MATH 3094 - Practice Final Exam

YOUR NAME: _____

P1	P2	P3	P4	P5	Extra	Total

Please review the previous practice exams and midterms for practice on material from Chapters 1-4.

Problem 1. Draw the elliptic curve $y^2 = x^3 + 1$ and illustrate addition and doubling of points on the graph, by adding P = (0, 1) and Q = (2, 3), and also Q + Q = 2Q.

Solution. *Hint:* P + Q = (-1, 0) and 2Q = (0, 1).

Problem 2. Let *E* be the elliptic curve $y^2 = x^3 + 1$ defined over \mathbb{F}_{11} .

- (1) State Hasse's theorem, and give a bound on the number of points in $E(\mathbb{F}_{11})$ using Hasse's theorem.
- (2) Find all the points on $E(\mathbb{F}_{11})$.
- (3) Let P = (5, 4). Show that P is on E, and compute 2P using the doubling formulas on E.
- (4) Let P = (5, 4) and Q = (7, 5). Compute P + Q using the addition formulas on E.

Solution. (1) By Hasse's theorem, the number of elements in $E(\mathbb{F}_{11})$ is less or equal to

$$p + 1 + 2\sqrt{p} = 11 + 1 + 2\sqrt{11} \approx 18.63...$$

- (2) The points on E are $(0,1), (0,10), (2,3), (2,8), (5,4), (5,7), (7,5), (7,6), (9,2), (9,9), (10,0), and the point at infinity <math>\mathcal{O} = [0,1,0].$
- (3) *Hint*: 2P = (10, 0).
- (4) *Hint*: P + Q = (2, 3).

Problem 3. Let *E* be the elliptic curve $y^2 = x^3 + 1$ defined over \mathbb{F}_{11} , and let P = (9, 9). The multiples of *P* are, in order:

 $(9,9), (2,3), (5,7), (0,1), (7,5), (10,0), (7,6), (0,10), (5,4), (2,8), (9,2), \mathcal{O} = (0:1:0)$

That is, 2P = (2, 3), 3P = (5, 7), etc.

- (1) In Problem 2 you should have proved that $\#E(\mathbb{F}_{11}) = 12$. If P = (9,9) and Q is an arbitrary point on $E(\mathbb{F}_{11})$, is the ECDLP problem nP = Q solvable?
- (2) Find n such that nP = (5, 4).
- (3) Find n such that nP = (7, 6).
- (4) Use the elliptic collision algorithm to solve nP = (5, 4).

Solution. (1) In Problem 2 we found that $E(\mathbb{F}_{11})$ has 12 points, and the multiples of (9,9) go through 12 different points. Therefore every point on E is a multiple of (9,9) and therefore every ECDLP problem nP = Q has a solution.

- (2) From the list of multiples of P that we are provided with, we see that 9P = (5, 4).
- (3) From the list of multiples of P that we are provided with, we see that 7P = (5, 4).
- (4) Review the collision algorithm for elliptic curves!

Problem 4. Let *E* be the elliptic curve $y^2 = x^3 + 1$ defined over \mathbb{F}_{11} , and let P = (9, 9). The multiples of *P* are, in order:

 $(9,9), (2,3), (5,7), (0,1), (7,5), (10,0), (7,6), (0,10), (5,4), (2,8), (9,2), \mathcal{O} = (0:1:0)$

That is, 2P = (2, 3), 3P = (5, 7), etc.

- (1) Alice sets up an Elliptic Diffie-Hellman system with p, E and P as above. She chooses $n_A = 2$ and Bob chooses $n_B = 5$. Compute the secret key (the secret point) that they will share using the Elliptic Diffie-Hellman algorithm.
- (2) Eve intercepts a communication between Alice and Bob. Eve knows that Alice set up an Elliptic Diffie-Hellman with p, E, P as above, and intercepts a communication from Alice to Bob $(Q_A = (7, 5))$ and a communication from Bob to Alice $(Q_B = (2, 8))$. What is the secret that Alice and Bob share?

Solution. (1) The common secret is $n_A \cdot n_B \cdot P$ so $2 \cdot 5 \cdot P = 10P = (2, 8)$.

(2) Since $n_A \cdot P = Q_A = (7,5)$ we must have that $n_A = 5$. Since $n_B \cdot P = Q_B = (2,8)$ we must have $n_B = 10$. Thus the common secret is $n_A n_B P = 50P$. Since P has order 12, we have 50P = 48P + 2P = 2P = (2,3).

Problem 5. Explain how Alice could set up an Elliptic Elgamal system using p, P, E as in Problem 4, and give an example of a message being encrypted in this system.

Solution. Review Elliptic Elgamal.

Problem 6. Explain how Alice could set up an Elliptic Digital Signature system using p, E as in Problem 4, and give an example of a document being signed in this system.

Solution. Review Elliptic Digital Signatures.

Problem 7. Let N = 143 and $E: y^2 = x^3 + x - 1$ and P = (1, 1). Use Lenstra's algorithm to factor N, using E and P modulo N. (For this problem, you can use a computer if you want, to practice and to learn how the algorithm works. In the exam, a question of this type would be set up so you don't have to use a computer – a calculator would suffice.)

Solution. Here are the coordinates of the multiples of P modulo N:

- $P \equiv (1,1) \mod N$,
- $2P \equiv (2, 140) \mod N$,
- $3(2P) = 6P \equiv (133, 56) \mod N$,
- $4(6P) = 24P \equiv (133, 43) \mod N$,

However, computing 5(24P) fails. Here is why: $Q = 24P \equiv (133, 43) \mod 143$. In order to compute 5Q we need to do 5Q = 2Q + 3Q. First $2Q \equiv (68, 113) \mod 143$. And 3Q = 2Q + Q = (68, 113) + (133, 43). But to do so, we need to invert $133 - 68 \equiv 65 \mod N$, and it turns out this is impossible because gcd(N, 65) = gcd(143, 65) = 13. Hence we have found a factor of N, namely 13, and $N = 143 = 11 \cdot 13$.

Highlights of Chapter 6.

Chapter 6: Elliptic Curves and Cryptography

1. Number theory concepts:

- (a) An *elliptic curve* over a field F (where $F \neq \mathbb{F}_2$) is a curve given by a Weierstrass equation $y^2 = x^3 + Ax + B$, with $A, B \in F$, such that $4A^3 + 27B^2 \neq 0$ in F.
- (b) The geometric secant and tangent method on an elliptic curve E to find a third point R on E from two known points P and Q. Addition of points on the elliptic curve.
- (c) Elliptic curve addition algorithm: let E be given by $y^2 = x^3 + Ax + B$, and let P and Q be points on E.
 - If $P = \mathcal{O}$, then $P \oplus Q = Q$. If $Q = \mathcal{O}$, then $P \oplus Q = P$.
 - If $P = (x_1, y_1)$ and $Q = (x_1, -y_1)$, then $P \oplus Q = O$, i.e., Q = -P.
 - If $P \neq Q$ and $P = (x_1, y_1)$, $Q = (x_2, y_2)$, then define $\lambda = (y_2 y_1)/(x_2 x_1)$. Then $P \oplus Q = (x_3, y_3)$, with

$$x_3 = \lambda^2 - x_1 - x_2$$
 and $y_3 = \lambda(x_1 - x_3) - y_1$.

- If $P = Q = (x_1, y_1)$, then define $\lambda = (3x_1^2 + A)/(2y_1)$. Then $2P = (x_3, y_3)$ where the coordinates x_3, y_3 are defined as above.
- (d) If E is an elliptic curve over \mathbb{F}_p , with p prime, then

$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p^2 : y^2 \equiv x^3 + Ax + B \mod p\} \cup \{\mathcal{O}\}.$$

(e) Hasse's theorem: if E is an elliptic curve over \mathbb{F}_p , then

$$p + 1 - 2\sqrt{p} \le \#E(\mathbb{F}_p) \le p + 1 + 2\sqrt{p}.$$

2. Cryptography:

- (a) The Elliptic Curve Discrete Logarithm Problem (ECDLP): given an elliptic curve E over \mathbb{F}_p and points P and Q on E, find a number n such that nP = Q, where $nP = P \oplus \cdots \oplus P$ is the sum of n copies of P using the elliptic curve addition algorithm.
- (b) The double-and-add algorithm to compute a multiple of a point on an elliptic curve.
- (c) Collision algorithm to find a solution to an ECDLP problem: to solve Q = nP, find lists:
 - List 1: k_1P, k_2P, \ldots, k_rP , where k_1, \ldots, k_r are distinct integers.
 - List 2: $k'_1P + Q, k'_2P + Q, \dots, k'_rP + Q$, where k'_1, \dots, k'_r are distinct integers.

If $k_u P = k'_v P + Q$, then $Q = (k_u - k'_v)P$. One needs about $r \approx 3\sqrt{p}$ to have a "very good chance" of finding a collision.

- (d) Elliptic Diffie-Hellman Key Exchange:
 - A trusted party chooses a large prime p, an elliptic curve E over \mathbb{F}_p , and a points P in $E(\mathbb{F}_p)$.
 - Alice chooses a secret integer n_A , Bob chooses a secret integer n_B .
 - Alice computes $Q_A = n_A \cdot P$ and sends it to Bob. Bob computes $Q_B = n_B \cdot P$ and sends it to Alice.
 - Alice computes the secret shared point $n_A \cdot Q_B$. Bob computes the secret shared point $n_B \cdot Q_A$. We have $n_A n_B P = n_A Q_B = n_B Q_A$.
- (e) Elliptic Elgamal cryptosystem:
 - A trusted party chooses a large prime p, an elliptic curve E over \mathbb{F}_p , and a points P in $E(\mathbb{F}_p)$.

- Alice chooses a private key n_A . Computes $Q_A = n_A \cdot P$ in $E(\mathbb{F}_p)$. Publishes Q_A .
- Bob chooses plaintext $M \in E(\mathbb{F}_p)$, chooses a random element k, and computes $C_1 = kP$ and $C_2 = M + kQ_A$. Sends the ciphertext (C_1, C_2) to Alice.
- Alice computes the plaintext $M = C_2 n_A C_1 \in E(\mathbb{F}_p)$.

(f) Elliptic Curve Digital Signatures:

- A trusted party chooses a large prime p, an elliptic curve E over \mathbb{F}_p , and a points G in $E(\mathbb{F}_p)$ of large prime order q.
- Sam chooses a secret signing key 1 < s < q 1. Computes V = sG in $E(\mathbb{F}_p)$, and publishes V.
- Sam chooses a document $d \mod q$, chooses a random element $e \mod q$, computes eG in $E(\mathbb{F}_p)$, and a signature $(s_1, s_2) = (x(eG) \mod q, (d + s \cdot s_1)e^{-1} \mod q)$. Publish $(d, (s_1, s_2))$.
- Victor computes $v_1 \equiv ds_2^{-1} \mod q$ and $v_2 \equiv s_1 s_2^{-1} \mod q$. Then verifies that

$$x(v_1G + v_2V) \bmod q = s_1.$$

- (g) Lenstra's Factorization Algorithm:
 - i. Input: N to be factored.
 - ii. Choose random A, a, and $b \mod N$.
 - iii. Set P = (a, b) and $B \equiv b^2 a^3 Aa \mod N$, and $E : y^2 = x^3 + Ax + B \mod N$.
 - iv. Loop j = 2, 3, 4, ...
 - A. Set $Q \equiv j \cdot P \mod N$ and set P = Q.
 - B. If computing $j \cdot P$ in Step 4 fails, we have found a divisor d > 1 of N.
 - If d < N, then success, return d.
 - If d = 1, then go to step 1.
 - C. If computing $j \cdot P$ is successful, then increase j by 1, and return to Step A.