MATH 3094 Mathematics of Encryption Highlights of Chapters 1-2

Highlights of Chapters 1-2.

Chapter 1: An Introduction to Cryptography

1. Number theory concepts:
(a) Division Theorem: a,b € Z, b # 0, then there are ¢, r € Z such that a = ¢gb+r with 0 < r < b.
(b) Definition of divisibility: b | a if there is k € Z such that a = bk.
(¢) Greatest common divisor: d = ged(a,b) if (a) d | a and d | b, and (b) if e | a, e | b then e < d.
(d
(e

)
)
) Euclid’s algorithm (based on repeated long division).

) Bezout’s identity: ax + by = ¢ has solutions z,y € Z if and only if ged(a,d) | c.

e if (xg,yo) is one solution for ax + by = ¢, then all the solutions are given by = = xg + %,
y=yo— %, for all k € Z, where d = gcd(a, b).

(f) Fundamental theorem of arithmetic

i. Every number has a factorization as a product of primes n = p7* ---p*, where p; <
p2 < --- < pg are primes and e; > 1.

ii. The factorization into primes is unique up to a reordering of prime-power factors.
(g) Definition of congruence: a = b mod m if m | a —b.

(h) Properties of congruences, e.g., if a = b mod m, then a* = b* mod m, for all & > 1.

—~
—
~—

The congruence axr = b mod m has a solution if and only if az + my = b has a solution
x,y € 7.

—
.

Definition and operations on Z/mZ = {0,1,...,m — 1 mod m}.

Units in Z/mZ is the set (Z/mZ)* = {a mod m : gcd(a, m) = 1}. There are ¢(m) units.

— =
— =~

Fast powering algorithm.

)
)
)
(m) Fermat’s little theorem: if p is prime, then a?~! =1 mod p for all a € Z with ged(a,p) = 1.
) Euler’s theorem: a®(™ = 1 mod p for all a € Z with ged(a, m) = 1.

)

/\/E

The multiplicative order of @ mod m is the smallest n > 1 such that ™ = 1 mod m, fora € Z
with ged(a,m) = 1. The order always divides ¢(m) (divides p — 1 if m = p is prime).

(p) A primitive root modulo p is g mod p such that its multiplicative order is exactly p—1. There
are ¢(p — 1) primitive roots modulo p.

2. Cryptography:

(a) Substitution ciphers and Caesar (shift) ciphers.
(b) Basics of frequency analysis to break a substitution cipher.

(¢) Symmetric ciphers: e: M — C and dj: C — M such that di(ex(m)) = m for every m € M
and k € K.

Attacks: known plaintext attack, chosen plaintext attack.
Encoding schemes, blocksize.

)
)
f) Affine ciphers: e, j,)(m) = ki - m + ks mod p and d(x, 4,)(c) = k7' - (¢ — k) mod p.
) Hill ciphers (as affine cipher, but k; is a matrix and ks a vector).
)

Asymmetric ciphers (public key cryptography): ey, : M — C and dg,,,, : C — M such that

priv

iy (€hpay, (M) = m for every m € M and k € K.

MATH 3094 Mathematics of Encryption Highlights of Chapters 1-2

Chapter 2: Discrete Logarithms and Diffie-Hellman

1. Introduction to Group Theory:

(a)
(b)
()
(d)
()

Definition of group (G, *).

Examples of groups.

The DLP (discrete logarithm problem) over a group G.
Order of an element in a group.

Lagrange’s theorem: the order of an element a in a group G divides the order (size) of the
group G.

2. Cryptography:

The DLP (discrete logarithm problem) over FJ: given g and h find 2 such that g* = h mod p.
The index function in base g mod p, a.k.a. the logarithm function in base g mod p.
The Diffie-Hellman key exchange:

e Fix p, and g mod p.

e Alice picks a € Z, computes A = ¢g® mod p, sends A to Bob.

e Bob picks b € Z, computes B = ¢® mod p, sends B to Alice.

e Compute key k = B* = A® mod p.
The Elgamal public key cryptosystem:

e Fix p, and g mod p.

e Alice picks private key a € Z, public key A = ¢g* mod p, publish p, g, A.

e Bob picks k& mod p, encrypts message m as (ci,c2) = (g%, mA*) mod p, and send.

e Alice computes = (¢1)~* mod p, and the message is m = ¢2 - © mod p.
Order notation (big-O notation): we say f(z) = O(g(x)) if there are constants ¢, C' such that
f(z) <c-g(x) for all z > C.
Proposition: if the limit lim,_,~ f(z)/g(x) exists and it is finite, then f(z) = O(g(x)).
Brute force on DLP over F, can be done in O(k?2%) basic steps, when the input is O(k) bits
long.
Collision algorithm to solve DLP: Shank’s babystep-giantstep algorithm, solves DLP in
O(k2*/?) basic steps.

e Fixed g, h,p find = such that g = h mod p.

o Letn=1+ L\/Nj, where N is the order of g mod p (so N = p — 1 if g is a primitive

root).
e Compute two lists:
— List 1: 1,9,62%,...,¢" mod p.
— List 2: h, hu, hu?, ..., hu™ mod p, where © = ¢~™ mod p.
e Find a match in lists, so that g* = hu’/ mod p.
e Then z =i+ jn is a solution for ¢* = h mod p.

