Highlights of Chapters 1-2.

Chapter 1: An Introduction to Cryptography

1. Number theory concepts:

- (a) Division Theorem: $a, b \in \mathbb{Z}, b \neq 0$, then there are $q, r \in \mathbb{Z}$ such that a = qb + r with $0 \leq r < b$.
- (b) Definition of divisibility: $b \mid a$ if there is $k \in \mathbb{Z}$ such that a = bk.
- (c) Greatest common divisor: $d = \gcd(a, b)$ if (a) $d \mid a$ and $d \mid b$, and (b) if $e \mid a, e \mid b$ then $e \leq d$.
- (d) Euclid's algorithm (based on repeated long division).
- (e) Bezout's identity: ax + by = c has solutions $x, y \in \mathbb{Z}$ if and only if $gcd(a, b) \mid c$.
 - if (x_0, y_0) is one solution for ax + by = c, then all the solutions are given by $x = x_0 + \frac{bk}{d}$, $y = y_0 \frac{ak}{d}$, for all $k \in \mathbb{Z}$, where $d = \gcd(a, b)$.
- (f) Fundamental theorem of arithmetic
 - i. Every number has a factorization as a product of primes $n = p_1^{e_1} \cdots p_t^{e_t}$, where $p_1 < p_2 < \cdots < p_t$ are primes and $e_t \ge 1$.
 - ii. The factorization into primes is unique up to a reordering of prime-power factors.
- (g) Definition of congruence: $a \equiv b \mod m$ if $m \mid a b$.
- (h) Properties of congruences, e.g., if $a \equiv b \mod m$, then $a^k \equiv b^k \mod m$, for all $k \ge 1$.
- (i) The congruence $ax \equiv b \mod m$ has a solution if and only if ax + my = b has a solution $x, y \in \mathbb{Z}$.
- (j) Definition and operations on $\mathbb{Z}/m\mathbb{Z} = \{0, 1, \dots, m-1 \mod m\}.$
- (k) Units in $\mathbb{Z}/m\mathbb{Z}$ is the set $(\mathbb{Z}/m\mathbb{Z})^{\times} = \{a \mod m : \gcd(a,m) = 1\}$. There are $\varphi(m)$ units.
- (l) Fast powering algorithm.
- (m) Fermat's little theorem: if p is prime, then $a^{p-1} \equiv 1 \mod p$ for all $a \in \mathbb{Z}$ with gcd(a, p) = 1.
- (n) Euler's theorem: $a^{\varphi(m)} \equiv 1 \mod p$ for all $a \in \mathbb{Z}$ with gcd(a, m) = 1.
- (o) The multiplicative order of a mod m is the smallest $n \ge 1$ such that $a^n \equiv 1 \mod m$, for $a \in \mathbb{Z}$ with gcd(a, m) = 1. The order always divides $\varphi(m)$ (divides p 1 if m = p is prime).
- (p) A primitive root modulo p is $g \mod p$ such that its multiplicative order is exactly p-1. There are $\varphi(p-1)$ primitive roots modulo p.

2. Cryptography:

- (a) Substitution ciphers and Caesar (shift) ciphers.
- (b) Basics of frequency analysis to break a substitution cipher.
- (c) Symmetric ciphers: $e_k \colon M \to C$ and $d_k \colon C \to M$ such that $d_k(e_k(m)) = m$ for every $m \in M$ and $k \in K$.
- (d) Attacks: known plaintext attack, chosen plaintext attack.
- (e) Encoding schemes, blocksize.
- (f) Affine ciphers: $e_{(k_1,k_2)}(m) \equiv k_1 \cdot m + k_2 \mod p$ and $d_{(k_1,k_2)}(c) \equiv k_1^{-1} \cdot (c-k_2) \mod p$.
- (g) Hill ciphers (as affine cipher, but k_1 is a matrix and k_2 a vector).
- (h) Asymmetric ciphers (public key cryptography): $e_{k_{\text{pub}}} \colon M \to C$ and $d_{k_{\text{priv}}} \colon C \to M$ such that $d_{k_{\text{priv}}}(e_{k_{\text{pub}}}(m)) = m$ for every $m \in M$ and $k \in K$.

Chapter 2: Discrete Logarithms and Diffie-Hellman

1. Introduction to Group Theory:

- (a) Definition of group (G, *).
- (b) Examples of groups.
- (c) The DLP (discrete logarithm problem) over a group G.
- (d) Order of an element in a group.
- (e) Lagrange's theorem: the order of an element a in a group G divides the order (size) of the group G.

2. Cryptography:

- (a) The DLP (discrete logarithm problem) over \mathbb{F}_p^* : given g and h find x such that $g^x \equiv h \mod p$.
- (b) The index function in base $g \mod p$, a.k.a. the logarithm function in base $g \mod p$.
- (c) The Diffie-Hellman key exchange:
 - Fix p, and $g \mod p$.
 - Alice picks $a \in \mathbb{Z}$, computes $A \equiv g^a \mod p$, sends A to Bob.
 - Bob picks $b \in \mathbb{Z}$, computes $B \equiv g^b \mod p$, sends B to Alice.
 - Compute key $k \equiv B^a \equiv A^b \mod p$.
- (d) The Elgamal public key cryptosystem:
 - Fix p, and $g \mod p$.
 - Alice picks private key $a \in \mathbb{Z}$, public key $A \equiv g^a \mod p$, publish p, g, A.
 - Bob picks k mod p, encrypts message m as $(c_1, c_2) \equiv (g^k, mA^k) \mod p$, and send.
 - Alice computes $x \equiv (c_1)^{-a} \mod p$, and the message is $m \equiv c_2 \cdot x \mod p$.
- (e) Order notation (big-O notation): we say f(x) = O(g(x)) if there are constants c, C such that $f(x) \le c \cdot g(x)$ for all $x \ge C$.
- (f) Proposition: if the limit $\lim_{x\to\infty} f(x)/g(x)$ exists and it is finite, then f(x) = O(g(x)).
- (g) Brute force on DLP over \mathbb{F}_p^* can be done in $O(k^2 2^k)$ basic steps, when the input is O(k) bits long.
- (h) Collision algorithm to solve DLP: Shank's babystep-giantstep algorithm, solves DLP in $O(k2^{k/2})$ basic steps.
 - Fixed g, h, p find x such that $g^x \equiv h \mod p$.
 - Let $n = 1 + \lfloor \sqrt{N} \rfloor$, where N is the order of $g \mod p$ (so N = p 1 if g is a primitive root).
 - Compute two lists:
 - List 1: $1, g, g^2, ..., g^n \mod p$.
 - List 2: $h, hu, hu^2, \ldots, hu^n \mod p$, where $u \equiv g^{-n} \mod p$.
 - Find a match in lists, so that $g^i \equiv hu^j \mod p$.
 - Then x = i + jn is a solution for $g^x \equiv h \mod p$.