Highlights of Chapters 3-4.

Chapter 3: Integer Factorization and RSA

1. Number theory concepts:

- (a) Euler's formula for pq: if p and q are distinct primes and $g = \gcd(p-1, q-1)$, then $a^{(p-1)(q-1)/g} \equiv 1 \mod pq$ for all a with $\gcd(a, pq) = 1$.
- (b) Let p and q be distinct primes and $g = \gcd(p-1, q-1)$, and let d such that $de \equiv 1 \mod (p-1)(q-1)$. Then, the congruence $x^e \equiv c \mod pq$ has a **unique** solution $x \equiv c^d \mod pq$.
- (c) Fermat witness: an integer a is a witness for the compositeness of n if $a^n \not\equiv a \mod n$.
- (d) Proposition (Miller-Rabin): Let p be an odd prime, with $p 1 = 2^k q$ where q is odd. Let a be relatively prime to p. Then, one of the following is true:
 - $a^q \equiv 1 \mod p$, or
 - one of $a^q, a^{2q}, \ldots, a^{2^{k-1}q}$ is $\equiv -1 \mod p$.
- (e) Let n be an odd composite number. Then at least 75% of the numbers between 1 and n-1 are Miller-Rabin witnesses for n.
- (f) The Prime Number Theorem: Let $\pi(x)$ be the number of primes in the interval [1, x]. Then, $\lim_{x\to\infty} \pi(x)/(x/\ln(x)) = 1$.
- (g) Quadratic residues: a is a QR mod p if $x^2 \equiv a \mod p$ has a solution, a QNR otherwise. There are (p-1)/2 QR's and (p-1)/2 QNR's mod p.
- (h) Quadraic residue symbol, or Legendre symbol: $\left(\frac{a}{p}\right)$ is 1 is a is a QR, -1 if a is a QNR, and 0 if p|a.
- (i) Quadratic Reciprocity for distinct odd primes p and q:
 - $\left(\frac{-1}{p}\right)$ is 1 if $p \equiv 1 \mod 4$, and -1 if $p \equiv 3 \mod 4$.
 - $\left(\frac{2}{p}\right)$ is 1 if $p \equiv \pm 1 \mod 8$, and -1 if $p \equiv \pm 3 \mod 8$.
 - $\binom{q}{p} = \binom{p}{q}$ if p or $q \equiv 1 \mod 4$, and $\binom{q}{p} = -\binom{p}{q}$ if $p \equiv q \equiv 3 \mod 4$.

2. Cryptography:

- (a) RSA:
 - Bob picks secret primes p, q, and e with gcd(e, (p-1)(q-1)) = 1. Publishes N = pq and e. Bob also computes d such that $ed \equiv 1 \mod (p-1)(q-1)$.
 - Alice chooses plaintext m, computes $c \equiv m^e \mod N$, sends c to Bob.
 - Bob computes $m \equiv c^d \mod N$.
- (b) Person-in-the-middle attacks.
- (c) Fermat's primality test using Fermat witnesses.
- (d) Miller-Rabin primality test using Miller-Rabin witnesses.
- (e) Pollard's p-1 factoring algorithm:
 - N is to be factored. Set a = 2 (or some other value).
 - Compute $a^2, (a^2)^3, (a^6)^4, \dots \mod N$, and $d = \gcd(a^{j!} 1, N)$.
 - If 1 < d < N, then d is a proper divisor of N and we have factored N into smaller numbers.
- (f) Goldwasser-Micali cryptosystem:
 - Bob chooses secret p and q, choose a with $\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = -1$, and publishes N = pq and a.
 - Alice chooses m = 0 or 1, chooses 1 < r < N, and computes $c = r^2 \mod N$ if m = 0 and $c = ar^2 \mod N$ if m = 1. Sends c to Bob.
 - Bob computes $\left(\frac{c}{p}\right)$, and m = 0 if $\left(\frac{c}{p}\right) = 1$ and m = 1 if $\left(\frac{c}{p}\right) = -1$.

Chapter 4: Digital Signatures

1. Number theory concepts:

(a) If p is a prime and q divides p-1, then there are elements q mod p of exact order q.

2. Cryptography:

- (a) RSA digital signatures:
 - Sam chooses secret primes p, q. Chooses verification exponent e with gcd(e, (p-1)(q-1)) = 1, and d with $de \equiv 1 \mod (p-1)(q-1)$. Publishes N = pq and e.
 - Chooses document $D \mod N$, and signs document $S \equiv D^d \mod N$. Sends (D, S) to Victor.
 - Victor verifies $S^e \equiv D \mod N$.
- (b) Elgamal digital signature:
 - A trusted party chooses large prime p and a primitive root $g \mod p$.
 - Sam chooses secret signing key $1 \le a \le p-1$. Compute $A \equiv g^a \mod p$, and publishes A.
 - Chooses 1 < k < p with gcd(k, (p-1)) = 1, a document $D \mod p$, and computes signature $S_1 \equiv g^k \mod p$ and $S_2 \equiv (D aS_1)k^{-1} \mod (p-1)$. Sends (D, S_1, S_2) to Victor.
 - Victor verifies $A^{S_1}S_1^{S_2} \equiv g^D \mod p$.
- (c) DSA digital signature:
 - A trusted party chooses large primes p and q such that $p \equiv 1 \mod q$ and an element $g \mod p$ of exact multiplicative order q.
 - Sam chooses secret signing key $1 \le a \le q-1$. Compute $A \equiv g^a \mod p$, and publishes A.
 - Chooses 1 < k < q, a document $D \mod q$, and computes signature $S_1 \equiv (g^k \mod p) \mod q$ and $S_2 \equiv (D + aS_1)k^{-1} \mod q$. Sends (D, S_1, S_2) to Victor.
 - Victor computes $V_1 \equiv DS_2^{-1} \mod q$ and $V_2 \equiv S_1S_2^{-1} \mod q$ and
 - Victor verifies $(g^{V_1}A^{V_2} \mod p) \mod q = S_1$.