
MATH 3094 - Practice Final Exam

YOUR NAME:

P1 P2 P3 P4 P5 Extra Total

Please review the previous practice exams and midterms for practice on material
from Chapters 1-4.

Problem 1. Draw the elliptic curve y2 = x3 + 1 and illustrate addition and doubling of
points on the graph, by adding P = (0, 1) and Q = (2, 3), and also Q + Q = 2Q.

Solution. Hint: P + Q = (−1, 0) and 2Q = (0, 1).

Problem 2. Let E be the elliptic curve y2 = x3 + 1 defined over F11.

(1) State Hasse’s theorem, and give a bound on the number of points in E(F11) using
Hasse’s theorem.

(2) Find all the points on E(F11).
(3) Let P = (5, 4). Show that P is on E, and compute 2P using the doubling formulas

on E.
(4) Let P = (5, 4) and Q = (7, 5). Compute P + Q using the addition formulas on E.

Solution. (1) By Hasse’s theorem, the number of elements in E(F11) is less or equal to

p + 1 + 2
√
p = 11 + 1 + 2

√
11 ≈ 18.63 . . .

(2) The points on E are (0, 1), (0, 10), (2, 3), (2, 8), (5, 4), (5, 7), (7, 5), (7, 6), (9, 2), (9, 9),
(10, 0), and the point at infinity O = [0, 1, 0].

(3) Hint: 2P = (10, 0).
(4) Hint: P + Q = (2, 3).

Problem 3. Let E be the elliptic curve y2 = x3 + 1 defined over F11, and let P = (9, 9). The
multiples of P are, in order:

(9, 9), (2, 3), (5, 7), (0, 1), (7, 5), (10, 0), (7, 6), (0, 10), (5, 4), (2, 8), (9, 2),O = (0 : 1 : 0)

That is, 2P = (2, 3), 3P = (5, 7), etc.

(1) In Problem 2 you should have proved that #E(F11) = 12. If P = (9, 9) and Q is an
arbitrary point on E(F11), is the ECDLP problem nP = Q solvable?

(2) Find n such that nP = (5, 4).
(3) Find n such that nP = (7, 6).
(4) Use the elliptic collision algorithm to solve nP = (5, 4).

Solution. (1) In Problem 2 we found that E(F11) has 12 points, and the multiples of
(9, 9) go through 12 different points. Therefore every point on E is a multiple of (9, 9)
and therefore every ECDLP problem nP = Q has a solution.

(2) From the list of multiples of P that we are provided with, we see that 9P = (5, 4).
(3) From the list of multiples of P that we are provided with, we see that 7P = (5, 4).
(4) Review the collision algorithm for elliptic curves!
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Problem 4. Let E be the elliptic curve y2 = x3 + 1 defined over F11, and let P = (9, 9). The
multiples of P are, in order:

(9, 9), (2, 3), (5, 7), (0, 1), (7, 5), (10, 0), (7, 6), (0, 10), (5, 4), (2, 8), (9, 2),O = (0 : 1 : 0)

That is, 2P = (2, 3), 3P = (5, 7), etc.

(1) Alice sets up an Elliptic Diffie–Hellman system with p, E and P as above. She chooses
nA = 2 and Bob chooses nB = 5. Compute the secret key (the secret point) that they
will share using the Elliptic Diffie–Hellman algorithm.

(2) Eve intercepts a communication between Alice and Bob. Eve knows that Alice set up
an Elliptic Diffie–Hellman with p, E, P as above, and intercepts a communication from
Alice to Bob (QA = (7, 5)) and a communication from Bob to Alice (QB = (2, 8)).
What is the secret that Alice and Bob share?

Solution. (1) The common secret is nA · nB · P so 2 · 5 · P = 10P = (2, 8).
(2) Since nA · P = QA = (7, 5) we must have that nA = 5. Since nB · P = QB = (2, 8) we

must have nB = 10. Thus the common secret is nAnBP = 50P . Since P has order
12, we have 50P = 48P + 2P = 2P = (2, 3).

Problem 5. Explain how Alice could set up an Elliptic Elgamal system using p, P,E as in
Problem 4, and give an example of a message being encrypted in this system.

Solution. Review Elliptic Elgamal.

Problem 6. Explain how Alice could set up an Elliptic Digital Signature system using p, E
as in Problem 4, and give an example of a document being signed in this system.

Solution. Review Elliptic Digital Signatures.

Problem 7. Let N = 143 and E : y2 = x3 + x− 1 and P = (1, 1). Use Lenstra’s algorithm
to factor N , using E and P modulo N . (For this problem, you can use a computer if you
want, to practice and to learn how the algorithm works. In the exam, a question of this type
would be set up so you don’t have to use a computer – a calculator would suffice.)

Solution. Here are the coordinates of the multiples of P modulo N :

• P ≡ (1, 1) mod N ,
• 2P ≡ (2, 140) mod N ,
• 3(2P ) = 6P ≡ (133, 56) mod N ,
• 4(6P ) = 24P ≡ (133, 43) mod N ,

However, computing 5(24P ) fails. Here is why: Q = 24P ≡ (133, 43) mod 143. In order
to compute 5Q we need to do 5Q = 2Q + 3Q. First 2Q ≡ (68, 113) mod 143. And 3Q =
2Q + Q = (68, 113) + (133, 43). But to do so, we need to invert 133 − 68 ≡ 65 mod N , and
it turns out this is impossible because gcd(N, 65) = gcd(143, 65) = 13. Hence we have found
a factor of N , namely 13, and N = 143 = 11 · 13.
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Highlights of Chapter 6.

Chapter 6: Elliptic Curves and Cryptography

1. Number theory concepts:

(a) An elliptic curve over a field F (where F ̸= F2) is a curve given by a Weierstrass equation
y2 = x3 +Ax+B, with A,B ∈ F , such that 4A3 + 27B2 ̸= 0 in F .

(b) The geometric secant and tangent method on an elliptic curve E to find a third point R on
E from two known points P and Q. Addition of points on the elliptic curve.

(c) Elliptic curve addition algorithm: let E be given by y2 = x3 +Ax+B, and let P and Q be
points on E.

� If P = O, then P ⊕Q = Q. If Q = O, then P ⊕Q = P .

� If P = (x1, y1) and Q = (x1,−y1), then P ⊕Q = O, i.e., Q = −P .

� If P ̸= Q and P = (x1, y1), Q = (x2, y2), then define λ = (y2 − y1)/(x2 − x1). Then
P ⊕Q = (x3, y3), with

x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3)− y1.

� If P = Q = (x1, y1), then define λ = (3x2
1 + A)/(2y1). Then 2P = (x3, y3) where the

coordinates x3, y3 are defined as above.

(d) If E is an elliptic curve over Fp, with p prime, then

E(Fp) = {(x, y) ∈ F2
p : y2 ≡ x3 +Ax+B mod p} ∪ {O}.

(e) Hasse’s theorem: if E is an elliptic curve over Fp, then

p+ 1− 2
√
p ≤ #E(Fp) ≤ p+ 1 + 2

√
p.

2. Cryptography:

(a) The Elliptic Curve Discrete Logarithm Problem (ECDLP): given an elliptic curve E over Fp

and points P and Q on E, find a number n such that nP = Q, where nP = P ⊕ · · · ⊕ P is
the sum of n copies of P using the elliptic curve addition algorithm.

(b) The double-and-add algorithm to compute a multiple of a point on an elliptic curve.

(c) Collision algorithm to find a solution to an ECDLP problem: to solve Q = nP , find lists:

� List 1: k1P, k2P, . . . , krP , where k1, . . . , kr are distinct integers.

� List 2: k′1P +Q, k′2P +Q, . . . , k′rP +Q, where k′1, . . . , k
′
r are distinct integers.

If kuP = k′vP + Q, then Q = (ku − k′v)P . One needs about r ≈ 3
√
p to have a “very good

chance” of finding a collision.

(d) Elliptic Diffie-Hellman Key Exchange:

� A trusted party chooses a large prime p, an elliptic curve E over Fp, and a points P in
E(Fp).

� Alice chooses a secret integer nA, Bob chooses a secret integer nB .

� Alice computes QA = nA ·P and sends it to Bob. Bob computes QB = nB ·P and sends
it to Alice.

� Alice computes the secret shared point nA ·QB . Bob computes the secret shared point
nB ·QA. We have nAnBP = nAQB = nBQA.

(e) Elliptic Elgamal cryptosystem:

� A trusted party chooses a large prime p, an elliptic curve E over Fp, and a points P in
E(Fp).
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� Alice chooses a private key nA. Computes QA = nA · P in E(Fp). Publishes QA.

� Bob chooses plaintext M ∈ E(Fp), chooses a random element k, and computes C1 = kP
and C2 = M + kQA. Sends the ciphertext (C1, C2) to Alice.

� Alice computes the plaintext M = C2 − nAC1 ∈ E(Fp).

(f) Elliptic Curve Digital Signatures:

� A trusted party chooses a large prime p, an elliptic curve E over Fp, and a points G in
E(Fp) of large prime order q.

� Sam chooses a secret signing key 1 < s < q − 1. Computes V = sG in E(Fp), and
publishes V .

� Sam chooses a document d mod q, chooses a random element e mod q, computes eG
in E(Fp), and a signature (s1, s2) = (x(eG) mod q, (d + s · s1)e−1 mod q). Publish
(d, (s1, s2)).

� Victor computes v1 ≡ ds−1
2 mod q and v2 ≡ s1s

−1
2 mod q. Then verifies that

x(v1G+ v2V ) mod q = s1.

(g) Lenstra’s Factorization Algorithm:

i. Input: N to be factored.

ii. Choose random A, a, and b mod N .

iii. Set P = (a, b) and B ≡ b2 − a3 −Aa mod N , and E : y2 = x3 +Ax+B mod N .

iv. Loop j = 2, 3, 4, . . .

A. Set Q ≡ j · P mod N and set P = Q.

B. If computing j · P in Step 4 fails, we have found a divisor d > 1 of N .

� If d < N , then success, return d.

� If d = 1, then go to step 1.

C. If computing j · P is successful, then increase j by 1, and return to Step A.


