimed.

If B > 0, then Theorem 14.2.8 says that x2 − By2 = 1 has infinitely many
integral solutions (and Theorem 14.3.3 says that x2 − By2 = −1 has infinitely
many integral solutions as well, under certain restrictions). Thus, part (1) says
that there exist infinitely many units in Z[

√
B] of norm 1. �

Example 14.3.11. In this example we shall use Proposition 14.3.10 as an alterna-
tive method to find solutions to Pell’s equation. Let us consider first x2−19y2 = 1.
In Example 14.2.10 we produced two positive solutions, namely P = (170, 39)
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and Q = (57799, 13260), that correspond to the 5th and 11th convergent, respec-
tively. In light of Proposition 14.3.10, the point P also corresponds to a unit
u = 170 + 39

√
19 with norm 1. Since units form a multiplicative subgroup of

Z[
√
B], it follows that u2 is also a unit (and N(u2) = N(u)2 = 12 = 1 because of

the multiplicativity of the norm). Thus,

u2 = (170 + 39
√
19)2 = 57799 + 13260

√
19

is also a unit of norm 1, and therefore (57799, 13260) is another point on x2−19y2 =
1 (the point Q that corresponds to the 11th convergent). We can now generate a
third point by considering u3:

u3 = (57799 + 13260
√
19) · (170 + 39

√
19) = 19651490 + 4508361

√
19.

Since N(u3) = N(u)3 = 13 = 1, it follows that R = (19651490, 4508361) is another
point on x2 − 19y2 = 1. The reader can verify that 19651490/4508361 is, in fact,
the 17th convergent of

√
19.

Example 14.3.12. The method used in Example 14.3.11 can also be applied to
finding points on the negative Pell’s equation. For instance, let us consider x2 −
13y2 = −1. In Example 14.2.11 we found two solutions of x2 − 13y2 = 1 and also
noticed that (18, 5) is a point on x2 − 13y2 = −1. This means that 18 + 5

√
13 is a

unit of norm −1 in the ring Z[
√
13]. Therefore u2 is another unit of norm 1, and

u3 is a unit of norm −1. Indeed,

N(u2) = N(u)2 = (−1)2 = 1 and N(u3) = N(u)3 = (−1)3 = −1.

Thus, u3 = 23382 + 6485
√
13 is associated to a point (23382, 6485) on x2 − 13y2 =

−1. The reader can check that 23382/6485 is the 14th convergent of
√
13.

Suppose (a, b) is a positive integer solution of x2−By2 = 1. Then, by Theorem
14.2.8, the rational number a/b is a convergent of

√
B. On the other hand, our

Proposition 14.3.10 says that u = a+ b
√
B is a unit in Z[

√
B]. In Examples 14.3.11

and 14.3.12 we have seen how to find other solutions as powers of a given unit, and
they raise the following natural question: is there a unit u such that every solution
of x2−By2 = 1 is associated to a power of u? The answer is yes, and the following
theorem demonstrates this fact.

Theorem 14.3.13. Let P1 = (a, b) be the smallest positive integer solution of
x2 −By2 = 1, and let u = a+ b

√
B be the associated unit in Z[

√
B].

(1) If n ≥ 1 and un = an + bn
√
B with an, bn ∈ Z, then (an, bn) is an integral

point on x2 −By2 = 1.
(2) Conversely, if (c, d) is a positive integer solution of x2 − By2 = 1, then there

is some n ≥ 1 such that un = c+ d
√
B.

Proof. Part (1) follows from the fact that N(un) = N(u)n = 1n = 1 by Lemma
12.5.9 and, on the other hand, we have N(an + bn

√
B) = a2n − Bb2n. For part

(2), let (c, d) be an arbitrary positive integer solution of Pell’s equation, and let
β = c + d

√
B. Note that N(β) = c2 − Bd2 = 1. Let αn = un = an + bn

√
B and

denote its conjugate by α′
n = (un)′ = an − bn

√
B. Since αn has norm 1, it follows

that αnα
′
n = 1 and therefore α′

n = 1/αn > 0. Also, α1 = u = a + b
√
B with
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406 14. Hyperbolas and Pell’s Equation

a, b > 0, and so αn < αn+1 for all n ≥ 1. Since β is also a positive integer solution,
it follows that β > 1 and there is some n ≥ 1 such that

αn < β ≤ αn+1.

If we multiply through by α′
n, then we obtain

1 = αnα
′
n < βα′

n ≤ αn+1α
′
n = α1αnα

′
n = α1 = u.

If we write γ = βα′
n = e + f

√
B for some integers e, f ∈ Z, then the preceding

equation reads 1 < γ ≤ u. Since

N(γ) = N(βα′
n) = N(β) N(α′

n) = 1 · 1 = 1,

it follows that (e, f) is also an integral point on Pell’s equation, where γ = e+f
√
B,

but perhaps not a positive integral solution. Let us show that indeed e, f > 0.
From γ = βα′

n > 1 it follows that 0 < γ′ = 1/γ < 1, and so 1 < e + f
√
B and

0 < e− f
√
B < 1. In particular,

1 < (e+ f
√
B) + (e− f

√
B) = 2e and 1 < (e+ f

√
B)− (e− f

√
B) = 2f

√
B

imply that e and f are both positive. Therefore, (e, f) is a positive integral solution
of x2 −By2 = 1, and

1 < e+ f
√
B = γ ≤ u = a+ b

√
B

where (a, b) was supposed to be, by assumption, the smallest positive integer solu-
tion of Pell’s equation. Thus, we must have γ = u and a = e and b = f . It follows
that γ = βα′

n = α1 = u, and if we multiply through by αn, we obtain

β = βα′
nαn = α1αn = un+1.

Hence, we have shown that c + d
√
B = β = un+1; i.e., β is a power of u, as

desired. �

In fact, every integer solution of Pell’s equation (not only the positive ones) is
given by some unit of the form ±un in Z[

√
B], with n ∈ Z (see Exercise 14.4.15).

More generally, one can show the following theorem (see for instance [AC95, The-
orem 10.14]).

Theorem 14.3.14. Let C : x2 − By2 = −1, and suppose there are integral points
on C. Further, suppose that (a, b) is the smallest positive solution of C, let u =

a+ b
√
B, and write un = an + bn

√
B for each n ∈ Z. Then:

(1) If n is odd, then Pn = (an, bn) is an integral point on C, and if n is even, then
Pn is an integral point on Pell’s equation x2 −By2 = 1.

(2) Conversely, if Q = (c, d) is an integral point on C, then there is an odd integer
n such that c+ d

√
B = un or −un. If Q is an integral point on x2 −By2 = 1,

then c+ d
√
B = un or −un, for some even integer n.

In light of Theorems 14.3.13 and 14.3.14, we define the concept of fundamental
unit as follows.
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Definition 14.3.15. Let B be a natural number that is not a perfect square, and
let Z[

√
B] be the associated quadratic ring. A fundamental unit u ∈ Z[

√
B] is a

unit defined as follows:

(1) If x2 − By2 = −1 has no integral solutions, then a fundamental unit u =

a+ b
√
B is the unit in Z[

√
B]× such that (a, b) is the smallest positive integer

solution of Pell’s equation x2 −By2 = 1.
(2) If x2−By2 = −1 has integral solutions, then a fundamental unit u = a+b

√
B

is the unit in Z[
√
B]× such that (a, b) is the smallest positive integer solution

of the negative Pell’s equation x2 −By2 = −1.

Example 14.3.16. By Example 14.3.1, the fundamental unit of Z[
√
29] is u =

170 + 13
√
29, with N(u) = −1. By Example 14.3.2, there are no integral points on

x2 − 3y2 = −1, and therefore the fundamental unit of Z[
√
3] is u = 2 +

√
3, with

N(u) = 1.

We may reinterpret our work up to this point as a description of the unit group
of Z[

√
B] that goes further than Proposition 14.3.10 in the case of B > 0. Before

we state the theorem, we recall that we defined the concept of group isomorphism
in Section 5.2.1.

Theorem 14.3.17. Let B > 0 be an integer that is not a perfect square, let Z[
√
B]

be a quadratic ring, let U be the group of units in Z[
√
B], and let u be a fundamental

unit for Z[
√
B]. Then:

(1) U = {±un : n ∈ Z}.
(2) There is an isomorphism of groups ψ : Z/2Z× Z → U defined by

ψ((a mod 2, n)) = (−1)a · un.

Proof. Part (1) is covered by Theorem 14.3.14, so it remains to show that the map
ψ in part (2) is an isomorphism of groups (Definition 5.2.31). Note that Z/2Z× Z

is a group under componentwise addition of coordinates. First, we check that ψ is
well-defined. If a ≡ b mod 2, then

ψ((a mod 2, n)) = (−1)a · un = (−1)b · un = ψ((b mod 2, n)).

Also, we check that ψ is a group homomorphism:

ψ((a mod 2, n) + (b mod 2,m)) = ψ((a+ b mod 2, n+m))

= (−1)a+b · un+m

= (−1)a · un · (−1)b · um

= ψ((a mod 2, n)) + ψ((b mod 2,m)).

Theorem 14.3.14 shows that ψ is surjective, i.e., every unit v ∈ U can be written
as v = ±un, and therefore it is in the image of ψ. It remains to show that ψ is
injective. This is equivalent to showing that all the elements of {±un : n ∈ Z} are
distinct in Z[

√
B]. For this, note that the fundamental unit u = a+ b

√
B > 1, and

therefore un < un+1 for all n ≥ 1. Thus, we have

· · · < −un+1 < −un < · · · < −u < −1 < 1 < u < · · · < un < un+1 < · · ·
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which shows that all the units in the set {±un : n ∈ Z} are distinct. Thus, ψ is
injective and therefore an isomorphism of groups. �

Now that we have related the solutions of Pell’s equation to the units in Z[
√
B],

we can also prove again Proposition 14.3.6 in terms of quadratic rings.

Proposition 14.3.18. Let B be a positive integer that is not a square, and let N
and M be non-zero integers.

(1) If x2 − By2 = N and x2 − By2 = M have positive integer solutions, then
x2 −By2 = NM also has positive solutions.

(2) If x2−By2 = N has one positive integral solution, then it has infinitely many.

Proof. Part (1) follows directly from Lemma 12.5.1, but we shall use Lemma 12.5.9
instead. Indeed, suppose a2−Bb2 = N and c2−Bd2 = M , for some positive integers
a, b, c, d. Then, N(a+ b

√
B) = N and N(c+ d

√
B) = M . Thus,

N((a+ b
√
B)(c+ d

√
B)) = N(ac+Bbd+ (ad+ bc)

√
B) = NM.

Hence, (ac+Bbd, ad+ bc) is a positive integral point on x2 −By2 = NM .

For (2), if α = (a+ b
√
B) with N(α) = N and if v is any unit of norm 1, then

N(α · v) = N(α) N(v) = N · 1 = N . By Theorem 14.3.17, if u is a fundamental
unit for Z[

√
B], then the units of norm 1 with positive coordinates are given by

either {un} or {u2n} according to whether N(u) = 1 or −1, respectively. Further,
Theorem 14.3.17 shows that un �= um for any n �= m. Thus, either α ·un or α ·u2n,
for all n ≥ 1, is an infinite collection of elements of norm N , which in turn provide
infinitely many positive integer solutions of x2 −By2 = N . �

Example 14.3.19. Consider the equation x2−3y2 = 6. Clearly, there is a positive
solution (3, 1), since 32 − 3 = 6. Moreover, the fundamental unit of Z[

√
3] is

u = 2+
√
3. Thus, if we write α = 3+

√
3, then α ·un will produce infinite positive

solutions of x2 − 3y2 = 6. For instance,

α · u = 9 + 5
√
3,

α · u2 = 33 + 19
√
3,

α · u3 = 123 + 71
√
3,

α · u4 = 459 + 265
√
3.

Therefore, (3, 1), (9, 5), (33, 19), (123, 71), and (459, 265) are positive solutions of
x2 − 3y2 = 6.

Example 14.3.20. Consider the equation x2 − 3y2 = 13 and its least positive
solution (4, 1). As in the previous example, we can find more positive solutions by
multiplying α = 4 +

√
3 by the fundamental unit u = 2 +

√
3:

α · u = 11 + 6
√
3,

α · u2 = 40 + 23
√
3,

α · u3 = 149 + 86
√
3,

α · u4 = 556 + 321
√
3.
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Therefore, (4, 1), (11, 6), (40, 23), (149, 86), and (556, 321) are positive solutions of
x2− 3y2 = 13. However, unlike in Theorem 14.3.13 and the case of Pell’s equation,
this method does not yield all positive solutions. For instance, consider α′ = 4−

√
3

and
α′ · u = 5 + 2

√
3

yields a point (5, 2) that would not appear as coordinates of an element α · un for
n ≥ 1. Similarly, α′ ·u2 = 16+9

√
3 which yields a point (16, 9) that we had skipped

in our previous list.

14.4. Exercises

Exercise 14.4.1. Find parametrizations of all the rational points on the square
hyperbolas C : x2 − 49y2 = 51 and C ′ : x2 − 49y2 = 52.

Exercise 14.4.2. Determine whether the following square hyperbolas have any
integral points, and if so, find all of them:

(a) xy = 17.
(b) x2 − 9y2 = 13.
(c) x2 − 9y2 = 14.
(d) x2 − 25y2 = 119.
(e) x2 − 169y2 = 560.

Exercise 14.4.3. Let p and q be primes, and let C : x2 − p2y2 = q.

(a) Show that C has infinitely many rational points.
(b) Show that C has integral points if and only if q ≡ 1 mod 2p.

Exercise 14.4.4. Suppose (a, b) is a positive solution of x2 − By2 = −1. Show
that a/b is one of the convergents of the infinite continued fraction of

√
B. (Hint:

adapt the proof of Theorem 14.2.3.)

Exercise 14.4.5. Find a positive solution for each of the following Pell’s equations:

(a) x2 − 7y2 = 1.
(b) x2 − 10y2 = 1.
(c) x2 − 11y2 = 1.
(d) x2 − 13y2 = 1.
(e) x2 − 14y2 = 1.

(Hint: Exercise 13.4.18.)

Exercise 14.4.6. For each of the Pell’s equations x2−By2 = 1 in Exercise 14.4.5,
find the first three positive solutions.

Exercise 14.4.7. Find the first five positive solutions for x2 − 10y2 = 1.

Exercise 14.4.8. Let n ≥ 1 and let B = 9n2 + 6. Find an expression (in terms of
n) for the first and second positive solutions for the Pell’s equation x2 − By2 = 1.
(Hint: Exercise 13.4.21.)
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Exercise 14.4.9. For each of the Pell’s equations x2−By2 = 1 in Exercise 14.4.5,
determine whether the negative Pell’s equation x2 − By2 = −1 has a positive
solution, and if so, find one.

Exercise 14.4.10. Let p be a prime that is congruent to 3 mod 4, and let B be
an integer divisible by p.

(1) Prove that C : x2 −By2 = −1 has no integral points.
(2) Conclude that if B is a positive integer, with a prime divisor p that is congruent

to 3 mod 4, then the length of the period of the continued fraction of
√
B must

be even.
(3) Verify that the length of the period of the continued fraction of

√
3,

√
6,

√
7,√

11,
√
15, and

√
21 is even.

Exercise 14.4.11. Prove Theorem 14.3.3. (Hint: see Examples 14.3.1 and 14.3.2,
and follow the proof of Theorem 14.2.8.)

Exercise 14.4.12. Prove Proposition 14.3.6. (Hint: use Lemma 12.5.1 and Theo-
rem 14.2.8. See also Example 14.3.5.)

Exercise 14.4.13. Find the first three positive solutions of x2 − 10y2 = 9 and
x2 − 10y2 = 15.

Exercise 14.4.14. Show that if B is a non-zero integer that is not a perfect square,
then the set Z[

√
B] is a (commutative) ring.

Exercise 14.4.15. Show that if u = a + b
√
B is the smallest positive integer

solution of Pell’s equation x2−By2 = 1 and (c, d) is an integer solution of x2−By2 =
1 (where c, d are not necessarily positive), then there is some integer n ∈ Z such
that c + d

√
B equals un or −un. (Hint: use Theorem 14.3.13 and the fact that

(a+ b
√
B)−1 = a− b

√
B.)

Exercise 14.4.16. The first positive solution (or fundamental solution) of the
Pell’s equation x2−103y2 = 1 is (227528, 22419). Find the second positive solution.
(Hint: use norms.)

Exercise 14.4.17. Find three positive solutions for the negative Pell’s equation
x2 − 101y2 = −1.

Exercise 14.4.18. Find the fundamental unit for each of the following quadratic
rings: Z[

√
7], Z[

√
10], Z[

√
11], Z[

√
13], and Z[

√
14].

Exercise 14.4.19. Describe all the integral points on the hyperbola

C : 31x2 + 96xy + 74y2 = −1.

Exercise 14.4.20. Decide whether the following hyperbola has any integral points:

C : 27x2 − 30xy + 6y2 + 82x− 44y + 61 = 0.
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CHAPTER 15

AN INTRODUCTION
TO CUBIC EQUATIONS

“No,” he replied, “1729 is a very interesting number;
it is the smallest number expressible as the sum of
two cubes in two different ways.”

Srinivasa Ramanujan, 1920

Previously in this book, we have learned how to find all rational and integral
points on curves in the plane given by linear and quadratic equations. In this third
part, we give a brief introduction to the theory of cubic equations. We begin with
an example that comes from a famous anecdote in the history of mathematics.

Example 15.0.1. The Indian mathematician Srinivasa Ramanujan died at an early
age, when he was only 32 years old. G. H. Hardy, a British mathematician who
arranged for Ramanujan to move to Cambridge (England), was his mentor and a
close collaborator. See Figure 15.1. As Hardy recounted:

Every positive integer was one of [Ramanujan’s] personal friends. [. . . ]
I remember once going to see him when he was ill at Putney. I had
ridden in taxi cab number 1729 and remarked that the number seemed to
me rather a dull one, and that I hoped it was not an unfavorable omen.
“No,” he replied, “it is a very interesting number; it is the smallest number
expressible as the sum of two cubes in two different ways.”

Indeed,
1729 = 13 + 123 = 93 + 103.

The number 1729 is referred to as the Hardy–Ramanujan number and has become
famous after the anecdote related above (e.g., the number 1729 and other taxicab
numbers appear repeatedly in the TV show Futurama; for instance, Bender is his
mother’s 1729th descendant in the episode Xmas Story). It is worth pointing out

413
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414 15. An Introduction to Cubic Equations

Figure 15.1. S. Ramanujan (1887–1920) in the center and G. H. Hardy
(1877–1947) in the far right, at Cambridge University. Image source: Wiki-
media Commons.

that Ramanujan was referring to sums of positive cubes, for if we allow positive and
negative solutions, then 1729 is not the smallest integer that can be expressed as
the sum of two cubes in two different ways:

91 = (−5)3 + 63 = 33 + 43.

More generally, the smallest integer that can be written as the sum of two (positive)
cubes in n different ways is called the nth taxicab number. For instance, the 3rd
taxicab number is

87539319 = 1673 + 4363 = 2283 + 4233 = 2553 + 4143.

In terms of diophantine equations, a taxicab number yields a positive integer d
such that the cubic equation x3+y3 = d has several integral positive solutions. We
recommend [Kan91] for more about the life and work of Ramanujan.

Before we begin our introduction to cubic curves, we shall introduce projective
geometry. The reason for this digression is that curves in the plane are sometimes
better understood once they are “projectivized”. For instance, if we projectivize
C : x3 + y3 = d, we obtain a projective equation X3 + Y 3 = dZ3 which will allow
us to find a change of variables from C to a curve E : y2 = x3 − 432d2. The curve
E is given by an equation (a so-called Weierstrass form) that is easier to work with
in order to determine its rational and integral points (see Chapter 16 and Example
16.1.3 in particular).
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15.1. The Projective Line and Projective Space 415

15.1. The Projective Line and Projective Space

Projective geometry has opened up for us with the
greatest facility new territories in our science, and
has rightly been called the royal road to our particular
field of knowledge.

Felix Klein

In this section we introduce projective geometry by constructing the projective
line and plane. For a thorough introduction to projective geometry, see [SK52].

15.1.1. The Projective Line. Let us begin with an example. Consider the
function f(x) = 1

x . We know from calculus that f is continuous (and differentiable)
on all of the real numbers except at x = 0. Would it be possible to extend the real
line so that f(x) is continuous everywhere? The answer is yes, it is possible, and
the solution is to glue the “end” of the real line at ∞ with the other “end” at −∞.
We will describe the solution in detail below. Formally, we need the projective line,
which is a line with points R ∪ {∞}, i.e., a real line plus a single point at infinity
that ties the line together (to form a shape resembling a circle).

The formal definition of the projective line is as follows (it may seem a little
confusing at first, but it is a fairly efficient definition to work and compute with).
First, we need to define a relation between vectors of real numbers in the plane.
Let a, b, x, y be real numbers such that neither (x, y) nor (a, b) is the zero vector.
We say that (x, y) ∼ (a, b) if the vector (x, y) is a non-zero multiple of the vector
(a, b). In other words, if we consider (a, b) and (x, y) as points in the plane, we say
that (a, b) ∼ (x, y) if they both lie in one line on the plane that passes through the
origin. Let us write R∗ = R− {0}. Then,

(x, y) ∼ (a, b) if and only if there is λ ∈ R∗ such that x = λa, y = λb.

For instance, (
√
2,
√
2) ∼ (1, 1). We denote by [x, y] the set of all vectors (a, b)

such that (x, y) ∼ (a, b):

[x, y] = {(a, b) : a, b ∈ R such that (a, b) �= (0, 0) and (x, y) ∼ (a, b)}.
Finally, we define the real projective line by

P1(R) = {[x, y] : x, y ∈ R with (x, y) �= (0, 0)}.
The reader can verify that ∼ is an example of an equivalence relation (see Remark
4.2.5) and each set [x, y] is an equivalence class for the relation ∼.

The projective line P1(R) can be regarded as the set of all lines through the
origin (each class [x, y] consists of all points except the origin on the line that goes
through (x, y) and (0, 0)). It is important to notice that if [x, y] ∈ P1(R) and y �= 0,
then (x, y) ∼ (xy , 1), so the class of [x, y] contains a unique representative of the
form (a, 1) for some a = x

y ∈ R. This allows the following decomposition of P1(R):

P1(R) = {[x, 1] : x ∈ R} ∪ {[1, 0]}.
The set of points {[x, 1]} is in bijection with R and, therefore, forms a real line (or
affine line). The point [1, 0], which is the only point in P1(R) that does not belong
to the real line {[x, 1]}, is called the point at infinity (see Figure 15.2).
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Figure 15.2. Some points in the projective line, e.g., [2, 3] ∈ P1(R), and their
representatives of the form [x, 1], e.g., [ 2

3
, 1], except for [1, 0].

Notice that when x ∈ R gets “large” (i.e., far away from 0, that is, when x → ∞
or x → −∞), the point [x, 1] ∈ P1(R) corresponds to a line in the real plane that is
closer and closer to the horizontal line. Since the horizontal line corresponds to the
point [1, 0] ∈ P1(R), we see that as x gets large (in either the positive or negative
direction!), the points [x, 1] get closer and closer to [1, 0], the point at infinity. This
is what we meant at the beginning of this section by “glueing” both ends of the real
line, ∞ and −∞, at one point.

Let us see that, with this definition, the function f : R → R, f(x) = 1/x is
continuous everywhere when extended to P1(R). We define instead an extended
function F : P1(R) → P1(R) by

F ([x, y]) = [y, x].

Notice that a point on the real line of P1, i.e., a point of the form [x, 1], is sent to
the point [1, x] of P1, and (1, x) ∼ ( 1x , 1) as long as x �= 0. So [x, 1] with x �= 0 is
sent to [ 1x , 1] via F (i.e., the real point x is sent to 1

x ). Hence, F coincides with f
on R − {0}. But F is perfectly well-defined on x = 0, i.e., on the point [0, 1], and
F ([0, 1]) = [1, 0] so that [0, 1] is sent to the point at infinity. Moreover, limits from
both sides coincide:

lim
x→0+

F ([x, 1]) = lim
x→0−

F ([x, 1]) = F ([0, 1]) = [1, 0].

15.1.2. The Projective Plane. We may generalize the construction above of
the projective line in order to construct a projective plane that will consist of a real
plane plus a number of points at infinity, one for each direction in the plane; i.e.,
the projective plane will be a real plane plus a projective line of points at infinity.

Let a, b, c, x, y, z ∈ R such that neither (a, b, c) nor (x, y, z) is the zero vector,
and write R∗ = R− {0} as before. We define a relation ∼ as follows:

(x, y, z) ∼ (a, b, c) if and only if there is λ ∈ R∗ such that x = λa, y = λb, z = λc.
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We also define classes of similar vectors by

[x, y, z] = {(a, b, c) : a, b, c ∈ R such that (a, b, c) �= �0 and (x, y, z) ∼ (a, b, c)}.
Notice that, as in the case of the projective line, the class [x, y, z] contains all the
points in the line in R3 that goes through (x, y, z) and (0, 0, 0) except the origin.
We define the projective plane to be the collection of all such lines:

P2(R) = {[x, y, z] : x, y, z ∈ R such that (x, y, z) �= (0, 0, 0)}.
If z �= 0, then (x, y, z) ∼ (xz ,

y
z , 1). Thus,

P2(R) = {[x, y, 1] : x, y ∈ R} ∪ {[a, b, 0] : a, b ∈ R}.
The points of the set {[x, y, 1] : x, y ∈ R} are in 1-to-1 correspondence with the
real plane R2 (or affine plane), and the points in {[a, b, 0] : a, b ∈ R} are called the
points at infinity and form a P1(R), a projective line.

Remark 15.1.1. One interesting consequence of the definitions is that any two
parallel lines in the real plane {[x, y, 1]} intersect at a point at infinity [a, b, 0].
Indeed, let L : y = mx+ b and L′ : y = mx+ b′ be distinct parallel lines in the real
plane. If points in the real plane {[x, y, 1]} correspond to lines in R3, then lines in
the real plane correspond to planes in R3:

L = {[x, y, z] : mx− y + bz = 0}, L′ = {[x, y, z] : mx− y + b′z = 0}.
What is L∩L′? The intersection points are those [x, y, z] such that mx− y+ bz =
mx − y + b′z = 0, which implies that (b − b′)z = 0. Since L �= L′, we have b �= b′

and, therefore, we must have z = 0. Hence

L ∩ L′ = {[x,mx, 0] : x ∈ R} = {[1,m, 0]},
and so the intersection consists of a single point at infinity: [1,m, 0].

A subset of P2(R) that is in bijection with a real plane R2 is called an affine
chart of the projective plane. For instance, the subset {[x, y, 1] : x, y ∈ R} is an
affine chart. The three principal affine charts are those given by

{[x, y, 1] : x, y ∈ R}, {[x, 1, z] : x, z ∈ R}, and {[1, y, z] : y, z ∈ R},
but of course there are many other affine charts; for instance, {[x, y, 1 − x − y] :
x, y ∈ R} defines a different affine chart.

Example 15.1.2. Consider the subset of the projective plane given by

C = {[x, y, z] ∈ P2(R) : x2 + y2 = z2}.
First, let us verify that C is well-defined in the projective plane. For this, we need
to show that if [x, y, z] ∈ C, then [λx, λy, λz] is also in C, for any λ ∈ R∗, since
[x, y, z] = [λx, λy, λz]. Indeed, if [x, y, z] ∈ C, then x2 + y2 = z2, and therefore,

(λx)2 + (λy)2 = λ2x2 + λ2y2 = λ2 · (x2 + y2) = λ2z2 = (λz)2.

Thus, [λx, λy, λz] is also in C.
Let us understand the geometry of C by using an affine chart. In particular,

we shall use the decomposition

P2(R) = {[x, y, 1] : x, y ∈ R} ∪ {[a, b, 0] : a, b ∈ R}.
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Let us see what C ∩ {[x, y, 1]} is:

C ∩ {[x, y, 1]} = {[x, y, 1] ∈ P2(R) : x2 + y2 = 1}.
Thus, C ∩{[x, y, 1]} is a circle of radius 1 in the affine chart. It remains to see what
C ∩ {[a, b, 0] : a, b ∈ R} is:

C ∩ {[a, b, 0] : a, b ∈ R} = {[a, b, 0] : a2 + b2 = 0},
but a2 + b2 = 0 for a, b ∈ R implies a = b = 0. Thus, C ∩ {[a, b, 0] : a, b ∈ R} = ∅.

We conclude that C ⊆ P2(R) is in bijection with a circle in the affine plane.
Notice, however, that if we choose a different chart, we might see a different shape.
For instance, if we instead decompose

P2(R) = {[x, 1, z] : x, z ∈ R} ∪ {[a, 0, c] : a, c ∈ R},
then C ∩ {[x, 1, z]} = {[x, 1, z] ∈ P2(R) : z2 − x2 = 1} is a hyperbola and not a
circle as we saw when we used a different affine chart.

15.1.3. Working over an Arbitrary Field. The projective line and plane can
be defined over any field. Let K be a field (e.g., K = Q,R,C, or Fp). The usual
affine plane (or euclidean plane) is defined by

A2(K) = {(x, y) : x, y ∈ K}.
The projective plane over K is defined by

P2(K) = {[x, y, z] : x, y, z ∈ K such that (x, y, z) �= (0, 0, 0)}.
As before, (x, y, z) ∼ (a, b, c) if and only if there is λ ∈ K such that (x, y, z) =
λ · (a, b, c).

We will work with curves defined in projective space over Fp in Section 16.5.

15.1.4. Curves in the Projective Plane. Let K be a field and let C be a curve
in affine space, given by a polynomial in two variables:

C : f(x, y) = 0

for some f(x, y) ∈ K[x, y]; e.g., C : y2 − x3 − 1 = 0. We want to extend C to a
curve in the projective plane P2(K). In order to do this, we consider the points on
the curve (x, y) to be points in the plane [xz ,

y
z , 1] of P2(K). Thus, we have

C :
(y
z

)2
−
(x
z

)3
− 1 = 0,

or, equivalently, zy2 − x3 − z3 = 0. Notice that the polynomial F (x, y, z) = zy2 −
x3−z3 is homogeneous in its variables (each monomial has the same degree, in this
case 3) and F (x, y, 1) = f(x, y). The curve in P2(K), given by

Ĉ : F (x, y, z) = zy2 − x3 − z3 = 0,

is the curve we were looking for, which extends our original curve C in the affine
plane, and that we will call the projectivization of C. Notice that if the point
(x, y) ∈ C, then [x, y, 1] ∈ Ĉ. However, there may be some extra points in Ĉ which
were not present in C, namely those points of Ĉ at infinity. Recall that the points
at infinity are those with z = 0, so F (x, y, 0) = −x3 = 0 implies that x = 0 also,
and the only point at infinity in Ĉ is [0, 1, 0].
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In general, if C ⊆ A2(K) is given by f(x, y) = 0 and d is the highest degree of
a monomial in f , then Ĉ ∈ P2(K) is given by

Ĉ : F (x, y, z) = 0,

where F (x, y, z) = zd · f
(
x
z ,

y
z

)
. Conversely, if Ĉ : F (x, y, z) = 0 is a curve in the

projective plane, then C : F (x, y, 1) = 0 is a curve in the affine plane. In this case,
C is the projection of Ĉ onto the affine chart {[x, y, 1]}; we may also look at other
charts, e.g., {[1, y, z]}, which would yield an affine curve C ′ : F (1, y, z) = 0.

Example 15.1.3. Let C be given by

C : y − x2 = 0

so that C is a parabola in the affine plane A2(R). Then, the projectivization Ĉ of
C is given by

Ĉ : F (x, y, z) = z2f
(x
z
,
y

z

)
= zy − x2 = 0.

The curve Ĉ has a unique point at infinity, namely [0, 1, 0]. This means that the
two “arms” of the parabola meet at a single point at infinity. Thus, a parabola has
the shape of an ellipse in P2(K). How about hyperbolas? Let

C : x2 − y2 = 1.

Then Ĉ : x2 − y2 = z2 and there are two points at infinity, namely [1, 1, 0] and
[1,−1, 0]. Thus, the four arms of the hyperbola in the affine plane meet in two
points, and the hyperbola also has the shape of an ellipse in the projective plane
P2(K).

Example 15.1.4. Let C be the parabola y = x2. Then, the projectivization of C
is given by Ĉ : Y Z − X2 = 0. Our original curve C corresponds to the points of
Ĉ in the affine chart {[X,Y, Z] = [x, y, 1]} of P2. If instead we look at the points
on Ĉ that belong to the affine chart {[X,Y, Z] = [1, y, z]}, then we obtain a curve
yz = 1 in the affine plane, which is a square hyperbola.

Example 15.1.5. Let C be the hyperbola x2−2y2 = 1. Then, the projectivization
of C is given by Ĉ : X2−2Y 2 = Z2. Our original curve C corresponds to the points
of Ĉ in the affine chart {[X,Y, Z] = [x, y, 1]} of P2. If instead we look at the points
on Ĉ that belong to the affine chart {[1, Y, Z] = [1, y, z]}, then we obtain a curve
1 = z2 + 2y2 in the affine plane, which is the equation of an ellipse.

Example 15.1.6. Let d ≥ 1, and let C be the curve x3 + y3 = d that already
appeared in Example 15.0.1. Then, the projectivization of C is Ĉ : X3+Y 3 = dZ3.
We note that if we decompose the projective plane as

P2(R) = {[x, y, 1] : x, y ∈ R} ∪ {[a, b, 0] : a, b ∈ R},
then the intersection of Ĉ with the affine chart {[x, y, 1]} is in bijection with C,
while the intersection of Ĉ with {[a, b, 0] : a, b ∈ R} gives

Ĉ ∩ {[a, b, 0] : a, b ∈ R} = {[a, b, 0] : a3 + b3 = 0} = {[1,−1, 0]}
which consists of one projective point at infinity. It is worth pointing out that if
we were working over C, then

Ĉ ∩ {[a, b, 0] : a, b ∈ C} = {[a, b, 0] : a3 + b3 = 0} = {[1, θ, 0] : θ3 = −1}
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and there are three choices for θ ∈ C such that θ3 = −1, so there are three complex
points at infinity on Ĉ, and only one of them is real.

15.1.5. Singular and Smooth Curves.
In so far as the statements of geometry speak about
reality, they are not certain, and in so far as they are
certain, they do not speak about reality.

Albert Einstein

Definition 15.1.7. We say that a projective curve C : F (x, y, z) = 0 is singular
at a point P ∈ C if and only if ∂F

∂x (P ) = ∂F
∂y (P ) = ∂F

∂z (P ) = 0. In other words, C
is singular at P if the normal vector at P vanishes. Otherwise, we say that C is
non-singular (or smooth) at P . If C is non-singular at every point, we say that C
is a smooth (or non-singular) curve.

Example 15.1.8. Let d be a fixed positive integer, and let Ĉ : X3 + Y 3 = dZ3

be the projective curve that appeared in Example 15.1.6 associated to the taxicab
numbers. Let F (X,Y, Z) = X3 + Y 3 − dZ3. Since

∂F

∂X
= 3X2,

∂F

∂Y
= 3Y 2,

∂F

∂Z
= −3dZ2,

it follows that the only point P with ∂F
∂X (P ) = ∂F

∂Y (P ) = ∂F
∂Z (P ) = 0 would have

P = [0, 0, 0] which is not an allowed projective point. Hence, Ĉ is non-singular at
all points of P2(C).

Example 15.1.9. For example, C : zy2 = x3 is singular at P = [0, 0, 1] because
F (x, y, z) = zy2 − x3 and

∂F

∂x
= −x2,

∂F

∂y
= 2yz,

∂F

∂z
= y2.

Thus, ∂F
∂x (P ) = ∂F

∂y (P ) = ∂F
∂z (P ) = 0 for P = [0, 0, 1]. See Figure 15.3.

Figure 15.3. The chart {[x, y, 1]} of the curve zy2 = x3.
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Example 15.1.10. The curve D : z2y2 = x4 + z4 has partial derivatives

∂F

∂x
= −4x3,

∂F

∂y
= 2yz2,

∂F

∂z
= 2y2z − 4z3.

Thus, if P = [x, y, z] ∈ D(Q) is singular, then

−4x3 = 0, 2yz2 = 0, and 2y2z − 4z3 = 0.

The first two equalities imply that x = 0 and yz = 0 (what would happen if we
were working over a field of characteristic 2, such as F2?). If y = 0, then z = 0
by the third equation, but [0, 0, 0] is not a well-defined point in P2(Q), so this is
impossible. However, if x = z = 0, then y may take any value. Hence, P = [0, 1, 0]
is a singular point. Notice that the affine curve that corresponds to the chart z = 1
of D, given by y2 = x4 + 1, is non-singular at all points in the affine plane but is
singular at a point at infinity; namely P = [0, 1, 0]. See Figure 15.4.

Figure 15.4. The chart {[x, y, 1]} of the curve z2y2 = x4 + z4 (top, non-
singular) and the chart {[x, 1, z]} (bottom, singular).

Example 15.1.11. As we shall see in Chapter 16, a curve of the form E : y2 =
x3 + Ax + B, or in projective coordinates given by zy2 = x3 + Axz2 + Bz3, is an
example of an elliptic curve as long as it is non-singular. The reader can show that
E is non-singular if and only if 4A3+27B2 �= 0 (use Exercise 5.6.34). The quantity
Δ = −16 · (4A3 + 27B2) is called the discriminant of E.
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15.2. Singular Cubic Curves

In the third part of this book, we are interested in describing the rational points
on cubic curves

C : f(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ jy + k = 0.

We distinguish two cases according to whether C has a singularity (as a projective
curve; see Section 15.1.5 for the definition of singular and non-singular curves). In
this section we suppose that the curve C : f(x, y) = 0 is singular and will show
that, in this case, we can parametrize all the rational points on C.

In this section we will assume that the singularity occurs at the given point
P = (x0, y0) ∈ C(Q). If none of the singular points have Q-coordinates, then we
will treat the curve in the next subsection together with the non-singular curves.
By taking an appropriate affine patch (see Example 15.2.4 below), we may assume
that the singularity occurs at an affine point P = (x0, y0), and in fact, by a linear
change of variables (x, y) �→ (x + x0, y + y0) we can assume P = (0, 0). Since P
is singular, it follows that ∂f/∂x(P ) = ∂f/∂y(P ) = 0. In particular, the Taylor
expansion of f(x, y) around (x, y) = (0, 0) is given by

f(x, y) = f(0, 0) +
∂f

∂y
(0, 0) · x+

∂f

∂y
(0, 0) · y + (higher-degree terms).

It follows that the constant and linear terms of f(x, y) are zero. Thus,

f(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 = 0,

or, equivalently,

1

y3
· f(x, y) = a · x

3

y3
+ b · x

2

y2
+ c · x

y
+ d+ e · x

2

y2
· 1
y
+ f · x

y
· 1
y
+ g · 1

y
= 0.

Now, we apply a change of variables X = x/y and Y = 1/y to obtain

C ′ : g(X,Y ) = aX3 + bX2 + cX + d+ eX2Y + fXY + gY = 0

and a map C → C ′ defined by

φ(x1, y1) =

(
x1

y1
,
1

y1

)
,

as long as y1 �= 0. However, note that not much is lost by this restriction: if y1 = 0
and f(x1, y1) = 0, then ax3

1 + ex2
1 = x2

1(ax1 + e) = 0, and so x1 = 0 or x1 = −e/a.
Thus, we obtain a well-defined map φ : C \{(0, 0), (−e/a, 0)} → C ′ defined as above
such that

φ−1(X1, Y1) =

(
X1

Y1
,
1

Y1

)
= φ(X1, Y1).

Notice, however, that we can parametrize C ′, since, for any value of X1 we have

Y1 = −aX3
1 + bX2

1 + cX1 + d

eX2
1 + fX1 + g

as long as eX2
1 + fX1 + g �= 0. Otherwise, we must have aX3

1 + bX2
1 + cX1 + d =

0 = eX2
1 + fX1 + g. Thus, we have shown the following theorem.
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Theorem 15.2.1. Let C : f(x, y) = 0 be a cubic curve with a singularity at (0, 0),
given by

C : ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 = 0.

Then, C(Q) is formed by the points {(0, 0), (−e/a, 0)} and{(
− t(et2 + ft+ g)

at3 + bt2 + ct+ d
,− et2 + ft+ g

at3 + bt2 + ct+ d

)
: t ∈ Q, at3 + bt2 + ct+ d �= 0

}
together with all points of the form

{(
α

s
,
1

s

)
: s ∈ Q

}
, for each α ∈ Q such that

eα2 + fα+ g = 0 = aα3 + bα2 + cα+ d.

Let us see a few examples.

Example 15.2.2. Let C : y2 = x3, which is singular at (0, 0). Instead of applying
Theorem 15.2.1 directly, let us follow the ideas of the proof to find a parametriza-
tion. We begin with a curve C : −x3+y2 = 0 that is singular at (0, 0). If we divide
through by y3, we obtain

−
(
x

y

)3

+
1

y
= 0,

so a change of variables X = x/y and Y = 1/y (with inverse x = X/Y , y = 1/Y )
leads to

C ′ : −X3 + Y = 0,

or, equivalently, Y = X3. Clearly, all the rational points on C ′ are of the form
{(t, t3) : t ∈ Q}, and reversing the change of variables, we obtain points{(

1

t2
,
1

t3

)
: t ∈ Q, t �= 0

}
⊆ C(Q).

Moreover, any rational point (x0, y0) in C(Q) gives a point in (x0/y0, 1/y0) ∈ C ′(Q),
unless y0 = 0, in which case x3

0 = 0 and so x0 = 0. Hence, we have shown that all
the rational points on C are given by

C(Q) = {(0, 0)} ∪
{(

1

t2
,
1

t3

)
: t ∈ Q, t �= 0

}
= {(0, 0)} ∪ {(s2, s3) : s ∈ Q, s �= 0} = {(r2, r3) : r ∈ Q},

which coincides with the conclusion of Theorem 15.2.1.

Example 15.2.3. Let C : x3 − y3 + x2 − 2xy + y2 = 0. Then, C is singular at
(0, 0). Dividing through by y3, we obtain

C ′ : X3 − 1 +X2Y − 2XY + Y = 0

with a map φ : C(Q) \ {(0, 0), (−1, 0)} → C ′(Q) given by φ(x, y) = (x/y, 1/y)
with inverse φ−1(X,Y ) = (X/Y, 1/Y ), as long as Y �= 0. Since C ′ : X3 − 1 +
(X2 − 2X + 1)Y = 0, the points on C ′ are either of the form{(

t,− t3 − 1

t2 − 2t+ 1

)
: t2 − 2t+ 1 �= 0

}
=

{(
t,− t2 + t+ 1

t− 1

)
: t �= 1

}
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or (t− 1)2 = 0 and t3 − 1 = 0. In this case, t = 1 is a common solution, so there is
an additional set of solutions {(1, s) : s ∈ Q} ⊂ C ′(Q). Hence,

C(Q) = {(0, 0), (−1, 0)} ∪ φ−1(C ′(Q))

= {(0, 0), (−1, 0)} ∪
{(

− t(t− 1)

t2 + t+ 1
,− t− 1

t2 + t+ 1

)}
∪
{(

1

s
,
1

s

)
: s ∈ Q∗

}
.

We note now that (r, r) ∈ C(Q) for all r ∈ Q. This is a consequence of the fact
that

C : (x− y)(x2 + xy + y2 + x− y) = 0,

or, in other words, C is the union of the line L : x = y and the quadratic curve
Q : x2+xy+ y2 +x− y = 0. Using our methods from Part 2, we find out that Q is
in fact a non-singular conic, and from Corollary 9.2.12, we see that Q is an ellipse
(with a bijection to X2+3Y 2 = 12), and our previous work in this example implies
a parametrization

Q(Q) =

{(
− t(t− 1)

t2 + t+ 1
,− t− 1

t2 + t+ 1

)
: t ∈ Q

}
.

Example 15.2.4. Let C : yx + 1 = x3. Let us first see if C is singular. For this,
we calculate the normal vector

�nC = (y − 3x2, x).

Thus, �nC = (0, 0) if and only if (x, y) = (0, 0), but this point does not belong to
C. It follows that C is non-singular in the affine plane. However, we need to be
concerned about the possibility of singularities at infinity. Let us find a projective
equation for C (see Section 15.1.4 for more details):

C : XY Z + Z3 −X3 = 0.

The normal vector is now given by

�nC = (Y Z − 3X2, XZ,XY + 3Z2),

and �nC = (0, 0, 0) if and only if X = Z = 0. Since the point [0, 1, 0] belongs to C,
it follows that C is indeed singular at P = [0, 1, 0]. Let us choose a different affine
chart so that P belongs to it. Since the Y -coordinate of P is non-zero, let us choose
the chart {[x, 1, z]}, so that C is now given by

C : xz + z3 − x3 = 0.

We may now parametrize C : −x3+ z3+xz = 0, using Theorem 15.2.1 (first divide
through by z3, etc.). The result is{(

t2

t3 − 1
,

t

t3 − 1

)
: t ∈ Q, t �= 1

}
,

or, in projective coordinates,

{[t2, t3 − 1, t] : t ∈ Q, t �= 1}.
Finally, if we return to the affine chart {[x, y, 1]}, then we obtain a parametrization{(

t,
t3 − 1

t

)
: t ∈ Q, t �= 0, 1

}
.
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Notice, however, that this is a parametrization of those points in C with y �= 0.
Since (x, y) = (1, 0) ∈ C is the only point in C with y = 0, we finally obtain

C(Q) =

{(
t,
t3 − 1

t

)
: t ∈ Q, t �= 0

}
.

15.3. Weierstrass Equations

In this section we will show that a non-singular cubic curve

C : f(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ jy + k = 0

with at least one rational solution P = (x0, y0) ∈ C(Q) can be simplified to a much
simpler equation via a certain change of variables. We will find a transformation
to a model of the form

C ′ : y2 = x3 + Ax+B,

which is usually called a (short) Weierstrass model for the curve.

Definition 15.3.1. An equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for some constants ai ∈ Q is called a Weierstrass equation, or Weierstrass form.
When a1 = a2 = a3 = 0, the equation reduces to the form

y2 = x3 + a4x+ a6

and it is called a short Weierstrass equation (or form).

15.3.1. From Long to Short Weierstrass Forms. Let us first show that any
cubic equation given by a (long) Weierstrass form can be reduced to a short Weier-
strass form. Let C be given by

C : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for some constants ai ∈ Q. Then, we can complete the square on the y variable(
y +

a1x+ a3
2

)2

= x3 + a2x
2 + a4x+ a6 +

(
a1x+ a3

2

)2

.

Now, a change of variables u = x and v = y + (a1x + a3)/2 puts the equation in
the form

v2 = u3 + au2 + bu+ c

for some a, b, c ∈ Q. Finally, s = u+ a/3, t = v brings the equation to the form

t2 = s3 +As+B

for some A,B ∈ Q.

Example 15.3.2. Let C : y2 + xy + y = x3 − 2x2. Then,

(y + (x+ 1)/2)2 = x3 − 2x2 + ((x+ 1)/2)2

and so (y+(x+1)/2)2 = x3 − 2x2 + x2/4+ x+1/4 = x3 − 7/4x2 + x+1/4. Thus,
a change of variables

t = y + (x+ 1)/2 and s = x− 7/12
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brings the equation to

t2 = (s+ 7/12)3 − 7/4(s+ 7/12)2 + (s+ 7/12) + 1/4 = s3 − 1/48s+ 377/864.

Hence, we obtain C ′ : t2 = s3 − 1/48s+ 377/864 and a map φ : C → C ′ given by

φ(x, y) =

(
x− 7

12
, y +

x+ 1

2

)
,

with inverse φ−1 : C ′ → C given by

φ−1(s, t) =

(
s+

7

12
, t−

s+ 7
12 + 1

2

)
=

(
s+

7

12
, t− 12s+ 19

24

)
.

In Example 15.3.3 we will see that the equation can be further simplified to t2 =
s3 − 27s+ 20358.

15.3.1.1. From Rational to Integral Coefficients. Another way one can simplify
Weierstrass equations is by changing variables to obtain another Weierstrass form
with integer coefficients (instead of just rational). In particular, the change of
variables (s, t) = (λ2x, λ3y) brings a usual Weierstrass equation to the curve

C ′ : t2 + a1λst+ a3λ
3t = s3 + a2λ

2s2 + a4λ
4s+ a6λ

6.

If λ is the least common multiple of all denominators of the coefficients ai, then
the coefficients in the new curve C ′ are integers. We note here that the fact that ai
changes to aiλ

i is one of the reasons for the surprising numbering of the coefficients
ai, which skips a5.

Example 15.3.3. Let C : y2 = x3 − 1/48x + 377/864 (this curve appeared in
Example 15.3.2). Since 48 = 24 · 3 and 864 = 25 · 33, let us choose λ = 6 and a
change of variables (s, t) = (62x, 63y). Then, the curve C becomes

t2

66
=

s3

66
− 1

24 · 3 · s

62
+

377

25 · 33 ,

or, equivalently,

t2 = s3 − 33s+ 377 · 2 · 33 = s3 − 27s+ 20358.

Hence, the change of variables brings C to the form t2 = s3 − 27s + 20358, which
has integer coefficients, as desired.

The same type of change of variables (s, t) = (λ2x, λ3y) can be used to simplify
integral coefficients in a Weierstrass form.

Example 15.3.4. Let C : y2 = x3 + 1458. Since 1458 = 2 · 36, the change of
variables (s, t) = (x/9, y/27) brings the equation to

36t2 = 36s3 + 2 · 36

which simplifies to t2 = s3 + 2.
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15.3.2. Non-Singular Cubics. In this section we discuss a method to simplify
cubic curves that applies to non-singular cubics. The same method also applies to
those cubics that are singular but have other non-singular points defined over Q.
We begin as before with a curve

C : f(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ jy + k = 0

with at least one rational solution P ∈ C(Q), and we assume that C is non-singular
at P (the curve C or its projectivization may be singular at other points Q �= P ).
We will work in projective coordinates. Hence, C is given by F (X,Y, Z) = 0, where
F is the polynomial

aX3 + bX2Y + cXY 2 + dY 3 + eX2Z + fXY Z + gY 2Z + hXZ2 + jY Z2 + kZ3.

Let P = [x0, y0, z0] ∈ P2(Q) in projective coordinates, and let

L :
∂F

∂X
(P ) ·X +

∂F

∂Y
(P ) · Y +

∂F

∂Z
(P ) · Z = rX + sY + tZ = 0

be the tangent line to C at P . Since L is tangent to C at P , it follows that P is in
fact a double point in the intersection L ∩ C. We distinguish two cases, according
to whether the point P is of double or triple intersection at L ∩ P .

15.3.2.1. Points of Triple Intersection. If P is a triple point of intersection, then
L ∩ C = {P}, since a line and a cubic can only intersect at most at three points,
even when counted with multiplicity. If P = [x0, y0, z0] and L : rX + sY + tZ = 0
as before, then we make a change of variables

U = r1X + s1Y + t1Z, V = r2X + s2Y + t2Z, W = rX + sY + tZ,

for some constants ri, si, ti ∈ Q for i = 1, 2, chosen so that the matrix⎛⎜⎝ r1 s1 t1

r2 s2 t2

r s t

⎞⎟⎠
is invertible (so that the change of variables is invertible as well) and so that P =
[u0, v0, 0] in the new U, V,W -coordinates. Notice, also, that if Q ∈ C and Q =
[u, v, 0] in the new coordinates, then Q = [x, y, z] with W = rx + sy + tz = 0.
Hence, Q ∈ C and Q ∈ L, and therefore we must have Q = P . In other words, the
only point in C with W = 0 is P .

Now, if the model for C in the new U, V,W -coordinates is given by G = 0,
where G = G(U, V,W ) is the polynomial

aU3 + bU2V + cUV 2 + dV 3 + eU2W + fUV W + gV 2W + hUW 2 + jV W 2 + kW 3

(the constants a, . . . , k here are not necessarily the same as for F ), then the points
on C with W = 0 are those points [U, V, 0] such that

aU3 + bU2V + cUV 2 + dV 3 = 0.

If V �= 0 (one proceeds similarly if U �= 0), then [U/V, 1, 0] ∈ C and thus

a(U/V )3 + b(U/V )2 + c(U/V ) + d = 0.
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In particular, if the polynomial f(x) = ax3 + bx2 + cx+ d has more than one root,
we would have more than one point on C with W = 0. Hence, f(x) = a(x − ω)3,
for some constant a and ω = u0/v0. In particular, a further change of variables

R = U − ωV, S = V, T = W

brings C to an equation of the form

aR3 + eR2T + fRST + gS2T + hRT 2 + jST 2 + kT 3 = 0.

Taking now the affine chart {[x, y, 1]}, we obtain an equation for C of the form

ax3 + ex2 + fxy + gy2 + hx+ jy + k = 0,

or, equivalently,

C : gy2 + fxy + jy = −ax3 − ex2 − hx− k.

A further change (x, y) �→ (−agx, (−a)2gy) brings C to the form

C : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for some constants ai ∈ Q, for i = 1, 2, 3, 4, 6. Let us illustrate this with an example.

Example 15.3.5. Let C : x3 + y3 − y = 0 with P = (0, 0) or, in projective
coordinates, Ĉ : X3 + Y 3 − Y Z2 = 0. The curve is non-singular, since

�nĈ = (3X2, 3Y 2 − Z2,−2Y Z)

vanishes if and only if X = Y = Z = 0 (but [0, 0, 0] is not a point in projective
space). At P = [0, 0, 1], the normal vector is given by

�nĈ(P ) = (0,−1, 0)

and so the tangent line L at P is given by L : −Y = 0, or, equivalently, Y = 0.
Next, we find the intersection of L and Ĉ:

L ∩ Ĉ =

{
X3 + Y 3 − Y Z2 = 0,

Y = 0,

and so X = Y = 0. Hence, L ∩ Ĉ = {P} and P must be a triple point of
intersection. The next step is to build an invertible change of coordinates with
W = Y . We choose U = X, V = Z, W = Y , so that the matrix⎛⎜⎝ r1 s1 t1

r2 s2 t2

r s t

⎞⎟⎠ =

⎛⎜⎝ 1 0 0

0 0 1

0 1 0

⎞⎟⎠
is invertible. With respect to the U, V,W -coordinates, the equation for Ĉ becomes

Ĉ : U3 +W 3 −WV 2 = 0.

Now we take the affine chart {[x, y, 1]} and the affine equation is

C ′ : x3 + 1− y2 = 0,

or, equivalently, C ′ : y2 = x3 + 1, which is a (short) Weierstrass equation.
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Example 15.3.6. Let us use the method explained in this section to find a Weier-
strass form for C : x3+y3 = d, the curve that we have discussed in Examples 15.0.1,
15.1.6, and 15.1.8. We already know that Ĉ : X3 + Y 3 − dZ3 = 0 is non-singular
for all d �= 0. Moreover, there is a point P = [

3
√
d, 0, 1] on Ĉ, with tangent line

L :
3
√
d2X − dZ = 0,

or, equivalently, L : X− 3
√
dZ = 0. It follows that P is a point of triple intersection

between L and Ĉ because the system

L ∩ Ĉ =

{
X3 + Y 3 − dZ3 = 0,

X − 3
√
dZ = 0

implies that Y 3 = 0, and therefore P = [ 3
√
d, 0, 1] is the only solution. The next

step is to build an invertible change of coordinates with W = X− 3
√
dZ. We choose

U = X, V = Y , W = X − 3
√
dZ, so that the matrix⎛⎜⎝ r1 s1 t1

r2 s2 t2

r s t

⎞⎟⎠ =

⎛⎜⎝ 1 0 0

0 1 0

1 0 − 3
√
d

⎞⎟⎠
is invertible. With respect to the U, V,W -coordinates, the equation for Ĉ becomes

Ĉ : U3 + V 3 − d

(
1
3
√
d
(U −W )

)3

= 0,

or, equivalently,

Ĉ : U3 + V 3 − (U −W )3 = V 3 + 3U2W − 3UW 2 +W 3 = 0.

Now we take the affine chart {[y,−x, 1] : x, y ∈ R} and the affine equation is now
given by

3y2 − 3y − x3 + 1 = 0,

or 3y2 − 3y = x3 − 1. If we do a further change of variables (s, t) = (x/3, y/3), we
obtain

3(3t)2 − 3(3t) = (3s)3 − 1,

or 27t2 − 9t = 27s3 − 1, which simplifies to t2 − t/3 = s3 − 1/27, a Weierstrass
form. We leave it to the reader to verify that this model can be simplified further
to y2 = x3 − 432.

Thus, we have found a sequence of changes of variables from C : x3+ y3 = d to
C ′ : y2 = x3−432. This change of variables is, though, undesirable for our purposes,
because it is defined over R, so it does not map rational points to rational points.
In Exercise 15.4.13 we suggest a different point P ′ to produce a change of variables
over Q.

15.3.2.2. Points of (Exactly) Double Intersection. As before, we assume C is
given by F (X,Y, Z) = 0, where F is the polynomial

aX3 + bX2Y + cXY 2 + dY 3 + eX2Z + fXY Z + gY 2Z + hXZ2 + jY Z2 + kZ3.

Let P = [x0, y0, z0] ∈ P2(Q) in projective coordinates, and let

L :
∂F

∂X
(P ) ·X +

∂F

∂Y
(P ) · Y +

∂F

∂Z
(P ) · Z = rX + sY + tZ = 0
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be the tangent line to C at P . Since L is tangent to C at P , it follows that P is in
fact a double point in the intersection L ∩ C, and here we assume that P is just a
double point of intersection. This means that L ∩ C = {P,Q} where Q �= P , and
the intersection of L and C at Q is simple. Since F , L, and P are defined over Q,
it follows that Q is also a point of C defined over Q (see Exercise 15.4.14).

Let M : r1X + s1Y + t1Z = 0 be a line passing through Q different from L. In
particular, (r1, s1, t1) is not a multiple of (r, s, t). Finally, let N : r2X+s2Y +t2Z =
0 be another line passing through P , chosen so that the matrix⎛⎜⎝ r1 s1 t1

r2 s2 t2

r s t

⎞⎟⎠
is invertible. Thus, we may define an invertible change of variables by

U = r1X + s1Y + t1Z, V = r2X + s2Y + t2Z, W = rX + sY + tZ.

It is important to note that in the U, V,W -coordinates, we have P = [1, 0, 0] because
P ∈ L, so W (P ) = 0, and P ∈ N , so V (P ) = 0, and similarly we have Q = [0, 1, 0]
because Q ∈ L ∩M .

With respect to the new variables U, V,W , the curve C is now given by G = 0,
where G = G(U, V,W ) = F (X,Y, Z), where X,Y, Z are given in terms of U, V,W
by the inverse of the change of variables, i.e., by⎛⎜⎝ X

Y

Z

⎞⎟⎠ =

⎛⎜⎝ r1 s1 t1

r2 s2 t2

r s t

⎞⎟⎠
−1⎛⎜⎝ U

V

W

⎞⎟⎠ .

Let us write G(U, V,W ) as the polynomial

aU3 + bU2V + cUV 2 + dV 3 + eU2W + fUV W + gV 2W + hUW 2 + jV W 2 + kW 3

(the constants a, . . . , k here are not necessarily the same as for F ). We claim that
a = b = d = 0 in these coordinates:

• Since P ∈ C, then G(P ) = G([1, 0, 0]) = a · 13 = 0, and it follows that a = 0.
• Since Q ∈ C, then G(Q) = G([0, 1, 0]) = d · 13 = 0, and it follows that d = 0.
• Consider C ∩ {W = 0} : bU2V + cUV 2 = 0. Notice that W = 0 corresponds

to the tangent line L in the old coordinates, so P must be a doble point of
intersection in C ∩ {W = 0}, and Q must be a simple point of intersection.
Since

bU2V + cUV 2 = UV (bU + cV )

and P is a simple root of UV , we must have that bU + cV vanishes at P , and
it follows that b · 1 + c · 0 = b must be zero.

Hence, we have shown that in the U, V,W -coordinates, the equation for C is of the
form G(U, V,W ) = 0 with G given by

cUV 2 + eU2W + fUVW + gV 2W + hUW 2 + jV W 2 + kW 3 = 0.

We now take the affine chart {[s, t, 1]} and obtain an affine curve

C : cst2 + es2 + fst+ gt2 + hs+ jt+ k = 0.
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After a change of variables (s, t) �→ (cs+ g, t) if necessary, we may assume that C
is given by

C : st2 + es2 + fst+ hs+ jt+ k = 0.

Now, we may multiply the equation of C through by s and obtain

(st)2 + es3 + f(st)s+ hs2 + j(st) + ks = 0

and a change of variables x = s and y = st (with inverse s = x, t = y/x defined
except when x = 0) brings the equation to the form

C ′ : y2 + ex3 + fxy + hx2 + jy + kx = 0,

or, equivalently, y2+fxy+jy = ex3+hx2+kx. A further change (x, y) �→ (ex, e2y)
brings the equation to a Weierstrass form (as in Definition 15.3.1):

C ′ : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

for some rational coefficients a1, . . . , a4, a6. Using the techniques from Section 15.3.1
we can further simplify the equation to a short Weierstrass form.

Example 15.3.7. Let C be the curve given by x3+xy2−1 = 0. Before we launch
into using our fancy machinery, let us see if there is a direct way to change variables
to reach a Weiestrass form. First, we find the projectivization Ĉ : X3+XY 2−Z3 =
0, and now we look for an affine chart where the curve may be given in Weierstrass
form. For instance, let us look at the chart {[1, y, z]}, where the equation becomes

C ′ : 1 + y2 − z3 = 0,

or y2 = z3 − 1, which is a short Weierstrass form. Thus, we have found a map
C → C ′ given by

(x, y) �→
(
y

x
,
1

x

)
,

which is defined everywhere on C, because there are no points on C with x = 0.

Example 15.3.8. Let C be the curve given by

C : 9x2y + 28xy2 − 6y3 − 6x2 − 15xy + 31y2 − 3x− 24y + 3 = 0,

with a given rational point P = (−1, 0). We homogenize the equation to

9X2Y + 28XY 2 − 6Y 3 − 6X2Z − 15XY Z + 31Y 2Z − 3XZ2 − 24Y Z2 + 3Z3 = 0,

with P = [−1, 0, 1] in projective coordinates. The tangent line to P is given by

L :
∂F

∂X
(P ) ·X +

∂F

∂Y
(P ) · Y +

∂F

∂Z
(P ) · Z = 9X + 9Z = 0,

or, equivalently, L : X + Z = 0. Next, we find C ∩ L. We substitute Z = −X in
the equation for C and obtain −3XY 2 − 6Y 3 = 0; i.e., 3Y 2(X + 2Y ) = 0. Thus,
the points in the intersection C ∩ L are P = [−1, 0, 1] and Q = [−2, 1, 2].

In order to complete the change of variables to U, V,W -coordinates, we need
two more lines M and N , passing through Q and P , respectively. We can pick
M : X + 2Y = 0, and then we can choose N : Y = 0 because the matrix

A =

⎛⎜⎝ 1 2 0

0 1 0

1 0 1

⎞⎟⎠ , A−1 =

⎛⎜⎝ 1 −2 0

0 1 0

−1 2 1

⎞⎟⎠
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is invertible (in fact, its determinant is 1, which is even more desirable as the inverse
matrix also has integer coefficients). With these choices of lines M and N , we set
up a change of variables⎛⎜⎝ U

V

W

⎞⎟⎠ =

⎛⎜⎝ 1 2 0

0 1 0

1 0 1

⎞⎟⎠
⎛⎜⎝ X

Y

Z

⎞⎟⎠ , or

⎛⎜⎝ X

Y

Z

⎞⎟⎠ =

⎛⎜⎝ 1 −2 0

0 1 0

−1 2 1

⎞⎟⎠
⎛⎜⎝ U

V

W

⎞⎟⎠ .

In the U, V,W -coordinates, the equation for C is given by

F (X,Y, Z) = F (U − 2V, V,−U + 2V +W )

= 9U2W − 3UV 2 − 3UVW − 12UW 2 + V 2W + 3W 3.

We now de-homogenize by picking an affine chart {[s, t, 1]} and obtain an affine
curve with model

9s2 − 3st2 − 3st− 12s+ t2 + 3 = 0,

and with a change of variables (s′, t′) = (−3s+ 1, t) this brings the curve to

C ′ : s′t′2 + s′2 + s′t′ + 2s′ − t′ = 0,

or, equivalently, (s′t′)2 + s′3 + (s′t′)s′ + 2s′2 − (s′t′) = 0. Now with a change of
variables (u, v) = (s′, s′t′) we have a curve

C ′′ : v2 + u3 + uv + 2u2 − v = 0,

or C ′′ : v2 + uv − v = −u3 − 2u2. Finally, if we change (u′, v′) = (−u,−v), we
obtain a (long) Weierstrass equation

C ′′ : v′2 + u′v′ + v′ = u′3 − 2u′2.

Note that in Examples 15.3.2 and 15.3.3 we have seen how to reduce this equation
to a short Weierstrass form.

It remains to find a map C → C ′′. The composition of all the changes of
variables yields

(u′, v′) = (−u,−v) = (−s′,−s′t′) = (3s− 1, (3s− 1)t)

=

(
3
U

W
− 1,

(
3
U

W
− 1

)
V

W

)
=

(
3U −W

W
,

(
3U −W

W

)
V

W

)
=

(
3(X + 2Y )− (X + Z)

X + Z
,

(
3(X + 2Y )− (X + Z)

X + Z

)
Y

X + Z

)
=

(
2X + 6Y − Z

X + Z
,

(
2X + 6Y − Z

X + Z

)
Y

X + Z

)
=

(
2X
Z + 6Y

Z − 1
X
Z + 1

,

(
2X
Z + 6Y

Z − 1
X
Z + 1

)
Y
Z

X
Z + 1

)

=

(
2x+ 6y − 1

x+ 1
,

(
2x+ 6y − 1

x+ 1

)
y

x+ 1

)
=

(
2x+ 6y − 1

x+ 1
,
(2x+ 6y − 1)y

(x+ 1)2

)
.
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Hence, we have found a change of variables φ : C → C ′′ defined by

φ(x, y) =

(
2x+ 6y − 1

x+ 1
,
(2x+ 6y − 1)y

(x+ 1)2

)
.

The inverse is given by

(x, y) =

(
X

Z
,
Y

Z

)
=

(
U − 2V

−U + 2V +W
,

V

−U + 2V +W

)
=

(
s− 2t

−s+ 2t+ 1
,

t

−s+ 2t+ 1

)
=

(
1−s′

3 − 2t′

− 1−s′

3 + 2t′ + 1
,

t′

− 1−s′

3 + 2t′ + 1

)

=

( 1−u
3 − 2 v

u

− 1−u
3 + 2 v

u + 1
,

v
u

− 1−u
3 + 2 v

u + 1

)
=

(
u− u2 − 6v

−(u− u2) + 6v + 3u
,

3v

−(u− u2) + 6v + 3u

)
=

(
u− u2 − 6v

u2 + 2u+ 6v
,

3v

u2 + 2u+ 6v

)
=

(
−u′ − u′2 + 6v′

u′2 − 2u′ − 6v′
,

−3v′

u2 − 2u′ − 6v′

)
,

or, in other words, φ−1 : C ′′ → C is given by

φ−1(u′, v′) =

(
−u′ − u′2 + 6v′

u′2 − 2u′ − 6v′
,

−3v′

u2 − 2u′ − 6v′

)
.

15.4. Exercises

Exercise 15.4.1. Show that the relation ∼ defined in Section 15.1.1 is an equiva-
lence relation (see Remark 4.2.5) on the set of non-zero vectors R2 \ {(0, 0)}.

Exercise 15.4.2. Find the projectivization of the following affine curves:

(a) x2 + y2 = 2.

(b) xy = 1.

(c) y2 + y = x3 + x.

(d) x3 + xy2 + 2x2 + y + 7 = 0.

(e) xn + yn = 1, for any n ≥ 2.

Exercise 15.4.3. Let C : y = x3 be an affine curve in the plane A2(R).

(a) Is C smooth in A2(R)?

(b) Find the projectivization Ĉ ⊆ P2(R) of the curve C : y = x3.

(c) Is Ĉ smooth in P2(R)? If not, find all the singular points on Ĉ.
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Exercise 15.4.4. Determine all the singular points (if any) on the following pro-
jective curves. If the curve is given in affine form, first find a projectivization.

(a) XY + Y Z +XZ = 0.
(b) X2 + 2XY + Y 2 − Z2 = 0.
(c) y2 + y = x3.
(d) y2 = x(x− 1)2.
(e) y2 = x3 − 6x2 + 12x− 8.
(f) y2 + xy = x3.

Exercise 15.4.5. Parametrize all the rational points on the curves that appear in
parts (d) and (e) of Exercise 15.4.4.

Exercise 15.4.6. The cubic curve C : x3 + x2y + 2xy2 + 2y3 − 2x2 − 2xy = 0 is
singular. Use the method of Example 15.2.3 to parametrize all the rational points
on C.

Exercise 15.4.7. The cubic curve C : x3 + 3x2y + 3xy2 + y3 − x+ y = 0 is non-
singular in the affine plane, but singular at a point at infinity. Use the method of
Example 15.2.4 to parametrize all the rational points on C.

Exercise 15.4.8. Find a change of variables that brings the following curves from
long to short Weierstrass form:

(a) y2 = x3 + x2 + 1.
(b) y2 + y = x3.
(c) y2 + xy = x3 + 1.
(d) y2 + xy + 3y = x3 + 2x2 + 4x+ 6.
(e) t2 − t/3 = s3 − 1/27.

Exercise 15.4.9. Find a change of variables that brings the following curves to a
model with integral coefficients:

(a) y2 = x3 + 5
2x+ 3

4 .

(b) y2 + xy + 1
7y = x3 + 1.

(c) y2 + 1
2y = x3 + 1

25 .

Exercise 15.4.10. Find a change of variables that brings the following curves to
a model with smaller integral coefficients:

(a) y2 = x3 + 4x2 + 320.

(b) y2 + 7xy + 1029y = x3.
(c) y2 + 10xy + 7000y = x3 + 200x2 + 370000x.

Exercise 15.4.11. The curve C : y = x3 is singular in projective coordinates, but
non-singular at (0, 0).

(a) Find the projectivization Ĉ of C.

(b) Find the tangent line to Ĉ at P = [0, 0, 1], and show that P is a triple point
of intersection with its tangent line.
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(c) Use the procedure of Section 15.3.2.1 to find an affine chart where Ĉ is given
by a (singular) short Weierstrass model.

Exercise 15.4.12. The curve C : x3 +2x2y+ xy2 − y = 0 is singular in projective
coordinates, but non-singular at (0, 0).

(a) Find the projectivization Ĉ of C.

(b) Find the tangent line to Ĉ at P = [0, 0, 1], and show that P is a triple point
of intersection with its tangent line.

(c) Use the procedure of Section 15.3.2.1 to find an affine chart where Ĉ is given
by a (singular) short Weierstrass model.

Exercise 15.4.13. Find a change of variables from C : x3 + y3 = d to C ′ :
y2 = x3 − 432d2. (Hint: follow the method of Example 15.3.6, but use the point
P ′ = [1,−1, 0] instead of P .)

Exercise 15.4.14. Let C : f(x, y) = 0 be a curve such that f(x, y) is a polynomial
with rational coefficients of degree n ≥ 1 (i.e., the largest degree of a monomial in
f is n). Let L : g(x, y) = 0 be a line defined over Q (i.e., g(x, y) = ax+ by− c with
a, b, c ∈ Q) such that L ∩ C = {P1, . . . , Pn−1, Pn}, and suppose that P1, . . . , Pn−1

are points defined over Q (not necessarily distinct, since some of them may have
multiplicity of intersection ≥ 1). Show that Pn is also defined over Q.

Exercise 15.4.15. Let C/Q be an affine curve.

(a) Suppose that C/Q is given by an equation of the form

C : xy2 + ax2 + bxy + cy2 + dx+ ey + f = 0.(15.1)

Find an invertible change of variables that takes the equation of C onto one
of the form xy2 + gx2 + hxy + jx + ky + l = 0. (Hint: consider a change of
variables X = x+ λ, Y = y.)

(b) Suppose that C ′/Q is given by an equation of the form

C ′ : xy2 + ax2 + bxy + cx+ dy + e = 0.(15.2)

Find an invertible change of variables that takes the equation of C ′ onto one
of the form y2 + αxy + βy = x3 + γx2 + δx + η. (Hint: multiply (15.2) by x
and consider the change of variables X = x and Y = xy. Make sure that, at
the end, the coefficients of y2 and x3 equal 1.)

(c) Suppose that C ′′/Q is a curve given by an equation of the form

C ′′ : y2 + axy + by = x3 + cx2 + dx+ e.(15.3)

Find an invertible change of variables that takes the equation of C ′′ onto one
of the form y2 = x3 + Ax+ B. (Hint: do it in two steps. First eliminate the
xy and y terms. Then eliminate the x2 term.)

(d) Let E/Q : y2 + 43xy − 210y = x3 − 210x2. Find an invertible change of
variables that takes the equation of E to one of the form y2 = x3 +Ax+B.
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Exercise 15.4.16. Find a Weierstrass form for the following curves by finding
their projectivization and then choosing a different affine chart:

(a) xy2 + x2y = 1.
(b) x3 − 2x2y − xy − y2 − y = 0.
(c) xy2 + x2y = 1 + x2.

Exercise 15.4.17. Use the methods of Section 15.3.2.2 to find a Weierstrass form
for each of the following non-singular curves:

(a) 2X3 + 3X2Z −XY 2 + 3XZ2 − Y 2Z + Z3 = 0, with P = [0, 1, 1].
(b) X3 + 3X2Y + 3XY 2 + Y 3 − Y 2Z − Y Z2 = 0, with P = [0, 0, 1].
(c) X3 +XY 2 +XZ2 + Z3 + Y Z2 = 0, with P = [0, 1,−1].
(d) X3 + Y 3 + Z3 + 3XY Z = 0.

Exercise 15.4.18. Let C and E be curves defined, respectively, by C : V 2 = U4+1
and E : y2 = x3 − 4x. Let ψ be the map defined by

ψ(U, V ) =

(
2(V + 1)

U2
,
4(V + 1)

U3

)
.

(a) Show that if U �= 0 and (U, V ) ∈ C(Q), then ψ(U, V ) ∈ E(Q).
(b) Find an inverse function for ψ; i.e., find ϕ : E → C such that ϕ(ψ(U, V )) =

(U, V ).

Next, we work in projective coordinates. Let C : W 2V 2 = U4 +W 4 and E : zy2 =
x3 + z3.

(c) Write down the definition of ψ in projective coordinates, or, in other words,
what is ψ([U, V,W ])?

(d) Show that ψ([0, 1, 1]) = [0, 1, 0] = O.
(e) Show that ψ([0,−1, 1]) = [0, 0, 1].

(Hint: show that ψ([U, V,W ]) = [2U2, 4UW,W (V −W )].)
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CHAPTER 16

ELLIPTIC CURVES

It is possible to write endlessly on elliptic curves.
(This is not a threat.)

Serge Lang,
from Elliptic Curves: Diophantine Analysis

Elliptic curves are ubiquitous in number theory, algebraic geometry, complex
analysis, cryptography, physics, and beyond. While the basic theory of elliptic
curves stands on a solid foundation, there are many aspects of elliptic curves that
are not known (yet) and are nowadays the central subject of much research. Entire
conferences are dedicated to the study of elliptic curves (see Figure 16.1).

Figure 16.1. A group photo of an instructional conference on elliptic curves
that was held at UConn in 2014.

In this chapter we summarize the main aspects of the theory of elliptic curves.
Unfortunately, we will not be able to provide many of the proofs because they are
beyond the scope of this book. The contents of this chapter are largely based on the
book [Loz11], and we refer the reader to that reference to learn more about elliptic

437
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438 16. Elliptic Curves

curves and their connection to modular forms and Fermat’s last theorem. Silverman
and Tate’s book [ST92] is an excellent introduction to elliptic curves for under-
graduates. Washington’s book [Was08] is also accessible for undergraduates and
emphasizes the cryptographic applications of elliptic curves. Stein’s book [Ste08]
also has an interesting chapter on elliptic curves. There are several graduate-level
texts on elliptic curves. Silverman’s book [Sil86] is the standard reference, but
Milne’s [Mil06] is also an excellent introduction to the theory of elliptic curves
(and also includes a chapter on modular forms).

16.1. Definition

Definition 16.1.1. An elliptic curve over Q is a smooth cubic projective curve E
defined over Q with at least one rational point O ∈ E(Q) that we call the origin.

In other words, an elliptic curve is a curve E in the projective plane (see Section
15.1.2) given by a cubic polynomial F (X,Y, Z) = 0 with rational coefficients; i.e.,

F (X,Y, Z) = aX3 + bX2Y + cXY 2 + dY 3(16.1)
+eX2Z + fXY Z + gY 2Z

+hXZ2 + jY Z2 + kZ3 = 0,

with coefficients a, b, c, . . . ∈ Q and such that E is smooth; i.e., the normal vector(
∂F
∂X (P ), ∂F

∂Y (P ), ∂F∂Z (P )
)

does not vanish at any P ∈ E (see Section 15.1.5 for a brief
introduction to singularities and non-singular or smooth curves). If the coefficients
a, b, c, . . . are in a field K, then we say that E is defined over K (and write E/K).

Even though the fact that E is a projective curve is crucial, we usually consider
just affine charts of E, e.g., those points of the form {[X,Y, 1]}, and study instead
the affine curve given by

aX3 + bX2Y + cXY 2 + dY 3(16.2)
+eX2 + fXY + gY 2 + hX + jY + k = 0

but with the understanding that in this new model we may have left out some
points of E at infinity (i.e., those points [X,Y, 0] satisfying (16.1)).

In general, one can find a change of coordinates that simplifies (16.2) enor-
mously:

Proposition 16.1.2. Let E be an elliptic curve, given by ( 16.1), defined over a
field K of characteristic different from 2 or 3. Then, there exist a curve Ê given by

zy2 = x3 +Axz2 +Bz3, A,B ∈ K with 4A3 + 27B2 �= 0,

and an invertible change of variables ψ : E → Ê of the form

ψ([X,Y, Z]) =

[
f1(X,Y, Z)

g1(X,Y, Z)
,
f2(X,Y, Z)

g2(X,Y, Z)
,
f3(X,Y, Z)

g3(X,Y, Z)

]
where fi and gi are polynomials with coefficients in K for i = 1, 2, 3 and the origin
O is sent to the point [0, 1, 0] of Ê; i.e., ψ(O) = [0, 1, 0].
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The existence of such a change of variables is a consequence of the Riemann–
Roch theorem of algebraic geometry (for a proof of the proposition see [Sil86,
Chapter III.3]). In practice, we follow the procedures outlined in Section 15.3.

A projective equation of the form zy2 = x3+Axz2+Bz3, or y2 = x3+Ax+B in
affine coordinates, is called a Weierstrass equation, or Weierstrass form (see Section
15.3). From now on, we will often work with an elliptic curve in this form. Notice
that a curve E given by a Weierstrass equation y2 = x3 +Ax+B is non-singular if
and only if 4A3 + 27B2 �= 0, and it has a unique point at infinity, namely [0, 1, 0],
which we shall call the origin O or the point at infinity of E.

Sometimes we shall use a more general Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ Q (the funky choice of notation for the coefficients was explained in
Section 15.3.1.1), but most of the time we will work with equations of the form
y2 = x3+Ax+B. The reader can learn how to find a change of variables from one
form to the other in Exercise 15.4.15.

Example 16.1.3. Let d ∈ Z, d �= 0, and let E be the elliptic curve given by the
cubic equation

X3 + Y 3 = dZ3

with O = [1,−1, 0]. This curve already appeared in Examples 15.0.1, 15.1.6, 15.1.8,
and 15.3.6. In particular, we verified that E is a smooth curve in Example 15.1.8.
We wish to find a Weierstrass equation for E. Note that if we change X = U + V ,
Y = −V , Z = W , then we obtain a new equation

U3 + 3U2V + 3UV 2 = dW 3.(16.3)

Since this equation is quadratic in V and cubic in W , with no other cubic monomials
that involve W , the variable W will end up playing the role of x, and the variable
V will play the role of y in our Weierstrass model. Next, we change variables to
obtain a coefficient of 1 in front of V 2 and W 3. If we multiply (16.3) through by
d2, we obtain

d2U3 + 3d2U2V + 3d2UV 2 = d3W 3,(16.4)

and now we change variables x = 3dW , y = 9dV , and z = U . Then, (16.4) becomes

d2z +
dyz

3
+

y2z

27
=

x3

27
,(16.5)

or, equivalently, y2z + 9dyz = x3 − 27d2z, which is a Weierstrass equation. Thus,
[x, y, z] = [3dW, 9dV, U ] = [3dZ,−9dY,X + Y ] and we have found a change of
variables ψ : E → Ê given by

ψ([X,Y, Z]) = [3dZ,−9dY,X + Y ]

such that the image lands on the curve in Weierstrass equation Ê : y2z + 9dyz =

x3 − 27d2z. The map ψ is invertible; the inverse map ψ−1 : Ê → E is

ψ−1([x, y, z]) =

[
9dz + y

9d
, − y

9d
,

x

3d

]
.
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In affine coordinates, the change of variables is going from X3 + Y 3 = d to the
curve y2 + 9dy = x3 − 27d2 via the maps

ψ(X,Y ) =

(
3d

X + Y
,− 9dY

X + Y

)
,

ψ−1(x, y) =

(
9d+ y

3x
,− y

3x

)
.

We leave it as an exercise for the reader to verify that the model can be further
simplified to the form y2 = x3 − 432d2.

Definition 16.1.4. Let E : f(x, y) = 0 be an elliptic curve with origin O, and let
E′ : g(X,Y ) = 0 be an elliptic curve with origin O′. We say that E and E′ are
isomorphic over Q if there is an invertible change of variables ψ : E → E′, defined
by rational functions with coefficients in Q, such that ψ(O) = O′.

Example 16.1.5. Sometimes, a curve given by a quartic polynomial can be isomor-
phic over Q to another curve given by a cubic polynomial. For instance, consider
the curves

C/Q : V 2 = U4 + 1 and E/Q : y2 = x3 − 4x.

The map ψ : C → E given by

ψ(U, V ) =

(
2(V + 1)

U2
,
4(V + 1)

U3

)
is an invertible rational map, defined over Q, that sends (0, 1) to O, and ψ(0,−1) =
(0, 0). See Exercise 15.4.18. More generally, any quartic

C : V 2 = aU4 + bU3 + cU2 + dU + q2

for some a, b, c, d, q ∈ Z is isomorphic over Q to a curve of the form E : y2+a1xy+
a3y = x3 + a2x

2 + a4x + a6, also defined over Q. The isomorphism is given in
[Was08, Theorem 2.17, p. 37].

Let E be an elliptic curve over Q given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Q.

With a change of variables (x, y) �→ (u−2x, u−3y), we can find the equation of an
elliptic curve isomorphic to E given by

y2 + (a1u)xy + (a3u
3)y = x3 + (a2u

2)x2 + (a4u
4)x+ (a6u

6)

with coefficients aiu
i ∈ Z for i = 1, 2, 3, 4, 6. By the way, this is one of the reasons

for the peculiar numbering of the coefficients ai.

Example 16.1.6. Let E be given by y2 = x3 + x
2 + 5

3 . We may change variables
by x = X

62 and y = Y
63 to obtain a new equation Y 2 = X3 + 648X + 77760 with

integral coefficients.
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16.2. Integral Points

In 1929, Siegel proved the following result about integral points E(Z), i.e., about
those points on E with integer coordinates:

Theorem 16.2.1 (Siegel’s theorem; [Sil86, Ch. IX, Thm. 3.1]). Let E/Q be an
elliptic curve given by y2 = x3 +Ax+B, with A,B ∈ Z. Then E has only a finite
number of integral points.

Siegel’s theorem is a consequence of a well-known theorem of Roth on diophan-
tine approximation. Unfortunately, Siegel’s theorem is not effective and provides
neither a method to find the integral points on E nor a bound on the number
of integral points. However, in [Bak90], Alan Baker found an alternative proof
that provides an explicit upper bound on the size of the coefficients of an integral
solution. More concretely, if x, y ∈ Z satisfy y2 = x3 +Ax+B, then

max(|x|, |y|) < exp((106 ·max(|A|, |B|))106).

Obviously, Baker’s bound is not a very sharp bound, but it is theoretically inter-
esting nonetheless.

16.3. The Group Structure on E(Q)

From now on, we will concentrate on trying to find all rational points on a curve
E : y2 = x3 + Ax + B. We will use the following notation for the rational points
on E:

E(Q) = {(x, y) ∈ E | x, y ∈ Q} ∪ {O}
where O = [0, 1, 0] is the point at infinity.

One of the aspects that makes the theory of elliptic curves so rich is that the set
E(Q) can be equipped with a group structure, geometric in nature. The (addition)
operation on E(Q) can be defined as follows (see Figure 16.2). Let E be given by
a Weierstrass equation y2 = x3 + Ax + B with A,B ∈ Q. Let P and Q be two
rational points in E(Q) and let L = PQ be the line that goes through P and Q
(if P = Q, then we define L to be the tangent line to E at P ). Since the curve E
is defined by a cubic equation and since we have defined L so it already intersects
E at two rational points, there must be a third point of intersection R in L ∩ E,
which is also defined over Q (this is due to Proposition 5.5.22), and

L ∩E(Q) = {P,Q,R}.

The sum of P and Q, denoted by P + Q, is by definition the second point of
intersection with E of the vertical line that goes through R, or, in other words, the
reflection of R across the x-axis.

The addition operation that we have defined on points of E(Q) is commutative
because L = PQ = QP ; i.e., the line through P and Q is the line through Q and
P . The origin O is the zero element, and for every P ∈ E(Q) there exists a point
−P such that P + (−P ) = O. If E is given by y2 = x3 +Ax+B and P = (x0, y0),
then −P = (x0,−y0). The addition is also associative (but this is not obvious, and
it is tedious to prove) and, therefore, (E,+) is an abelian group.
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Figure 16.2. Addition of points on an elliptic curve.

Example 16.3.1. Let E be the elliptic curve y2 = x3−25x. The points P = (5, 0)
and Q = (−4, 6) belong to E(Q). Let us find P +Q. First, we find the equation of
the line L = PQ. The slope must be

m =
0− 6

5− (−4)
= −6

9
= −2

3

and the line is L : y = −2
3 (x− 5). Now we find the third point of intersection of L

and E by solving {
y = − 2

3 (x− 5),

y2 = x3 − 25x.

Plugging the first equation into the second one, we obtain an equation

x3 − 4

9
x2 − 185

9
x− 100

9
= 0,

which factors as (x−5)(x+4)(9x+5) = 0. The first two factors are expected, since
we already knew that P = (5, 0) and Q = (−4, 6) are in L ∩ E. The third point of
intersection must have x = − 5

9 , y = − 2
3 (x − 5) = 100

27 and, indeed, R = (− 5
9 ,

100
27 )

is a point in L ∩ E(Q). Thus, P + Q is the reflection of R across the x-axis; i.e.,
P +Q = (− 5

9 ,−
100
27 ).

Let us find Q+Q = 2Q. The line L in this case is the tangent line to E at Q.
The slope of L can be found using implicit differentiation on y2 = x3 − 25x:

2y
dy

dx
= 3x2 − 25, so

dy

dx
=

3x2 − 25

2y
.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



16.3. The Group Structure on E(Q) 443

Hence, the slope of L is m = 23
12 and L : y = 23

12 (x+ 4) + 6. In order to find R we
need to solve {

y = 23
12 (x+ 4) + 6,

y2 = x3 − 25x.

Simplifying yields x3 − 529
144x

2 − 1393
18 x− 1681

9 = 0, which factors as

(x+ 4)2(144x− 1681) = 0.

Once again, two factors were expected: x = −4 needs to be a double root because
L is tangent to E at Q = (−4, 6). The third factor tells us that the x-coordinate of
R is x = 1681

144 , and y = 23
12 (x+4)+ 6 = 62279

1728 . Thus, Q+Q = 2Q = ( 1681144 ,− 62279
1728 ).

Example 16.3.2. Let E : y2 = x3 + 1 and put P = (2, 3). Let us find P , 2P , 3P ,
etc.

Figure 16.3. The rational points on y2 = x3 + 1, except the point at ∞.

• In order to find 2P , first we need to find the tangent line to E at P , which is
y− 3 = 2(x− 2) or y = 2x− 1. The third point of intersection is R = (0,−1),
so 2P = (0, 1).

• To find 3P , we add P and 2P . The third point of intersection of E with the
line that goes through P and 2P is R′ = (−1, 0); hence, 3P = (−1, 0).

• The point 4P can be found by adding 3P and P . The third point of inter-
section of E and the line through P and 3P is R′′ = 2P = (0, 1), and so
4P = P + 3P = (0,−1).

• We find 5P by adding 4P and P . Notice that the line that goes through 4P =
(0,−1) and P = (2, 3) is tangent at (2, 3), so the third point of intersection is
P . Thus, 5P = 4P + P = (2,−3).
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• Finally, 6P = P + 5P but 5P = (2,−3) = −P . Hence, 6P = P + (−P ) = O,
the point at infinity.

This means that P is a point of finite order, and its order equals 6. See Figure 16.3.

The addition law can be defined more generally on any smooth projective cubic
curve E : f(X,Y, Z) = 0, with a given rational point O. Let P,Q ∈ E(Q) and let
L be the line that goes through P and Q. Let R be the third point of intersection
of L and E. Then R is also a rational point in E(Q). Let L′ be the line through R
and O. We define P +Q to be the third point of intersection of L′ and E. Notice
that any vertical line x = a in the affine plane passes through [0, 1, 0], because the
same line in projective coordinates is given by x = az and [0, 1, 0] belongs to such
line. Thus, if E is given by a model y2 = x3 + Ax+ B and O is chosen to be the
point [0, 1, 0], then L′ is always a vertical line, so P +Q is always the reflection of
R with respect to the x-axis.

The next step in the study of the structure of E(Q) was conjectured by Henri
Poincaré in 1908, proved by Louis Mordell in 1922, and generalized by André Weil
in his thesis in 1928 (see Figure 1.7 in Section 1.4).

Theorem 16.3.3 (Mordell–Weil theorem). Let E/Q be an elliptic curve. Then,
E(Q) is a finitely generated abelian group. In other words, there are points P1, . . . ,
Pn such that any other point Q in E(Q) can be expressed as a linear combination

Q = a1P1 + a2P2 + · · ·+ anPn

for some ai ∈ Z.

The group E(Q) is usually called the Mordell–Weil group of E, in honor of the
two mathematicians who proved the theorem.

Example 16.3.4. Consider the elliptic curve E/Q given by the Weierstrass equa-
tion

y2 + y = x3 − 7x+ 6.

The set of rational points E(Q) for this elliptic curve is infinite. For instance, the
following points are on the curve:

(1, 0), (2, 0), (0,−3), (−3,−1), (8,−22), (−2,−4), (3,−4),

(3, 3), (−1,−4), (1,−1), (0, 2), (2,−1), (−2, 3), (−1, 3),(
1

4
,
13

8

)
,

(
25

9
,−91

27

)
,

(
−26

9
,
28

27

)
,

(
7

9
,
17

27

)
, . . . .

At first glance, it may seem very difficult to describe all the points on E(Q), includ-
ing those listed above, in a succinct manner. However, the Mordell–Weil theorem
tells us that there must be a finite set of points that generate the whole group.
Indeed, it can be proved that the three points

P = (1, 0), Q = (2, 0), and R = (0,−3)

are generators of E(Q). This means that any other point on E(Q) can be expressed
as a Z-linear combination of P , Q, and R. In other words,

E(Q) = {a · P + b ·Q+ c ·R : a, b, c ∈ Z}.
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For instance,

(−3,−1) = P +Q, (8,−22) = P +R, (−2,−4) = P −Q,

(−1,−4) = Q−R, and (3, 3) = P −R.

The proof of the Mordell–Weil theorem has three fundamental ingredients:

(a) the so-called weak Mordell–Weil theorem, which says that E(Q)/mE(Q) is
finite for any m ≥ 2 (see below),

(b) the concept of height functions on abelian groups,
(c) the descent theorem, which establishes that an abelian group A with a height

function h, such that A/mA is finite (for some m ≥ 2), is finitely generated.

Here is a precise statement for the weak Mordell–Weil theorem.

Theorem 16.3.5 (Weak Mordell–Weil). E(Q)/mE(Q) is a finite group for all
m ≥ 2.

We will discuss the proof of a special case of the weak Mordell–Weil theorem
in Section 16.7 (see Corollary 16.7.7).

It follows from the Mordell–Weil theorem and the general structure theory of
finitely generated abelian groups that

E(Q) ∼= E(Q)torsion ⊕ ZRE .(16.6)

In other words, E(Q) is isomorphic to the direct sum of two abelian groups (notice
however that this decomposition is not canonical! See (4) in Example 16.3.6 below.).
The first summand is a finite group formed by all torsion elements, i.e., those points
on E of finite order:

E(Q)torsion = {P ∈ E(Q) : there is n ∈ N such that nP = O}.

The second summand of (16.6), sometimes called the free part, is ZRE , i.e., RE

copies of Z for some integer RE ≥ 0. It is generated by RE points of E(Q) of
infinite order (i.e., P ∈ E(Q) such that nP �= O for all non-zero n ∈ Z). The
number RE is called the rank of the elliptic curve E/Q. Notice, however, that the
set

F = {P ∈ E(Q) : P is of infinite order} ∪ {O}
is not a subgroup of E(Q) if the torsion subgroup is non-trivial. For instance, if
T is a torsion point and P is of infinite order, then P and P + T belong to F but
T = (P + T )−P does not belong to F . This fact makes the isomorphism of (16.6)
not canonical because the subgroup of E(Q) isomorphic to ZRE cannot be chosen,
in general, in a unique way.

Example 16.3.6. The following are some examples of elliptic curves and their
Mordell–Weil groups:

(1) The curve E1/Q : y2 = x3 + 6 has no rational points, other than the point
at infinity O. Therefore, there are no torsion points (other than O) and no
points of infinite order. In particular, the rank is 0, and E1(Q) = {O}.
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(2) The curve E2/Q : y2 = x3 + 1 has only six rational points. As we saw in
Example 16.3.2, the point P = (2, 3) has exact order 6. Therefore E2(Q) ∼=
Z/6Z is an isomorphism of groups. Since there are no points of infinite order,
the rank of E2/Q is 0, and

E2(Q) = {O, P, 2P, 3P, 4P, 5P} = {O, (2,±3), (0,±1), (−1, 0)}.

(3) The curve E3/Q : y2 = x3 − 2 does not have any rational torsion points other
than O (as we shall see in the next section). However, the point P = (3, 5) is
a rational point. Thus, P must be a point of infinite order and E3(Q) contains
infinitely many distinct rational points. In fact, the rank of E3 is equal to 1
and P is a generator of all of E3(Q); i.e.,

E3(Q) = {nP : n ∈ Z} and E3(Q) ∼= Z.

(4) The elliptic curve E4/Q : y2 = x3 + 7105x2 + 1327104x features both torsion
and infinite order points. In fact, E4(Q) ∼= Z/4Z⊕ Z3. The torsion subgroup
is generated by the point T = (1152, 111744) of order 4. The free part is
generated by three points of infinite order:

P1 = (−6912, 6912), P2 = (−5832, 188568), P3 = (−5400, 206280).

Hence

E4(Q) = {aT + bP1 + cP2 + dP3 : a = 0, 1, 2 or 3 and b, c, d ∈ Z}.

As we mentioned above, the isomorphism E4(Q) ∼= Z/4Z⊕Z3 is not canonical.
For instance, E4(Q) ∼= 〈T 〉 ⊕ 〈P1, P2, P3〉 but also E4(Q) ∼= 〈T 〉 ⊕ 〈P ′

1, P2, P3〉
with P ′

1 = P1 + T .

Example 16.3.7. Let C be the curve x3 + y3 = 1729, which is related to the
famous Hardy–Ramanujan number 1729 (see Example 15.0.1). In Example 16.1.3
we saw that C is isomorphic to E : y2+9 · 1729y = x3−27 · (1729)2. One can show
that the Mordell–Weil group of E is isomorphic to Z2, generated by the points

P = (273,−7371) and Q = (399,−1197).

The map ψ−1 : E → C of Example 16.1.3, given by

ψ−1(x, y) =

(
9d+ y

3x
,− y

3x

)
,

maps P and Q, respectively, to the points P ′ = (10, 9) and Q′ = (12, 1), which
correspond to the well-known representations of 1729 as the sum of two cubes:

1729 = 103 + 93 = 123 + 13,

that Ramanujan referred to during Hardy’s visit. The addition on E gives new
rational solutions. For instance, P + Q = (1729,−79534) and ψ−1(P + Q) yields
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(−37/3, 46/3) on C. Indeed,

1729 =

(
−37

3

)3

+

(
46

3

)3

is an expression of 1729 as the sum of two (rational) cubes.

The rank of E/Q is, in a sense, a measurement of the arithmetic complexity
of the elliptic curve. It is not known if there is an upper bound for the possible
values of RE (the largest rank known, to date, is 28, discovered by Noam Elkies;
see Andrej Dujella’s website [Duj09] for up-to-date records and examples of curves
with “high” ranks). It has been conjectured (with some controversy) that ranks can
be arbitrarily large; i.e., for all n ∈ N there exists an elliptic curve E over Q with
RE ≥ n. We state this as a conjecture for future reference:

Conjecture 16.3.8 (Conjecture of the rank). Let N ≥ 0 be a natural number.
Then there exists an elliptic curve E defined over Q with rank RE ≥ N .

One of the key pieces of evidence in favor of such a conjecture was offered
by Shafarevich and Tate, who proved that there exist elliptic curves defined over
function fields Fp(T ) and with arbitrarily large ranks (Fp(T ) is a field that shares
many similar properties with Q; see [ShT67]). In any case, the problem of finding
elliptic curves of high rank is particularly interesting because of its arithmetic and
computational complexity.

16.4. The Torsion Subgroup

In this section we concentrate on the torsion points of an elliptic curve:

E(Q)torsion = {P ∈ E(Q) : there is n ∈ N such that nP = O}.

Example 16.4.1. The curve En : y2 = x3 − n2x = x(x − n)(x + n) has three
rational points that are easy to find, namely P = (0, 0), Q = (−n, 0), T = (n, 0),
and one can check (see Exercise 16.10.5) that each one of these points is torsion
of order 2; i.e., 2P = 2Q = 2T = O, and P + Q = T . In fact En(Q)torsion =
{O, P,Q, T} ∼= Z/2Z⊕ Z/2Z.

Note that the Mordell–Weil theorem implies that E(Q)torsion is always finite.
This fact prompts a natural question: what abelian groups can appear in this con-
text? The answer was conjectured by Levi and by Ogg and was proven by Mazur:

Theorem 16.4.2 (Ogg’s conjecture; Mazur, [Maz78]). Let E/Q be an elliptic
curve. Then, E(Q)torsion is isomorphic to one of the following groups:

Z/NZ with 1 ≤ N ≤ 10 or N = 12 or(16.7)
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4.

Moreover, each group in the lists above occurs for infinitely many non-isomorphic
elliptic curves over Q.
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Curve Torsion Generators

y2 = x3 − 2 trivial O
y2 = x3 + 8 Z/2Z (−2, 0)

y2 = x3 + 4 Z/3Z (0, 2)

y2 = x3 + 4x Z/4Z (2, 4)

y2 − y = x3 − x2 Z/5Z (0, 1)

y2 = x3 + 1 Z/6Z (2, 3)

y2 = x3 − 43x+ 166 Z/7Z (3, 8)

y2 + 7xy = x3 + 16x Z/8Z (−2, 10)

y2 + xy + y = x3 − x2 − 14x+ 29 Z/9Z (3, 1)

y2 + xy = x3 − 45x+ 81 Z/10Z (0, 9)

y2 + 43xy − 210y = x3 − 210x2 Z/12Z (0, 210)

y2 = x3 − 4x Z/2Z⊕ Z/2Z
((2,0)
(0,0)

)
y2 = x3 + 2x2 − 3x Z/4Z⊕ Z/2Z

((3,6)
(0,0)

)
y2 + 5xy − 6y = x3 − 3x2 Z/6Z⊕ Z/2Z

(
(−3,18)
(2,−2)

)
y2 + 17xy − 120y = x3 − 60x2 Z/8Z⊕ Z/2Z

( (30,−90)
(−40,400)

)
Figure 16.4. Examples of each of the possible torsion subgroups over Q.

Example 16.4.3. For instance, the torsion subgroup of the elliptic curve with
Weierstrass equation y2 +43xy− 210y = x3 − 210x2 is isomorphic to Z/12Z and it
is generated by the point (0, 210). The elliptic curve y2 +17xy− 120y = x3 − 60x2

has a torsion subgroup isomorphic to Z/2Z⊕Z/8Z, generated by the rational points
(30,−90) and (−40, 400). See Figure 16.4 for a complete list of examples with each
possible torsion subgroup.

Furthermore, it is known that if G is any of the groups in 16.7, there are
infinitely many elliptic curves whose torsion subgroup is isomorphic to G. See, for
example, [Kub76, Table 3, p. 217] or Appendix E of [Loz11].

Example 16.4.4. Let Et : y2 + (1 − t)xy − ty = x3 − tx2 with non-zero t ∈ Q.
Then, the torsion subgroup of Et(Q) contains a subgroup isomorphic to Z/5Z, and
(0, 0) is a point of exact order 5. Conversely, if E : y2 = x3 +Ax+B is an elliptic
curve with torsion subgroup equal to Z/5Z, then there is an invertible change of
variables that takes E to an equation of the form Et for some t ∈ Q.

A useful and simple consequence of Mazur’s theorem is that if the order of a
rational point P ∈ E(Q) is larger than 12, then P must be a point of infinite order
and, therefore, E(Q) contains an infinite number of distinct rational points. Except
for this criterion, Mazur’s theorem is not very helpful in effectively computing the
torsion subgroup of a given elliptic curve. However, the following result, proven
independently by Trygve Nagell (in 1935) and by Élisabeth Lutz (in 1937), provides
a simple algorithm to determine E(Q)torsion:
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Theorem 16.4.5 (Nagell–Lutz, [Nag35], [Lut37]). Let E/Q be an elliptic curve
with Weierstrass equation

y2 = x3 +Ax+B, A,B ∈ Z.

Then, every torsion point P �= O of E satisfies:

(1) The coordinates of P are integers; i.e., x(P ), y(P ) ∈ Z.
(2) If P is a point of order n ≥ 3, then 4A3 + 27B2 is divisible by y(P )2.
(3) If P is of order 2, then y(P ) = 0 and x(P )3 +Ax(P ) +B = 0.

For a proof, see [Sil86, Ch. VIII, Corollary 7.2] or [Mil06, Ch. II, Theorem
5.1].

Example 16.4.6. Let E/Q : y2 = x3 − 2, so that A = 0 and B = −2. The
polynomial x3 − 2 does not have any rational roots, so E(Q) does not contain
any points of order 2. Also, 4A3 + 27B2 = 27 · 4. Thus, if (x(P ), y(P )) are the
coordinates of a torsion point in E(Q), then y(P ) is an integer and y(P )2 divides
27 · 4. This implies that y(P ) = ±1, ±2, ±3, or ±6. In turn, this implies that
x(P )3 = 3, 6, 11, or 38, respectively. However, x(P ) is an integer, and none of 3, 6,
11, or 38 is a perfect cube. Thus, E(Q)torsion is trivial (i.e., the only torsion point
is O).

Example 16.4.7. Let p ≥ 2 be a prime number and let us define a curve Ep : y
2 =

x3+p2. Since x3+p2 = 0 does not have any rational roots, Ep(Q) does not contain
points of order 2. Let P be a torsion point on Ep(Q). The list of all squares dividing
4A3 + 27B2 = 27p4 is short, and by the Nagell–Lutz theorem the possible values
for y(P ) are

y = ±1, ±p, ±p2, ±3p, ±3p2, and ± 3.

Clearly, (0,±p) ∈ Ep(Q) and one can show that those two points and O are the
only torsion points; see Exercise 16.10.7. Thus, the torsion subgroup of Ep(Q) is
isomorphic to Z/3Z for any prime p ≥ 2.

Remark 16.4.8. It is important to note that the conclusions of the Nagell–Lutz
theorem depend on the Weierstrass equation being of the form y2 = x3 + Ax+ B.
For instance, consider the elliptic curve

E : y2 + xy = x3 + 4x+ 1.

Then, E has a torsion point P = (−1/4, 1/8) of order 2 and, clearly, the coordinates
of P are not integral. However, we can change variables on E to bring it to a short
Weierstrass model y2 = x3+5157x+31158 and in this equation the 2-torsion point
P has coordinates (−6, 0), which are integral as predicted by Nagell–Lutz.

16.5. Elliptic Curves over Finite Fields

Let p ≥ 2 be a prime and let Fp be the finite field with p elements (see Section 5.1
and Chapter 6); i.e.,

Fp = Z/pZ = {a mod p : a = 0, 1, 2, . . . , p− 1}.
Fp is a field and we may consider elliptic curves defined over Fp. As for elliptic
curves over Q, there are three conditions that need to be satisfied: the curve needs
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to be given by a cubic equation, the curve needs to be smooth, and there must be
a point on the curve defined over Fp (the existence of an Fp-point, however, will be
automatic by Hasse’s theorem, Theorem 16.5.11).

Example 16.5.1. For instance, E : y2 ≡ x3 + 1 mod 5 is an elliptic curve defined
over F5. It is given by a cubic equation (zy2 ≡ x3 + z3 mod 5 in the projective
plane P2(F5)) and it is smooth, because for F ≡ zy2 − x3 − z3 mod 5, the partial
derivatives are

∂F

∂x
≡ −3x2,

∂F

∂y
≡ 2yz,

∂F

∂z
≡ y2 − 3z2 mod 5.

Thus, if the partial derivatives are congruent to 0 modulo 5, then x ≡ 0 mod 5
and yz ≡ 0 mod 5. The latter congruence implies that y or z ≡ 0 mod 5, and
∂F/∂z ≡ 0 implies that y ≡ z ≡ 0 mod 5. Since [0, 0, 0] is not a point in the
projective plane, we conclude that there are no singular points on E/F5.

However, C/F3 : y2 ≡ x3 + 1 mod 3 is not an elliptic curve because it is not
smooth. Indeed, the point P = (2 mod 3, 0 mod 3) ∈ C(F3) is a singular point:

∂F

∂x
(P ) ≡ −3 · 22 ≡ 0,

∂F

∂y
(P ) ≡ 2 · 0 · 1 ≡ 0, and

∂F

∂z
(P ) ≡ 02 − 3 · 12 ≡ 0 mod 3.

Let E/Q be an elliptic curve given by a Weierstrass equation y2 = x3+Ax+B
with integer coefficients A,B ∈ Z, and let p ≥ 2 be a prime number. If we reduce A

and B modulo p, then we obtain the equation of a curve Ẽ given by a cubic curve
and defined over the field Fp. Even though E is smooth as a curve over Q, the curve
Ẽ may be singular over Fp. In the previous example, we saw that E/Q : y2 = x3+1

is smooth over Q and F5 but it has a singularity over F3. If the reduction curve Ẽ
is smooth, then it is an elliptic curve over Fp.

Example 16.5.2. Sometimes the reduction of a model for an elliptic curve E
modulo a prime p is not smooth, but it is smooth for some other models of E.
For instance, consider the curve E : y2 = x3 + 15625. Then Ẽ ≡ E mod 5 is not
smooth over F5 because the point (0, 0) mod 5 is a singular point. However, using
the invertible change of variables (x, y) �→ (52X, 53Y ), we obtain a new model over
Q for E given by E′ : Y 2 = X3 + 1, which is smooth when we reduce it modulo 5.
The problem here is that the model we chose for E is not minimal. We describe
what we mean by minimal next.

Definition 16.5.3. Let E be an elliptic curve given by y2 = x3 + Ax + B, with
A,B ∈ Q.

(1) We define ΔE , the discriminant of E, by

ΔE = −16(4A3 + 27B2).

For a definition of the discriminant for more general Weierstrass equations,
see for example [Sil86, p. 46].

(2) Let S be the set of all elliptic curves E′ that are isomorphic to E over Q (see
Definition 16.1.4) and such that the discriminant of E′ is an integer. The
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minimal discriminant of E is the integer ΔE′ that attains the minimum of the
set {|ΔE′ | : E′ ∈ S}. In other words, the minimal discriminant is the smallest
integral discriminant (in absolute value) of an elliptic curve that is isomorphic
to E over Q. If E′ is the model for E with minimal discriminant, we say that
E′ is a minimal model for E.

Example 16.5.4. The curve E : y2 = x3 + 56 has discriminant ΔE = −2433512,
and the curve E′ : y2 = x3 + 1 has discriminant ΔE′ = −2433. Since E and E′

are isomorphic (see Definition 16.1.4 and Example 16.5.2), then ΔE cannot be the
minimal discriminant for E and y2 = x3 + 56 is not a minimal model. In fact, the
minimal discriminant is ΔE′ = −432 and E′ is a minimal model.

Before we go on to describe the types of reduction modulo p that one can
encounter, we need a little bit of background on types of singularities. Let Ẽ be a
cubic curve over a field K with Weierstrass equation f(x, y) = 0, where

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6,

and suppose that Ẽ has a singular point P = (x0, y0); i.e., ∂f/∂x(P ) = ∂f/∂y(P ) =
0. Thus, we can write the Taylor expansion of f(x, y) around (x0, y0) as follows:

f(x, y)− f(x0, y0)

= λ1(x− x0)
2 + λ2(x− x0)(y − y0) + λ3(y − y0)

2 − (x− x0)
3

= ((y − y0)− α(x− x0)) · ((y − y0)− β(x− x0))− (x− x0)
3

for some λi ∈ K and α, β ∈ K (an algebraic closure of K).

Definition 16.5.5. The singular point P ∈ Ẽ is a node if α �= β. In this case there
are two different tangent lines to Ẽ at P ; namely

y − y0 = α(x− x0), y − y0 = β(x− x0).

If α = β, then we say that P is a cusp, and there is a unique tangent line at P . See
Figure 16.5.

Figure 16.5. A node (left) with two tangent lines and a cusp (right) with
only one tangent line.
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Definition 16.5.6. Let E/Q be an elliptic curve given by a minimal model, let
p ≥ 2 be a prime, and let Ẽ be the reduction curve of E modulo p. We say that
E/Q has good reduction modulo p if Ẽ is smooth and hence is an elliptic curve over
Fp. If Ẽ is singular at a point P ∈ E(Fp), then we say that E/Q has bad reduction
at p and we distinguish two cases:

(1) If Ẽ has a cusp at P , then we say that E has additive (or unstable) reduction.

(2) If Ẽ has a node at P , then we say that E has multiplicative (or semistable)
reduction. If the slopes of the tangent lines (α and β as above) are in Fp, then
the reduction is said to be split multiplicative (and non-split otherwise).

Example 16.5.7. Let us see some examples of elliptic curves with different types
of reduction:

(1) E1 : y
2 = x3+35x+5 has good reduction at p = 7, because y2 ≡ x3+5 mod 7

is a non-singular curve over F7.
(2) However E1 has bad reduction at p = 5, and the reduction is additive, since

modulo 5 we can write the equation as ((y − 0) − 0 · (x − 0))2 − x3 and the
unique slope is 0.

(3) The elliptic curve E2 : y
2 = x3 − x2 + 35 has bad multiplicative reduction at

5 and 7. The reduction at 5 is split, while the reduction at 7 is non-split.
Indeed, modulo 5 we can write the equation as

((y − 0)− 2(x− 0)) · ((y − 0) + 2(x− 0))− x3,

the slopes being 2 and −2. However, for p = 7, the slopes are not in F7

(because −1 is not a quadratic residue in F7). Indeed, when we reduce the
equation modulo 7, we obtain

y2 + x2 − x3 mod 7

and y2 + x2 can only be factored in F7[i] but not in F7.
(4) Let E3 be an elliptic curve given by the model y2 + y = x3 − x2 − 10x − 20.

This is a minimal model for E3 and its (minimal) discriminant is ΔE3
= −115.

The prime 11 is the unique prime of bad reduction and the reduction is split
multiplicative. Indeed, the point (5, 5) mod 11 is a singular point on E3(F11)
and

f(x, y) = y2 + y + x2 + 10x+ 20− x3

= (y − 5− 5(x− 5)) · (y − 5 + 5(x− 5))− (x− 5)3.

Hence, the slopes at (5, 5) are 5 and −5, which are in F11 and distinct.

Proposition 16.5.8. Let K be a field and let E/K be a cubic curve given by
y2 = f(x), where f(x) is a monic cubic polynomial in K[x]. Suppose that f(x) =
(x− α)(x− β)(x− γ) with α, β, γ ∈ K (an algebraic closure of K) and put

D = (α− β)2(α− γ)2(β − γ)2.

Then E is non-singular if and only if D �= 0.

The proof of the proposition is left as an exercise (see Exercise 16.10.8). Notice
that the quantity D that appears in the previous proposition is the discriminant
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of the polynomial f(x). The discriminant of E/Q, ΔE as in Definition 16.5.3, is a
multiple of D; in fact, ΔE = 16D. This fact together with Proposition 16.5.8 yields
the following corollary:

Corollary 16.5.9. Let E/Q be an elliptic curve with coefficients in Z. Let p ≥ 2
be a prime. If E has bad reduction at p, then p | ΔE . In fact, if E is given by a
minimal model, then p | ΔE if and only if E has bad reduction at p.

Example 16.5.10. The discriminant of the elliptic curve E1 : y
2 = x3 + 35x + 5

of Example 16.5.7 is ΔE1
= −2754800 = −24 · 52 · 71 · 97 (and, in fact, this is the

minimal discriminant of E1). Thus, E1 has good reduction at 7 but it has bad
reduction at 2, 5, 71, and 97. The reduction at 71 and 97 is multiplicative.

Let Ẽ be an elliptic curve defined over a finite field Fq with q elements, where
q = pr and p ≥ 2 is prime. Notice that Ẽ(Fq) ⊆ P2(Fq) and the projective
plane over Fq has only a finite number of points (how many?). Thus, the number
Nq := |Ẽ(Fq)|, i.e., the number of points on Ẽ over Fq, is finite. The following
theorem provides a bound for Nq. This result was conjectured by Emil Artin (in
his thesis) and was proved by Helmut Hasse in the 1930s (see Figure 11.1).

Theorem 16.5.11 (Hasse). Let Ẽ be an elliptic curve defined over Fq. Then

q + 1− 2
√
q < Nq < q + 1 + 2

√
q,

where Nq = |Ẽ(Fq)|.

See [Sil86, Ch. V, Theorem 1.1] for a proof of Hasse’s theorem.

Remark 16.5.12. Heuristically, we expect that Nq is approximately q + 1, in
agreement with Hasse’s bound. Indeed, let E/Q be an elliptic curve given by
y2 = x3+Ax+B, with A,B ∈ Z, and let q = p be a prime for simplicity. There are
p choices of x in Fp. For each value x0, the polynomial f(x) = x3 +Ax+B gives a
value f(x0) ∈ Fp. The probability that a random element in Fp is a perfect square
in Fp is 1/2 (notice, however, that f(x0) is not random; this is just a heuristic
argument). If f(x0) is a square modulo p, i.e., if there is a y0 ∈ Fp such that
f(x0) ≡ y20 mod p, then there are two points (x0,±y0) in Ẽ(Fp). If f(x0) is not a
square modulo p, then there are no points in Ẽ(Fp) with x-coordinate equal to x0.
Hence,

Np ≈ p ·
(
1

2
· 2 + 1

2
· 0
)
+ 1 = p+ 1.

Notice that we have added 1 in order to account for the point at infinity.

Remark 16.5.13. Suppose that E/Q is an elliptic curve that has bad reduction
at a prime p. How many points does the singular curve Ẽ have over Fp?

Example 16.5.14. Let E/Q be the elliptic curve y2 = x3 + 3. Its minimal dis-
criminant is ΔE = −3888 = −24 · 35. Thus, the only primes of bad reduction are
2 and 3 and Ẽ/Fp is smooth for all p ≥ 5. For p = 5, there are precisely six points
on Ẽ(F5); namely

Ẽ(F5) = {Õ, (1, 2), (1, 3), (2, 1), (2, 4), (3, 0)},
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where all the coordinates should be regarded as congruences modulo 5. Thus,
N5 = 6, which is in the range given by Hasse’s bound:

1.5278 . . . = 5 + 1− 2
√
5 < N5 < 5 + 1 + 2

√
5 = 10.4721 . . . .

Similarly, one can verify that N7 = 13.

The connections between the numbers Np and the group E(Q) are numerous
and of great interest. The most surprising relationship is captured by the Birch and
Swinnerton-Dyer conjecture (see [Loz11, Section 5.2]) that relates the growth of
Np (as p varies) with the rank of the elliptic curve E/Q. In the next proposition we
describe a different connection between Np and E(Q). We shall use the following
notation: if G is an abelian group and m ≥ 2, then the points of G of order dividing
m will be denoted by G[m].

Proposition 16.5.15 (Ch. VII, Prop. 3.1 of [Sil86]). Let E/Q be an elliptic curve,
p a prime number, and m a natural number not divisible by p. Suppose that E/Q
has good reduction at p. Then the reduction map modulo p,

E(Q)[m] −→ Ẽ(Fp),

is an injective homomorphism of abelian groups. In particular, the number of ele-
ments of E(Q)[m] divides the number of elements of Ẽ(Fp).

The previous proposition can be very useful when calculating the torsion sub-
group of an elliptic curve. Let us see an application:

Example 16.5.16. Let E/Q : y2 = x3 + 3. In Example 16.5.14 we have seen that
N5 = 6 and N7 = 13, and E/Q has bad reduction only at 2 and 3.

If q �= 5, 7 is a prime number, then E(Q)[q] is trivial. Indeed, Proposition
16.5.15 implies that |E(Q)[q]| divides N5 = 6 and also N7 = 13. Thus, |E(Q)[q]|
must divide gcd(6, 13) = 1.

In the case of q = 5, we know that |E(Q)[5]| divides N7 = 13. Moreover,
by Lagrange’s theorem from group theory, if E(Q)[p] is non-trivial, then p divides
|E(Q)[p]| (it turns out that E(Q)[p] is always a subgroup of Z/pZ×Z/pZ). Since 5
does not divide 13, it follows that E(Q)[5] must be trivial. Similarly, one can show
that E(Q)[7] is trivial, and we conclude that E(Q)torsion is trivial.

However, notice that P = (1, 2) ∈ E(Q) is a point on the curve. Since we just
proved that E does not have any points of finite order, it follows that P must be
a point of infinite order, and, hence, we have shown that E has infinitely many
rational points: ±P,±2P,±3P, . . .. In fact, E(Q) ∼= Z and (1, 2) is a generator of
its Mordell–Weil group.

In the previous example, the Nagell–Lutz theorem (Theorem 16.4.5) would have
yielded the same result, i.e., the torsion is trivial, in an easier way. Indeed, for the
curve E : y2 = x3 + 3, the quantity 4A3 + 27B2 equals 35, so the possibilities for
y(P )2, where P is a torsion point of order ≥ 3, are 1, 9, or 81 (the reader can check
that there are no 2-torsion points). Therefore, the possibilities for x(P )3 = y(P )2−3
are −2, 6, or 78, respectively. Since x(P ) is an integer, we reach a contradiction.
In the following example, the Nagell–Lutz theorem would be a lengthier and much
more tedious alternative, and Proposition 16.5.15 is much more effective.
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Example 16.5.17. Let E/Q : y2 = x3 + 4249388. In this case

4A3 + 27B2 = 24 · 33 · 112 · 132 · 172 · 192 · 232.
Therefore, 4A3 + 27B2 is divisible by 192 distinct positive squares, which makes it
very tedious to use the Nagell–Lutz theorem. The (minimal) discriminant of E/Q is
ΔE = −16(4A3+27B2) and therefore E has good reduction at 5 and 7. Moreover,
B = 4249388 ≡ 3 mod 35 and therefore, by our calculations in Example 16.5.16,
N5 = 6 and N7 = 13. Thus, Proposition 16.5.15 and the same argument we used
in Example 16.5.16 show that the torsion of E(Q) is trivial.

Incidentally, the curve E/Q : y2 = x3 + 4249388 has a rational point P =(
25502
169 , 6090670

2197

)
. Since the torsion of E(Q) is trivial, P must be of infinite order.

Here is another way to see this: since P has rational coordinates that are not
integral, the Nagell–Lutz theorem implies that the order of P is infinite. In fact,
E(Q) is isomorphic to Z and it is generated by P .

16.6. The Rank and the Free Part of E(Q)

In the previous sections we have described simple algorithms that determine the
torsion subgroup of E(Q). Recall that the Mordell–Weil theorem (Theorem 16.3.3)
says that there is a (non-canonical) isomorphism

E(Q) ∼= E(Q)torsion ⊕ ZRE .

Our next goal is to try to find RE generators of the free part of the Mordell–
Weil group. Unfortunately, no algorithm is known that will always yield such free
points. We don’t even have a way to determine RE (the rank of the curve) in
general, although sometimes we can obtain upper bounds for the rank of a given
curve E/Q (see, for instance, Theorem 16.6.4 below).

Naively, one could hope that if the coefficients of the (minimal) Weierstrass
equation for E/Q are small, then the coordinates of the generators of E(Q) should
also be small, and perhaps a brute force computer search would yield these points.
However, Bremner and Cassels found the following surprising example: the curve
y2 = x3 + 877x has rank equal to 1 and the x-coordinate of a generator P is

x(P ) = (612776083187947368101/78841535860683900210)2.

However, Serge Lang salvaged this idea and conjectured that for all ε > 0 there is a
constant Cε such that there is a system of generators {Pi : i = 1, . . . , RE} of E(Q)
with

ĥ(Pi) ≤ Cε · |ΔE |1/2+ε,

where ĥ is the canonical height function of E/Q, which we define next. Lang’s con-
jecture says that the size of the coordinates of a generator may grow exponentially
with the (minimal) discriminant of a curve E/Q.

Definition 16.6.1. We define the height of m
n ∈ Q, with gcd(m,n) = 1, by

h
(m
n

)
= log(max{|m|, |n|}).

This can be used to define a height of a point P = (x, y) on an elliptic curve E/Q,
with x, y ∈ Q by

H(P ) = h(x).
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Finally, we define the canonical height of P ∈ E(Q) by

ĥ(P ) =
1

2
lim

N→∞

H(2N · P )

4N
.

Note: here 2N ·P means multiplication on the curve, using the addition law defined
in Section 16.3; i.e., 2 · P = P + P , 22 · P = 2P + 2P , etc.

Example 16.6.2. Let E : y2 = x3+877x, and let P be a generator of E(Q). Here
are some values of 1

2 · H(2N ·P )
4N

:

1

2
·H(P ) = 47.8645312628 . . . ,

1

2
· H(2 · P )

4
= 47.7958126219 . . . ,

1

2
· H(22 · P )

42
= 47.9720107996 . . . ,

1

2
· H(23 · P )

43
= 47.9636902383 . . . ,

1

2
· H(24 · P )

44
= 47.9901607777 . . . ,

1

2
· H(25 · P )

45
= 47.9901600133 . . . ,

1

2
· H(26 · P )

46
= 47.9901569227 . . . ,

1

2
· H(27 · P )

47
= 47.9901419861 . . . ,

1

2
· H(28 · P )

48
= 47.9901807594 . . . .

The limit is in fact equal to ĥ(P ) = 47.9901859939..., well below the value |ΔE |1/2 =
207, 773.12....

The canonical height enjoys the following properties and, in fact, the canon-
ical height is defined so that it is (essentially) the only height that satisfies these
properties:

Proposition 16.6.3 (Néron–Tate). Let E/Q be an elliptic curve and let ĥ be the
canonical height on E.

(1) For all P,Q ∈ E(Q), ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q). (Note: this is
called the parallelogram law.)

(2) For all P ∈ E(Q) and m ∈ Z, ĥ(mP ) = m2 · ĥ(P ). (Note: in particular, the
height of mP is much larger than the height of P , for any m �= 0, 1.)

(3) Let P ∈ E(Q). Then ĥ(P ) ≥ 0, and ĥ(P ) = 0 if and only if P is a torsion
point.

For the proofs of these properties, see [Sil86, Ch. VIII, Thm. 9.3] or [Mil06, Ch.
IV, Prop. 4.5 and Thm. 4.7].
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As we mentioned at the beginning of this section, we can calculate upper bounds
on the rank of a given elliptic curve (see [Sil86, p. 235, Exercises 8.1 and 8.2]. Here
is an example:

Theorem 16.6.4 (Prop. 1.1 of [ALP08]). Let E/Q be an elliptic curve given by
a Weierstrass equation of the form

E : y2 = x3 +Ax2 +Bx, with A,B ∈ Z.

Let RE be the rank of E(Q). For an integer N ≥ 1, let ν(N) be the number of
distinct positive prime divisors of N . Then

RE ≤ ν(A2 − 4B) + ν(B)− 1.

More generally, let E/Q be any elliptic curve with a non-trivial 2-torsion point
and let a (resp. m) be the number of primes of additive (resp. multiplicative) bad
reduction of E/Q. Then

RE ≤ m+ 2a− 1.

Example 16.6.5. Let E/Q be the elliptic curve y2 = x(x + 1)(x + 2). Since the
Weierstrass equation of E is

y2 = x(x+ 1)(x+ 2) = x3 + 3x2 + 2x,

it follows from Theorem 16.6.4 that the rank RE satisfies

RE ≤ ν(A2 − 4B) + ν(B)− 1 = ν(1) + ν(2)− 1 = 0 + 1− 1 = 0,

and therefore the rank is 0. The reader can check that

E(Q)torsion = {O, (0, 0), (−1, 0), (−2, 0)}.

Since the rank is zero, the four torsion points on E/Q are the only rational points
on E.

Example 16.6.6. Let E : y2 = x3 + 2308x2 + 665858x. The primes 2 and 577 are
the only prime divisors of (both) B and A2 − 4B. Thus,

RE ≤ ν(A2 − 4B) + ν(B)− 1 = 2 + 2− 1 = 3.

The points P1 = (−1681, 25543), P2 = (−338, 26), and P3 = (577/16, 332929/64)
are of infinite order and the subgroup of E(Q) generated by P1, P2, and P3 is
isomorphic to Z3. Therefore, the rank of E is equal to 3.

We now turn to the problem of determining if a set of points is Z-linearly
dependent or independent. Let E/Q be the curve defined in Example 16.6.6. We
claimed that the subgroup generated by the points P1 = (−1681, 25543), P2 =
(−338, 26), and P3 = (577/16, 332929/64) is isomorphic to Z3. But how can we
show that? In particular, why is P3 not a linear combination of P1 and P2? In
other words, are there integers n1 and n2 such that P3 = n1P1 + n2P2? In fact,
E/Q has a rational torsion point T = (0, 0) of order 2, so could some combination
of P1, P2, and P3 equal T? This example motivates the need for a notion of linear
dependence and independence of points over Z.
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Definition 16.6.7. Let E/Q be an elliptic curve. We say that the rational points
P1, . . . , Pm ∈ E(Q) are linearly dependent over Z if there are integers n1, . . . , nm ∈
Z such that

n1P1 + n2P2 + · · ·+ nmPm = T,

where T is a torsion point. Otherwise, if no such relation exists, we say that the
points are linearly independent over Z.

Example 16.6.8. Let E/Q : y2 = x3 + x2 − 25x+ 39 and let

P1 =

(
61

4
,−469

8

)
, P2 =

(
−335

81
,−6868

729

)
, P3 = (21, 96).

The points P1, P2, and P3 are rational points on E and linearly dependent over Z

because
−3P1 − 2P2 + 6P3 = O.

Example 16.6.9. Let E/Q : y2 + y = x3 − x2 − 26790x+ 1696662 and put

P1 =

(
59584

625
,
71573

15625

)
,

P2 =

(
101307506181

210337009
,
30548385002405573

3050517641527

)
.

The points P1 and P2 are rational points on E, and they are linearly dependent
over Z because

−3P1 + 2P2 = (133,−685),

and (133,−685) is a torsion point of order 5.

Now that we have defined linear independence over Z, we need a method to
prove that a number of points are linearly independent. The existence of the Néron–
Tate pairing provides a way to prove independence.

Definition 16.6.10. The Néron–Tate pairing attached to an elliptic curve is de-
fined by

〈·, ·〉 : E(Q)× E(Q) → R, 〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q),

where ĥ is the canonical height on E. Let P1, P2, . . . , Pr be r rational points on
E(Q). The elliptic height matrix associated to {Pi}ri=1 is

H = H({Pi}ri=1) := (〈Pi, Pj〉)1≤i≤r, 1≤j≤r.

The determinant of H is called the elliptic regulator of the set of points {Pi}ri=1. If
{Pi}ri=1 is a complete set of generators of the free part of E(Q), then the determinant
of H({Pi}ri=1) is called the elliptic regulator of E/Q.

Theorem 16.6.11. Let E/Q be an elliptic curve. Then the Néron–Tate pairing
〈·, ·〉 associated to E is a non-degenerate symmetric bilinear form on the quotient
group E(Q)/E(Q)torsion; i.e.:

(1) For all P,Q ∈ E(Q), 〈P,Q〉 = 〈Q,P 〉.
(2) For all P,Q,R ∈ E(Q) and all m,n ∈ Z,

〈P,mQ+ nR〉 = m〈P,Q〉+ n〈P,R〉.
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(3) Suppose P ∈ E(Q) and 〈P,Q〉 = 0 for all Q ∈ E(Q). Then P ∈ E(Q)torsion.
In particular, P is a torsion point if and only if 〈P, P 〉 = 0.

The properties of the Néron–Tate pairing follow from those of the canonical
height in Proposition 16.6.3 (see Exercise 16.10.11). Theorem 16.6.11 has the fol-
lowing important corollary:

Corollary 16.6.12. Let E/Q be an elliptic curve and let P1, P2, . . . , Pr ∈ E(Q) be
rational points. Let H be the elliptic height matrix associated to {Pi}ri=1. Then:

(1) Suppose det(H) = 0 and u = (n1, . . . , nr) ∈ Ker(H), with ni ∈ Z. Then
the points {Pi}ri=1 are linearly dependent and

∑r
k=1 nkPk = T , where T is a

torsion point on E(Q).
(2) If det(H) �= 0, then the points {Pi}ri=1 are linearly independent and the rank

of E(Q) is ≥ r.

Here is an example of how the Néron–Tate pairing is used in practice:

Example 16.6.13. Let E/Q be the elliptic curve y2 = x3 + 2308x2 + 665858x.
Put

P = (−1681, 25543), Q = (−338, 26), and

R =

(
332929

36
,−215405063

216

)
.

Are P , Q, and R independent? In order to find out, we find the elliptic height
matrix associated to {P,Q,R}, using a computer algebra system (such as SageMath
[Sage]):

H =

⎛⎜⎝ 〈P, P 〉 〈Q,P 〉 〈R,P 〉
〈P,Q〉 〈Q,Q〉 〈R,Q〉
〈P,R〉 〈Q,R〉 〈R,R〉

⎞⎟⎠

=

⎛⎜⎝ 7.397 . . . −3.601 . . . 3.795 . . .

−3.601 . . . 6.263 . . . 2.661 . . .

3.795 . . . 2.661 . . . 6.457 . . .

⎞⎟⎠ .

The determinant of H seems to be very close to 0 (the computer returns 3.368 ·
10−27). Hence Corollary 16.6.12 suggests that P , Q, and R are not independent.
If we find the (approximate) kernel of H, we discover that the (column) vector
(1, 1,−1) is approximately in the kernel, and therefore, P +Q−R may be a torsion
point. Indeed, the point P +Q− R = (0, 0) is a torsion point of order 2 on E(Q).
Hence, P , Q, and R are linearly dependent over Z.

Instead, let P1 = (−1681, 25543), P2 = (−338, 26), P3 = (577/16, 332929/64)
and let H′ be the elliptic height matrix associated to {Pi}3i=1. Then det(H′) =
101.87727 . . . is non-zero and, therefore, the {Pi}3i=1 are linearly independent and
the rank of E/Q is at least 3.

16.7. Descent and the Weak Mordell–Weil Theorem

In the previous sections we have seen methods to calculate the torsion subgroup
of an elliptic curve E/Q and also methods to check if a collection of points are
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independent modulo torsion. However, we have not discussed any method to find
points of infinite order. In this section, we briefly explain the method of descent,
which facilitates the search for generators of the free part of E(Q). Unfortunately,
the method of descent is not always successful! We will try to measure the failure
of the method in the following section. The method of descent (as explained here)
is mostly due to Cassels. For a more detailed treatment, see [Was08] or [Sil86].
A more general descent algorithm was laid out by Birch and Swinnerton-Dyer in
[BSD63]. The current implementation of the algorithm is more fully explained in
Cremona’s book [Cre97].

Let E/Q be a curve given by y2 = x3 + Ax + B, with A,B ∈ Z. The most
general case of the method of descent is quite involved, so we will concentrate
on a particular case where the calculations are much easier: we will assume that
E(Q) has four distinct rational points of 2-torsion (including O). As we saw before
(Theorem 16.4.5 or Exercise 16.10.5), a point P = (x, y) ∈ E(Q) is of 2-torsion if
and only if y = 0 and x3+Ax+B = 0 (or P = O). Thus, if E(Q) has four distinct
rational points of order 2, that means that x3 + Ax+ B has three (integral) roots
and it factors completely over Z:

x3 +Ax+B = (x− e1)(x− e2)(x− e3)

with ei ∈ Z. Since x3 + Ax + B does not have an x2 term, we conclude that
e1 + e2 + e3 = 0.

Suppose, then, that E : y2 = (x − e1)(x− e2)(x− e3), where the roots satisfy
ei ∈ Z and e1 + e2 + e3 = 0. We would like to find a solution (x0, y0) ∈ E with
x0, y0 ∈ Q; i.e.,

y20 = (x0 − e1)(x0 − e2)(x0 − e3).

Thus, each term (x0 − ei) must be almost a square, and we can make this precise
by writing

(x0 − e1) = au2, (x0 − e2) = bv2, (x0 − e3) = cw2, y20 = abc(uvw)2,

where a, b, c, u, v, w ∈ Q, the numbers a, b, c ∈ Q are square-free, and abc is a square
(in Q).

Example 16.7.1. Let

E : y2 = x3 − 556x+ 3120 = (x− 6)(x− 20)(x+ 26)

so that e1 = 6, e2 = 20, and e3 = −26. The point (x0, y0) = ( 164184289 , 66469980
4913 ) is

rational and on E. We can write

x0 − e1 =
164184

289
− 6 = 2 ·

(
285

17

)2

and, similarly, x0−e2 = ( 39817 )2 and x0−e3 = 2·( 29317 )2. Thus, following the notation
of the preceeding paragraphs

a = 2, b = 1, c = 2, u =
285

17
, v =

398

17
, w =

293

17
.

Notice that abc is a square and y20 = ( 664699804913 )2 = abc(uvw)2.
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Example 16.7.2. Let E : y2 = x3 − 556x+ 3120 as before, with e1 = 6, e2 = 20,
and e3 = −26. Let P = (−8, 84), Q = (24, 60), and S = P + Q = (− 247

16 ,− 5733
64 ).

The points P , Q, and S are in E(Q). We would like to calculate the aforementioned
numbers a, b, c for each of the points P,Q, and S. For instance,

x(P )− e1 = −8− 6 = −14 = −14 · 12,
x(P )− e2 = −7 · 42, and x(P )− e3 = 2 · 32.

Thus, aP = −14, bP = −7, and cP = 2. Similarly, we calculate

x(Q)− 6 = 2 · 32, x(Q)− 20 = 22, x(Q) + 26 = 2 · 52,

x(S)− 6 = −7 ·
(
7

4

)2

,

x(S)− 20 = −7 ·
(
9

4

)2

, x(S) + 26 =

(
13

4

)2

.

Thus aQ = 2, bQ = 1, cQ = 2, and aS = −7, bS = −7, cS = 1. Notice the
following interesting fact:

aP · aQ = −28 = −7 · 22, bP · bQ = −7, cP · cQ = 4.

Therefore, the square-free part of aP · aQ equals aS = aP+Q = −7. And similarly,
the square-free parts of bP · bQ and cP · cQ equal bS = −7 and cS = 1, respectively.
Also, the reader can check that a2P = b2P = c2P = 1 and a2Q = b2Q = c2Q = 1.

The previous example points to the fact that there may be a homomorphism
between points on E(Q) and triples (a, b, c) of rational numbers modulo squares, or
square-free parts of rational numbers; formally, we are talking about Q×/(Q×)2 ×
Q×/(Q×)2 × Q×/(Q×)2. Here, the group Q×/(Q×)2 is the multiplicative group
of non-zero rational numbers, with the extra relation that two non-zero rational
numbers are equivalent if their square-free parts are equal (or, equivalently, if their
quotient is a perfect square). For instance, 3 and 12

25 represent the same element
of Q×/(Q×)2 because 12

25 = 3 ·
(
2
5

)2. The following theorem constructs such a
homomorphism. Here we have adapted the proof that appears in [Was08, Theorem
8.14].

Theorem 16.7.3. Let E/Q be an elliptic curve

y2 = x3 +Ax+B = (x− e1)(x− e2)(x− e3)

with distinct e1, e2, e3 ∈ Z and e1+e2+e3 = 0. There is a homomorphism of groups

δ : E(Q) → Q×/(Q×)2 ×Q×/(Q×)2 ×Q×/(Q×)2

defined for P = (x0, y0) by

δ(P ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1, 1, 1) if P = O,

(x0 − e1, x0 − e2, x0 − e3) if y0 �= 0,

((e1 − e2)(e1 − e3), e1 − e2, e1 − e3) if P = (e1, 0),

(e2 − e1, (e2 − e1)(e2 − e3), e2 − e3) if P = (e2, 0),

(e3 − e1, e3 − e2, (e3 − e1)(e3 − e2)) if P = (e3, 0).

If δ(P ) = (δ1, δ2, δ3), then δ1 · δ2 · δ3 = 1 in Q×/(Q×)2. Moreover, the kernel of δ
is precisely 2E(Q); i.e., if δ(Q) = (1, 1, 1), then Q = 2P for some P ∈ E(Q).
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Proof. Let δ be the function defined in the statement of the theorem. Let us
show that δ is a homomorphism of (abelian) groups; i.e., we want to show that
δ(P ) · δ(Q) = δ(P + Q). Notice first of all that δ(P ) = δ(x0, y0) = δ(x0,−y0) =
δ(−P ), because the definition of δ does not depend on the sign of the y-coordinate
of P (in fact, it only depends on whether y(P ) = 0). Thus, it suffices to prove that
δ(P ) · δ(Q) = δ(−(P +Q)) for all P,Q ∈ E(Q).

Let P = (x0, y0), Q = (x1, y1), and R = −(P + Q) = (x2, y2), and let us
assume, for simplicity, that yi �= 0 for i = 1, 2, 3. By the definition of the addition
rule on an elliptic curve (see Figure 16.2), the points P , Q, and R are collinear. Let
L = PQ be the line that goes through all three points, and suppose it has equation
L : y = ax + b. Therefore, if we substitute y in the equation of E/Q, we obtain a
polynomial

p(x) = (ax+ b)2 − (x− e1)(x− e2)(x− e3).

The polynomial p(x) is cubic, its leading term is −1, and it has precisely three
rational roots, namely x0, x1, and x2. Hence, it factors as

p(x) = (ax+ b)2 − (x− e1)(x− e2)(x− e3) = −(x− x0)(x− x1)(x− x2).

If we evaluate p(x) at x = ei, we obtain

p(ei) = (aei + b)2 = −(ei − x0)(ei − x1)(ei − x2),

or, equivalently, (x0 − ei)(x1 − ei)(x2 − ei) = (aei + b)2. Thus, the product δ(P ) ·
δ(Q) · δ(R) equals

δ(P ) · δ(Q) · δ(R) = (x0 − e1, x0 − e2, x0 − e3)

·(x1 − e1, x1 − e2, x1 − e3)

·(x2 − e1, x2 − e2, x2 − e3)

= ((x0 − e1)(x1 − e1)(x2 − e1),

(x0 − e2)(x1 − e2)(x2 − e2),

(x0 − e3)(x1 − e3)(x2 − e3))

= ((ae1 + b)2, (ae2 + b)2, (ae3 + b)2)

= (1, 1, 1) ∈ (Q×/(Q×)2)3.

Hence, δ(P ) · δ(Q) · δ(R) = 1. If we multiply both sides by δ(R) and notice that
a2 = 1 for any a ∈ Q×/(Q×)2, we conclude that

δ(P ) · δ(Q) = δ(R) = δ(−(P +Q)) = δ(P +Q),

as desired. In order to completely prove that δ is a homomorphism, we would need
to check the cases when P , Q, or R is one of the points (ei, 0) or O, but we leave
those special cases for the reader to check (Exercise 16.10.14).

If δ(P ) = (δ1, δ2, δ3), then it follows directly from the definition of δ that
δ1 · δ2 · δ3 = 1 in Q×/(Q×)2. Indeed, this is clear for P = O or P = (ei, 0), and if
P = (x0, y0) with y0 �= 0, then (x0 − e1)(x0 − e2)(x0 − e3) = y20 , which is a square
and is therefore trivial in Q×/(Q×)2.

Next, let us show that the kernel of δ is 2E(Q). Clearly, 2E(Q) is in the kernel
of δ, because δ is a homomorphism with image in (Q×/(Q×)2)3, as we just proved.
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Indeed, if P ∈ E(Q), then

δ(2P ) = δ(P ) · δ(P ) = δ(P )2 = (δ21 , δ
2
2 , δ

2
3) = (1, 1, 1),

because squares are trivial in Q×/(Q×)2.
Now let us show the reverse inclusion, i.e., that the kernel of δ is contained

in 2E(Q). Let Q = (x1, y1) ∈ E(Q) such that δ(Q) = (1, 1, 1). We want to find
P = (x0, y0) such that 2P = Q. Notice that it is enough to show that x(2P ) = x1,
because 2P is a point on E(Q) and if x(2P ) = x(Q), then Q = 2(±P ). Hence, our
goal will be to construct (x0, y0) ∈ E(Q) such that

x(2P ) =
x4
0 − 2Ax2

0 − 8Bx0 +A2

4y20
= x1.

The formula for x(2P ) above is given in Exercise 16.10.15.
Once again, for simplicity, let us assume y(Q) = y1 �= 0 and, as stated above,

we assume δ(Q) = (1, 1, 1). Hence, x1 − ei is a square in Q for i = 1, 2, 3. Let us
write

x1 − ei = t2i , for some ti ∈ Q×.(16.8)

We define a new auxiliary polynomial p(x) by

t1
(x− e2)(x− e3)

(e1 − e2)(e1 − e3)
+ t2

(x− e1)(x− e3)

(e2 − e1)(e2 − e3)
+ t3

(x− e1)(x− e2)

(e3 − e1)(e3 − e2)
.

The polynomial p(x) is an interpolating polynomial (or Lagrange polynomial) which
was defined so that p(ei) = ti. Notice that p(x) is a quadratic polynomial, say
p(x) = a + bx + cx2. Also define another polynomial q(x) = x1 − x − p(x)2 and
notice that

q(ei) = x1 − ei − p(ei)
2 = x1 − ei − t2i = 0

from the definition of ti in (16.8). Since q(ei) = 0, it follows that (x − ei) divides
q(x) for i = 1, 2, 3. Thus, (x− e1)(x− e2)(x− e3) = x3 + Ax+B divides q(x). In
other words, q(x) ≡ 0 mod x3 +Ax+B. Since q(x) = x1 − x− p(x)2, we can also
write

x1 − x ≡ p(x)2 ≡ (a+ bx+ cx2)2 mod (x3 +Ax+B).

We shall expand the square on the right-hand side, modulo f(x) = x3 + Ax + B.
Notice that x3 ≡ −Ax−B and x4 ≡ −Ax2 −Bx modulo f(x):

x1 − x ≡ p(x)2 ≡ (a+ bx+ cx2)2

≡ c2x4 + 2bcx3 + (2ac+ b2)x2 + 2abx+ a2

≡ c2(−Ax2 −Bx) + 2bc(−Ax−B)

+(2ac+ b2)x2 + 2abx+ a2

≡ (2ac+ b2 −Ac2)x2

+(2ab−Bc2 − 2Abc)x+ (a2 − 2bcB),

where all the congruences are modulo f(x) = x3 + Ax + B. The congruences in
the previous equation say that a polynomial of degree 1, call it g(x) = x1 − x, is
congruent to a polynomial of degree ≤ 2, call the last line h(x), modulo a polynomial
of degree 3, namely f(x). Then h(x)− g(x) is a polynomial of degree ≤ 2, divisible
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by a polynomial of degree 3. This implies that h(x) − g(x) must be zero and
h(x) = g(x); i.e.,

x1 − x = (2ac+ b2 −Ac2)x2 + (2ab−Bc2 − 2Abc)x+ (a2 − 2bcB).

If we match coefficients, we obtain the following equalities:

2ac+ b2 −Ac2 = 0,(16.9)
2ab−Bc2 − 2Abc = −1,(16.10)

a2 − 2bcB = x1.(16.11)

If c = 0, then b = 0 by (16.9); therefore, p(x) = a + bx + cx2 = a is a constant
function, and so t1 = t2 = t3. By (16.8), it follows that e1 = e2 = e3, which is a
contradiction to our assumptions. Hence, c must be non-zero. We multiply (16.10)
by 1

c2 and (16.9) by b
c3 to obtain

2ab

c2
−B − 2Ab

c
= − 1

c2
,(16.12)

2ab

c2
+

b3

c3
− Ab

c
= 0.(16.13)

We subtract (16.12) from (16.13) to get(
b

c

)3

+A

(
b

c

)
+B =

(
1

c

)2

.

Hence, the point P = (x0, y0) = ( bc ,
1
c ) is a rational point on E(Q). It remains to

show that x(2P ) = x(Q). From (16.13) we deduce that

a =
Ab
c − b3

c3

2b
c2

=
A−

(
b
c

)2
2 · 1

c

=
A− x2

0

2y0
,

and, therefore, substituting a into (16.11) yields

x(Q) = x1 = a2 − 2bcB =

(
A− x2

0

2y0

)2

− 2bcB

=
(A2 − 2Ax2

0 + x4
0)− (2bcB)(4y20)

4y20

=
(A2 − 2Ax2

0 + x4
0)− (2bcB)( 4

c2 )

4y20

=
(A2 − 2Ax2

0 + x4
0)− 8Bx0

4y20

=
x4
0 − 2Ax2

0 − 8Bx0 +A2

4y20
= x(2P ),

as desired. In order to complete the proof of the fact that the kernel of δ is 2E(Q),
we would need to consider the case when y(Q) = y1 = 0, but we leave this special
case to the reader (Exercise 16.10.17). �

Thus, the previous proposition shows that there is a homomorphism δ : E(Q) →
(Q×/(Q×)2)3 with kernel equal to 2E(Q). In fact, the theorem shows that there is
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a homomorphism from E(Q) into

Γ = {(δ1, δ2, δ3) ∈ (Q×/(Q×)2)3 : δ1 · δ2 · δ3 = 1 ∈ Q×/(Q×)2}.

Hence, δ induces an injection

E(Q)/2E(Q) ↪→ Γ ⊂ (Q×/(Q×)2)3.

The groups Q×/(Q×)2 and Γ are infinite, so such an injection does not tell us much
about the size of E(Q)/2E(Q). However, the image of E(Q)/2E(Q) is much smaller
than Γ.

Example 16.7.4. Let E : y2 = x3 − 556x + 3120 as in Example 16.7.2. It turns
out that E(Q) ∼= Z/2Z ⊕ Z/2Z ⊕ Z2. The generators of the torsion part are
T1 = (6, 0) and T2 = (20, 0), and the generators of the free part are P = (−8, 84)
and Q = (24, 60). The image of the map δ in this case is, therefore, generated by
the images of T1, T2, P , and Q:

δ(T1) = (−7,−14, 2), δ(T2) = (14, 161, 46),

δ(P ) = (−14,−7, 2), δ(Q) = (2, 1, 2).

Thus, the image of δ is formed by the 16 elements that one obtains by multiplying
out δ(T1), δ(T2), δ(P ), and δ(Q), in all possible ways. Thus, δ(E(Q)/2E(Q)) is the
group

{(1, 1, 1), (−7,−14, 2), (14, 161, 46), (−2,−46, 23),

(−14,−7, 2), (2, 2, 1), (−1,−23, 23), (7, 322, 46),

(2, 1, 2), (−14,−14, 1), (7, 161, 23), (−1,−46, 46),

(−7,−7, 1), (1, 2, 2), (−2,−23, 46), (14, 322, 23)}.

(Exercise: check that the elements listed above form a group under multiplication.)
We see that the only primes that appear in the factorization of the coordinates of
elements in the image of δ are 2, 7, and 23. Therefore, the coordinates of δ are not
just in Q×/(Q×)2 but in a much smaller subgroup of 16 elements:

Γ′ = {±1, ±2, ±7, ±23, ±14, ±46, ±161, ±322} ⊂ Q×/(Q×)2.

And the image of E(Q)/2E(Q) embeds into

ΓΔ = {(δ1, δ2, δ3) ∈ Γ′ × Γ′ × Γ′ : δ1 · δ2 · δ3 = 1 ∈ Q×/(Q×)2}
⊂ Γ′ × Γ′ × Γ′.

Since Γ′ has 16 elements and E(Q)/2E(Q) embeds into (Γ′)3, we conclude that
E(Q)/2E(Q) has at most (16)3 = 212 elements. In fact, ΓΔ has only 162 elements,
so E(Q)/2E(Q) has at most 28 elements. Notice also the following interesting
“coincidence”: the prime divisors that appear in ΓΔ coincide with the prime divisors
of the discriminant of E, which is ΔE = 6795034624 = 218 · 72 · 232. In the next
proposition we explain that, in fact, this is always the case.

Proposition 16.7.5. Let E : y2 = (x − e1)(x − e2)(x − e3), with ei ∈ Z. Let
P = (x0, y0) ∈ E(Q) and write

(x0 − e1) = au2, (x0 − e2) = bv2, (x0 − e3) = cw2, y20 = abc(uvw)2,
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where a, b, c, u, v, w ∈ Q, the numbers a, b, c ∈ Z are square-free, and abc is a
square (in Z). Then, if p divides a · b · c, then p also divides the quantity Δ =
(e1 − e2)(e2 − e3)(e1 − e3).

Note: the discriminant of E equals ΔE = 16(e1 − e2)
2(e2 − e3)

2(e1 − e3)
2, so

ΔE = 16Δ2, where Δ is as in Proposition 16.7.5. Thus, a prime p divides Δ if and
only if p divides ΔE . (This is clear for p > 2; see Exercise 16.10.18 for p = 2.)

Proof. Suppose a prime p divides abc. Then p divides a, b, or c. Let us assume
that p | a (the same argument works if p divides b or c). Let pk be the exact power
of p that appears in the factorization of the rational number x0 − e1 = au2. Notice
that k may be positive or negative, depending on whether p divides the numerator
or denominator of au2. Notice, however, that k must be odd, because p | a and a
is square-free.

Suppose first that k < 0; i.e., p|k| is the exact power of p that divides the
denominator of x0 − e1. Since ei ∈ Z, it follows that p|k| must divide the denomi-
nator of x0 too, and therefore p|k| is the exact power that divides the denominators
of x0 − e2 and x0 − e3 as well. Hence, p3|k| is the exact power of p dividing the
denominator of y20 =

∏
(x0 − ei), but this is impossible because y20 is a square and

3|k| is odd. Thus, k must be positive.
If k > 0 and p divides x0 − e1, then the denominator of x0 is not divisible

by p, so it makes sense to consider x0 mod p and x0 ≡ e1 mod p. Similarly, the
denominators of x0 − e2 and x0 − e3 are not divisible by p and

bv2 ≡ x0 − e2 ≡ e1 − e2 and cw2 ≡ x0 − e3 ≡ e1 − e3 mod p.

Since y20 = abc(uvw)2 and p divides a, then p must also divide one of b or c.
Let us suppose it also divides b. Then 0 ≡ bv2 ≡ x0 − e2 ≡ e1 − e2 mod p and
Δ = (e1 − e2)(e2 − e3)(e1 − e3) ≡ 0 mod p, as claimed. �

The definition of the map δ and the previous proposition yield the following
immediate corollary:

Corollary 16.7.6. With notation as in the previous theorem and proposition, de-
fine a subgroup Γ′ of Q×/(Q×)2 by

Γ′ = {n ∈ Z : 0 �= n is square-free and if p | n, then p | Δ}/(Z×)2.

Then, δ induces an injection of E(Q)/2E(Q) into

ΓΔ = {(δ1, δ2, δ3) ∈ Γ′ × Γ′ × Γ′ : δ1 · δ2 · δ3 = 1 ∈ Q×/(Q×)2}
⊂ Γ′ × Γ′ × Γ′.

We are ready to prove the weak Mordell–Weil theorem (Theorem 16.3.5), at
least in our restricted case:

Corollary 16.7.7 (Weak Mordell–Weil theorem). Let

E : y2 = (x− e1)(x− e2)(x− e3)

be an elliptic curve, with ei ∈ Z. Then E(Q)/2E(Q) is finite.

Proof. By Corollary 16.7.6, E(Q)/2E(Q) injects into ΓΔ ⊂ Γ′ × Γ′ × Γ′. Since Γ′

is finite, E(Q)/2E(Q) is finite as well. �

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



16.8. Homogeneous Spaces 467

16.8. Homogeneous Spaces

In this section we want to make the weak Mordell–Weil theorem explicit; i.e., we
want

• explicit bounds on the size of E(Q)/2E(Q) and
• a method to find generators of E(Q)/2E(Q) (see Exercise 16.10.24, though).

Before we discuss bounds, we need to understand the structure of the quotient
E(Q)/2E(Q). Remember that, from the Mordell–Weil theorem (Theorem 16.3.3),
E(Q) ∼= T ⊕ ZRE where T = E(Q)torsion is a finite abelian group. Therefore,

E(Q)/2E(Q) ∼= T/2T ⊕ (Z/2Z)RE .

In our restricted case, we have assumed all along that E(Q) contains four points
of 2-torsion, namely O and (ei, 0), for i = 1, 2, 3. And, by Exercise 16.10.5, E(Q)
cannot have more points of order 2. Thus, T/2T ∼= Z/2Z ⊕ Z/2Z (see Exercise
16.10.19).

Hence, the size of E(Q)/2E(Q) is exactly 2RE+2, under our assumptions. Recall
that we defined ν(N) to be the number of distinct prime divisors of an integer N .
We prove our first bound:

Proposition 16.8.1. Let E : y2 = (x − e1)(x − e2)(x − e3) be an elliptic curve,
with ei ∈ Z. Then the rank of E(Q) is RE ≤ 2ν(ΔE).

Proof. If the quantity ΔE has ν = ν(ΔE) distinct (positive) prime divisors, then
we claim that the set

Γ′ = {n ∈ Z : 0 �= n is square-free and if p | n, then p | Δ}/(Z×)2

has precisely 2ν(ΔE)+1 elements. Indeed, if ΔE = ps11 · · · psνν , then

Γ′ = {(−1)t0pt11 · · · ptνν : ti = 0 or 1 for i = 0, . . . , ν}.

Thus, Γ′ has as many elements as {(t0, . . . , tν) : ti = 0 or 1}, which has 2ν+1

elements. Moreover, the set ΓΔ, as defined in Corollary 16.7.6, has as many elements
as Γ′ × Γ′, i.e., 22ν+2 elements. Since E(Q)/2E(Q) injects into ΓΔ, we conclude
that it also has at most 22ν+2 elements. Since the size of E(Q)/2E(Q) is 2RE+2,
we conclude that RE + 2 ≤ 2ν + 2 and RE ≤ 2ν, as claimed. �

Example 16.8.2. Let

E : y2 = x3 − 1156x = x(x− 34)(x+ 34).

The discriminant of E/Q is ΔE = 98867482624 = 212 · 176. Hence, ν(ΔE) = 2 and
the rank of E is at most 4. (The rank is in fact 2; see Example 16.8.4 below.)

The bound RE ≤ 2ν(ΔE) is, in general, not very sharp (Theorem 16.6.4 is an
improvement). However, the method we followed to come up with the bound yields
a strategy to find generators for E(Q)/2E(Q) as follows. Recall that E(Q)/2E(Q)
embeds into ΓΔ via the map δ, so we want to identify which elements of ΓΔ may
belong to the image of δ. Suppose (δ1, δ2, δ3) ∈ ΓΔ belongs to the image of δ and
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it is not the image of a torsion point. Then there exists P = (x0, y0) ∈ E(Q) such
that ⎧⎪⎪⎪⎨⎪⎪⎪⎩

y20 = (x0 − e1)(x0 − e2)(x0 − e3),

x0 − e1 = δ1u
2,

x0 − e2 = δ2v
2,

x0 − e3 = δ3w
2

for some rational numbers u, v, w. We may substitute the last equation into the
previous two and obtain {

e3 − e1 = δ1u
2 − δ3w

2,

e3 − e2 = δ2v
2 − δ3w

2.

Recall that the elements (δ1, δ2, δ3) that are in the image of δ satisfy δ1 · δ2 · δ3 = 1
modulo squares. Thus, δ3 = δ1 ·δ2 ·λ2 and if we do a change of variables (u, v, w) �→
(X,Y, Zλ ), we obtain a system

C(δ1, δ2) :

{
e3 − e1 = δ1X

2 − δ1δ2Z
2,

e3 − e2 = δ2Y
2 − δ1δ2Z

2,

or, equivalently, one can subtract both equations to get

C(δ1, δ2) :

{
e1 − e2 = δ2Y

2 − δ1X
2,

e3 − e2 = δ2Y
2 − δ1δ2Z

2.

The space C(δ1, δ2) is the intersection of two conics, and it may have rational
points or not. If (δ1, δ2, δ3) is in the image of δ, however, then the space C(δ1, δ2)
must have a rational point; i.e., there are X,Y, Z ∈ Q that satisfy the equations of
C(δ1, δ2). Moreover, if X0, Y0, Z0 ∈ Q are the coordinates of a point in C(δ1, δ2),
then

P = (e1 + δ1X
2
0 , δ1δ2X0Y0Z0)(16.14)

is a rational point on E(Q) such that δ(P ) = (δ1, δ2, δ3). The spaces C(δ1, δ2) are
called homogeneous spaces and are extremely helpful when we try to calculate the
Mordell–Weil group of an elliptic curve. We record our findings in the form of a
proposition, for later use:

Proposition 16.8.3. Let E/Q be an elliptic curve with Weierstrass equation y2 =
(x−e1)(x−e2)(x−e3), with ei ∈ Z and e1+e2+e3 = 0. Let δ : E(Q)/2E(Q) ↪→ ΓΔ

be the injection given by Corollary 16.7.7, and let δ(E) := δ(E(Q)/2E(Q)) be the
image of δ in ΓΔ. Then:

(1) If (δ1, δ2, δ3) ∈ δ(E), then the space C(δ1, δ2) has a point (X0, Y0, Z0) with
rational coordinates, X0, Y0, Z0 ∈ Q.

(2) Conversely, if C(δ1, δ2) has a rational point (X0, Y0, Z0), then E(Q) has a
rational point

P = (e1 + δ1X
2
0 , δ1δ2X0Y0Z0).

(3) Since δ is a homomorphism and δ(E) is the image of δ, it follows that δ(E)
is a subgroup of ΓΔ. In particular:

• If (δ1, δ2, δ3) and (δ′1, δ
′
2, δ

′
3) are elements of the image, then their product

(δ1 · δ′1, δ2 · δ′2, δ3 · δ′3) is also in the image.
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• If (δ1, δ2, δ3) ∈ δ(E) but (δ′1, δ′2, δ′3) ∈ ΓΔ is not in the image, then their
product (δ1 · δ′1, δ2 · δ′2, δ3 · δ′3) is not in the image δ(E).

• If C(δ1, δ2) and C(δ′1, δ
′
2) have rational points, then C(δ1 · δ′1, δ2 · δ′2) also

has a rational point.
• If C(δ1, δ2) has a rational point but C(δ′1, δ

′
2) does not have a rational

point, then C(δ1 · δ′1, δ2 · δ′2) does not have a rational point.

Example 16.8.4. Let E : y2 = x3−1156x = x(x−34)(x+34). The only divisors of
ΔE are 2 and 17. Thus, Γ′ = {±1,±2,±17,±34}. Let us choose e1 = 0, e2 = −34,
and e3 = 34. Therefore, the homogeneous spaces for this curve are all of the form

C(δ1, δ2) :

{
δ2Y

2 − δ1X
2 = 34,

δ2Y
2 − δ1δ2Z

2 = 68

with δ1, δ2 ∈ Γ′. We analyze these spaces, case by case. There are 64 pairs (δ1, δ2)
to take care of:

(1) ((δ1, δ2, δ3) = (1, 1, 1)). The point at infinity (i.e., the origin) is sent to (1, 1, 1)
via δ; i.e., δ(O) = (1, 1, 1).

(2) (δ1 < 0 and δ2 < 0). The equation δ2Y
2 − δ1δ2Z

2 = 68 cannot have solutions
(in Q or R) because the left-hand side is always negative for any X,Z ∈ Q.

(3) (δ1 > 0 and δ2 < 0). The equation δ2Y
2 − δ1X

2 = 34 cannot have solutions
(in Q or R) because the left-hand side is always negative.

(4) (δ1 = −1, δ2 = 34). The space C(−1, 34) has a rational point (X,Y, Z) =
(0, 1, 1), which maps to T1 = (0, 0) on E(Q) via (16.14).

(5) (δ1 = −34, δ2 = 2). The space C(−34, 2) has the rational point (X,Y, Z) =
(1, 0, 1), which maps to T2 = (−34, 0) on E(Q) via (16.14).

(6) (δ1 = 34, δ2 = 17). If δ(T1) = δ((0, 0)) equals (−1, 34,−34) and δ(T2) =
(−34, 2,−17), then

δ(T1 + T2) = δ(T1) · δ(T2) = (−1, 34,−34) · (−34, 2,−17) = (34, 17, 2).

Thus, the space C(34, 17) must have a point that maps back to T1 + T2 =
(34, 0). Indeed, C(34, 17) has a point (X,Y, Z) = (1, 2, 0) that maps to (34, 0)
via (16.14).

(7) (δ1 = −1, δ2 = 2). The space C(−1, 2) has a rational point (X,Y, Z) =
(4, 3, 5), which maps to P = (−16,−120) on E(Q) via (16.14). P is a point of
infinite order.

(8) ((δ1, δ2) = (1, 17), (34, 1), or (−34, 34)). These are the pairs that correspond
to (−1, 2) · γ, with γ = (−1, 34), (−34, 2), or (34, 17). Therefore, the cor-
responding spaces C(δ1, δ2) must have rational points that map to P + T1,
P + T2, and P + T1 + T2, respectively.

(9) (δ1 = −2, δ2 = 2). The space C(−2, 2) has a rational point (X,Y, Z) =
(1, 4, 3), which maps to Q = (−2,−48) on E(Q) via (16.14). Q is a point of
infinite order.
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(10) ((δ1, δ2) = (2, 17), (17, 1), or (−17, 34)). These are the pairs that correspond
to (−2, 2) · γ, with γ = (−1, 34), (−34, 2), or (34, 17). Therefore, the cor-
responding spaces C(δ1, δ2) must have rational points that map to Q + T1,
Q+ T2, and Q+ T1 + T2, respectively.

(11) ((δ1, δ2) = (2, 1), and (−2, 34), (−17, 2), or (17, 17)). Since (−1, 2) and (−2, 2)
correspond to P and Q, respectively, then (−1, 2) ·(−2, 2) = (2, 1) corresponds
to P +Q. The other pairs correspond to (2, 1) ·γ, with γ = (−1, 34), (−34, 2),
or (34, 17). Therefore, the corresponding spaces C(δ1, δ2) must have rational
points that map to P +Q+T1, P +Q+T2, and P +Q+T1+T2, respectively.

(12) (δ1 = 1, δ2 = 2). The space C(1, 2) does not have rational points (see Exercise
16.10.20). In fact, it does not have solutions in Q2, the field of 2-adic numbers
(see Section 11.5 for an introduction to p-adic numbers).

(13) ((δ1, δ2) = (2, 2), (17, 2), (34, 2), (−1, 1), (−2, 1), (−17, 1), (−34, 1), (−1, 17),
(−2, 17), (−17, 17), (−34, 17), (1, 34), (2, 34), (17, 34), (34, 34)). The corre-
sponding spaces C(δ1, δ2) do not have rational points. For instance, suppose
C(2, 2) had a point. Then (2, 2, 1) would be in the image of δ. Since (2, 1, 2)
is in the image of δ (we already saw above that C(2, 1) has a point), then
(2, 1, 2) · (2, 2, 1) = (1, 2, 2) would also be in the image of δ, but we just saw
(in the previous item) that (1, 2, 2) is not in the image of δ. Therefore, we
have reached a contradiction and C(2, 2) cannot have a rational point. One
can rule out all the other (δ1, δ2) in the list similarly.

We have analyzed all 64 possible pairs (δ1, δ2) and have found that the image
of E(Q)/2E(Q) via δ has order 24. Therefore, 2RE+2 = 24 and RE = 2. The rank
of the curve is exactly 2 and T1, T2, P , and Q (as found above) are generators of
E(Q)/2E(Q). (In fact, they are generators of E(Q) as well.)

Example 16.8.5. Let E : y2 = x3 − 6724x = x(x − 82)(x + 82). Let e1 = 0,
e2 = −82, and e3 = 82. The only divisors of ΔE are 2 and 41; hence Γ′ =
{±1,±2,±41,±82}. Let us analyze the homogeneous spaces

C(δ1, δ2) :

{
δ2Y

2 − δ1X
2 = 82,

δ2Y
2 − δ1δ2Z

2 = 164

as we did in the previous example. Once again, there are 64 pairs to check:

(1) ((δ1, δ2, δ3) = (1, 1, 1)). The point at infinity (i.e., the origin) is sent to (1, 1, 1)
via δ; i.e., δ(O) = (1, 1, 1).

(2) (δ1 < 0 and δ2 < 0). The equation δ2Y
2 − δ1δ2Z

2 = 164 cannot have rational
solutions because the left-hand side is always negative for any X,Z ∈ Q.

(3) (δ1 > 0 and δ2 < 0). The equation δ2Y
2 − δ1X

2 = 82 cannot have rational
solutions because the left-hand side is always negative.

(4) ((δ1, δ2) = (−1, 82), (−82, 2), (82, 41)). The corresponding spaces have (triv-
ial) rational points that map, respectively, to T1 = (0, 0), T2 = (−82, 0), and
T3 = T1 + T2 = (82, 0) via (16.14).

(5) ((δ1, δ2) = (1, 2)). The space C(1, 2) does not have rational points (same
reason as for Exercise 16.10.20). In fact, it does not have any solutions over
Q2.
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(6) ((δ1, δ2) = (−1, 41), (−82, 1), (82, 82)). The corresponding spaces cannot have
rational points because these elements of ΓΔ are the product of (1, 2, 2), with
no points, times (−1, 82,−82), (−82, 2,−41), (82, 41, 2), which do have points
by a previous item in this list.

How about all the other possible pairs (δ1, δ2)? Consider (−1, 2,−2) and its homo-
geneous space:

C(−1, 2) :

{
2Y 2 +X2 = 82,

2Y 2 + 2Z2 = 164.

Let us show that there are solutions to C(−1, 2) over R, Q2, and Q41:

• (Over R). The point (0,
√
41,

√
41) is a point on C(−1, 2) defined over R.

• (Over Q41). Let Y0 = 1 and put f(X) = X2−80, g(Z) = Z2−81. By Hensel’s
lemma (see Section 11.6 and Corollary 11.6.4), it suffices to show that there
are α0, β0 ∈ F41 such that

f(α0) = g(β0) ≡ 0 mod 41 and f ′(α0), g′(β0) �≡ 0 mod 41.

The reader can check that the congruences α0 ≡ 11 mod 41 and β0 ≡ 9 mod 41
work. Thus, there are α, β ∈ Q41 such that f(α) = 0 = g(β). Hence,
(X0, Y0, Z0) = (α, 1, β) is a point on C(−1, 2) defined over Q41, as desired.

• (Over Q2). Let X0 = 0 and put f(Y ) = Y 2 − 41. Let α0 = 1. Then
f(α0) = −40, f ′(α0) = 82, and

3 = ν2(−40) > ν2(82
2) = ν2(2

2 · 412) = 2.

Thus, by Hensel’s lemma (Theorem 11.6.3; see also Example 11.6.6), there is
α ∈ Q2 such that f(α) = 0, or α2 = 41. Hence, the point (X0, Y0, Z0) =
(0, α, α) is a point on C(−1, 2) defined over Q2, as desired.

One can also show that, in fact, C(−1, 2) has a point over Qp for all p ≥ 2.
Therefore, we cannot deduce any contradictions working locally about whether
C(−1, 2) has a point over Q. A computer search does not yield any Q-points on
C(−1, 2). Therefore, our method breaks at this point, and we cannot determine
whether there is a point on E(Q) that comes from C(−1, 2).

It turns out that C(−1, 2) does not have rational points (but this is difficult
to show). This type of space, a space that has solutions everywhere locally (Qp,
R) but not globally (Q) is the main obstacle for the descent method to fully work.
These ideas lead to the definition of Selmer and Shafarevich–Tate groups attached
to elliptic curves. We will not define these concepts here, but the reader can learn
about them in [Loz11] (starting with Section 2.11), which is the natural sequel of
this book.

16.9. Application: The Elliptic Curve Diffie–Hellman Key Exchange

In this section we present an application of elliptic curves to cryptography. The el-
liptic curve Diffie–Hellman (ECDH) key exchange is a variant of the Diffie–Hellman
(DH) method that we explained back in Section 8.9.1. As for the standard DH key
exchange, the goal is to agree on a private key through an insecure public channel.
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The ECDH protocol is currently used by popular texting apps, such as WhatsApp,
to provide end-to-end encryption for their users’ messages.
Elliptic curve Diffie–Hellman key exchange:

(1) Alice and Bob agree on a (large) prime number p, an elliptic curve E defined
over Fp, and a point P ∈ E(Fp) of large order, through a public channel.

(2) Alice chooses her secret key, an integer a > 1, and Bob chooses his secret key,
an integer b > 1.

(3) Alice computes the point A = a · P , and Bob computes B = b · P ∈ E(Fp).
(4) Alice sends A to Bob, and Bob sends B to Alice, through a public channel.
(5) Alice computes KA = a ·B, and Bob computes KB = b ·A ∈ E(Fp).
(6) The secret key shared by Alice and Bob is K = KA = KB ∈ E(Fp).

Indeed, the keys KA and KB coincide as points in E(Fp):

KA = a ·B = a · (b · P ) = (ab) · P = b · (a · P ) = b ·A = KB.

Notice that we have used the fact that addition on an elliptic curve is commutative
and associative.

Remark 16.9.1. As in the security analysis of the standard Diffie–Hellman key
exchange (see Remark 8.9.1), the security of the exchange relies on the fact that,
given a large prime p, an elliptic curve E defined over Fp, a point of large order
P ∈ E(Fp), and some multiple A of P , it is computationally expensive (i.e., time-
and memory-consuming) to find a ≥ 1 such that a · P = A ∈ E(Fp). This is called
the elliptic curve discrete logarithm problem. The ECDH protocol is in general
preferred over DH because the elliptic curve discrete logarithm problem seems to
be much harder to solve than the standard discrete logarithm problem, due to
the fact that the addition on an elliptic curve E/Fp is much more intricate than
multiplication in (Z/pZ)×. Thus, the same size keys afford greater security using
an ECDH key exchange than via a DH protocol.

Example 16.9.2. Alice and Bob set up an ECDH key exchange as follows:

(1) Alice and Bob agree on a prime number p = 103, an elliptic curve E defined
over F103,

E : y2 = x3 − 2,

and a point P = (3, 5) ∈ E(F103), through a public channel. (The order of P
is 91.)

(2) Alice chooses her secret key, a = 12, and Bob chooses his secret key, b = 29.
(3) Alice computes the point A = 12 · P = (21, 35), and Bob computes B =

29 · P = (39, 68) ∈ E(F103).
(4) Alice sends A to Bob, and Bob sends B to Alice, through a public channel.
(5) Alice computes KA = 12 · B = (58, 50), and Bob computes KB = 29 · A =

(58, 50) ∈ E(Fp).
(6) The secret key shared by Alice and Bob is K = KA = KB = (58, 50) ∈

E(F103).
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Usually, we use the x-coordinate as the secret, so 58 may be used, for instance,
as a key (k1, k2) = (5, 8) for a Vigenère cipher (see Section 4.6.4). The reader can
find examples of elliptic curve discrete logarithm problems and the elliptic curve
Diffie–Hellman key exchange in Exercises 16.10.26, 16.10.27, and 16.10.28.

16.10. Exercises

Exercise 16.10.1. The graph of an elliptic curve E defined over Q is sketched in
Figure 16.6. Use the geometric definition of the addition law on the points on E to
draw the approximate position of the points P +Q, 2S = S + S, and P + 2S.

Figure 16.6. Draw the approximate position of the points P +Q, 2S, and P + 2S.

Exercise 16.10.2. Let E be the elliptic curve y2 = x3+3x+5 over the finite field
F13. Is P = (4, 4) a point on the curve E?

Exercise 16.10.3. Let E be the elliptic curve y2 = x3 + x + 1 defined over the
field F5. Let P = (0, 1) and Q = (2, 4).

(1) Use the formulas of addition on an elliptic curve to compute the point P +Q.

(2) Use the formulas of addition to compute the point 2Q = Q+Q.

(3) Use Hasse’s theorem, Theorem 16.5.11, to give an upper bound for the total
number of points on E(F5).

(4) Find all the points on E(F5), where E is y2 = x3 + x+ 1 over the field F5.

Exercise 16.10.4. Let E : y2 = x3 − 2 be an elliptic curve defined over Q, and let
P = (3, 5). Use the formulas for addition on an elliptic curve to compute −P , 2P ,
3P , and 4P .
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Exercise 16.10.5. Let E/Q be an elliptic curve given by a Weierstrass equation
of the form y2 = f(x), where f(x) ∈ Z[x] is a monic cubic polynomial with distinct
roots (over C).

(1) Show that P = (x, y) ∈ E is a torsion point of exact order 2 if and only if
y = 0 and f(x) = 0.

(2) Let E(Q)[2] be the subgroup of E(Q) formed by those rational points P ∈
E(Q) such that 2P = O. Show that the size of E(Q)[2] may be 1, 2, or 4.

(3) Give examples of three elliptic curves defined over Q where the size of E(Q)[2]
is 1, 2, and 4, respectively.

Exercise 16.10.6. Let Et : y2 + (1 − t)xy − ty = x3 − tx2 with t ∈ Q and
Δt = t5(t2 − 11t − 1) �= 0. As we saw in Example 16.4.4, every curve Et has a
subgroup isomorphic to Z/5Z. Use SageMath to find elliptic curves with torsion
Z/5Z and rank 0, 1, and 2. Also, try to find an elliptic curve Et with rank r, as high
as possible. (Note: the highest rank known, as of the writing of this book, for an
elliptic curve with Z/5Z torsion is 6, discovered by Dujella and Lecacheux in 2001;
see [Duj09] for up-to-date records.)

Exercise 16.10.7. Let p ≥ 2 be a prime and Ep : y2 = x3 + p2. Show that there
is no torsion point P ∈ Ep(Q) with y(P ) equal to

y = ±1, ±p2, ±3p, ±3p2, or ± 3.

Prove that Q = (0, p) is a torsion point of exact order 3. Conclude that {O, Q, 2Q}
are the only torsion points on Ep(Q). (Note: for p = 3, the point (−2, 1) ∈ E3(Q).
Show that it is not a torsion point.)

Exercise 16.10.8. Prove Proposition 16.5.8, as follows:

(1) First show that if f(x) is a polynomial, f ′(x) its derivative, and f(δ) = f ′(δ) =
0, then f(x) has a double root at δ.

(2) Show that if y2 = f(x) is singular, where f(x) ∈ K[x] is a monic cubic
polynomial, then the singularity must occur at (δ, 0), where δ is a root of
f(x).

(3) Show that (δ, 0) is singular if and only if δ is a double root of f(x). Therefore
D = 0 if and only if E is singular.

Exercise 16.10.9. Let E/Q : y2 = x3 +3. Find all the points of Ẽ(F7) and verify
that N7 satisfies Hasse’s bound.

Exercise 16.10.10. Let E/Q : y2 = x3 +Ax+B and let p ≥ 3 be a prime of bad
reduction for E/Q. Show that E(Fp) has a unique singular point.

Exercise 16.10.11. Prove parts (1) and (3) of Theorem 16.6.11. (Hint: use Defi-
nition 16.6.10 and Proposition 16.6.3.)

Exercise 16.10.12. Prove Corollary 16.6.12.

Exercise 16.10.13. Let E : y2 = x3 − 10081x. Use SageMath (or Magma
[BCP97]) to find a minimal set of generators for the subgroup that is spanned
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by all these points on E:

(0, 0), (−100, 90),

(
10081

100
,
90729

1000

)
, (−17, 408),(

907137

6889
,−559000596

571787

)
,

(
1681

16
,
20295

64

)
,

(
833

4
,
21063

8

)
,(

−161296

1681
,
19960380

68921

)
,

(
−6790208

168921
,−40498852616

69426531

)
.

(Hint: use Theorem 16.6.4 to determine the rank of E/Q.)

Exercise 16.10.14. Let E and δ be defined as in Theorem 16.7.3, and suppose
P = (x0, y0) is a point on E with y0 �= 0. Show:

• δ(P ) · δ(O) = δ(P ).

• δ((e1, 0)) · δ((e2, 0)) = δ((e1, 0) + (e2, 0)).
• δ(P ) · δ((e1, 0)) = δ(P + (e1, 0)).

Exercise 16.10.15. Let E : y2 = x3 +Ax+B be an elliptic curve with A,B ∈ Q,
and suppose P = (x0, y0) is a point on E, with y0 �= 0.

(1) Prove that the x-coordinate of 2P is given by

x(2P ) =
x4
0 − 2Ax2

0 − 8Bx0 +A2

4y20
.

(2) Find a formula for y(2P ) in terms of x0 and y0.

Exercise 16.10.16. The curve E/Q : y2 = x3−1572x has a rational point Q with
x-coordinate x = x(Q) given by

x =

(
224403517704336969924557513090674863160948472041

17824664537857719176051070357934327140032961660

)2

.

Show that there exists a point P ∈ E(Q) such that 2P = Q. Find the coordinates
of P . (Hint: use SageMath and Exercise 16.10.15.)

Exercise 16.10.17. Let E : y2 = (x−e1)(x−e2)(x−e3) with ei ∈ Q, distinct, and
such that e1+e2+e3 = 0. Additionally, suppose that e1−e2 = n2 and e1−e3 = m2

are squares. This exercise shows that, under these assumptions, there is a point
P = (x0, y0) such that 2P = (e1, 0); i.e., P is a point of exact order 4.

(1) Show that e1 = n2+m2

3 , e2 = m2−2n2

3 , e3 = n2−2m2

3 .
(2) Find A and B, in terms of n and m, such that

x3 +Ax+B = (x− e1)(x− e2)(x− e3).

(Hint: SageMath can be of great help here.)
(3) Let p(x) = x4 − 2Ax2 − 8Bx+A2 − 4(x3 +Ax+ B)e1. Show that p(x0) = 0

if and only if x(2P ) = e1 and therefore 2P = (e1, 0). (Hint: use Exercise
16.10.15.)

(4) Express all the coefficients of p(x) in terms of n and m. (Hint: use a computer.)
(5) Factor p(x) for (n,m) = (3, 6), (3, 12), (9, 12), . . ..
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(6) Guess that p(x) = (x−a)2(x−b)2 for some a and b. Express all the coefficients
of p(x) in terms of a and b.

(7) Finally, compare the coefficients of p(x) in terms of a, b and n,m and find the
roots of p(x) in terms of n,m. (Hint: compare first the coefficient of x3 and
then the coefficient of x2.)

(8) Write P = (x0, y0) in terms of n and m.

Exercise 16.10.18. Let e1, e2, e3 be three distinct integers. Show that Δ =
(e1 − e2)(e2 − e3)(e1 − e3) is always even.

Exercise 16.10.19. In this exercise we study the structure of the quotient G/2G,
where G is a finite abelian group.

(1) Let p ≥ 2 be a prime and let G = Z/peZ, with e ≥ 1. Prove that G/2G is
trivial if and only if p > 2.

(2) Prove that if G = Z/2eZ and e ≥ 1, then G/2G ∼= Z/2Z.

(3) Finally, let G be an arbitrary finite abelian group. We define G[2∞] to be the
2-primary component of G; i.e.,

G[2∞] = {g ∈ G : 2n · g = 0 for some n ≥ 1}.

In other words, G[2∞] is the subgroup of G formed by those elements of G
whose order is a power of 2. Prove that

G[2∞] ∼= Z/2e1Z⊕ Z/2e2Z⊕ · · · ⊕ Z/2erZ

for some r ≥ 0 and ei ≥ 1 (here r = 0 means G[2∞] is trivial). Also show that
G/2G ∼= (Z/2Z)r.

Exercise 16.10.20. Show that the space

C :

{
2Y 2 −X2 = 34,

Y 2 − Z2 = 34

does not have any rational solutions with X,Y, Z ∈ Q. (Hint: modify the system
so there are no powers of 2 in any of the denominators and then work modulo 8.)

Exercise 16.10.21. For the following elliptic curves, use the method of 2-descent
(as in Proposition 16.8.3 and Example 16.8.4) to find the rank of E/Q and gener-
ators of E(Q)/2E(Q). Do not use a computer:

(1) E : y2 = x3 − 14931x+ 220590.

(2) E : y2 = x3 − x2 − 6x.

(3) E : y2 = x3 − 37636x.

(4) E : y2 = x3 − 962x2 + 148417x. (Hint: use Theorem 16.6.4 first to find a
bound on the rank.)
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Exercise 16.10.22. Find the rank and generators for the rational points on the
elliptic curve y2 = x(x+ 5)(x+ 10).

Exercise 16.10.23 (Elliptic curves with non-trivial rank). The goal here is a
systematic way to find curves of rank at least r ≥ 0 without using tables of elliptic
curves:

(1) (Easy) Find three non-isomorphic elliptic curves over Q with rank ≥ 2. You
must prove that the rank is at least 2. (To show linear independence, you may
use SageMath or Magma to calculate the height matrix.)

(2) (Fair) Find three non-isomorphic elliptic curves over Q with rank ≥ 3.

(3) (Medium difficulty) Find three non-isomorphic elliptic curves over Q with rank
≥ 6. If so, then you can probably find three curves of rank ≥ 8 as well.

(4) (Significantly harder) Find three non-isomorphic elliptic curves over Q of rank
≥ 10.

(5) (You would be famous!) Find an elliptic curve over Q of rank ≥ 29.

Exercise 16.10.24. Let E be an elliptic curve and suppose that the images of
the points P1, P2, . . . , Pn ∈ E(Q) in E(Q)/2E(Q) generate the group E(Q)/2E(Q).
Let G be the subgroup of E(Q) generated by P1, P2, . . . , Pn.

(1) Prove that the index of G in E(Q) is finite, i.e., the quotient group E(Q)/G
is finite.

(2) Show that, depending on the choice of generators {Pi} of the quotient group
E(Q)/2E(Q), the size of E(Q)/G may be arbitrarily large.

Exercise 16.10.25. Fermat’s last theorem shows that x3 + y3 = z3 has no integer
solutions with xyz �= 0. Find the first d ≥ 1 such that x3 + y3 = dz3 has infinitely
many non-trivial solutions, find a generator for the solutions, and write down a few
examples. (Hint: Example 16.1.3.)

Exercise 16.10.26. Let E be the curve y2 = x3 − 2 defined over F17, and let P =
(3, 5). Can you solve the elliptic curve discrete logarithm problem x ·P = (13, 11)?
In other words, find an integer x ≥ 1 such that x · P = (13, 11) in E(F17).

Exercise 16.10.27. Let E be the curve y2 = x3 − 2 defined over F103, and let
P = (3, 5).

(1) Show that the order of P in E(F103) is 91.

(2) Solve the elliptic curve discrete logarithm problem x·P = (102, 93) in E(F103).

(3) Show that P is a generator of E(F103); i.e., if Q ∈ E(F103), then the elliptic
curve discrete logarithm problem x · P = Q always has a solution.

(Hint: use a computer and the software Magma [BCP97] or SageMath [Sage].)
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Exercise 16.10.28. Let p = 541 (which is a prime), and let E be the elliptic curve
y2 = x3 + x+ 1 defined over F541. Let P = (72, 70) on E(F541). The following is a
list of the multiples n · P for 1 ≤ n ≤ 59, in order:

(72, 70), (424, 71), (9, 110), (338, 159), (255, 123),

(161, 528), (147, 468), (168, 416), (480, 353), (454, 92),

(360, 174), (264, 41), (152, 438), (468, 56), (437, 44),

(68, 447), (459, 293), (115, 326), (328, 507), (278, 318),

(113, 117), (534, 456), (307, 277), (1, 57, 1), (491, 440),

(107, 249), (465, 115), (67, 517), (301, 61), (301, 480),

(67, 24), (465, 426), (107, 292), (491, 101), (1, 484),

(307, 264), (534, 85), (113, 424), (278, 223), (328, 34),

(115, 215), (459, 248), (68, 94), (437, 497), (468, 485),

(152, 103), (264, 500), (360, 367, 1), (454, 449), (480, 188),

(168, 125), (147, 73), (161, 13), (255, 418), (338, 382),

(9, 431), (424, 470), (72, 471), (0 : 1 : 0),

where (0 : 1 : 0) is O, the point at infinity. In other words, P = (72, 70), 2P =
(424, 71), 3P = (9, 110), . . . , 6P = (161, 528), etc.

(1) Verify that the order of P in E(F541) is 59.
(2) Rey and Finn want to set up an elliptic curve Diffie–Hellman key exchange

with p = 541 and E and P as above. Rey chooses a = 10 as her secret integer.
What point A should Rey send to Finn?

(3) Next, Rey receives B = (459, 293) from Finn. Determine the secret point that
is shared between Rey and Finn.

(4) General Hux intercepts a communication between Rey and Finn (not the one
from part (2) and (3), but using the same p, E, and P ). Hux now knows that
Rey sent A = (534, 456) to Finn and Finn sent B = (255, 123) to Rey. Explain
how Hux can now find the secret point that Rey and Finn share.
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Goldbach’s conjecture, 77
golden ratio, 60, 371
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group, 124
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Hardy–Littlewood

k-tuple conjecture, 74
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Nagura’s theorem, 67, 80
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Noether, 137
non-singular, 7, 420–422, 424, 425, 427,

428, 438, 439, 452
norm, 351
normal vector, 240–243, 424, 428, 438
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Ogg’s conjecture, 447

p-adic
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numbers, 317, 328–331, 349, 470, 471
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pigeonhole principle, 38, 57, 114
Poincaré, 444
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Pollard’s rho algorithm, 109
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cancellation, 142
congruence, 156
congruence classes, 158
degree, 141
discriminant, 147, 148, 153, 273–275,
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divisibility, 141
homogeneous, 418
irreducible, 153, 159–162, 165, 354
quadratic, 147
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root, 145
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primality test
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Solovay–Strassen, 298
prime number, 31, 37, 51–53, 57, 59, 61,

155, 328
arithmetic progression, 70
constellation, 74, 75, 80

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



Index 487

counting function, 68
safe, 116
sexy, 80
Sophie Germain, 116, 307
theorem, 68, 69, 72, 76, 108
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Putnam, 22
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343–348, 358
parametrization, 345
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field (see field), 350
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Legendre symbol (see Legendre), 279
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residue, 276–283, 289, 291, 296, 297,
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Rado (or random) graph, 303
Ramanujan, 413, 414, 446
rank, 445
rank conjecture, 447
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reduced form, 47
reduction of an elliptic curve, 452

additive, 452
good, 452
non-split multiplicative, 452
split multiplicative, 452

regulator of an elliptic curve, 458
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theorem, 144, 159
Riemann, 78

hypothesis, 78, 79
hypothesis (generalized), 210
Riemann–Roch theorem, 439
surface, 15
zeta function, 78

ring, 131
commutative, 131, 158, 329
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homomorphism, 137, 138
ideal, 137, 151
isomorphism, 137
of polynomials, 140
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unit, 132, 404
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root, 145
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special relativity, 333
stereographic projection, 255
subgroup, 127
sum of two squares, 318
surjective, 130, 135, 136, 151, 182, 217,

223, 407
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