Highlights of Chapter 6.

Chapter 6: Elliptic Curves and Cryptography

1. Number theory concepts:

- (a) An *elliptic curve* over a field F (where $F \neq \mathbb{F}_2$) is a curve given by a Weierstrass equation $y^2 = x^3 + Ax + B$, with $A, B \in F$, such that $4A^3 + 27B^2 \neq 0$ in F.
- (b) The geometric secant and tangent method on an elliptic curve E to find a third point R on E from two known points P and Q. Addition of points on the elliptic curve.
- (c) Elliptic curve addition algorithm: let E be given by $y^2 = x^3 + Ax + B$, and let P and Q be points on E.
 - If $P = \mathcal{O}$, then $P \oplus Q = Q$. If $Q = \mathcal{O}$, then $P \oplus Q = P$.
 - If $P = (x_1, y_1)$ and $Q = (x_1, -y_1)$, then $P \oplus Q = \mathcal{O}$, i.e., Q = -P.
 - If $P \neq Q$ and $P = (x_1, y_1)$, $Q = (x_2, y_2)$, then define $\lambda = (y_2 y_1)/(x_2 x_1)$. Then $P \oplus Q = (x_3, y_3)$, with

$$x_3 = \lambda^2 - x_1 - x_2$$
 and $y_3 = \lambda(x_1 - x_3) - y_1$.

- If $P = Q = (x_1, y_1)$, then define $\lambda = (3x_1^2 + A)/(2y_1)$. Then $2P = (x_3, y_3)$ where the coordinates x_3, y_3 are defined as above.
- (d) If E is an elliptic curve over \mathbb{F}_p , with p prime, then

$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p^2 : y^2 \equiv x^3 + Ax + B \mod p\} \cup \{\mathcal{O}\}.$$

(e) Hasse's theorem: if E is an elliptic curve over \mathbb{F}_p , then

$$p + 1 - 2\sqrt{p} \le \#E(\mathbb{F}_p) \le p + 1 + 2\sqrt{p}.$$

2. Cryptography:

- (a) The Elliptic Curve Discrete Logarithm Problem (ECDLP): given an elliptic curve E over \mathbb{F}_p and points P and Q on E, find a number n such that nP = Q, where $nP = P \oplus \cdots \oplus P$ is the sum of n copies of P using the elliptic curve addition algorithm.
- (b) The double-and-add algorithm to compute a multiple of a point on an elliptic curve.
- (c) Collision algorithm to find a solution to an ECDLP problem: to solve Q = nP, find lists:
 - List 1: k_1P, k_2P, \ldots, k_rP , where k_1, \ldots, k_r are distinct integers.
 - List 2: $k'_1P + Q, k'_2P + Q, \dots, k'_rP + Q$, where k'_1, \dots, k'_r are distinct integers.

If $k_u P = k'_v P + Q$, then $Q = (k_u - k'_v)P$. One needs about $r \approx 3\sqrt{p}$ to have a "very good chance" of finding a collision.

- (d) Elliptic Diffie-Hellman Key Exchange:
 - A trusted party chooses a large prime p, an elliptic curve E over \mathbb{F}_p , and a points P in $E(\mathbb{F}_p)$.
 - Alice chooses a secret integer n_A , Bob chooses a secret integer n_B .
 - Alice computes $Q_A = n_A \cdot P$ and sends it to Bob. Bob computes $Q_B = n_B \cdot P$ and sends it to Alice.
 - Alice computes the secret shared point $n_A \cdot Q_B$. Bob computes the secret shared point $n_B \cdot Q_A$. We have $n_A n_B P = n_A Q_B = n_B Q_A$.
- (e) Elliptic Elgamal cryptosystem:
 - A trusted party chooses a large prime p, an elliptic curve E over \mathbb{F}_p , and a points P in $E(\mathbb{F}_p)$.

- Alice chooses a private key n_A . Computes $Q_A = n_A \cdot P$ in $E(\mathbb{F}_p)$. Publishes Q_A .
- Bob chooses plaintext $M \in E(\mathbb{F}_p)$, chooses a random element k, and computes $C_1 = kP$ and $C_2 = M + kQ_A$. Sends the ciphertext (C_1, C_2) to Alice.
- Alice computes the plaintext $M = C_2 n_A C_1 \in E(\mathbb{F}_p)$.
- (f) Elliptic Curve Digital Signatures:
 - A trusted party chooses a large prime p, an elliptic curve E over \mathbb{F}_p , and a points G in $E(\mathbb{F}_p)$ of large prime order q.
 - Sam chooses a secret signing key 1 < s < q 1. Computes V = sG in $E(\mathbb{F}_p)$, and publishes V.
 - Sam chooses a document $d \mod q$, chooses a random element $e \mod q$, computes eG in $E(\mathbb{F}_p)$, and a signature $(s_1, s_2) = (x(eG) \mod q, (d + s \cdot s_1)e^{-1} \mod q)$. Publish $(d, (s_1, s_2))$.
 - Victor computes $v_1 \equiv ds_2^{-1} \mod q$ and $v_2 \equiv s_1 s_2^{-1} \mod q$. Then verifies that

$$x(v_1G + v_2V) \bmod q = s_1.$$

- (g) Lenstra's Factorization Algorithm:
 - i. Input: N to be factored.
 - ii. Choose random A, a, and $b \mod N$.
 - iii. Set P = (a, b) and $B \equiv b^2 a^3 Aa \mod N$, and $E : y^2 = x^3 + Ax + B \mod N$.
 - iv. Loop j = 2, 3, 4, ...
 - A. Set $Q \equiv j \cdot P \mod N$ and set P = Q.
 - B. If computing $j \cdot P$ in Step 4 fails, we have found a divisor d > 1 of N.
 - If d < N, then success, return d.
 - If d = 1, then go to step 1.
 - C. If computing $j \cdot P$ is successful, then increase j by 1, and return to Step A.